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Abstract
Trojan messages are messages that seem correct to the re-
ceiver but cannot be generated by any correct sender. Such
messages constitute major vulnerability points of a dis-
tributed system—they constitute ideal targets for a malicious
actor and facilitate failure propagation across nodes. We de-
scribe Achilles, a tool that searches for Trojan messages
in a distributed system. Achilles uses dynamic white-box
analysis on the distributed system binaries in order to infer
the predicate that defines messages parsed by receiver nodes
and generated by sender nodes, respectively, and then com-
putes Trojan messages as the difference between the two.

We apply Achilles on implementations of real distributed
systems: FSP, a file transfer application, and PBFT, a
Byzantine-fault-tolerant state machine replication library.
Achilles discovered a new bug in FSP and rediscovered a
previously known vulnerability in PBFT. In our evaluation
we demonstrate that our approach can perform orders of
magnitude better than general approaches based on regular
fuzzing and symbolic execution.

Categories and Subject Descriptors D.2.5 [SOFTWARE
ENGINEERING]: Testing and Debugging - Symbolic exe-
cution

Keywords symbolic execution; distributed system; testing;
Trojan

1. Introduction
Most reliability techniques in distributed systems are based
on the assumption that failures are independent: if a node
fails in some way, the impact on other nodes should be min-
imal, i.e., the failure should not propagate. But even if nodes
are programmed independently and placed on geographi-
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cally remote sites, nodes need to communicate, typically by
exchanging messages. Such messages can propagate failures
among nodes.

In this paper, we study what we call Trojan messages.
These are messages that are intelligible to correct receiver
nodes of a distributed system, but cannot be generated by
any correct sender nodes in that system. Similar to divisions
by zero or buffer overflows, Trojan messages result from
absence of defensive programming and constitute a source
of vulnerabilities. We know of no work that automatically
discovers this type of messages.

Trojan messages often creep into the implementation of
nodes, while being invisible in their high level specification.
Such messages can have a major impact on the behavior of
distributed systems. For example, the Amazon S3 storage
system suffered several hours of downtime in 2008 [1]. The
problem was caused by “a handful of messages [...] that had
a single bit corrupted”. Unfortunately for the system, “the
message was still intelligible, but the system state informa-
tion was incorrect”. This allowed the initial corruption to
propagate to other, correct nodes of the system, until most of
the collective information in the system was corrupt. Such
corner cases are difficult to identify. In order to prevent such
downtime in the future, Amazon engineers added checks to
“log any such messages and then reject them”.

The core problem that caused the Amazon S3 downtime
was the fact that nodes accepted the corrupt messages de-
spite the fact that no correct node could have generated such
messages in the respective context. We say that S3 nodes
accepted Trojan messages. We argue that, if such messages
exist in a system implementation, they represent an unnec-
essary vulnerability—servers should do what correct clients
require them to do and not one bit more. Since, by definition,
correct nodes cannot generate Trojan messages, it is likely
that such messages will not be encountered during regular
testing. Trojan messages are likely to exercise untested code
paths and surface hidden, potentially undesired, behavior.

Current testing techniques face vast search spaces of pos-
sible inputs. This limits their ability to find the Trojan mes-
sages that could cause the system to fail at some point in the
future. Recognizing the important distinction between spec-
ification and implementation, the most stringent operators of



distributed systems have started testing their live production
systems with fault injection (e.g., Google organizes regular
“fire drills” in which engineers intentionally cause failures in
critical live systems [18]). Trojan messages are good candi-
dates for such fault injection. However, guessing which mes-
sages are Trojan is still hard and mostly an elusive goal.

We propose Achilles, a system whose purpose is to iden-
tify Trojan messages that constitute the Achilles heel of any
distributed system. Our approach is based on:

1. A new usage model for symbolic execution, aimed at
discovering execution paths that accept Trojan messages.

2. A set of optimizations that enable efficient search for
Trojan messages.

We applied Achilles to the File Service Protocol [12], a
UDP-based file transfer protocol implementation that is dis-
tributed with some Debian versions, and to PBFT [6], an
implementation of a Byzantine fault-tolerant replication pro-
tocol. We show that Achilles has high accuracy; it is orders
of magnitude more efficient at finding Trojan messages than
black-box fuzzing or classic symbolic execution. Achilles
found in FSP a high-level semantic bug and also rediscov-
ered a known vulnerability in PBFT—subtle bugs that would
be difficult to discover using other techniques.

The rest of the paper is organized as follows: we first
present the high-level idea of Achilles along with a work-
ing example of a system under test (§2). In §3 we describe
the basic mechanism of Achilles and the optimizations that
make it practical. We discuss the soundness and complete-
ness of our approach in §4. Then, we describe our current
prototype (§5) and evaluate Achilles on two real distributed
systems (§6). Finally, we review related work (§7) and con-
clude (§8).

2. Achilles: A Primer
Achilles is a system designed to identify Trojan messages
in a distributed system. For simplicity, we consider in our
description of Achilles only client-server systems where the
client generates requests and the server replies; it is straight-
forward to generalize the approach to peer-to-peer or other
types of distributed systems.

We define Trojan messages as those that are accepted by
correct server nodes in a distributed system but cannot be
generated by any correct client node, as illustrated in Fig-
ure 1. By “correct” we mean nodes that execute the unaltered
implementation of the distributed system, in contrast to in-
correct nodes, which are nodes that have encountered a fault
(e.g., memory bit flip), or are controlled by malicious users.
Thus, in our definition, “correct” does not necessarily imply
that nodes follow the high-level specification of the protocol,
or do what the developers intended.

Achilles has two phases. In a first phase, it computes a
predicate that defines all messages that can be generated by
correct clients. We call this the client predicate PC . The set
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Figure 1. Trojan messages are messages that are accepted
by a server but cannot be generated by any correct client.

of messages that can be generated by correct clients is C =
{msg | PC(msg)}. In the second phase, Achilles computes
a predicate that defines all messages that are accepted by
the server, the server predicate PS . The set of messages that
are accepted as correct by correct servers is S = {msg |
PS(msg)}. Then, the set of Trojan messages is defined as
T = S \ C, which can be expressed as T = {msg |
PS(msg) ∧ ¬PC(msg)}.

In essence, Achilles extracts the grammar of the com-
munication protocol, as implemented in both the client and
the server. It then operates on the two grammars, trying to
determine the difference between the server’s implementa-
tion of the grammar and the client’s. As we describe later
(§3), Achilles uses symbolic execution in order to analyze
the implementation of clients and servers; it represents the
extracted grammars using symbolic constraints.

2.1 Working Example
To illustrate the idea underlying our approach, consider the
sample server implementation presented in Figure 2.

This is a simplified example, in which a server handles
read or write requests from clients. The server first initial-
izes its internal data structures (lines 2-3). Next, the server
enters an event loop in which it handles client requests. The
program receives a message and stores it in the local vari-
able msg (line 5). Then, the server checks that the message
sender is in a pre-configured group of known peers (line 6)
and if the CRC error-detection code is correct.

If the message passes the general validation tests, the
server reads the request field to get the message type—either
a READ or a WRITE request. If the request is not one of
the two, the message is discarded (line 29). For either of
the request types, the server validates the address field and
handles the respective request.

