
Automated Vulnerability Discovery in Distributed Systems

Radu Banabic, George Candea and Rachid Guerraoui
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

In this paper we present a technique for automatically
assessing the amount of damage a small number of par-
ticipant nodes can inflict on the overall performance of a
large distributed system. We propose a feedback-driven
tool that synthesizes malicious nodes in distributed sys-
tems, aiming to maximize the performance impact on
the overall behavior of the distributed system. Our ap-
proach focuses on the interface of interaction between
correct and faulty nodes, clearly differentiating the two
categories. We build and evaluate a prototype of our ap-
proach and show that it is able to discover vulnerabilities
in real systems, such as PBFT, a Byzantine Fault Toler-
ant system. We describe a scenario generated by our tool,
where even a single malicious client can bring a BFT sys-
tem of over 250 nodes down to zero throughput.

1. Introduction

The future of computing is communication. Already
today, most modern devices are interconnected: com-
puters, phones, cars, TVs, PDAs, navigation devices,
MP3 players, even watches. However, the benefits of
such interconnectedness are clouded by the many ways in
which malicious entities can exploit unsuspecting users.
Our goal is to help developers build high-assurance dis-
tributed systems.

Distributed systems are complex, thus developers have
a hard time reasoning about how these systems will be-
have once deployed. There has been extensive work on
using techniques such as model checking to verify dis-
tributed protocols ([8], [10], [14]). Complementing this
valuable prior work, we note that distributed system be-
haviors emerge not only from the design of the system
and the algorithms, but also from how they are imple-
mented and how third party software (that they interact
with) behaves.

Alarmingly, large distributed systems are vulnerable
to even a few compromised nodes that are either failed,
or controlled by a malicious attacker. For example, a
vulnerability [2] was recently discovered in BitTorrent, a
popular peer-to-peer file sharing system: a malicious en-

tity can craft a distributed hash table that co-opts correct
nodes into unwittingly performing a distributed Denial of
Service (DoS) attack on a target of the entity’s choosing.
A malicious user, controlling a single machine, can redi-
rect tens of thousands of correct nodes in the file sharing
system towards any target, even outside the BitTorrent
pool. PBFT [4], a Byzantine Fault Tolerant system, is
also surprisingly vulnerable; we show in our experiments
that even a single faulty (or malicious) client can com-
pletely disrupt a PBFT deployment of 250 nodes.

State-of-the-art testing of large distributed systems of-
ten relies in practice on fuzzing, i.e., on trying out a vari-
ety of inputs and checking how the system behaves [18].
Unfortunately, this approach suffers from the fact that the
space of possible inputs is extremely large. Even more
advanced approaches, such as symbolic execution, are
overkill, since they consider the distributed system as a
whole. This “over-zealous” testing leads to a very large
number of possible test scenarios and, thus, to an unfea-
sible total test time. It also incurs significant post-test hu-
man effort to distinguish between realistic and unrealis-
tic scenarios. Furthermore, many such testing techniques
focus on security or dependability of the entire system,
without distinguishing between correct and compromised
nodes and without considering system performance; this
may lead to both false negatives, missing various perfor-
mance issues, and to false positives, e.g., by finding sce-
narios that lead to the “attacker” itself crashing.

2. AVD: Synthesizing Malicious Entities

Our goal is to develop techniques for automatically
assessing the amount of damage that a few faulty (or
compromised) nodes could inflict on the overall behav-
ior of the implementation of a distributed system. De-
velopers can then use these techniques to efficiently and
cost-effectively identify vulnerabilities before releasing
their software. The express purpose is to test implemen-
tations, because often the vulnerabilities lie not in proto-
cols and models, but in the code that implements them. In
this way, our work complements existing work in model
checking of distributed systems.

