
ConfErr: A Tool for Assessing Resilience to Human Configuration Errors

Lorenzo Keller, Prasang Upadhyaya, and George Candea
School of Computer & Communication Sciences

EPFL (Lausanne, Switzerland)

Abstract

We present ConfErr, a tool for testing and quantify-
ing the resilience of software systems to human-induced
configuration errors. ConfErr uses human error mod-
els rooted in psychology and linguistics to generate re-
alistic configuration mistakes; it then injects these mis-
takes and measures their effects, producing a resilience
profile of the system under test. The resilience pro-
file, capturing succinctly how sensitive the target soft-
ware is to different classes of configuration errors, can
be used for improving the software or to compare sys-
tems to each other. ConfErr is highly portable, be-
cause all mutations are performed on abstract repre-
sentations of the configuration files. Using ConfErr, we
found several serious flaws in the MySQL and Postgres
databases, Apache web server, and BIND and djbdns
name servers; we were also able to directly compare
the resilience of functionally-equivalent systems, such
as MySQL and Postgres.

1. Introduction
Human error has long been a dominant cause of

downtime in computer systems, especially in mission-
critical infrastructures. More than two decades ago,
42% of incidents in high-end mainframe installations
were found to be due to human operators [4]. Later on,
human errors were found to be the cause of 33% of fail-
ures at a major Internet portal and 36% at a global con-
tent hosting service [9]. A recent study attributed 58%
of reported problems in database systems to mistakes
made by database administrators [8].

Configuration errors form a significant fraction of
human administrator mistakes. Studies have shown that
more than 50% of human-induced errors observed in
Internet services are configuration errors [7, 9]. A field
study found that 24% of Microsoft Windows NT down-
time was caused by system configuration and mainte-
nance errors [19]. Configuration errors are particularly
pernicious, because they take a long time to discover
and fix, thus leading to long repair times [9] and having

wide-reaching effects (e.g., a mere DNS misconfigura-
tion made Microsoft’s MSN hosting services unavail-
able worldwide for 24 hours [12]).

Better operator training helps, but often has lim-
ited benefits. First, even highly-trained humans work-
ing on well-studied tasks with clear life-safety im-
plications face significant error rates; e.g., nuclear
plant operators—required by law to undergo extensive
training—were deemed responsible for 44%-52% of all
significant reactor problems [13]. Second, large soft-
ware systems exhibit complex behaviors controlled by
a dizzying array of configuration “knobs,” which over-
whelm even the best administrators; for instance, the
Oracle 10g DBMS has 220 initialization parameters and
1,477 tables of system parameters [11], along with a
875-page “Administrator’s Guide” [10].

It is therefore imperative that critical software sys-
tems be resilient to configuration mistakes, since com-
pensating for a poorly designed system is difficult. For
example, redundancy and replication have been shown
to not improve availability in the face of operator er-
rors [9]. Better user interfaces can help, but cannot turn
a system vulnerable to configuration errors into a re-
silient one (e.g., graphical interfaces do not prevent er-
rors in firewall configuration [16]).

In order to design systems that are less vulnerable
to configuration errors, software engineers need tools
that quantitatively measure the benefits offered by dif-
ferent techniques and implementations. A suitable, ob-
jective benchmark may also encourage system design-
ers to compete on resilience to configuration errors.
Benchmarking methodologies have already been pro-
posed in the past: some take system-specific errors and
manually port them to different systems, where they can
be injected [15, 7], while others use real human opera-
tors [3]; these approaches can be expensive and do not
always yield objective results.

Automating configuration error testing is key to
making such benchmarks uniform, economical, and
comprehensive. In this paper, we present ConfErr, a
tool that embodies these goals. ConfErr converts the
understanding of human errors developed by psychol-

Appears in Proceedings of the Intl. Conference on Dependable Systems and Networks (DSN), June 2008



ogists and linguists [13, 14] into an automated bench-
mark for measuring systems’ resilience to configuration
errors. To our knowledge, this is the first error injection
tool to do so.

ConfErr automatically generates and injects real-
istic errors into a system’s configuration files, assesses
the target’s resilience to the injected errors, and com-
putes the system’s resilience profile. This profile can
be used for prompt feedback during development (e.g.,
to quantify the impact of a new feature/design on the
ultimate reliability of the system) or as a benchmark to
compare different functionally-equivalentsystems (e.g.,
databases from different vendors).

Despite the emergence of configuration wizards
and graphical user interfaces, configuration files still
represent the primary means of communicating the de-
sired configuration to programs. Moreover, configura-
tion files typically have a pre-defined syntactic struc-
ture, making them amenable to systematic, quantitative
evaluation. We designed ConfErr to be extensible and
accommodate arbitrary error generation plugins; this
enables a wide array of configuration errors types, while
preserving both the complete automation and efficiency
of testing and benchmarking.

This paper makes three contributions: First, we
show how models of human error can be turned into
practical, realistic error injection tools. Second, we
show that using simple abstract representations of con-
figuration files enables these models to be applied
portably across different systems. Third, we show that,
after running for less than one hour, ConfErr reveals on
its own serious design flaws in systems that are critical
components of many computing infrastructures today.

