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We define a program’s run to be good if its execution
is characterized byperformance andoutput correctness
anddeadlock freedom. A bad run is one that is not at
par, performance-wise, with other runs, causes wrong
outputs, or deadlocks.

When a program runs in production, it encounters
two different classes of executions: previously seen and
previously unseen executions. When encountering a
previously seen execution, GoodRun knows how the
program will behave with respect to the three execu-
tion characteristics, i.e. GoodRun is able to foretell if
the execution the program is engaging in is a good or a
bad one. Seen executions are gathered from test runs or
runs in production, or, GoodRun has theoretically ex-
plored this execution, as it is described later. The cur-
rent execution, defined by its thread schedule, is known
by GoodRun if it represents a prefix of a saved thread
schedule. When this is not the case, the execution is
marked as unseen. Such an execution cannot be classi-
fied neither as good, nor as bad.

GoodRun transforms previously unseen executions
into executions with known effects and enforces thread
schedules that are good for the system, i.e. GoodRun
enforces all three characteristics of a good run.

Performance: Under certain schedules, the program
might run considerably faster than under other sched-
ules. The explanation lies in either a difference in mu-
tex contention, or in the order in which threads acquire
locks. For the latter, suppose there are two threads
T1 and T2 that both wish to acquire lockL. Further
suppose that threadT1, after acquiring lockL, per-
forms an I/O operation—which takes a long time to
finish—before releasingL. On the other hand, thread
T2 only updates in-memory data-structures—a quick
operation—and releasesL afterwards. GoodRun will
allowT2 to get the lockL beforeT1, because the system
will progress faster compared to the other case, sinceT2

will not have to wait forT1, andT1 is only “slightly”
delayed.

Correctness: Due to potential data races present in
the code, the outcome of a program’s run is dependent

on the thread schedule. To preserve correctness and of-
fer consistent results, GoodRun will enforce the access
to shared variables to be always safe.

Deadlock Freedom:GoodRun will enforce the same
order with respect to lock acquisitions and releases.
Thus, no deadlocks occur due to lock-inversion.

The two latter restrictions imposed by GoodRun
might incur high overhead or not be valid in the cur-
rent run due to input dependencies. To bypass the
impediment, the order of accessing different shared
variables or locks can vary if there is no dependency
edge between them in the happens-before graph de-
scribing the program’s execution. To further reduce
the imposed overhead, GoodRun performs only local-
ized thread schedule enforcement. Using profilers,
GoodRun can detect the hotspots on the application and
devise a thread schedule that reduces contention. The
respective thread schedule will be enforced only when
reaching the hotspots. For the rest of the program’s ex-
ecution, the thread schedule is controlled by the nor-
mal scheduler. The same technique can be applied for
locks. A bit trickier is to deal with shared variables. In a
gross approximation, objects that are not created locally
in a thread and kept privately are considered as shared.
GoodRun will control the access to such objects.

The project is a dual to Dimmunix [3]. Whereas
Dimmunix finds and avoids bad schedules leading to
deadlocks, in GoodRun we find and enforce good
schedules. When encountering an unseen execution,
GoodRun has two choices:

Morph the current execution into one that is known
to be good. We use two instrumentation mechanisms:

• Library Instrumentation: GoodRun gains control
over thread scheduling and can enforce the desired
schedule by instrumenting thepthreads library or
theJava Virtual Machine.

• Program Instrumentation: The program is modi-
fied to enforce the desirable schedule. A first op-
tion is to inline GoodRun in the program as a set of
assertions placed before locks acquisitions, shared
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variables accesses, or slow operations. However,
a change to the system, e.g. adding new func-
tionality, requires the inlining process to be per-
formed again. An alternative is to keep GoodRun
and the controlled program separate and delegate
thread schedule decisions to GoodRun, through
lightweight instrumentation. Although this solu-
tion incurs a higher overhead compared to inlin-
ing, the gains are in ease of maintenance, i.e. only
added or modified parts of the program need be
instrumented.

Increase Surveillance: GoodRun performs no
thread schedule enforcement. Instead, the goal is to
collect enough diagnosis information to categorize the
execution as good, and subsequently morph other exe-
cutions into this one, or as bad, and avoid it next time.
Because GoodRun is uncertain of the effects of this ex-
ecution, the program will run in “quarantine”. Its ex-
ecution will be considered a transaction that succeeds
if the program terminates and has a correct output. If
the execution causes a failure, GoodRun will save it as
a bad execution to be avoided and the run’s effects on
the entire system will be removed. GoodRun will also
profile the application to discover possible performance
improvements.

The challenges we expect to encounter include:
Schedule tracing: GoodRun needs a lightweight

method for recording thread schedules. We currently
use theJikesRVM Java Virtual Machine whose thread
schedule can be easily tracked and controlled since it is
embedded into the VM.

Schedule classification:For a given set of sched-
ules, GoodRun must decide which good schedules are
“better” than others. Since correctness and deadlock-
freedom are required for all good executions, GoodRun
ranks good executions based on their performance.
GoodRun employs several techniques to rank related
thread schedules based on their performance.

• Static analysis: By inspecting the program’s bi-
nary, GoodRun infers the types of operations a
thread will do. Assigning variable costs to these
operations quantifies the impact on performance
and enables GoodRun to take an informed deci-
sion.

• Trace analysis:Based on tracing program execu-
tion, GoodRun can identify opportunities for better
scheduling by analyzing performance hotspots and
devise a performance improved, localized thread
schedule.

• Profiling: System performance is measured un-
der the different schedules. GoodRun then con-
cludes which specific features of the schedule have
most influence on the performance (i.e., correla-
tion analysis).

Inferring Good schedules: Using symbolic exe-
cution [1] and partial-order reduction [2, 4], GoodRun
can extract valid thread schedules equivalent to a good
schedule, creating a family of good thread schedules.
Each family member can substitute any other member.
Out of a family of thread schedules, GoodRun will aim
to enforce the thread schedule promising the highest
performance. When beginning execution of a program,
out of all the good thread schedules, GoodRun will en-
force the one offering the highest performance. How-
ever, program execution depends on user inputs which
can invalidate the currently enforced thread schedule.
GoodRun will then pick another family of thread sched-
ules, choose the best performer and enforce it. With ev-
ery condition branch taken, the set of available families
of thread schedules changes—it reduces its size when
the program is branching and increases its size when
control flow paths merge. This suggests the threads
should be classified as graphs resembling the program’s
control flow graph.

Helpers and optimizations: Application perfor-
mance is not always influenced purely by the synchro-
nization behavior, therefore GoodRun would have to
find a way to distinguish the effects of, e.g., involun-
tary preemptions from the effects of synchronization.
GoodRun could also explore the benefits of doing static
analysis on the code beforehand, if the source is avail-
able.

Possible extensions include applying GoodRun to
contention managers in software transactional memo-
ries. E.g., DSTM2 ships with 6 different contention
managers, each one trying to be clever about how trans-
action conflicts are resolved.
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