A key insight is that failures (or attacks) generally oc-
cur only in a small fraction of the nodes in a distributed

Appears in Proc. 7th Workshop on Hot Topics in System Dependability (HotDep), Hong Kong, China, June 2011 1

Correct

server
Correct

server

Correct

server
Correct

server

Correct

server
Correct

server

Correct

server
Correct

server

Analyze

Correct

server

 Network

N
e

tw
o

rk

Test

Controller

Correct

serve

N
e

rk oCo

rk

Control

Correct

server

ect

er

N
e

tw
o

rk

Co

se

Correct

client

Correct

client

Malicious

server

Malicious

client

e

rk

Ne

rkrk

Correct Mali

twork

Correct Mali

A

Tect

er

M

Figure 1. Architecture of AVD.

system. Furthermore, the probability of such faults oc-
curring goes up as distributed systems grow larger and
are becoming heterogeneous. Distributed systems should
be able to contain errors to the failing nodes and, through
replication, trim those nodes out of the system without
data loss. However, it is often the case that errors spread
throughout the system before detection, making gracious
recovery impossible. Thus, our approach only targets a
small subset of the total nodes in a distributed system
and focuses on the interface of interaction between cor-
rect and faulty nodes, searching for faults that propagate
through the interface and impact the entire distributed
system.

We embody our approach in AVD, an automated vul-
nerability discovery platform. The key idea is for AVD
to generate malicious entities in the target distributed sys-
tem, instead of generating low-level inputs. AVD then as-
sesses the impact the malicious entities have on the over-
all system’s behavior with regard to the correct, unmod-
ified nodes. One can think of this approach as “fuzzing”
at the level of system nodes — akin to input fuzzing, but
at a higher level of abstraction. Such an approach can be
used to find potential bugs or bottlenecks in a distributed
system, but also to evaluate an Application Programming
Interface before deployment (i.e., discover if the API en-
ables certain attacks from clients, by being too permis-
sive).

Figure 1 shows AVD’s architecture. The system under
test is composed of several servers and several clients,
connected by networks. The nodes of the system are par-
titioned into correct nodes, which are considered to be
properly configured, and malicious nodes, which are con-
trolled by AVD. The networks may also be under the con-
trol of AVD, since attackers can be assumed to exercise
some sort of control over the network (ranging from DoS
attacks to taking control of routers). The core of AVD is
the Test Controller, which generates the parameters for
each testing tool in use and coordinates them to enhance
the performance impact.

3. Coordinating the Tests

Modern distributed systems are prone to complex fail-
ures; for instance Amazon EC2 was recently subjected
to severe outage [?] due to a combination of factors, in-
cluding a human configuration error and a race condition.
Malicious attacks on distributed systems are also com-
plex, entailing coordination among several attacker nodes
and using combinations of attack vectors (e.g., use a DoS
attack to bring down a server, then spoof its identity to
take control over the entire distributed system). Unlike
tools that focus on exploiting individual faults, AVD will
automatically explore the extent to which a combination
of failures or attacks can damage the target system.

In order to synthesize complex failures, the AVD con-
troller needs to coordinate the various tools available,
generating parameters for each testing tool, for the target
system and for the network. This can be seen as explor-
ing a hyperspace, where each point represents the config-
uration of an individual test scenario. Each dimension in
the hyperspace represents the set of values that can be as-
signed to a particular parameter in the test. For example,
a library-level fault injector can inject a variety of faults
in the system under test — the function where to inject,
the error code and the call number are the three dimen-
sions describing the hyperspace of library fault injection
parameters. Each testing tool, as well as the network con-
figuration and system under test configuration have their
own hyperspaces. The controller has to iterate through
the composition of each individual hyperspace.

Exploring the hyperspace of test parameters can be
seen as playing a game of battleships, where the hyper-
space corresponds to the grid, the vulnerabilities of the
system under test correspond to the battleships and run-
ning a test corresponds to firing a shot. In the board
game, players begin by firing random shots in order to
gain knowledge on the structure of the opponent’s board
(the placement of the ships). Then, as the player gains
more and more knowledge on the structure, the shots be-
come more informed, more focused and more efficient.
The Test Controller, just like a battleships player, ex-
plores the space iteratively, by initially running random
tests and then leveraging the information gained in order
to improve the efficiency of subsequent tests.

The metric used by AVD to assess the impact of a test
(of a fault) is the impact on the correct, unmodified nodes
of the target system. Each explored point in the hyper-
space of test parameters will have an associated impact
measurement, obtained after running the test. Individ-
ual tests are independent; the distributed system is re-
initialized before running a new test.