The client shown in Figure 3 follows the same protocol
as the server. It reads user requests from standard input,
validates the data (lines 5-7) and computes corresponding
requests for the server.

The sample system has a Trojan message. The server
validates that the requested address is below the maximum



1 # d e f i n e DATASIZE 100
2 p e e r s = i n i t i a l i z e P e e r s ( ) ;
3 d a t a = new i n t [DATASIZE ] ;
4 whi le (TRUE) {
5 msg = r e c e i v e M e s s a g e ( ) ;
6 i f ( ! i s I n S e t ( msg . s ende r , p e e r s ) )
7 c o n t in u e ;
8 i f ( ! isVal idCRC ( msg , msg .CRC) )
9 c o n t in u e ;

10 sw i t ch ( msg . r e q u e s t ) {
11 case READ:
12 i f ( msg . a d d r e s s >= DATASIZE)
13 c o n t i nu e ;
14 / / S e c u r i t y v u l n e r a b i l i t y : f o r g o t to check
15 / / address < 0
16 sendMessage ( msg . s ende r , REPLY ,
17 d a t a [ msg . a d d r e s s ] ) ;
18 c o n t i nu e ;
19 case WRITE :
20 i f ( msg . a d d r e s s >= DATASIZE)
21 c o n t i nu e ;
22 i f ( msg . a d d r e s s < 0)
23 c o n t i nu e ;
24 d a t a [ msg . a d d r e s s ] =
25 msg . v a l u e ;
26 sendMessage ( msg . s ende r , ACK) ;
27 c o n t i nu e ;
28 d e f a u l t :
29 c o n t i nu e } ;
30 }
31 }

Figure 2. A simple server that handles requests from
clients. The server accepts Trojan messages, as it does not
correctly validate the address field of read requests.

DATASIZE, however, for READ requests it does not ensure
that the address is greater than zero. The client, however,
validates the input from the user before contacting the server.
Therefore, no correct client can generate READ messages
with negative offsets, although they are accepted by the
server. Thus, any READ message with a negative address is
a Trojan message.

In this example, the Trojan message can lead to a poten-
tial privacy leak, as attackers can read from negative offsets
in the data array and discover, for instance, the list of peers
that communicate with the server.

3. Design
At a high level, Achilles works as follows. In a first phase,
it obtains the client predicate PC . Then, it pre-processes
PC to eliminate redundancy and to pre-compute structure
information for the next phase (details follow in §3.3). In
the second phase, Achilles computes the server predicate
PS , as well as incrementally discovering Trojan Messages.
As an optimization, our implementation does not compute
the entire formula of PS before computing Trojan messages,
but rather searches for Trojan messages incrementally, as it
builds PS .

In this section, we first give an overview of how Achilles
uses symbolic execution in order to extract the grammar

1 # d e f i n e DATASIZE 100
2 peer ID = g e t P e e r I D ( ) ;
3 o p e r a t i o n T y p e = readFromKeyboard ( ) ;
4 a d d r e s s = readFromKeyboard ( ) ;
5 i f ( a d d r e s s >= DATASIZE)
6 e x i t ( 1 ) ;
7 i f ( a d d r e s s < 0)
8 e x i t ( 1 ) ;
9 / / C l i e n t only sends a d d r e s s e s in [ 0 , 1 0 0 )

10 i f ( o p e r a t i o n T y p e == READ) {
11 msg = new ReadMessage ( ) ;
12 msg . s e n d e r = me ;
13 msg . r e q u e s t = READ;
14 msg . a d d r e s s = a d d r e s s ;
15 msg .CRC = computeCRC ( msg ) ;
16 sendMessage ( s e r v e r , msg ) ;
17 }
18 i f ( o p e r a t i o n T y p e == WRITE) {
19 v a l u e = readFromKeyboard ( ) ;
20 msg = new WriteMessage ( ) ;
21 msg . s e n d e r = me ;
22 msg . r e q u e s t = WRITE ;
23 msg . a d d r e s s = a d d r e s s ;
24 msg . v a l u e = v a l u e ;
25 msg .CRC = computeCRC ( msg ) ;
26 sendMessage ( s e r v e r , msg ) ;
27 }

Figure 3. A simple client that generates messages. Correct
clients validate the address field, therefore cannot expose the
bug in the server.

from both the client and the server (§3.1). We then describe
how Achilles finds Trojan messages efficiently using off-
the-shelf constraint solvers (§3.2). We present optimizations
that enable Achilles to handle large client predicates (§3.3).
Finally, we describe how Achilles handles local state in the
client and in the server (§3.4).

3.1 Symbolic Execution and Message Grammars
Achilles uses symbolic execution [17] to extract the gram-
mars of messages that can be sent/received by an imple-
mentation of a distributed system. Symbolic execution is a
technique that systematically explores execution paths in a
system. Rather than exercising a system with concrete in-
puts, a symbolic execution engine provides “symbolic” data,
which can conceptually take any value. The symbolic exe-
cution engine then executes the system under test and in-
terprets expressions symbolically. At each branching point
that depends on symbolic data, the symbolic execution en-
gine invokes a Satisfiability Modulo Theories (SMT) solver
to assess the feasibility of each branch, based on the current
state of the system. When a branch is deemed feasible, the
execution engine follows the respective branch and also up-
dates the symbolic data, keeping track of the constraints that
need to be satisfied such that the branch is feasible. If both
paths are feasible, the execution engine forks the exploration
and follows both branches.

At every step of the symbolic execution, the engine keeps
track of several possible execution states of the system, each



λ = makeSymbolic();

if (λ > 0)

     x = 14;

else

     x = λ + 1; λ > 0 ?

PC:

   λ <= 0

Symb. store

   x = λ + 1

PC:

   λ > 0

Symb. store:

   ø

State 1: State 2:

Figure 4. An example of symbolic execution for a small
piece of code.

corresponding to a possible execution path. Figure 4 shows
a sample symbolic execution of a small piece of code. A
symbolic execution state consists of a symbolic store, which
maps variables from the system under test to expressions
on symbolic inputs, and the set of path constraints, which
represent the conditions on symbolic input that must hold
for the respective execution path to be feasible.

In Achilles, we represent message grammars as sets of
constraints obtained during symbolic execution. The server
predicate PS is expressed by the set of path constraints that
correspond to execution paths that handle accepted mes-
sages. The client predicate PC is expressed by the symbolic
messages that the client sends over the network on different
execution paths, along with their respective path constraints.

Client Predicate. In a distributed system, clients receive
“local” inputs, parse the inputs, generate corresponding mes-
sages conforming to the specification of the protocol (or,
more precisely, to the client’s implementation of that spec-
ification), and finally send the messages to the server. The
client predicate is a representation of all valid messages that
can be sent.

In order to obtain the set of all possible messages that
can be generated by a client in a distributed system, we
conceptually need to provide the client with all possible
“local” inputs and then capture the messages it sends over
the network. We start the client in a symbolic environment
such that any local system call that the client emits in order
to read input is intercepted, and the result is replaced with
symbolic data. The symbolic execution engine keeps track of
how the symbolic data flows through the client and, when the
client attempts to send a message over the network, Achilles
captures and stores the contents of the message and the
corresponding path constraints. The message payload may
contain concrete data, but also expressions on symbolic data.

