
Presented in the poster session of the 3rd ACM EuroSys Conference, Glasgow (Scotland), April 2008

DDB: Deadlock Debugger

Cristian Zamfir
EPFL

cristian.zamfir@epfl.ch

George Candea
EPFL

george.candea@epfl.ch

1. MOTIVATION
Writing concurrent software is a challenging task prone

to hard to debug errors such as deadlocks. Deadlocks are
challenging to debug because they may occur rarely, based
on a particular thread interleaving and are often hard or
even impossible to reproduce in a debugger. Moreover, once
they happen, they can bring a large software system to an
unexpected halt, requiring a whole system restart.

We introduce DDB, a debugging environment capable of
deterministically and efficiently replaying deadlocks in any
large software system that uses pthreads. It does this with-
out the need to modify the production software and incurs
a minimum overhead at runtime. DDB should work with
systems like Apache, MySQL, JDK and JBOSS..

DDB’s core idea is to capture a lightweight trace at run-
time and to shift all the complexity to the debugging pro-
cess which is executed offline and can take a longer time to
complete. The second idea is to avoid capturing program
inputs by mutating the execution in order to reproduce the
deadlock. Therefore, DDB captures only the synchroniza-
tion trace of the application that can be subsequently used
to replay an equivalent execution inside a debugging envi-
ronment.

We believe that such a replay environment is highly de-
sirable to the developer since most deadlocks are impossible
to reproduce unless the developer has remote access to the
deployed application. Even so, deadlocks might only occur
in unreproduceble thread interleavings. The replay should
be able to offer the debugger meaningful information that
improves the time to produce a bug fix.

Furthermore, our approach is highly portable. The debug-
ger might not be required to recreate the setup that caused
a specific deadlock and, for instance, traces obtained on a
FreeBSD system could be replayed on a completely different
Linux system.

2. DESIGN AND IMPLEMENTATION
DDB is made up of two components: the capture com-

ponent is active at runtime inside production software and
captures the thread synchronization operations. The replay
part runs in a debugging environment and causes the cap-
tured synchronization operations to occur in the same order
they did during the capture phase.

DDB is targeted at reproducing deadlocks that occur in
production software. Therefore recording the trace of syn-
chronization operations should be done with minimum over-
head. Moreover, it should be done without having to modify
existing software. In order to achieve a negligible overhead,
we chose to perform the recording from inside the pthreads
library. Moreover, we intend to use static analysis tools
to eliminate some of the tracing points inside threads that
are guaranteed not to be involved in a deadlock. Record-

ing more than the synchronization operations, such as all
program inputs imposes an unacceptable overhead for large
systems. Therefore, we offload all the complexity to the
replay component since this procedure is done offline.

DDB’s replay component finds an execution path that
matches a recorded trace by looking at the control flow
graph of the application. After such a path is found, DDB
runs the program and dynamically mutates [1] the binary
to make sure that the execution path reproduces the or-
der of the synchronization operations in the trace. This
will produce an equivalent execution that will reproduce the
deadlock. However, it is likely to produce a program that
has an unpredictable behavior (for instance it might access
unallocated memory and cause a SIGSEGV ). We can in-
fer a set of program inputs that will reproduce the same
trace and run the application with these inputs to replay
the deadlock. Alternatively, similar to the failure oblivious
computing approach [2] we allow the program to run and we
intercept possible errors induced by our mutations in order
to continue the execution and reproduce the deadlock.

3. STATUS AND FUTURE WORK
We have implemented DDB’s capture component in FreeBSD

using the libthr pthreads implementation. Initial tests show
that the capture component induces a reasonable overhead
of 20% for the sysbench threads benchmark.

We are currently implementing the replay component by
matching the control flow graph produced by the compiler
against the traces provided by the capture component. This
phase produces an ordered list of function calls and basic
blocks that make up an equivalent execution to the one in
the trace. Using pin [1], we dynamically rewrite the binary
at runtime to produce the desired execution path and modify
the thread scheduling in order to replay the deadlock.

DDB is currently work in progress. We aim to write a
working prototype, evaluate the overhead and portability of
our approach and to compare it against an approach that
records all the input. We intend to evaluate on a set of mi-
crobenchmarks as well as systems such as MySQL, Apache
and JDK and study the overhead imposed at runtime by the
record phase as well as the ability to reproduce deadlocks.

4. REFERENCES
[1] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI ’05, 2005.

[2] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu,
and J. William S. Beebee. Enhancing server availability
and security through failure-oblivious computing. In
OSDI, 2004.