The exploration algorithm in the Controller is a meta-
heuristic similar to hill-climbing. The Controller keeps a
set containing the tests that have previously had the high-
est impact on the system under test (as measured with the

2

previously defined metric) and performs slight mutations
on those tests, aiming to constantly improve the quality
of the results. The interaction between the Test Controller
and the individual testing tools is done through special-
ized plugins. The Controller has a high-level view on
the testing process, leaving the details of each particular
tool to the plugins. The meta-heuristic algorithm in the
Controller is based on the intuition that there is inherent
structure in the explored hyperspace, and this structure
can be exploited to improve the exploration. Engler et al.
also discovered that bugs in software are correlated [7],
while Inkumsah and Xie showed the benefit of using Ge-
netic Algorithms (another meta-heuristic exploration al-
gorithm) to improve the quality of method sequence gen-
eration for concolic execution [?].

Data: Π: current set of top-impact results,
Ψ: queue of test scenarios pending execution,
Ω: history of previously executed tests,
µ : maximum observed impact so far

1 parent := sample(Π)
2 plugin := sample(parent.plugins)
3 mutateDistance := 1− parent.impact/µ

4 newScenario :=
plugin.mutate(parent,mutateDistance)

5 if newScenario /∈ Ω and newScenario /∈ Π then

6 Ψ := Ψ∪newScenario

7 end

Algorithm 1: Test generation algorithm

A sketch of the algorithm in the Test Controller is
shown in Algorithm 1. The algorithm begins by choosing
a previously executed test scenario, at line 1. The parent
test scenario is sampled from the set Π based on the im-
pact; thus, test scenarios (attacks) that have had a large
impact on system performance will be chosen more of-
ten than those with little impact. Once a parent test has
been chosen, the algorithm needs to decide which param-
eter of the test scenario to change. It delegates this task
to a plugin, since the plugin has deeper knowledge on
the meaning of the parameters. The algorithm samples
a plugin based on the historical benefit of choosing each
plugin (line 2); if a plugin yields an increase in impact
over the parent whenever it is selected, then it will be se-
lected more often (this approach is similar to the fitness-
gain computation used in Fitnex [16]). The new scenario
is obtained by asking the selected plugin to mutate the
parent scenario (lines 3-4). The mutateDistance repre-
sents how “strong” the mutation should be. A “strong”
mutation would lead to a child scenario significantly dif-
ferent from its parent, while a “weak” mutation would
lead to only small variations. The mutateDistance is
computed by comparing the fitness of the parent with
the maximum fitness seen so far in the experiment. If

the fitness of the parent is significantly lower, the parent
is not very promising, therefore the child should differ
significantly from the parent. If, on the other hand, the
parent is promising, the algorithm only “fine tunes” the
parent test parameters. Finally, if the resulting test sce-
nario has not been previously explored, it is added to the
Ψ queue. A worker thread dequeues scenarios from Ψ,
instantiates the test configuration (using the plugins), ex-
ecutes the test and computes the impact (e.g., by calling
performance analysis tools).

4. Power of an Attacker

AVD also enables the tester to estimate the knowl-
edge necessary to an attacker to find weaknesses in a
distributed system. The various testing tools coordi-
nated by AVD use various levels of access to the in-
puts/binaries/code (e.g., fuzzers use nothing, fault injec-
tors use documentation, symbolic execution uses code
etc.). There are two dimensions in the “power” of the
tools at hand.

First, there are various levels of access to the dis-
tributed system nodes. Without access to any source, bi-
nary, or documentation, an attacker (and AVD) can only
resort to random bit flips, random fuzzing, or to random
packet drops/reordering. Given access to documentation,
it is possible to infer the grammar of the protocol and be
smarter about the fuzzing or bit flips. With access to bi-
naries, the attacker can perform static analysis in order
to gain knowledge about the various execution paths and
find corner cases in the protocol implementation. Finally,
with access to the source code, the attacker can gain com-
plete knowledge of the protocol and discover any vulner-
abilities in the system. The attacker can use symbolic ex-
ecution, for instance, to find all execution paths through
the distributed system and exploit those paths that lead to
failures.

Second, there are various degrees of control the at-
tacker can have on the distributed system. It can gain
control of client nodes, of part of the network infrastruc-
ture, or even of server nodes.

Similarly to a real attacker, AVD finds vulnerabilities
faster as it has more power over the target distributed sys-
tem. Thus, the number of tests necessary for AVD to find
a vulnerability is an indication of how difficult it would
be for a real attacker to find similar vulnerabilities, given
the same amount of power. Although not completely ac-
curate, as real attackers have prior experience that cannot
be directly input in AVD, this approach can be used as a
rule of thumb when prioritizing bug fixes.