In the rest of the paper we describe the human er-
ror models used by ConfErr (§2), present the design of
the tool (§3), and describe three error generator plug-
ins for ConfErr (§4). Then we present case studies of
using ConfErr to find weaknesses in MySQL, Postgres,
Apache, BIND, and djbdns, as well as to compare the
error resilience of MySQL to that of Postgres (§5). We
then review related work (§6) and conclude (§7).

2. Configuration Error Models
Psychology offers insights into why human mis-

takes occur. Several researchers have studied the psy-
chological underpinnings of human error, with one of
the most succinct presentations being the Generic Error-
Modeling System (GEMS) framework [13].

GEMS identifies multiple cognitive levels at which
humans solve problems. The lowestskill-based level
is used for common, repetitive tasks. Simple slips and
lapses at this level account for about 60% of general
human errors; typos and mistakes in digit recognition

are examples of such slips. The next level up is the
rule-based levelof cognitive processing, where rea-
soning and problem-solving are performed by pattern-
matching the situation at hand with previously-seen sit-
uations and applying the solutions discovered in those
previous instances (e.g., applying the configuration
principles of one database system to another). Mistakes
caused by misapplying such rules account for roughly
another 30% of human errors. Finally, the highest cog-
nitive level is theknowledge-based level, where tasks
are approached by reasoning from first principles, with-
out the direct use of previously-formed rules or skills
(e.g., configuring a piece of functionality that was previ-
ously never encountered). Mistakes at this level account
for the remaining 10% of human errors.

Training and experience move task processing
from higher cognitive levels to lower ones: a
knowledge-based task may move over time to the rule-
based level, as it becomes familiar and encoded into
mental rules. Similarly, tasks performed on the rule-
based level may move to the skill-based level, if they
become so familiar as to be “second nature.”

The ConfErr error generators embody three error
models that span all these cognitive levels: one models
mistakes at the level of individual words in configura-
tion files (§2.1), one models mistakes in the structure
of configuration files (§2.2) and another one models se-
mantic errors (§2.3).

2.1. Spelling Mistakes
Typographical errors (typos) occur during the pro-

cess of typing. Highly disciplined individuals will
proofread just-edited configuration files before apply-
ing them to the corresponding systems; others rely on
the system to identify such problems upon startup. As
computers become faster, this latter approach becomes
increasingly widely spread, in much the same way pro-
grammers type up programs and invoke the compiler
without re-reading their code.

Adapting the classification in [14], we divide one-
letter typos into the following categories:

• Omissions: One character in a word is missing;
this corresponds to characters being missed dur-
ing hurried typing. Intuitively, we would expect
single-letter omissions to be more likely in prac-
tice than multi-letter omissions, because more than
one missing character is generally easier to notice.

• Insertions: A spurious letter is introduced in a
word.

• Substitutions: A letter is replaced with another (in-
correct) letter. As will be seen later, we use the
keyboard layout to produce realistic single-letter

2



substitutions, based on the model of operators ac-
cidentally pressing nearby keys.

• Case alterations: This is special substitution error,
in which the case of adjacent letters is swapped due
to a miscoordination in pressing the Shift key.

• Transpositions: Two adjacent letters in a word are
swapped. Letters in different words are rarely
swapped, because humans automatically place
cognitive boundaries between words.

2.2. Structural Errors
Configuration files generally have a well-specified

structure; mistakes related to this structure trace their
roots to all three cognitive levels. We reflect this in our
model of structural mistakes.

At the skill-based level, we capture mistaken repe-
titions of configuration directives and misplacement of
directives in sections of the configuration file, as might
result from copy-paste operations. Another type of er-
ror is omission on account of configuration complexity:
while editing a configuration with many parameters re-
quired in a section (or many sections required overall),
one of these may be simply forgotten.

At the rule-based level, we model operator mis-
takes resulting from the use of a configuration format
that is similar but incorrect. An example of such a mis-
take would be the “borrowing” of a configuration direc-
tive or section from another program configured by the
same operator.

Mistakes at the knowledge-based level tend to re-
sult from a mismatch between the mental model the op-
erator has of the system and the actual operation of the
system [13]. For example, reverting a non-functioning
configuration to the default configuration “just to get the
system started” may omit critical directives without the
operator realizing it.

Structural configuration errors abound in prac-
tice. For example, numerous cases for the Apache
web server can be found in [1]: a common mistake
is the omission of a directive that has to be present
in each subsection (e.g., theServerName directive in
VirtualHosts sections) or the duplication of a direc-
tive (such asListen or NameVirtualHost), with the
final replica overriding all previous ones. Other com-
mon mistakes are the addition of wrong directives or
entire sections of directives via copy-paste or moving
directives to similar kinds of sections (e.g., access re-
strictions inDirectory sections, index options for a
ScriptAlias directory).