Thus, the predicate PC is the disjunction of predicates
pathC1

∨· · ·∨pathCn
, where each pathCi

is a conjunction of

∃ symb_PeerID , symb_Address , symb_Value :

message.sender = symb_PeerID∧
message.request = READ∧
message.address = symb_Address∧
message.CRC = CRC(message )∧
symb_Address < 100∧
symb_Address >= 0∨

message.sender = symb_PeerID∧
message.request = WRITE∧
message.address = symb_Address∧
message.value = symb_Value∧
message.CRC = CRC(message )∧
symb_Address < 100∧
symb_Address >= 0

Figure 5. The client predicate PC(message) of the client in
Figure 3, as discovered by the symbolic execution phase of
Achilles.

path constraints and symbolic expressions for an execution
path that sends a message. We call each such predicate
pathCi

a client path predicate.
For the example client in Figure 3, Achilles discov-

ers the predicate presented in Figure 5. Names that begin
with symb_ indicate symbolic data automatically inserted by
Achilles. There are two main execution paths in the client
that lead to messages being sent. One path corresponds to
a READ request, while the other corresponds to a WRITE
request. In both cases, the message.request header contains
concrete data. This is because there is no data flow depen-
dency between the message.request header and any sym-
bolic input; the values for the two paths only differ because
of control flow dependencies.

All other headers except message.request contain sym-
bolic data. The message.value and message.sender headers,
for example, contain the respective unconstrained symbolic
inputs. The CRC header contains an expression on all other
symbolic inputs (in Figure 5, the expression is summarized
by the CRC function, but in real deployments, the expres-
sion contains the full chain of operations that transform the
symbolic inputs). Finally, the address header contains con-
strained symbolic data. There are no operations directly per-
formed on symb_Address; however, the execution path that
leads to the message imposes constraints on the possible val-
ues: symb_Address needs to have values between [0, 100) in
order for the message to be sent. This is reflected in the path
constraints that are captured and stored by Achilles.

In distributed systems, messages usually have clearly dif-
ferentiated fields. Developers might be interested to check
only a subset of those fields for Trojan messages (e.g., only
check the contents of the address field). We support this
selective approach in Achilles (§5.2) and also refer to tech-
niques that automatically avoid complex authentication or
encryption functions (§7). Since the grammar extraction



phase of Achilles is based on vanilla symbolic execution,
Achilles can benefit from a variety of approaches that en-
hance symbolic execution.

Server Predicate. In a distributed system, the server re-
ceives messages from a client, parses the message, and exe-
cutes the operation requested by the client. The server should
discard messages that do not follow the specification, and
only execute operations corresponding to valid messages.
The server predicate PS is a representation of all valid mes-
sages that can be received.

Each message received by the server triggers the execu-
tion of code to handle it. For simplicity, we refer to the se-
quence of executed instructions as the execution path trig-
gered by the message. The execution path starts after the re-
turn of the receive instruction and ends when the message
processing is complete—either the server exits, or it listens
for new events.

After receiving a message, the server decodes it and
parses its fields, checking if the message conforms to the
specification of the protocol (or, more precisely, to the server
node’s implementation of that specification). In order to infer
the set of valid messages, Achilles first classifies execution
paths in the system under test as either accepting or reject-
ing. Accepting execution paths are those that are triggered
by messages that pass the initial parsing stages of the sys-
tem under test and cause the server to perform an action.
Conversely, rejecting execution paths are those that are trig-
gered by messages that are rejected by the server. Achilles
automates the classification of paths, using some simple ob-
servations on the behavior of the server. Human operators of
Achilles can also manually place tags in the code in order to
speed up the analysis (details follow in §5.2).

In order to obtain the server predicate, Achilles executes
the server node symbolically, feeding it an unconstrained
symbolic message. The server analyzes the message and
branches into different execution paths, one for each type of
message in the protocol specification. Symbolic execution
enumerates all these paths, keeping track of the constraints
that make each path feasible.

We define the server predicate PS as the disjunction of all
path constraints corresponding to accepting execution paths.
Thus, PS represents all possible messages that can trigger
accepting execution paths in the server.

Similarly to PC , the server predicate PS is obtained using
vanilla symbolic execution. Therefore, Achilles can benefit
from any optimization that enhances the performance of
symbolic execution engines.

In the example in Figure 2, we define rejecting execution
paths as those that do not send a reply to the client (reach
lines 7, 9, 13, 21, 23 or 29 of the server code), and accepting
execution paths as those paths that send a reply (reach line 17
or 26). The server predicate, as discovered by our technique,
is presented in Figure 6.

isInSet(message.sender , peers ) = TRUE∧
isValidCRC(message , message.CRC ) = TRUE∧
message.request = READ∧
message.address < 100∨

isInSet(message.sender , peers ) = TRUE∧
isValidCRC(message , message.CRC ) = TRUE∧
message.request = WRITE∧
message.address < 100∧
message.address ≥ 0

Figure 6. The server predicate PS(message) of the server
in Figure 2, as discovered by the symbolic execution phase
of Achilles.

3.2 Finding Trojan Messages
Trojan messages are, by definition, all messages in S \ C.
This is equivalent to T = {msg | PS(msg) ∧ ¬PC(msg)}.
In Achilles, Trojan messages are computed incrementally,
as it builds up the formula of PS . This point is essential, as
clients are usually less complex than servers. The extraction
of the client predicate PC is easier than the extraction of the
server predicate PS .

For every explored execution path in the server, Achilles
keeps track of a list of client path predicates that contain
messages that can trigger the respective path, as shown in
Figure 7. At every branch point encountered during the sym-
bolic execution of the server, Achilles checks which of the
client messages can still trigger each path, and whether the
paths can be triggered by any Trojan messages. As soon as
an execution path cannot be triggered by any Trojan mes-
sages, it is dropped from the exploration. Therefore, by con-
struction, any execution path in the server that reaches an
accepting marker has Trojan messages. For such execution
paths, Achilles outputs a symbolic expression and a concrete
example of the Trojan message.

Note that Trojan messages might be exclusive on execu-
tion paths (e.g., the accepting path on the right in Figure 7),
or they might be bundled with other, non-Trojan messages
(e.g., the accepting path on the left). The latter case means
that classic symbolic execution by itself does not alleviate
the problem of finding Trojan messages by much—it weeds
out execution paths with dropped messages from those with
accepted messages, but Trojan messages may be anywhere
among the execution paths that handle accepted messages.
In the example in Figure 2, the Trojan messages (those with
msg .address < 0) are on the same execution path with
valid messages (those that satisfy msg .address >= 0 and
msg .address < DATASIZE ); symbolic execution by itself
would not point out the presence of a potential bug. This
is also the case of the wildcard bug found by Achilles in
FSP (§6.3) and the vulnerability found by Achilles in PBFT
(§6.3).
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Figure 7. Symbolic execution of a server node in Achilles.
Using the predicate collected from the client, Achilles re-
stricts the server exploration to paths that can be triggered
by Trojan messages.

We optimize the discovery of Trojan messages by adapt-
ing Achilles to the particularities of symbolic execution, as
described in the following subsections.

Constraint Solving. Predicates PC and PS are disjunc-
tions of path predicates. Each path predicate path ∈ P is a
conjunction of constraints and assignments. A predicate de-
fines a class of messages generated by a client, or accepted
by a server. In order to compare two predicates path1 and
path2, Achilles must combine the two in a single formula
and then call an SMT solver in order to check satisfiability.

