
11

Efficient Testing of Recovery Code Using Fault Injection

PAUL D. MARINESCU and GEORGE CANDEA,
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

A critical part of developing a reliable software system is testing its recovery code. This code is traditionally
difficult to test in the lab, and, in the field, it rarely gets to run; yet, when it does run, it must execute
flawlessly in order to recover the system from failure. In this article, we present a library-level fault injec-
tion engine that enables the productive use of fault injection for software testing. We describe automated
techniques for reliably identifying errors that applications may encounter when interacting with their envi-
ronment, for automatically identifying high-value injection targets in program binaries, and for producing
efficient injection test scenarios. We present a framework for writing precise triggers that inject desired
faults, in the form of error return codes and corresponding side effects, at the boundary between applica-
tions and libraries. These techniques are embodied in LFI, a new fault injection engine we are distributing
http://lfi.epfl.ch. This article includes a report of our initial experience using LFI. Most notably, LFI
found 12 serious, previously unreported bugs in the MySQL database server, Git version control system,
BIND name server, Pidgin IM client, and PBFT replication system with no developer assistance and no
access to source code. LFI also increased recovery-code coverage from virtually zero up to 60% entirely
automatically without requiring new tests or human involvement.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability—Fault-tolerance; D.2.5
[Software Engineering]: Testing and Debugging—Testing tools

General Terms: Reliability

Additional Key Words and Phrases: Fault injection, automated testing

ACM Reference Format:
Marinescu, P. D. and Candea, G. 2011. Efficient testing of recovery code using fault injection. ACM Trans.
Comput. Syst. 29, 4, Article 11 (December 2011), 38 pages.
DOI = 10.1145/2063509.2063511 http://doi.acm.org/10.1145/2063509.2063511

1. INTRODUCTION

To build a reliable software system, one must test not only regular code, but also re-
covery code. Although rarely executed, recovery code must function flawlessly as it is
often the last defense before complete system failure. Alas, this code is often unreli-
able. For example, in the case of the Ariane 5 rocket, a missing exception handler for
arithmetic overflows in its control software caused the rocket to self-destruct, leading
to a loss of over $370 million [Dowson 1997].

The dominant approach to testing recovery code is to simulate failures that exercise
recovery code—this is referred to as fault injection. Alas, injecting meaningful faults
is hard. On the one hand, low-level faults (e.g., bit flips) are easy to inject, but are
meaningful only when testing applications designed specifically to cope with faulty
hardware, which is not the case for most general-purpose software. On the other hand,

Authors’ address: P. D. Marinescu and G. Candea, School of Computer and Communication Sciences, École
Polytechnique Fédérale de Lausanne (EPFL); email: geoge.candea@epfl.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0734-2071/2011/12-ART11 $10.00

DOI 10.1145/2063509.2063511 http://doi.acm.org/10.1145/2063509.2063511

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:2 P. D. Marinescu and G. Candea

higher level faults are more representative, but hard to aim precisely at the recovery
code of interest. For example, a tool for simulating lost, reordered, or corrupt network
packets [Li et al. 2002] provides a great way to test an operating system’s TCP/IP
implementation, but exercising the recovery code of general application-level software
(e.g., a database or web server) requires that the read() call to the C standard library
return fewer bytes than expected or return an error code. Simulating a short read() via
network packet-level injections is difficult because it requires coercing the OS network
stack into a specific target behavior.

An alternative for testing against high-level faults is to write special-purpose in-
jection code inside the target system itself. For example, the MySQL database system
[MySQL 2010d] has blocks of code that return “fake” I/O errors when activated via a
debug directive. This approach is effective, but it requires extensive labor to write the
ad-hoc fault simulation stubs, it is not portable from one system to another, and it is
difficult to maintain as the system’s environment evolves (e.g., upgrades of the librar-
ies or the OS kernel). Furthermore, such ad-hoc testing code can itself contain bugs.