2.3. Semantic Errors
In addition to mistakes in syntax and structure, con-

figuration errors can take on a semantic nature, resulting

from the administrator’s wrong understanding of how
the system works. Semantic errors are introduced solely
when operating at the highest cognitive level.

In our model, we capture two classes of seman-
tic errors. The first one is inconsistent configurations,
in which required constraints are not satisfied. For in-
stance, the value of one parameter (e.g., shared mem-
ory pool) may be related in a specific way to that of
another (e.g., maximum number of client connections),
and an ignorant operator may generate a configuration
that does not satisfy this relation. A properly config-
ured domain name service (DNS), for example, should
provide both forward and reverse mappings for a given
name-IP pair, but an operator might forget to set up one
of the two mappings.

The second type of semantic errors occurs when the
operator does not know exactly the meaning of a given
parameter and uses it to configure a similar but differ-
ent aspect of the system. For instance, DNS provides
multiple record types, and an inexperienced administra-
tor may associate an address to a domain via a CNAME
record (normally used to declare aliases, not to assign
addresses); this results in all other records associated
with the domain name becoming inaccessible, since the
unaliased domain name is necessary for correct name
resolution.

3. The ConfErr Framework
The goal of ConfErr is to turn error models, such as

the ones described above, into practical tools. ConfErr
allows error models to be encoded in generator plug-
ins and glued together into an end-to-end injection and
measurement system. ConfErr automatically drives all
parsing of initial configuration files, generation of er-
rors, injection, startup and shutdown of the system-
under-test (SUT), and measurement of the impact of
each error on the system; none of these require human
intervention.

After a brief overview of ConfErr’s design (§3.1),
we describe how it creates and uses abstract repre-
sentations of configuration files (§3.2) and how er-
ror generation models are described (§3.3). Com-
plete source code and documentation can be found at
http://conferr.epfl.ch/.

3.1. Design Overview
At a high level, ConfErr takes in configuration

files, mutates them, and then tests the system-under-test
(SUT) with the new configurations. The operation is
illustrated in Figure 1.

In order to generate a resilience profile for a given
systemsS, ConfErr takes as input a set of initial con-
figuration files forS(e.g.,httpd.conf andssl.conf

3



Figure 1. Overview of ConfErr

for Apache), system-specific parsing and serialization
plugins, an error generator plugin, and domain-specific
functional tests (e.g., database tests, web server tests,
etc.). ConfErr then iterates through each configura-
tion file, using the parser plugin to generate the corre-
sponding abstract representations. Error generator plu-
gins synthesize fault scenarios, which are essentially
functions that mutate sets of abstract representations of
configuration files. The error generator plugins decide
where in the configuration(s) and what type of faults to
inject. Since the transformation is applied to the entire
set of configuration files, it allows for the injection of
cross-file errors in addition to errors localized in a sin-
gle file.

After each mutation, the corresponding serializer
plugin generates a new set of (faulty) configuration files
from the mutated abstract representations. The newly-
generated configuration files are used in place of the
original ones; ConfErr starts the SUT and tests its be-
havior. There are three possible outcomes:

• SUT failed to start; output is recorded in the re-
silience profile (most likely the SUT has detected
a configuration error)

• SUT started but could not complete the functional
tests; record failed tests in profile (most likely SUT
did not detect a configuration error)

• All tests passed; we record this result as the SUT
having successfully handled the configuration mu-
tation

The resilience profile is ConfErr’s sole output, and
it indicates the result of each synthesized injection test,
containing the injected error and the corresponding sys-
tem behavior. The functional tests executed by ConfErr

are based on a set of system-specific scripts; their exit
values are used to establish the result of the test, along
with recording all the output.

ConfErr can be extended with new error models
and system-specific configuration parsers/serializers, as
needed.

3.2. Configuration Representation
Configuration files are modeled internally as XML

information sets [5], which represent configurations as
a collection of information items with a set of associ-
ated properties. Some of these properties can point to
other information sets, so the model can be seen as a
tree of information items. In the rest of the paper we
will refer to information sets as trees and to information
items as nodes. We chose this data model because it is
a good match for the structure of configuration files and
it allows us to reuse robust, already-developed libraries
and languages for manipulating the configurations.

(a) (b)

(c)

Figure 2. Representations of SUT configura-
tion: (a) original configuration, (b) tree suitable
for structural error injection and (c) tree suit-
able for typo injection

The exact structure and semantics of configuration
trees depends on the error plugin that is used (see Fig-
ure 2). For instance, when creating typos, it is best to
represent configuration files as lists of words grouped in
lines. On the other hand, when injecting structural er-
rors, a better representation is one that groups directives
into sections.

To enable flexible injection scenarios, ConfErr di-
vides the parsing process into two stages. First, a

4



configuration file is parsed into a tree with a (system-
specific) XML representation that is independent of the
desired error generator plugin; this representation con-
tains all the information required to recreate a serializa-
tion of the configuration in the system-specific format.
As input files, ConfErr currently supports traditional
line-oriented configuration files, generic XML config-
uration files, as well as the formats specific to Apache,
BIND, and djbdns.