In order to combine a client and a server path predicate,
Achilles adds a conjunction between their respective path
constraints, and also adds an equality constraint between
the value of the message generated in the client and the
value of the message received in the server. In essence, the
combination between a server and a client path predicate,
pathS and pathC , represents messages msg such that:

• msgS satisfies the server predicate
• msgC satisfies the client predicate
• msgS = msgC = msg

SMT solvers, such as STP [13] or Z3 [11], verify the sat-
isfiability of a set of constraints and expressions on symbolic
variables. Furthermore, SMT solvers can compute a concrete
assignment of the symbolic variables that satisfies a set of
expressions and constraints. For example, an SMT solver
can determine that the set of constraints λ > 0 ∧ λ < −5
is unsatisfiable. However, λ > 0 ∧ λ < 5 is satisfiable and
λ = 3 satisfies the constraints.

In terms of symbolic expressions, the definition of the set
of Trojan messages T can be written as the set of messages
that satisfy the server predicate, but not the client predicate:

T ={msg | PS(msg) ∧ ¬PC(msg)}

PC contains an existential quantifier; negating it produces
a universal quantifier. This makes solving the expression
above difficult using current SMT solvers. Z3 has limited
support for quantifiers, using heuristics and patterns to elim-
inate quantification. Achilles calls Z3, attempting to solve
the predicate and check for the presence of Trojan messages.
However, the heuristics may fail; in this case, Z3 cannot an-
swer whether an expression is satisfiable or not. In the fol-
lowing subsection, we discuss how we under-approximate
the negation of client path predicates and eliminate the uni-
versal quantifier.

Negating Path Predicates. Recall that a client path predi-
cate pathC ∈ PC represents all possible messages that can
be generated on a particular execution path. Let
negate(pathC) be an operator that generates a predicate rep-
resenting all possible messages that cannot be generated on
that path.

Figure 8 shows the expression of READ messages gen-
erated by the sample client in Figure 3. There are three
symbolic variables in the message, λPeerID, λAddress and
λCRC , and one concrete variable, containing the value
READ . λPeerID is the unconstrained value of the
symb_PeerID input. λAddress is the value of the
symb_Address input, but it is subjected to the restrictions in
the path constraint. Finally, λCRC is a more complex opera-
tion on λPeerID, λAddress and READ .

message

READλ PeerID λ Address λ CRC

symbolic store

λ          = symb_PeerIDPeerID

λ          = symb_AddressAddress

λ          = CRC(CRC λ        ,           ,            )PeerID READ λ Address

path constraints

λ         < 100Address

λ         ≥ 0Address

Figure 8. The expression of READ messages generated by
the sample client.

Achilles under-approximates the true negate operator as
follows. Achilles’ custom operator computes the negation
of a path predicate as a disjunction of the negation of each
individual value in the message buffer. In order to negate a
value, there are two cases:



1. If the value is a concrete value C, then replace the re-
spective value with a new symbolic value λ and add the
constraint λ 6= C.

2. If the value is an expression on symbolic variables, then
negate the set of constraints that influence the respective
variables. If there are no constraints available, then aban-
don the negation of the current value.

For the example in Figure 8, the negation of the path
predicate is a representation of the set of message where:

• the request field is different from READ or
• the address field is smaller than 0 or greater than 100 or
• the CRC field is the CRC function of a message where

the address is smaller than 0 or greater than 100 or its
request is different from READ.

In constraint form, this is written as:
(message.request = λreq) ∧ λreq 6= READ
∨(message.address = λAddress)

∧(λAddress ≥ 100 ∨ λAddress < 0)
∨(message.CRC = CRC (READ , λAddress, λPeerID))

∧(λAddress ≥ 100 ∨ λAddress < 0)
We discuss the soundness and completeness of the cus-

tom negate operator in a dedicated section (§4).

3.3 Handling Large Client Predicates.
The server analysis phase of Achilles is a search problem—
find all possible execution paths that accept Trojan mes-
sages. Symbolic execution enumerates the possible execu-
tion paths in the server, with the added precondition that
there exists at least one message that satisfies the path con-
straints in the server and the conjunction of all negated client
path predicates. The negation operator allows checking for
Trojan messages with a single query to the constraint solver;
however, this query can be complex.

Achilles needs a strategy to efficiently handle the thou-
sands of expressions that can appear in a client predicate.
The key idea is to keep track of which path predicates can
trigger an execution path explored in the server.

The PS extraction phase of Achilles incrementally adds
constraints to each pathS ∈ PS , as it explores execution
paths. Rather than just checking whether there are Trojan
messages on the current path (if pathS ∧ negate(pathC1

) ∧
· · · ∧ negate(pathCn

) is satisfiable), Achilles also checks
whether pathS ∧ pathCi

is satisfiable, for each pathCi
∈

PC . Whenever the latter is not satisfiable, Achilles drops
negate(pathCi

) from the solver query that checks for Tro-
jan messages—if pathS ∧ pathCi

is false, then pathS ∧
negate(pathCi

) is implicitly true (this is because pathS and
pathCi

are both satisfiable, by construction). Once dropped,
pathCi

will never be checked again on the respective exe-
cution path; pathCi does not change, while pathS only be-
comes more constrained, meaning that the conjunction can
never become feasible in the future. As the symbolic execu-

tion engine explores longer execution paths, the number of
client path predicates that can trigger the path decreases, and
the size of the SMT query that checks for Trojan messages
becomes smaller (we evaluate the effect of this optimization
in our experiments §6.4).

In order to further optimize the search for Trojan mes-
sages, Achilles also exploits the process through which path
predicates are generated. The intuition behind this optimiza-
tion is that messages generated by the client are similar
to each other. Two client path predicates can represent the
same values for a certain field in a message, e.g., path ′

C =
(msg .x = 1) ∧ (msg .y = 2) and path ′′

C = (msg .x =
1) ∧ (msg .y = 7) have the same values for field x. In this
case, if path′C is dropped due to a new server constraint
on field x, then path′′C can also be dropped without further
checking.

Achilles pre-computes a data structure that stores in-
formation about relations between client path predicates.
The data structure can be seen as a three-dimensional ma-
trix differentFrom , where differentFrom[i][j][field ] =
TRUE means that there exists at least one message msg i ∈
pathCi

such that there is no message msgj ∈ pathCj
with

msg i.field = msgj .field . The data structure is computed
by applying the negate operator for each field of messages,
between each pair of client path predicates. The data struc-
ture is only computed for message fields that are indepen-
dent, meaning that they do not appear in constraints with
other fields. As can be seen in our evaluation (§6), this pre-
computation is fast; moreover, it is trivially parallelizable.

While symbolically executing a server node, Achilles
uses the information from differentFrom at every point
where the exploration forks. If a branching point depends
on field a from the received message (and not on any other
fields), and the new constraints of the branching point make
pathCi

∧ pathS no longer satisfiable, then Achilles can
drop pathCi

from the current state, but also all path pred-
icates pathCj

such that differentFrom[j][i][a] = FALSE .
In other words, if pathCi

no longer holds, due to the addi-
tional checks on field a, then all path predicates pathCj

can
be dropped, because they cannot have any additional values
for field a.