5. Tools

In this section, we give a brief overview of various
classes of test tools that can be used in AVD and de-
scribe how their associated plugins can implement the

3

mutateDistance parameter described in (§3) in order to
“focus” the testing towards relevant vulnerabilities.

Symbolic execution is a testing technique used to ex-
ercise various code paths through a target system. In a
nutshell, symbolic execution works as follows: instead
of running the target system with concrete input values, a
symbolic execution engine replaces the inputs with sym-
bolic variables, that are initially allowed to be anything,
then runs the target system. Whenever the system execu-
tion branches based on a symbolic value (that depends on
symbolic inputs), the symbolic execution engine forks,
following each branch and adding constraints on the sym-
bolic variable in the branch node. Thus, each execution
path through the target system will have associated a set
of constraints on the symbolic inputs that need to be satis-
fied in order for the execution path to be feasible. The set
of constraints can be “solved”, generating a set of con-
crete inputs that would exercise the respective path.

Symbolic execution of a node in distributed system
finds all the messages that the node may produce, en-
abling AVD to evaluate the response of the correct nodes
in the system to every combination of messages. In order
to synthesize malicious nodes, the consistency models in
the symbolic execution (the strictness with which con-
straints are obeyed) can be relaxed, thus generating se-
quences of messages that would not normally be allowed
by the code; for instance, in the case of PBFT, a malicious
replica could send a “View Change” message without ac-
tually suspecting the primary of being malicious.

For symbolic execution tools, a large mutateDistance

parameter means obtaining a mutated execution path that
has very little in common with the its parent. The plu-
gin can keep track, for each branch node, of the av-
erage “disparity” between the two sub-trees the branch
produced so far (e.g., in terms of basic block coverage).
When the plugin receives a mutate command with a small
mutateDistance, it will flip branch nodes that are known
to produce little “disparity” and vice-versa.

AVD could use concolic execution tools, such as
Cute [13] and Fitnex [16], or selective symbolic execu-
tion tools, such as S2E [5]. Concolic execution tools have
the advantage of producing one complete execution path
at a time, a model that is very close to the iterative ex-
ploration used by AVD. Selective symbolic execution, on
the other hand, allows relaxing the consistency model of
the symbolic execution, giving AVD more control over
the target nodes, enabling more “arbitrary behavior” of
malicious nodes.

Message reordering is a technique to re-arrange pack-
ets in a network. Many distributed systems use asyn-
chronous communication, where the order of incoming
messages is not guaranteed. Therefore, vulnerabilities

may hide in the order in which messages are received.
In the case of message reordering, the mutateDistance

can be reflected in the edit distance (Levenshtein dis-
tance) between two streams of messages. A strong mu-
tation (large mutateDistance) would lead to a high edit
distance between the original stream of messages and its
mutation, while a weak mutation would lead to a low edit
distance.

MODIST [17] is a tool that verifies a distributed sys-
tem against various events related to message timing.
Guerraoui et al. [8] also propose an approach that sep-
arates the message ordering from the local state of each
node during model checking.

Fault injection is a form of testing that entails intro-
ducing faults in a system, with the goal of exercising
error-handling code paths. Fault injection tools generally
simulate a fault in the environment of the system under
test (in the Operating System, libraries, hardware, etc.)
in order to assess the response of the system under test.

We also note that fault injection can be used together
with symbolic execution, for a more efficient exploration
of recovery code paths. KLEE [3] has an operation mode
that allows the symbolic execution engine to also explore
recovery code paths, essentially performing fault injec-
tion (however, these faults are restricted to the level of
the application under test).

The mutateDistance can be reflected in the call num-
ber at which a fault is injected. A small mutateDistance

means injecting in a neighboring call, while a large dis-
tance entails injecting further away than the parent.

There are several fault injection tools available, target-
ing various aspects of the system environment. LFI [11]
makes it easy for testers to write custom fault injection
scenarios. Gunawi et al. [9] describe a framework for
systematically injecting sequences of faults in a system
under test. WebErr [1] can also broaden the scope of
AVD towards testing Web Applications.