In the second step, the system-specific representa-
tion is mapped to the format required by the error plugin
using XSLT [18], a standard transformation language.
In order to enable the reverse operation, the mapping
function creates some additional information that com-
plements the representation specific to the error plugin.

Since different systems use different ways to ex-
press the same configuration, it is not possible to use a
single representation that can accommodate all systems
and fault types. Mapping to multiple representations
permits different types of faults to be defined in terms
of different views of the system configuration. Fortu-
nately, the same representation can be reused across
multiple types of faults, and the transformation func-
tion from the system specific representation to the one
suitable for fault injection is usually very simple.

After the fault has been injected in the plugin-
specific representation of the configuration, ConfErr has
first to check that it is possible to transform this tree
into the system-specific representation—differences in
the expressiveness of the two representations can pre-
vent this operation from completing successfully (for an
example, see Section 5.4). If the configuration can be
expressed in the system-specific XML representation, it
is then possible to serialize it to the system-specific file
format.

3.3. Error Templates
With ConfErr, error models are expressed by in-

stantiating and composing a set of base templates. Tem-
plates describe a transformation of a configuration tree,
such as deletion or duplication of a node. The templates
are parameterized, allowing the user to specify which
transformation to apply and under which conditions.
Given a template, its parameters, and the input config-
uration files, ConfErr can generate a set of fault scenar-
ios. ConfErr already provides a collection of templates
for generating common transformations, and users can
add other custom templates.

The simplest class of templates describes mutations
of nodes and subtrees; they take as parameter a de-
scription of the nodes that should undergo the template-
specific mutation. Since configuration files are repre-
sented as XML information sets, target nodes are easily

specified via an XPath [17] query. Examples of this type
of templates include the node deletion template and one
that specifies the duplication of part of a configuration
tree. A particularly important template is the abstract
modify template, that can be specialized to generate sets
of fault scenarios that modify the content of nodes; we
used this template in the spelling mistakes plugin (§4.1).

ConfErr also provides a collection of complex tem-
plates, that take as parameters sets of fault scenarios de-
fined with other templates. Among these we find, for
instance, a template that returns the union of the fault
scenario sets given as parameters, as well as one that
selects a random subset of fault scenarios of a given
size. These special templates can be used to compose
multiple error models or limit the number of faults that
a given model can return.

4. Error Generator Plugins
ConfErr error generators are in charge of specify-

ing the sequence of mutations to perform on configura-
tions in order to generate a meaningful resilience pro-
file. Besides aiming for realistic errors (§2), we also
wanted the error generator plugins to be portable across
the configurations of a wide variety of applications and
systems. Thus, error models are translated into a se-
quence of parameterized operations on the abstract rep-
resentation of the system configuration. In this section
we describe the implementation of plugins for spelling
mistakes (§4.1), structural errors (§4.2), and semantic
errors (§4.3).

4.1. Spelling Mistakes Plugin
For the injection of spelling mistakes, we represent

the configuration files as a list of tokens with associated
types, as shown in Figure 2.c. The token type is used to
restrict the injection to a specific part of the configura-
tion (e.g. mis-spell directive names only).

The plugin implements a collection of submodels,
one for each particular type of error (see §2.1): omis-
sions, insertions, substitutions, case alterations, and
transpositions. Each submodel extends the abstract
modify template. The plugin generates errors by choos-
ing random subsets of typos.

In order to mimic real spelling errors, we use an
encoding of a true keyboard. For insertions and substi-
tutions, we first find the position on the keyboard of the
key that generates the character currently in the posi-
tion where the substitution/insertion is to happen. Then
we find which modifiers (Shift, Alt, etc.) are necessary
to generate that character. Finally, based on the key-
board representation, we find all characters that could
be generated by a human mistakenly pressing nearby
keys with the same combination of modifiers.

5



4.2. Structural Errors Plugin
For the injection of structural errors, we represent

configuration files as a tree of directives and sections
(see Figure 2.b). Nested sections form subtrees.

This plugin implements omissions, insertions in the
wrong place, and duplication of configuration directives
(see §2.2). Omissions of both directives and sections are
described using the abstract delete template. Insertions
in the wrong place and duplications are expressed with
move and copy templates, respectively. The candidates
for the mutation depend on the type of error we want
to inject: e.g., for changing the order of directives in a
section, we restrict the candidates to be directives only,
and the destination of the move is restricted to the set of
sections containing the currently selected candidate di-
rectives. This template-based approach allows ConfErr
to simulate human errors without having to simulate the
entire reasoning process that leads to the errors.

Note that, depending on the level of expressiveness
in the file format used by the SUT, it is possible that
some fault scenarios result in abstract representations
that cannot be expressed in the system configuration file
language. For instance, some systems do not support
nested sections. These situations are detected and re-
ported by ConfErr when it tries to serialize the modified
configuration.

4.3. Semantic Errors Plugin
A semantic error plugin encodes mistakes that are

specific to a class of systems, and are usually based on
best practices documents (e.g., RFC-1912 defines a list
of common configuration errors for DNS servers). The
implementation of these domain-specific errors typi-
cally require the definition of a system-independent but
domain-specific configuration representation; the errors
are then defined using abstract templates applied to this
representation. Section 5.4 will describe in detail a se-
mantic error generator for DNS servers.