For the sample client predicates in Figure 5,
differentFrom[1][2][request] = TRUE , because client
predicate 1 is satisfied by an assignment message.request =
READ , while predicate 2 is not. However,
differentFrom[1][2][address] = FALSE, because the
message.address field of the READ request is not satisfied
by any other values than those that also satisfy the address
of the WRITE request.

3.4 Local State
Distributed systems often keep local state across several
rounds of messages and change their behavior based on the
contents of the local state. For example, Paxos [19] uses
three phases to achieve consensus. In each phase, Paxos



nodes accept different types of messages—the predicate PS

depends on the local state of the nodes. Thus, Achilles needs
a mechanism to control the local state of the analyzed nodes.
Achilles provides several alternatives to support local state.

Concrete Local State. The analysis phase of Achilles can
be started at any point in the execution of a distributed sys-
tem. Achilles is implemented on top of S2E [8], a symbolic
execution platform that can run whole systems: operating
systems, libraries and user applications. This enables the
possibility of running the distributed system concretely up
to some point, implicitly building up concrete local state.

This mode of operation is useful when developers are in-
terested in the behavior of their implementation in a specific
scenario. For example, in the case of basic Paxos, developers
might be interested in what happens when a Paxos Acceptor
has just entered the second phase, with proposed value 7. It
should only validate Accept messages for value 7—any other
message is a Trojan message.

Another example where Concrete Local State is useful is
the Amazon S3 bug [1], described in §1. The Trojan message
that caused the outage incorrectly reported a high failure rate
in the system. The message was not necessarily Trojan in all
possible scenarios—there may be scenarios where there are
indeed a lot of failures in the system. However, the message
was Trojan in the concrete scenario in which it occurred. By
building concrete state in a deployment with few failures,
Achilles could discover that no correct client node can report
high failure rates, yet the servers accept such messages.

Constructed Symbolic Local State. As a generalization of
the Concrete Local State mode, Achilles is able to pass sym-
bolic messages between nodes of a distributed system, such
that the nodes build up symbolic local state. The Constructed
Symbolic Local State mode can capture entire sets of possi-
ble concrete execution scenarios. However, due to the ad-
ditional symbolic variables and constraints, the Constructed
Symbolic Local State mode can encounter difficulties with
complex data structures, like any symbolic execution tool.

Consider again the example of Paxos. In order to be con-
fident that there are no Trojan messages in the second phase
of the protocol, developers need to re-use Achilles for ev-
ery combination of concrete values in the local state. Using
Concrete Local State, this entails re-running Paxos with dif-
ferent proposed values (1, 2, etc.) and then applying Achilles
for each scenario. Alternatively, with Constructed Symbolic
Local State, developers can run Paxos once, with a symbolic
proposed value. Paxos nodes will store the symbolic value in
their local state. Thus, Achilles can be applied a single time.

Over-approximate Symbolic Local State. The third mode
of operation allows distributed system developers to place
annotations that describe the local state. Developers can in-
sert annotations in the code of the distributed system nodes,
or insert them directly in the binary at runtime, using S2E
plugins that monitor execution. Essentially, developers can

manually define memory as symbolic local state and specify
constraints on the stored values.

In the Paxos example, developers can annotate the func-
tions that deal with local state in order to directly return
symbolic values. This approach is useful when the imple-
mentation uses complex data structures to store local state,
as it makes it possible for developers to reduce the burden
on SMT solvers.

4. Soundness and Completeness
The purpose of Achilles is to discover Trojan messages,
i.e., messages that are accepted by a server but cannot be
generated by any correct client. Achilles can have both false
positives and false negatives and is therefore not guaranteed
to be sound or complete. False positives, however, can be
kept under control by the operator of Achilles, as described
below. We believe this makes Achilles a useful testing tool
for distributed system developers, who can incorporate the
messages discovered by Achilles in fault injection testing.

4.1 False Positives
We say that Achilles has false positives when there exists
a message m that is falsely identified as Trojan. This can
happen either when m is rejected by the server, or when m
can be generated by a correct client.

Achilles relies on symbolic execution in order to extract
predicates. Symbolic execution incrementally builds up an
expression of an entire program by systematically explor-
ing feasible execution paths. As long as symbolic execu-
tion does not completely explore all paths, the expression
under-approximates the program. When the client is under-
approximated, it might happen that a messagem can only be
generated on the execution paths that were not yet explored
— this leads to false positives in Achilles.

In our experiments in §6, we did not encounter any false
positives of Achilles. We bounded the maximum messages
size in both the client and server, allowing symbolic execu-
tion to complete. We also restricted symbolic execution to
only some fields of a message. Essentially, we restrict sym-
bolic execution to only a subset of the input space, as has
also been proposed by Person et al. [21].

Achilles generates concrete values for the Trojan mes-
sages it discovers, as well as symbolic expressions, allow-
ing testers to inject the concrete messages in a real deploy-
ment (such as in live fire drills) and check the effect of the
messages, weeding out harmless messages. While this con-
cretization does not disambiguate between Trojan and non-
Trojan messages, it helps discover any adverse effects of the
suspected Trojan messages.

As future work, we imagine using the expressions that
define Trojan messages to guide a new symbolic execution
of the client node; this approach is similar in spirit to the ab-
straction refinement in CEGAR [9]. As shown by ESD [23]
or Demand-driven symbolic execution [2], this focused sym-



bolic execution is significantly faster than “blind” explo-
ration, and can help eliminate false positives in Achilles.

It is worth pointing out that Achilles does not also en-
counter false positives due to inaccuracy in Achilles’ im-
plementation of the negate operator. The implementation is
strictly an under-approximation of the ideal negate opera-
tor. For each negated expression generated by the negate, we
use the SMT solver to check if there is any common solution
between the original expression and its negation; whenever
there is such a solution, we discard the negated expression,
eliminating any false positives that could have occurred.

4.2 False Negatives
We say that Achilles has false negatives when there exists a
messagem that is not reported as a Trojan message, although
it is actually accepted by the server and cannot be generated
by any correct client.

False negatives can occur when the symbolic execution of
the server does not exhaust all execution paths. If a message
m cannot be generated by any correct client, but is accepted
by the server on an execution path not explored by Achilles,
then m is an undiscovered Trojan message.

False negatives can also occur due to the fact that our im-
plementation of the negate operator under-approximates the
real negate. As described in the Design section (§3.2), we
use two alternative approaches to compute the negation: one
approach relies on quantifier support in the Z3 SMT solver,
while the other approach relies on tweaked constraints that
are solved using the STP SMT solver. Z3 uses heuristics to
eliminate quantifiers, and may fail to determine satisfiability.
When this happens, Achilles falls back to customized con-
straints sent to STP. Achilles’ customized negate is under-
approximate; for example negate((λ = 2 ∗ x) ∧ (x > 0))
produces ((λ = 2 ∗ x) ∧ (x ≤ 0)), even though −1 and
1 are also values for λ that do not satisfy the initial expres-
sion. In our evaluation (§6), though, we found that although
under-approximate, Achilles’ customized implementation of
negate can find Trojan messages in real distributed systems.

5. Implementation
In this section, we describe some implementation details of
our Achilles prototype. We built Achilles on top of the S2E
symbolic execution platform [8]. S2E can run whole sys-
tems; this means that S2E allows running the implementa-
tion of distributed system nodes in their real environment,
enabling Achilles to also discover Trojan messages that are
due to third party system components, such as libraries. S2E
is also highly extensible through a rich plugin API, simpli-
fying the development of Achilles.