6. Preliminary Experiments

In this section we present some preliminary results
that show AVD’s ability to find vulnerabilities. We chose
to evaluate PBFT [4], a well-known Byzantine Fault Tol-
erant system. AVD was able to reproduce a previously
known vulnerability of PBFT, as well as discover a new
attack that brings PBFT throughput down to 0. In this
preliminary experiment we focused on a single test tool,
MAC corruption, in order to validate our approach on
previously discovered bugs. We show that: 1) AVD finds
bugs; 2) there is structure in the hyperspace of test sce-
narios; 3) AVD exploits that structure in order to improve
the efficiency of the exploration. Although our prelimi-
nary experiment is limited, we expect similar results for
other testing tools as well; Engler et al. [7] and Inkumsah

4

and Xie [?] show that similar structure exists in various
classes of software testing.

Inspired by Aardvark [6], we set out to check if AVD
can find the Big MAC attack described by Clement et
al. [6]. We deployed PBFT on Emulab [15] and set
up a fault injector that corrupts the Message Authentica-
tion Code (MAC) in the client nodes. AVD controls three
test parameters: which MACs to corrupt, how many cor-
rect clients to connect to PBFT and how many malicious
clients to connect to PBFT. Each parameter corresponds
to a dimension in the hyperspace explored by PBFT. The
dimension corresponding to which MAC to corrupt has
4,096 values (see below for explanation), the number of
correct clients varies between 10 and 250, with an incre-
ment of 10 (25 values), while the number of malicious
clients is 1 or 2. Thus, AVD explores a hyperspace with
4,096 ∗ 25 ∗ 2 = 204,800 possible scenarios. The perfor-
mance impact of an attack is obtained by measuring the
average throughput observed by the correct clients.

The parameter describing which MAC to corrupt is a
12-bit-wide bit mask, where bit n decides whether to cor-
rupt or not the (n mod 12)-th call to the generateMAC
function in the malicious client. In order to implement
the mutateDistance parameter, the 12-bit number is en-
coded in Gray code. Thus, a small mutateDistance en-
tails choosing a neighboring value (in Gray code, consec-
utive numbers always differ in only one binary position).

Our experiment confirms the Big MAC attack. AVD
shows that by corrupting the MAC in all messages sent by
a malicious client, PBFT will perform a view change and
crash. Figure 2 shows the evolution of the performance
impact in scenarios generated by the fitness-guided ex-
ploration of AVD, versus random exploration. It can be
seen that AVD finds more efficient attacks by exploiting
feedback. AVD finds an instance of the Big MAC attack
in a few tens of iterations (on the order of minutes).

AVD has also helped us discover a previously undoc-
umented bug in PBFT. We noticed that despite a mali-
cious client altering the MACs for the replicas, the pro-
tocol did not always perform a View Change (specifi-
cally, if every retransmission from the malicious client
was correct). The PBFT protocol specifies a timer asso-
ciated to each request received by replicas directly from
clients. If a replica receives such a message, it forwards
it to the primary and starts a view change timer. If the
respective message is not executed before the timer ex-
pires, the replica will initiate a view change (this ensures
that malicious primaries cannot ignore clients forever).
However, in the implementation of PBFT there is a sin-
gle such timer, rather than one per request. If a message
is received by a replica directly from a client, the timer is
set. If any such message is executed before the timer ex-
pires, the timer is reset. Therefore, a malicious primary
only has to execute one client request per timer period

0

0.2

0.4

0.6

1 26 51 76 101

A
v

g
. L

a
te

n
cy

 (
s)

0

20000

40000

60000

1 26 51 76 101T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Random AVD

Figure 2. Evolution of average latency of requests from
correct clients and of average throughput of PBFT sys-
tem, as induced by attacks generated by the fitness-
guided exploration of AVD, versus random exploration,
over 125 executed tests

(5 seconds by default), diminishing PBFT throughput to
0.2 requests / second. If the respective client is also ma-
licious, cooperating with the primary, the primary can
ignore all messages from correct clients decreasing the
useful throughput of PBFT to 0. This is a particular in-
stance of “slow primaries”, which Clement et al. [6] also
broadly described; Aardvark avoids this bug by enforcing
minimum throughput thresholds for each primary.

Figure 3 shows a subset of the hyperspace of possi-
ble test scenarios for the PBFT MAC attack experiment,
allowing a visual inspection of the inherent structure ex-
ploited by AVD. We used an exhaustive approach to ex-
plore the entire subspace, in order to visualize its struc-
ture. Dark points represent test scenarios where the per-
formance of PBFT is severely impacted by the faulty
nodes (throughput is smaller than 500 requests/second).
It can be seen that the subspace has both horizontal and
vertical structure: there are several clearly defined verti-
cal lines and they are clustered together on the horizontal
axis. This structure makes the space suitable for explo-
ration with hill-climbing.