5. Case Studies
In this section we illustrate the use of ConfErr in as-

sessing the resilience to configuration errors in widely-
used systems: the Postgres 8.2.5 database, MySQL
5.1.22 database, Apache 2.2.6 web server, and the ISC
BIND 9.4.2 and djbdns 1.05 domain name servers.

We find that configuration error injection can ex-
pose serious bugs in production-quality software, and
that systematically checking the behavior of systems
against common configuration errors can highlight ar-
eas where resilience can be improved. We also find that,
overall, Postgres is markedly more robust to configura-
tion typos than MySQL; the generated resilience profile
reveals simple checks that could significantly improve

resilience. Undetected configuration errors often have
undesired latent effects, so the earlier they are flagged,
the better.

After describing our setup and methodology (§5.1),
we present results obtained with the three different plu-
gins (§5.2, §5.3, and §5.4) and then show how ConfErr
can be used to objectively compare one system’s re-
silience to that of another.

5.1. Setup and Methodology
ConfErr requires three system-specific compo-

nents: (a) initial configuration files, (b) parsers / serial-
izers for configurations, and (c) scripts to set up the en-
vironment, start/stop the system, and a diagnostic suite
to determine the outcome of the error injection. Com-
bining these with the error generators, ConfErr auto-
matically produces a resilience profile for the SUT.

We used the default configuration files that ship
with the target systems. For MySQL, Postgres, and
Apache, configuration files consist of sections, with
Apache additionally having nested sections and Post-
gres having only one main section. Sections are made
up of lines, which can be empty or can contain a direc-
tive. A typical directive consists of a name, a separator,
and a value; some directives may not have values. Post-
gres’s default configuration has 8 directives, MySQL’s
has 14, and Apache’s has 98. For the DNS server, we
carried out the error injection on zone files, that describe
the records published by the server; the initial configu-
rations had one forward zone and one reverse zone.

Writing the parsers and transformers to/from
plugin-specific representations was trivial, given the
simple structure of the configurations.

The error generator plugins impose a hierarchy
over the fault space, allowing plugins to declaratively
specify broad fault classes and then select one element
of each class. Unlike choosing errors randomly over the
space of possible errors, ConfErr’s approach is consid-
erably more efficient at finding flaws—it introduces a
wide variety of errors while eliminating redundancy in
injection. For the case studies shown here, the represen-
tatives of each fault class were chosen randomly within
the class. However, if using ConfErr for benchmarking,
the exact faultload could be determined a priori (e.g.,
based on direct surveys of administrator errors). Also,
the evaluation could be carried out with a uniform ran-
dom distribution and the results processed a posteriori,
to reflect any biases that may occur in real life.

ConfErr uses the provided scripts to start/stop the
system and evaluate the effect of error injections. The
scripts correspond to simple functional tests akin to
what an administrator might do to check that a system
is OK. For MySQL and Postgres, the diagnosis script

6



creates a database, then creates a table, populates it, and
queries it. For Apache, the script performs an HTTP
GET operation to download a page from the web server.
In the case of DNS servers, the script checks that the
server is answering to requests both for the forward and
the reverse zone.

Depending on the type of error injected, we expect
different outcomes. When parameter values are mod-
ified inappropriately, the SUT ought to detect them;
when we perform structural modifications that do not
change the semantics of the configuration, the SUT
ought to operate correctly.

All results were obtained on a Dell Optiplex 745
workstation with an Intel Core2 Duo processor and 2
GB RAM, running Ubuntu Linux. The testing engine,
the SUT, and relevant clients were all hosted on the
same computer.

5.2. Resilience to Typos
Thoroughly checking configuration files for typos

is painstaking but intellectually trivial, so we would ex-
pect systems—especially those destined for enterprise
use—to excel at it. We therefore set out to measure the
resilience of MySQL, Postgres, and Apache to this type
of errors.

We injected three types of errors:

• Deletion of entire directives– mutate the default
configuration file to miss a given directive

• Typos in directive names– for each section in the
default file, randomly select 10 directives and in-
troduce a typo in each one’s name

• Typos in directive values– similar to those above,
but introduce typos in the directive value instead

Some errors are detected by the system upon
startup, others by the tests, and others not detected at
all. Each error injection experiment took on the order
of seconds (2.2 sec for MySQL, 6 sec for Postgres and
1.1 sec for Apache). Table 1 summarizes the results.

Table 1. Resilience to typos

MySQL Postgres Apache
# of Injected Errors 327

(100%)
98
(100%)

120
(100%)

Detected
by system at startup 270 (83%) 76 (78%) 46 (38%)
by functional tests 1 0 6 (5%)

Ignored 56 (17%) 22 (22%) 68 (57%)

Functional tests do not offer significant additional
detection power compared to startup-time detection,
with the exception of typos in listening ports (which is
why 5% of Apache errors were caught by functional
tests). Apache and Postgres ignore a large number of

the typos in part because their directive names are case-
insensitive.