The approach we present in this article focuses on the boundary between applica-
tions and their libraries as most error recovery code can be exercised via faults at
this interface. Programs interact with their environment through libraries, and most
events in the environment, including failures, are exposed to applications through the
library APIs. Shared libraries, in particular, are widely used since they encapsulate
frequently used functionality (a general-purpose application links to tens or even hun-
dreds of shared libraries [Marinescu et al. 2010]). The reliable functioning of programs
is thus tightly coupled to how well they handle error returns from shared libraries.
Furthermore, although library APIs are usually well documented, they are complex
and often differ from platform to platform in subtle ways (e.g., errno values for the
same standard C library function often vary between Linux, Solaris, and Mac OS).
This invites bugs as such corner cases are easy to miss during development, and im-
proper handling of these error cases can lead to crashes or subtle problems (e.g., if a
read() call is not retried after receiving an EINTR error, the calling application could
miss data in its input stream).

Automated testing tools, such as those based on model checking [Killian et al. 2007]
or symbolic execution [Cadar et al. 2008], can exercise code in a systematic fashion
with no human assistance. The key principle is to exhaustively explore states or exer-
cise paths of a target program, including those dealing with recovery. This approach
is thorough, but, in general, it scales poorly because the number of states/paths in
a program is typically at least exponential in the program’s size. Thus, for systems
like MySQL, with over 1 million lines of code (MLOC), it is still challenging to employ
automated testing tools. Furthermore, many such tools require access to source code,
which may not always be available. In our work, we aim to build a tool suite that re-
quires minimal human assistance, yet can scale to even the largest software systems
and does not need access to their source code.

LFI, the tool suite we describe in this article, analyzes statically the binaries of
shared libraries, infers the ways in which calls to their exported functions can fail, and
produces a corresponding fault profile for each library. It then intercepts the target pro-
gram’s calls to these functions and selectively fails the calls in the manner described in
the profile. In order to better focus the injection, LFI performs an initial static analy-
sis of the target program’s binary. The results of repeated tests are aggregated by LFI
and presented to the human tester. In contrast to the prevalent approaches, LFI de-
couples the testing of a program from that program’s code, thus enabling automation
and reuse of fault injection tests across many systems.

Any automated fault injection technique, including LFI, must answer three key
questions: what, where and when to inject? Choosing WHAT faults to inject must

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:3

be done carefully to ensure they are realistic or else the tester will be overwhelmed
by false positives. For example, a “no disk space” error makes sense if the program
attempts to write data to disk, but not if the program tries to read from disk or to
write to a socket instead of a file. Choosing WHERE in the target program to inject
a given fault is equally important and must be done in a way that is sensitive to the
target program’s logic. For example, injecting a fault on every call to read() is counter-
productive and achieves low test coverage because the target program ends up unable
to make any progress. Finally, WHEN to inject a fault during the execution of the target
program matters with respect to focusing the testing efforts and thus improving effi-
ciency. For example, a class of bugs manifest only when write() errors are encountered
by the flush code during a database system’s shutdown [MySQL 2009, 2010c]; testing
for these bugs by failing all writes in the flush code, regardless of whether the system
is shutting down or not, is inefficient.

To address the “WHAT” question, LFI automatically infers the ways in which library
functions can return errors. The automated LFI library fault profiler operates directly
on shared library binaries and performs two tasks. First, using static analysis of the
machine code, it infers the return codes of the functions exported by the library (e.g., it
determines that read() in libc can return −1 and 0). Second, it infers side effects. This
is necessary because, besides error return values, library functions can communicate
to callers additional information regarding the error through channels such as output
parameters, global variables, or thread local storage (TLS) variables. For example, the
profiler finds that, when returning −1, read() could also set the TLS variable errno to
EAGAIN, EBADF, EINTR, etc. The automatically identified return values and side effects are
summarized in the library’s fault profile.

