Problem: Security is too expensive

Systems software is written in Security is retrofitted through instrumentation Performance suffers

unsafe languages (for performance $ gcc -fsanitize=address prog.c -o safeprog prog:

reasons) safeprog:

addr = buf + offset;

shadow = addr >> 3 + SHADOW_OFFSET AT RTE G (J
char c = *(bUf + offset); jV*shadOW __ 02 B (shadow memory, ...)
== 07

$l ‘no (report_error(addr);) automatically generated typically: 74% overhead, of which
> b ; °

@) — SIGSEGV. — security check 87% due to checks

(char ¢ = *(buf + offset);)

User specifies Our tool ASAP automatically recognizes ASAP performs a cost analysis | |ASAP selects checks that
tolerable overhead security checks in program bitcode for every check maximize security for the
desired overhead level.

"l want bzip2 with

<10%

/ I | | |
11 1G 2G 3G
Ove r h e a d . Approximate cost [CPU cycles]

Checks in bzip2 and their cost Result of optimizing bzip2 with ASAP

Key insights

Overhead is dominated by a handful of expensive checks Security is provided primarily by many cheap checks

original program runtime Our experiments show that:
- » 97% of all memory-related CVE vulnerabilities

metadata management tOp 10% most 90% remaining are in Cold Code' Where Checks are Cheap
(e.g., keeping track of allocated memory) expensive checks cheap checks

13% of overhead 81% 6%

» Checks in buggy code are colder than checks
in stable code

ASAP: High Security at Low Overhead

Jonas Wagner Volodymyr Kuznetsov Johannes Kinder Azqga Nadeem George Candea)
School of Computer and Communication Sciences, EPFL

checks

due to other sources

Experimental results

100 - Existing tools like AddressSanitizer
Security level have a high overhead (avg: 74%)
Full
380 = 90% With ASAP:
80% Choose perfect overhead/security trade-off
i 60 -
- ASAP strongly reduces overhead
g while preserving most of the security
T 40-
O Achieves target overhead of <10% for
o - 10 out of 15 SPEC benchmarks
0- ASAP prevents the

lbm =
milc -
soplex =
astar -
namd -
sphinx3 =
gobmk =
sjeng -
bzip2 -
mcf -
hmmer -
gce =
dealll =
povray =

libquantum =

Heartbleed vulnerability

with only 5% reduction
in OpenSSL throughput

Security checks logo by http://icons8.com/