The resilience profiles (not listed here, for brevity),
reveal several unexpected weaknesses in the SUTs.

For example, MySQL silently ignores values that
are out of bounds and chooses defaults instead (e.g.
key_buffer_size=1 is accepted and ignored, al-
though the value has to be at least 8). Directives that
specify numeric values accept a suffix to indicate a mul-
tiplier (i.e. K, M, G for Kilo, Mega, Giga, respectively);
when parsing such values, MySQL stops after the first
multiplier symbol. The result is that a value like “1M0”
is accepted as valid, whereas it is clearly an unintended
value (the operator likely meant “10M”). Numeric val-
ues that start with one of the mentioned suffixes (and are
thus invalid) are also silently ignored and defaults are
used instead. Directives specified without a value are
also accepted and replaced with defaults by MySQL.
We believe all of these are obvious typos that could be
easily caught by MySQL’s configuration file parser.

A design flaw in MySQL invites latent errors:
MySQL has a shared configuration file used for the DB
server as well as the various auxiliary tools, such as
backup. When starting the database daemon, only er-
rors in the server-specific directives are detected, with
the rest of the file not being parsed at this time. This
means that, if an administrator inadvertently inserts an
error in one of the other sections, it will become appar-
ent at the earliest on the next run of the corresponding
tool. This is dangerous, because some of these auxiliary
tools run unattended, launched by cron jobs during the
night, so the administrator does not have direct feedback
on the typos.

Apache’s parser has weaknesses as well. For in-
stance, directives related to MIME types (AddType

and DefaultType) should take values in the format
“type/subtype”, as defined in RFC-2045. Apache, how-
ever, accepts freeform strings instead, without checking
conformance to this pattern. Another weakness is in
theServerAdmin directive: according to the manual,
it should take a URL or an email address; just like in
the MIME case, freeform strings are readily accepted
here. Similarly,ServerName should only accept DNS
host names, but instead accepts anything. Such laxity
can prevent the system from functioning at a much later
date (e.g., the server administrator may not receive fail-
ure notifications because of a malformed address entry).

An interesting feature of Postgres is that it en-
forces constraints across directives. For example, a
typo injected in themax_fsm_pages directive (re-
placing 153600 with 15600) caused Postgres to im-
mediately shutdown with an error message explain-
ing that max_fsm_pages must be at least 16×

7



max_fsm_relations. Such constraint checking helps
to promptly correct typos that could have hard-to-
diagnose implications if they went unnoticed.

5.3. Resilience to Structural Errors
Configuration files of different systems frequently

share a similar structure. This similarity invites oper-
ators to reuse the mental model of a given system to
configure a different one. However, slight differences in
configuration methods can make such reuse error-prone.

An ideal system should accommodate as many
ways to express a configuration as possible, while en-
suring that such flexibility does not impact the ability
of the system to detect wrong settings. This allows
the system to be resilient to minor changes in admin-
istrators’ mental models. ConfErr automatically cre-
ates variations of configuration files that can be used
by a developer to check the correctness of their imple-
mentation, or be used by the end user to automatically
discover which classes of variations are supported by a
given system.

We would expect the following classes of varia-
tions to be accommodated by Apache, MySQL, and
Postgres:

• Any ordering of sections is allowed
• Any ordering of directives is allowed within a sec-

tion
• Directive and section names are case insensitive
• Redundant whitespace between directive names,

separators and values are ignored
• Directive names can be truncated, if this does not

generate a collision of names
We ran a set of experiments on the 3 SUTs to find

which of these variations are supported and whether
their implementation is correct. We created variations
of the same configuration files used in the experiments
of the previous section. For each class of variations, we
tested each system with 10 different configuration files.
Given that we knew the size of the configuration files,
we chose the number of configurations such that a ran-
dom choice of modifications would yield a reasonable
coverage of the possible faults. When the size of the
input files is not known a priori, ConfErr can be asked
to automatically choose the number of faults depending
on the structure of the files. Table 2 summarizes the
results.

We find that all SUTs accept most of the mutations,
but neither one accepts all of them. While our tests did
not uncover any specific implementation errors (i.e., ei-
ther all configuration files created with a class of vari-
ations are accepted or none is), we do believe that all
three systems should offer the flexibility of all muta-
tions.

Table 2. Resilience to structural errors

MySQL Postgres Apache
Order of sections Yes n/a n/a
Order of directives Yes Yes Yes
Spaces near separators Yes Yes Yes
Mixed-case directive names No Yes Yes
Truncatable directive names Yes No No
% of assumptions satisfied 80% 75% 75%

5.4. Resilience to Semantic Errors
Internet RFC-1912 defines a list of common DNS

configuration errors; these occur at multiple levels,
from the choice of names to the relationship between
records on different servers. Many of the described er-
rors are related to the structure of records published by
servers. We used ConfErr to test the behavior of BIND
and djbdns when faced with such misconfigurations.
We started from a set of configuration files containing
a forward zone with several hosts, the corresponding
mail exchanger records, several TXT, RP and HINFO
records and several aliases, and a reverse zone that maps
IP addresses to their names. We then injected record-
level errors described in RFC-1912.