5.1 Capturing System Calls
Achilles uses the LD_PRELOAD mechanism in Linux to
intercept calls to the standard libc library. Thus, Achilles can
insert symbolic data automatically by overwriting calls that
read inputs, replacing concrete values with symbolic data.

Achilles also intercepts calls to network operations, in or-
der to automatically mark server execution paths as accept-
ing or rejecting. By default, we consider that any execution
path that sends a reply to the user is accepting, while any
execution path that waits for new messages is rejecting. The
assumption behind this is that servers have a single event
loop to listen for messages; restarting the loop means that
the previous message was processed. This can be trivially
extended to handle other common error signaling mecha-
nisms (e.g., 4xx status codes in HTTP). Of course, human
operators can also provide additional domain knowledge by
manually placing accept or reject markers in the system un-
der test. For example, if the target protocol uses encryption,
it makes sense for the human operator to place an accept
marker before the encryption of the reply.

Achilles uses system call interception in order to imple-
ment the Constructed Symbolic Local State mode. In or-
der to avoid unnecessary forking in device drivers, Achilles
intercepts network operations that send symbolic data and
reroutes them through custom channels (currently, nodes are
deployed within the same S2E instance and messages are
rerouted through shared memory).

5.2 Annotations
Developers can use annotations to speed up Achilles. The
annotations can be inserted in the code of the distributed
system, or can be injected in the system at runtime, using
S2E’s plugin support.

mark_accept is a server-side annotation that marks an
execution path as accepting, triggering the check for any
Trojan messages.

mark_reject is a server-side annotation that marks an
execution path as rejecting.

function_start and function_end are used in order to over-
approximate the behavior of a function. The operator can
add constraints between the two markers, in order to impose
constraints on return values.

drop_path is used in conjunction with the function_
markers in order to impose constraints on the return values.

return_symbolic is used in conjunction with the function_
markers in order to set the return value of a function.

make_symbolic makes a system variable symbolic; it can
be used in order to mark local state as symbolic.

For example, a developer can over-approximate the
getPeerID() function from the client code in Figure 3, as
shown in Figure 9. The over-approximation bypasses the
code of the function completely and returns a new symbolic
value constrained to the interval [0, 10]. In our evaluation
(§6) we used annotations to bypass cryptography and au-
thentication code and speed up predicate extraction.

Achilles supports a mask to “hide” certain message fields
from the analysis. The symbolic execution of the server still
branches on the hidden values; however, Achilles does not
check for Trojan messages involving those fields. The mask
increases the signal-to-noise ratio of Achilles by hiding un-



1 i n t g e t P e e r I D ( ) {
2 f u n c t i o n _ s t a r t ( ) ;
3 i n t t o R e t = makeSymbolic ( ) ;
4 i f ( t o R e t < 0 ) d r o p _ p a t h ( ) ;
5 i f ( t o R e t > 10 ) d r o p _ p a t h ( ) ;
6 r e t u r n _ s y m b o l i c ( t o R e t ) ;
7 f u n c t i o n _ e n d ( ) ;
8 . . . / / a c t u a l code of getPeerID

Figure 9. An example of using Achilles annotations in or-
der to over-approximate a function to return values [0, 10]

interesting results, and also makes the analysis faster, since
it reduces the workload of the SMT solver (Achilles applies
the mask before calling the SMT solver).

6. Evaluation
In this section, we evaluate the ability of Achilles to analyze
an implementation of a distributed system and extract Tro-
jan messages. After a description of our experimental setup
(6.1), we answer the following questions:

• How accurate is Achilles at finding Trojan messages in
real distributed systems (§ 6.2)?

• What is the impact of Trojan messages discovered by
Achilles on real distributed systems(§ 6.3)?

• How does Achilles manage large symbolic expressions
(§ 6.4)?

6.1 Setup
We ran experiments on a 16-core (dual Intel E5-2690) ma-
chine with 256 GB of RAM running Ubuntu Linux 11.04.

Achilles gathered the client and server predicates by run-
ning individual system nodes in the S2E [7] platform. The
S2E virtual machine ran 32-bit Ubuntu Linux 10.04.

We applied Achilles to FSP 2.8.1b26 [12], a UDP-based
file transfer protocol, and to the latest version of PBFT [6],
a Byzantine-fault-tolerant replication system.

FSP is an implementation of a file transfer protocol. An
FSP deployment consists of a server and several client util-
ities, which emulate well-known UNIX core utilities, such
as cp, mv, rm, etc. The FSP implementation of these util-
ities parses command-line arguments (usually a target file
path and a set of flags), tweaks the path to follow some
protocol-specific rules (e.g., always start paths with ‘/’), and
finally generates a corresponding command for the server.
The server parses the command, performs the corresponding
action on its local file system, and replies to the client.

An FSP command message has the following fields:

• cmd - 1-byte identifier of the requested action
• sum - 1-byte checksum
• bb_key - 2-byte message key
• bb_seq - 2-byte message sequence number
• bb_len - 2-byte length of file path

• bb_pos - 4-byte position of block in a file
• buf - arbitrary-length payload (file path + file data)

In our evaluation, we approximated the values of sum,
bb_key, bb_seq and bb_pos: we added annotations in both
the client and the server in order to bypass the checks on
these fields, such that the client writes a predefined constant
value and the server checks that value (in §7 we survey some
approaches that can alleviate the problem of checksums,
authentication or encryption). We focused our evaluation
on how FSP parses file paths. We started the FSP clients
with symbolic command line arguments (of fixed length) and
inserted symbolic data in any system calls from the client. In
the FSP server, we set accept markers at the point where it
invokes system calls to make changes to its local file system,
as requested by the command received from the client.

PBFT is a Byzantine fault-tolerant replication protocol
implementation. PBFT clients send requests to a set of repli-
cas. The replicas ensure total order among requests from all
clients, and forward them to an upper layer application.

A PBFT client request has the following fields:

• tag - 2-byte identifier of the message type
• extra - 2-byte flags field (1 bit per flag)
• size - 4-byte length of message
• od - 16-byte message digest
• replier - 2-byte identifier of responsible replica
• command_size - 2-byte length of command
• cid - 2-byte client id
• rid - 2-byte request id
• command - arbitrary-length command payload
• MAC - list of message authenticators, signed with a pri-

vate key for each replica

In our evaluation, we approximated the values of the di-
gest and authenticator fields: we used annotations in both the
client and server in the same way as for FSP, replacing the
digest and authenticators with predefined constant values. In
the PBFT replica, we also over-approximated local state: the
replicas keep an internal data structure to track previous re-
quests from a given client, which we over-approximate with
unconstrained symbolic values. We started a PBFT client
and generated a request with symbolic extra, replier, rid,
cid, and command. We set a fixed length for the command,
list of authenticators, and for the overall message. We con-
sidered a message to be accepted when the replica generates
a Pre_prepare message for the client request, initiating the
agreement protocol.

6.2 Accuracy of Achilles
The purpose of this experiment is to quantify the accuracy of
Achilles at finding Trojan messages. We compute the over-
lap between the expression of Trojan messages computed by



Achilles and a known set of Trojan messages in the proto-
col under test. Ideally, the overlap should be perfect—the
representation generated by Achilles should cover all known
Trojan messages, and no known non-Trojan messages.