7. Related Work

To the best of our knowledge, there are no other tools
that take a similar approach to vulnerability detection.
Existing security tools either focus on specific security
aspects or test the system as a whole.

5

0 200 400 600 800 1000

40

60

80

100

20

0

N
u

m
b

e
r

o
f

cl
ie

n
ts

MAC corruption bitmask (in Gray code)

Figure 3. A subset of the hyperspace of possible test
scenarios for PBFT MAC fault injection, exhaustively
explored. Dark points represent scenarios where the
throughput of PBFT drops below 500 requests/sec.

The Mace Performance Checker [10] and BFT-
Sim [14] both add execution time to distributed system
models. MacePC uses this information to find perfor-
mance issues in the recovery code of various distributed
systems, while BFTSim simulates byzantine fault toler-
ant systems under various network conditions. Unlike
our work, both tools rely on an existing model of the tar-
get distributed system; the model can be buggy, incom-
plete or out of date.

McMinn surveyed various approaches towards the use
of meta-heuristic search techniques in software testing
[12], covering various heuristics and various test tech-
niques. However, the survey focuses on exploring dif-
ferent execution paths through a single-threaded system,
rather than distributed system vulnerability.

8. Conclusion

In this paper we described a technique for automat-
ically discovering vulnerabilities in distributed systems,
focusing on the impact that a small number of compro-
mised nodes can have on a large distributed system. Our
approach is to synthesize malicious nodes in a distributed
system and assess the performance hit they incur on the
correct, unmodified nodes of the system. We also pre-
sented AVD, a prototype implementation of our tech-
nique and used it to find two vulnerabilities in PBFT.

References

[1] S. Andrica and G. Candea. WebErr: High fidelity web
application recording and replaying. In Intl. Conf. on De-

pendable Systems and Networks, 2011.

[2] Bittorrent dos vulnerability. http://events.ccc.de/
congress/2010/Fahrplan/events/4210.en.html.

[3] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. In Symp. on Operating Systems

Design and Implementation, 2008.
[4] M. Castro and B. Liskov. Practical byzantine fault toler-

ance. In OSDI, 1999.
[5] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A plat-

form for in-vivo multi-path analysis of software systems.
In Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems, 2011.
[6] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and

M. Marchetti. Making byzantine fault tolerant systems
tolerate byzantine faults. In NSDI, 2009.

[7] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. Lake Louise, Canada, Oct 2001.

[8] R. Guerraoui and M. Yabandeh. Model checking a net-
worked system without the network. In Symp. on Net-

worked Systems Design and Implementation, 2011.
[9] H. S. Gunawi, T. Do, P. Joshi, J. M. Hellerstein, A. C.

Arpaci-Dusseau, R. H. Arpaci-Dusseau, and K. Sen.
Towards automatically checking thousands of failures
with micro-specifications. Technical Report UCB/EECS-
2010-98, UC Berkeley, 2010.

[10] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J. W. An-
derson, and R. Jhala. Finding latent performance bugs in
systems implementations. In Symp. on the Foundations

of Software Eng., 2010.
[11] P. D. Marinescu, R. Banabic, and G. Candea. An extensi-

ble technique for high-precision testing of recovery code.
In USENIX Annual Technical Conf., 2010.

[12] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14:105–156, 2004.

[13] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Symp. on the Foundations of

Software Eng., 2005.
[14] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe.

BFT protocols under fire. In Symp. on Networked Systems

Design and Implementation, 2008.
[15] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed sys-
tems and networks. In Symp. on Operating Systems De-

sign and Implementation, 2002.
[16] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte.

Fitness-guided path exploration in dynamic symbolic ex-
ecution. In Intl. Conf. on Dependable Systems and Net-

works, 2009.
[17] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,

F. Long, L. Zhang, and L. Zhou. MODIST: Transpar-
ent model checking of unmodified distributed systems.
In Symp. on Networked Systems Design and Implemen-

tation, 2009.
[18] Michael Zalewski’s security homepage.

http://lcamtuf.coredump.cx/.

6