The error generation is system independent; it is
defined on an abstract representation that shows the
DNS records published by each server. A simple trans-
formation maps the data parsed from the configuration
files of each SUT into this representation. Another
transformation, that maps the record representation to
the system-specific configuration representation, is used
to construct the faulty configuration files.

Table 3 shows a small subset of the configuration
errors described in the RFC and the corresponding be-
havior for both DNS servers. The fault injection was
carried out on a larger set of errors but, for brevity, we
only show some of the more interesting ones here.

Table 3. Resilience to semantic errors

Err# Description of fault BIND djbdns
1. Missing PTR not found N/A
2. PTR pointing to CNAME not found N/A
3. dupl name for NS and CNAME found not found
4. MX pointing to CNAME found not found

The configuration file format used by djbdns allows
the administrator to define with a single directive mul-
tiple related records; e.g., it is possible to define the
A (address) record and corresponding PTR record with
one directive. Our test configuration file uses this direc-
tive and therefore the fault injection tool cannot find any
fault to inject for error (1) and (2), because all record
representations containing such faults cannot be trans-
formed back to a configuration file. In BIND, the ad-
ministrator has to define each record separately and thus
this system is subject to such errors. This choice of con-

8



figuration is a plus for djbdns.
BIND is effective in detecting errors of class (3)

and (4). It stops loading the zone and signals the opera-
tor the reason for this. Running the same tests on djbdns
reveals that, despite its strength resulting from the con-
figuration format, it does not check the consistency of
its data from this point of view.

Using ConfErr to inject real world configuration er-
rors that go beyond mere syntactical issues enable the
study and testing of whole-system behavior, not just
of the configuration parser. A developer can thus use
ConfErr to identify non-parse-related areas of the sys-
tem that require improvement.

5.5. Comparing Error Resilience
A configuration process can be viewed as the trans-

formation of an initial configuration file (usually the de-
fault one shipped with the system) into a new configu-
ration file. Such transformation is achieved by adding,
deleting and/or modifying directives. An ideal system is
able to detect all errors introduced during this transfor-
mation. We measure resilience of the system to config-
uration errors by simulating multiple times this configu-
ration process and determining the percentage of errors
that are detected by the system across all experiments.

ConfErr uses a benchmark script to automatically
transform initial configuration files into new, valid files;
afterward, it creates faulty configuration files based on
these new files, and verifies the system behavior. Errors
are injected in close proximity to the place where the
file has been (validly) modified, thus aiming to simulate
the common way in which errors sneak into configura-
tions. This procedure simulates the human configura-
tion process, thus constituting a primitive human error
benchmark.

We used this approach to compare Postgres and
MySQL. In order to generate the faulty configuration
files, we iterated through typos in values of all di-
rectives. We did not inject errors in directive names,
because all these errors are known to be detected by
both systems (§5.2). For the starting configuration, we
used a file containing most of the available directives,
along with the default values; we skipped all directives
that have no default value. Since neither Postgres nor
MySQL accept typos in directives with boolean values,
we excluded them from the test.

We find that Postgres is more resilient to typos
than MySQL. We ran 20 experiments for each direc-
tive. In each experiment, we injected one typo in the
corresponding directive value. For each directive, we
computed the percentage of experiments in which the
system detected the error. Figure 3 summarizes the dis-
tribution of directives across four ranges of detection:

poor (0-25% of faults detected), fair (25%-50%), good
(50%-75%), and excellent (75%-100%). Postgres was
able to detect more than 75% of the typos in almost 45%
of its directives, while MySQL detected less than 25%
of the typos in the same fraction of its directives.

Postgresql MySQL
0

20

40

60

80

100

%
 o

f d
ire

ct
iv

es

 

 
Excellent
Good
Fair
Poor

Figure 3. Resilience to typos in MySQL and
Postgres, across all directives

The results can be explained by the fact that Post-
gres features a strong constraint checking mechanism
for its numeric parameters, that can detect many typos.
Moreover, the MySQL flaws mentioned in §5.2 increase
the number of typos that go undetected.

Our comparison only gives an estimate of the over-
all resilience of the systems to typos in directive val-
ues. However, using the same procedure, one could do
more focused configuration-task-oriented benchmarks.
Using domain-specific knowledge, it is possible to de-
fine a subset of directives that are relevant to the task
of interest, and obtain a more precise comparison of the
task-specific resilience by only taking into account con-
figurations with errors in these directives.

For increased thoroughness, the benchmark can in-
clude other types of errors as well, like omissions and
duplications. Similarly, a benchmark could include
domain-specific semantic error models (e.g., the one in
§5.4).

6. Related Work
Several researchers have already recognized human

errors as an important factor in system dependability;
here we sample prior work related to ConfErr and con-
trast it to our approach.