We evaluated the accuracy of Achilles on real Trojan
messages in FSP. Achilles discovered that the FSP server
accepts messages where the file path length is less than the
length reported in the message header (more details in §6.3).

To enable symbolic execution to complete, we restricted
the FSP clients and servers to only handle file paths with
length less than 5. For this scenario, we can mathematically
compute how many different types of Trojan messages exist:
there is one Trojan message for reported length 1 (the file
path is empty), two Trojan messages for reported length 2
(file path is empty or has length 1), three Trojan messages
for reported length 3 and four Trojan messages for reported
length 4. We analyze eight FSP clients that have a single file
path as argument. Therefore, there are in total (1 + 2 + 3 +
4)∗8 = 80 Trojan messages that differ in the reported length
of the file path, request type or true length of the path.

The bounded path size enabled symbolic execution to run
to completion. The total testing time for Achilles to find all
Trojan messages was approximately 1 hour, which was split
as follows:

• Gathering the client predicate took 3 minutes
• Preprocessing the client predicate took 15 minutes.
• Analyzing the server took 45 minutes.

Figure 10 shows the percentage of the known Trojan
messages discovered by Achilles, as a function of server
analysis time. Achilles produced the first Trojan message
after 20 minutes of server analysis and discovered all Trojan
messages in 43 minutes. Achilles did not produce any false
positives. The figure shows how Achilles produces Trojan
messages incrementally, as it analyzes the server; even if the
analysis is interrupted before completion, Achilles produces
valuable results.

Figure 10. Percentage of real Trojan messages in FSP dis-
covered by Achilles, as a function of time.

We compared Achilles to classic symbolic execution of
a server node. We ran the FSP server in vanilla S2E, un-
der the same conditions as Achilles (same bounds, annota-
tions and approximation). Table 1 summarizes the results.
Achilles discovers all Trojan messages and produces no false
negatives. Classic symbolic execution also found all Trojan
messages in 2 minutes, but with low signal-to-noise ratio.
Trojan messages are “hidden” among valid messages, and it
is left to the developer to sift among the results.

Achilles Classic symbolic exec.
True Positives 80 80
False Positives 0 7,520

Table 1. Results obtained by Achilles in 1 hour, compared
to classic symbolic execution

As expected, classic symbolic execution of the server is
faster than Achilles, since it performs fewer computations
(it does not need to combine server and client constraints).
However, classic symbolic execution cannot identify Trojan
messages among other, valid messages. Even worse, in the
case of FSP, all Trojan messages are on the same server ex-
ecution paths as non-Trojan messages (as opposed to having
execution paths that only contain Trojan messages and exe-
cution paths that only contain non-Trojan messages). This
makes it difficult for the human operators to sift through
results and discover Trojan messages—they need to inves-
tigate not only each execution path, but also each message
on each execution path. This is a difficult task; as we also
discuss in the Design section (§3.2), current SMT solvers
are not designed to enumerate all values that satisfy a given
constraint and are inefficient at doing so.

We ran the same experiment for PBFT. Achilles discov-
ered a single type of Trojan message (more details in §6.3).
Surprisingly, PBFT replicas make few checks on the data re-
ceived from clients. They verify that request ids are recent
and have not already been handled, verify that the client id
is in a set of known clients and also check if the flags field
marks the request as read-only.

Due to the simplicity of checks on the client request
fields, Achilles completed the PBFT analysis in just a few
seconds. The Trojan message discovered by Achilles ap-
pears on all execution paths in the server; however, just
like for FSP, it is bundled on the same execution paths
with valid messages. Thus, classic symbolic execution can-
not easily identify the Trojan message among the valid mes-
sages, while Achilles identifies it accurately.

We also make a theoretical comparison between Achilles
and a naive black-box fuzzing tool. There are other, more so-
phisticated fuzzers, which use various heuristics to improve
performance. However, we are not aware of any fuzzer that
optimizes towards anything similar to Trojan messages, so it
would be difficult to obtain an unbiased comparison.



We first measured the maximum throughput that a fuzzing
tool could achieve on FSP on our testbed: 75,000 tests per
minute. Then, we compute the probability of discovering a
Trojan message at random. In order to be fair, we only fuzz
the same message fields that are analyzed by Achilles and
by classic symbolic execution. There are 8 bytes relevant to
the Trojan messages: cmd, bb_len and buf. There are 8 rel-
evant possible values for the command field (corresponding
to commands with a single file path argument). There are
4 relevant values for the length field. The FSP server only
accepts printable characters in the file path (ASCII codes
33 to 126). Thus, there are 94 ∗ 94 ∗ 94 ∗ 8 = 6.6 million
messages that exhibit a Trojan message for length 1 (first
character in the message is ‘\0’, second must be ‘\0’ due to
server checks, other three can be any ASCII character with
code 33-126). In total, there are 66 million Trojan messages
out of the 2568 = 1.8 ∗ 1019 possible bit combinations.
This means that the expected number of Trojan messages
found in 1 hour of fuzzing is 0.00001. Fuzzing also pro-
duces 4.5 million non-Trojan messages, which correspond
to false positives.

Our experiments show that Achilles is significantly more
efficient at discovering Trojan messages than fuzzing or clas-
sic symbolic execution. While classic symbolic can find all
messages accepted by the server faster than Achilles, it can-
not disambiguate between Trojan and non-Trojan messages.
Black-box fuzzing is several orders of magnitude worse than
symbolic execution.

6.3 The Impact of Trojan Messages
FSP: The Wildcard Character. Achilles discovered a bug
in FSP related to the handling of the ‘*’ wildcard character.
In essence, FSP clients always expand the ‘*’ wildcard be-
fore sending a command to the server. There is no possibility
of escaping the ‘*’ character, thus correct clients cannot send
a command with ‘*’ in a source file path to the server. The
server, however, accepts any printable character, including
‘*’ in the file paths it receives. This leads to an interesting
behavior where it is possible to create files containing ‘*’ on
the server, but not possible to delete them directly.

In UNIX environments, shells use a simple form of pat-
tern matching in order to expand file paths using wildcard
characters (this simple pattern matching is referred to as
globbing). For example, the command ‘rm file*’ will delete
all files with name prefixed by ‘file’ from the current direc-
tory. The ‘*’ character is a wildcard that can be expanded to
any sequence of characters. The expansion of the wildcard
is handled directly by the shell, before invoking the rm util-
ity. Suppose the current directory has files ‘file1’, ‘file2’ and
‘file3’ and that the user executes the command ‘rm file*’.
The shell will initially parse the command and expand ‘rm
file*’ into ‘rm file1 file2 file3’. Then the shell invokes ‘rm’
with the three command line arguments.

The FSP implementation emulates the regular UNIX
globbing behavior. When parsing command-line arguments,

the FSP client will first try to expand any source file path
containing a wildcard. Unlike most shells, however, the FSP
globbing does not allow the user to escape any wildcard
character. Destination file paths, however, are not globbed;
for example the ‘mv file1* file2*’ will rename any file that
matches the pattern ‘file1*’ to the literal string ‘file2*’. The
FSP server handles wildcards like any regular character.