Brown and Patterson [2] proposed benchmarks that
include the operator as a component of the system
that can either increase or reduce dependability: (s)he
can help the system recover from external faults faster
or can introduce new faults that degrade dependabil-
ity. With ConfErr, we directly simulate human errors,
which results in time and cost savings, but may be less
realistic.

Nagaraja et al. [7] described a testbed for fault tol-
erance techniques aimed at human errors. They emu-
late the operator via test scripts that embody specific

9



errors observed during tests with real human operators.
This emulation technique allows the reuse of faults, thus
amortizing the initial cost. Our approach extends this
method by synthesizing general error models, thus en-
abling the simulation of a wider set of errors than the
ones initially observed, as well as the automatic intro-
duction of variations.

Vieira and Madeira [15] aimed to assess recover-
ability in DBMSes by emulating both faults and the re-
covery procedure carried out by the operator. While
their work assumes the error detection capability of
the system in order to analyze the recovery procedure,
ConfErr directly measures this capability.

Brown and Hellerstein [3] introduced a method for
measuring the complexity of configuration processes in
terms of time taken to complete the configuration and
probability of completing without errors. In our work,
instead of focusing on the probability of error, we focus
on the system’s ability to handle the configuration error.

Finally, the field of human-computer interaction
has seen an abundance of work on the design, evalua-
tion and implementation of interactive computing sys-
tems. For example, Maxion and Reeder [6] analyzed
the genesis of human errors and the impact interfaces
have on them. To our knowledge, no automatic tool for
error generation has been proposed; such existing work
can be leveraged to extend ConfErr’s models.

7. Conclusion

Configuration errors are dominant causes of system
downtime, but are rarely taken into account when de-
signing, testing, and evaluating systems. Direct testing
for this type of errors traditionally involves real humans,
so it can be complex, subjective, and hard to reproduce.

In this paper we presented ConfErr, a tool that auto-
matically tests the behavior of a system when faced with
human configuration errors. Instead of directly relying
on human subjects, the tool relies on models that psy-
chologists and linguists have distilled from their stud-
ies of human behavior. ConfErr automatically generates
realistic configuration errors, injects them in a system-
generic fashion, and assesses their impact. ConfErr is
designed to be extensible, thus allowing for the addition
of new error generation plugins.

We showed that ConfErr enables a system de-
veloper to test with little effort the resilience of real
systems—we reported case studies on MySQL, Post-
gres, Apache, BIND, and djbdns; testing each SUT took
less than one hour. We found flaws in these popular
server applications and showed how to compare one
system to another, thus taking a further step toward de-
pendability benchmarks that include the human factor.

References
[1] Apache HTTP Wiki. http://wiki.apache.org/httpd/.
[2] A. Brown, L. C. Chung, and D. A. Patterson. Including

the human factor in dependability benchmarks. InProc.
DSN Workshop on Dependability Benchmarking, 2002.

[3] A. Brown and J. Hellerstein. An approach to bench-
marking configuration complexity. InACM SIGOPS Eu-
ropean Workshop, 2004.

[4] J. Gray. Why do computers stop and what can be done
about it? InSymp. on Reliability in Distributed Software
and Database Systems, 1986.

[5] XML information set. http://w3.org/TR/xml-infoset.
[6] R. A. Maxion and R. W. Reeder. Improving user-

interface dependability through mitigation of human er-
ror. Int. J. Hum.-Comput. Stud., 63(1-2), 2005.

[7] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and
T. D. Nguyen. Understanding and dealing with operator
mistakes in Internet services. InSymp. on Operating
Systems Design and Implementation, 2004.

[8] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini,
R. P. Martin, and T. D. Nguyen. Understanding and val-
idating database system administration. InUSENIX An-
nual Technical Conference, 2006.

[9] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why
do Internet services fail, and what can be done about it?
In USENIX Symp. on Internet Technologies and Systems,
2003.

[10] Oracle Database 10g Release 2 administrator’s guide.
Oracle Corp., May 2006.

[11] Oracle Database 10g Release 2 reference. Oracle Corp.,
May 2006.

[12] S. Pertet and P. Narasimhan. Causes of failures in
web applications. Technical Report CMU-PDL-05-109,
Carnegie Mellon University, 2005.

[13] J. Reason.Human Error. Cambridge University Press,
1990.

[14] B. van Berkel and K. D. Smedt. Triphone analysis: a
combined method for the correction of orthographical
and typographical errors. InProc. 2nd Conf. on Applied
Natural Language Processing, 1988.

[15] M. Vieira and H. Madeira. Recovery and performance
balance of a COTS DBMS in the presence of operator
faults. In Intl. Conf. on Dependable Systems and Net-
works, 2002.

[16] A. Wool. A quantitative study of firewall configuration
errors.Computer, 37(6), 2004.

[17] XML path language (XPath). http://w3.org/TR/xpath.
[18] XSL transformations (XSLT). http://w3.org/TR/xslt.
[19] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked Win-

dows NT system field failure data analysis. InProc. Pa-
cific Rim Intl. Symp. on Dependable Computing, 1999.

10