Trojan messages in FSP can lead to an interesting sce-
nario, where it is possible to create a file called ‘file*’ on
the server, but it is then difficult to actually remove the re-
spective file. A file called ‘file*’ can be created by a user
of FSP (e.g., ‘mv file file*’), by a malicious third party that
has access to the server, or even by a bit flip that appears on
the client during a command execution (a single bit flip can
convert the ASCII ‘j’ character into ‘*’).

Once the file named ‘file*’ appears on the server, it is dif-
ficult to remove. Calling ‘rm file*’ would remove ‘file*’, but
would also remove any other file prefixed by ‘file’, including
a potentially valuable ‘fileWithAllMyBankAccounts’. Simi-
larly, ‘mv file* fileToDelete’ would rename all files prefixed
by ‘file’ to ‘fileToDelete’, removing all but one of the origi-
nal files. Calling ‘rm file\*’ would delete all files prefixed by
‘file\’, since there is no escape character in the FSP globbing.

It is interesting to point out that this bug discovered using
Achilles is a semantic bug, which makes it difficult to detect
automatically using other approaches. While there are tech-
niques to detect buffer overflows or divisions by zero auto-
matically, the FSP bug cannot be found unless the develop-
ers write a complex (and potentially buggy) specification of
correct behavior. This is one of the main benefits of finding
Trojan messages.

FSP: Mismatched String Lengths. Achilles also discov-
ered that the FSP server does not check whether the file path
lengths it receives in commands match the actual lengths. It
accepts messages that have the actual file path length smaller
than the value in the message’s length field (i.e., there is
a ‘\0’ character in the file path). The bug allows malicious
users to send an additional arbitrary payload to the server.

PBFT: The MAC Attack. Achilles discovered that PBFT
replicas (servers) accept client requests without checking
their authentication code. This leads to a known vulnerabil-
ity of the protocol, known as the MAC attack [10].

Clients can send messages with incorrect authenticators.
The first replica to receive the client request does not verify
any of the authenticators. If forwards the message to other
replicas, which discover the incorrect authenticator, but can-
not know whether the original client or the first replica have
corrupted the message. In order to guarantee progress, they
initiate an expensive recovery protocol, which impacts per-
formance. This allows incorrect nodes to have a significant
impact on the performance of the system. A node whose
private key was corrupted due to a memory error will al-
ways produce incorrect MAC authenticators and will trigger
recovery. Alternatively, a malicious client can also corrupt



its own messages in order to trigger the expensive recovery
mechanism and slow down the system, affecting the service
of other, correct clients.

This vulnerability is an interesting example of the subtle
effects that Trojan messages can have on a system.

6.4 Handling Large Client Predicates
In this section, we analyze internal details of Achilles. We
look at how the optimizations described in §3.3 enable
Achilles to handle large client predicates.

Figure 11 shows the number of client path predicates
Achilles keeps for each execution path analyzed during the
FSP server exploration, as a function of the length of the
path. The figure shows results for the paths as they are
incrementally generated—many of the points in the figure
represent incomplete paths. A point at length 7 with 1,000
matching predicates means that there exists an execution
path in the server which encountered 6 branching points that
depend on symbolic data, and can be triggered by messages
in 1,000 different path predicates. Recall from §3.2 that
Achilles uses these path predicates to search for any existing
Trojan messages—the more path predicates in a state, the
more complex the check.
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Figure 11. Number of client path predicates that can trigger
each execution path in the FSP server, as a function of the
length of the path.

The number of path predicates decreases as the length of
paths increases—longer execution paths become more and
more specialized, and can be triggered by a smaller group of
messages. This makes the check for Trojan messages easier,
as Achilles makes fewer calls to the solver.

To quantify the effect of optimizations, we compared
Achilles to a non-optimized implementation of symbolic
constraint differencing. We ran unmodified S2E on both the
FSP client and server, and then computed Trojan messages
a posteriori. The total execution time of the non-optimized
implementation was 2 hours and 15 minutes, compared to
the 1 hour and 3 minutes required by Achilles.

7. Related Work
To the extent of our knowledge, there is no previous work
that directly targets Trojan messages.

Caballero and Song [5] use dynamic symbolic execution
in order to reverse engineer the message format and seman-
tics of an undocumented protocol. In this paper, we assume
that Achilles is used by the distributed system developers, in
order to detect corner cases in their implementation. Thus,
the purpose is not to produce a documentation of the proto-
col, but concrete corner cases that trigger incorrect behavior.

Caballero et al. [4] used symbolic execution to find bugs
in malware. They faced the challenge of handling encryption
and obfuscation techniques used in the malware, and devel-
oped a technique that only solves subsets of path constraints
and then restitches the individual solutions to obtain a com-
plete input. Achilles is more targeted, focusing on a specific
type of bugs that cannot be found with other techniques. The
work by Caballero et al. can be integrated with Achilles to
enable the predicate extraction to handle complex operations
without human operator support.

Achilles analyzes distributed system nodes in isolation
and then composes the results of the analyses. This is similar
to the Compositional Dynamic Test Generation proposed
by Patrice Godefroid [14]. The predicate PC of a client
node can be seen as a functional summary, which is then
integrated in the analysis of a server node. In the case of
Achilles, though, we do not use the summary directly, as we
are actually interested in the negation of the summary.

The idea of analyzing distributed nodes in isolation was
also explored by Guerraoui and Yabandeh [15]. In their
work, the authors proposed model checking individual nodes
in isolation, separated from the complexity of network mes-
sage interleaving. In Achilles, we do not analyze nodes in
isolation for performance reasons, but in order to catch spe-
cific bugs.

Maurer and Brumley [20] use tandem symbolic execution
of the pre- and post-patch versions of a given program. Their
approach compares the behaviors of the two versions and
checks that the patch only affects the buggy executions it was
meant to fix. A similar approach is taken by Person et al. [21]
to characterize code changes. This is similar in spirit to the
way Achilles compares the predicate of the client and the
predicate of the server in order to check for Trojan messages.

In Achilles, we currently ignore the order in which mes-
sages are received, focusing strictly on the effect of message
contents. Achilles could be enhanced by techniques such as
MODIST [22] to also consider alternative orderings. Alter-
natively, the distributed system under test can be deployed
with DDOS [16], which ensures deterministic behavior.

Cloud9 [3] is a symbolic execution tool that can analyze
distributed systems. Similar to Achilles’ Constructed Local
State, Cloud9 reroutes symbolic messages through alterna-
tive channels.



8. Conclusion
Trojan messages represent a type of bug specific to dis-
tributed systems—an artifact of different implementations
of the same protocol specification. Trojan messages occur
in real distributed systems and can cause unpredictable be-
havior: from low performance in the case of Amazon S3 and
PBFT, to loss of data in the case of FSP.

We propose Achilles, a system designed to efficiently dis-
cover Trojan messages in distributed system implementa-
tions. Achilles uses dynamic white-box analysis in order to
extract the grammar of messages accepted by servers, and
the grammar of messages that can be generated by clients.
Achilles then computes the set of Trojan messages as the
difference between the two. We described the basic princi-
ples behind Achilles, as well as the optimizations that make
it practical.

We applied Achilles to real distributed systems, discover-
ing bugs that are difficult to find with alternative techniques.
Our evaluation shows that Achilles is efficient at discover-
ing Trojan messages; it discovered all instances of a Trojan
message in FSP, while producing no false positives.
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