To address the “WHERE” question, LFI statically analyzes the target program’s ma-
chine code and identifies missing or incomplete recovery code. The LFI callsite an-
alyzer determines whether error return values are checked by the callers of library
functions. For each identified callsite, it uses dataflow analysis to determine for which
error code values the return and side effect are checked. An unchecked error code
indicates a potential bug to be verified by developers through fault injection.

To address the “WHEN” question, LFI provides a mechanism for specifying with high
precision the conditions under which a given call to a given library should experience
failure. These conditions form injection triggers—predicates on program state (i.e.,
on global and local variables, callstack, etc.) which must hold for a given fault to
be injected. Triggers provide an expressive way for specifying the exact points in a
target program’s execution when injection events should occur. LFI provides a set of
stock triggers for conditions that are often desired during testing, and also offers an
interface for writing new triggers and extending existing ones.

To glue together triggers, callsites, and library fault information into complete fault
injection scenarios, LFI offers a fault injection language. Composing a scenario con-
sists of indicating which fault (WHAT) to inject, in which call to the target library
(“where”), and at which point in a program’s execution (WHEN). The LFI runtime then
executes the injection scenario by running the target program, injecting the faults as
desired, and detecting universal failures (crashes, hangs, etc.) as well as application-
specific failures encoded in user-provided scripts; it then reports the aggregate results.
The fault injection language allows testers to devise sophisticated fault injection sce-
narios without having to write new test code.

The contributions of this article are illustrated in Figure 1, which also provides
a roadmap of the article: a technique for fault-profiling shared library binaries
(Section 2), a callsite analysis technique for program binaries (Section 3), a triggering
mechanism for fault injections (Section 4), a fault injection language (Section 5),
and a general library-call interception technique (Section 6). These contributions

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:4 P. D. Marinescu and G. Candea

Fig. 1. The components of the LFI tool suite, along with the sections where they are described.

are embodied in the LFI prototype (Section 7), which we used to find 12 serious,
previously unreported bugs in the MySQL database server, Git version control system,
BIND name server, Pidgin IM client, and PBFT replication system with no developer
assistance and no access to source code. As described in the evaluation of our sys-
tem (Section 8), LFI increases recovery-code coverage for these systems from virtually
zero up to 60% entirely on its own, with no human assistance. In our measurements,
LFI incurs negligible runtime overhead. The article ends with a discussion of LFI’s lim-
itations (Section 9), a survey of related work (Section 10), and conclusions (Section 11).

2. AUTOMATED FAULT PROFILING OF LIBRARY BINARIES

From the point-of-view of fault injection testing, libraries are in essence a layer
through which environment events are filtered, transformed, and propagated to ap-
plications. The interface to this layer consists of the functions that libraries export to
programs. Constructing a fault profile for a library L therefore consists of finding the
ways in which failures can be exposed to programs that call into L.

Doing such profiling automatically is crucial because the number of libraries used
by general-purpose applications is large, their interfaces are wide, and they change
frequently. Furthermore, profiling needs to be redone for every environment in which
the target application runs. For example, on BSD systems, the man pages indicate
that, whenever close() fails, errno can be EBADF or EINTR. On Linux, errno can addition-
ally take on the EIO value, so programmers porting from BSD to Linux must be aware
of this difference and add suitable recovery code for EIO. If porting to HP/UX, they must
also remember to check for ENOSPC, and on Solaris for ENOLINK, all of which are return
codes present in the corresponding libc libraries. An effective testing tool must help
developers deal with these differences.

Another requirement for a practical fault profiler is that it work directly on binaries
without access to the libraries’ source code. First, source code may be unavailable, as is
the case for proprietary libraries like most DLLs on Microsoft Windows systems. Sec-
ond, obtaining source code matching the exact versions of the libraries used is difficult
(e.g., the original GNU libc code is slightly different from the version used by RedHat
Linux, which in turn differs from the version used by Ubuntu Linux). Third, manag-
ing compile and build requirements for many different libraries involves substantial
manual work. We believe these three factors would deter practitioners from adopting
a tool that required source code.

One possible solution, which is both automatic and independent of source code, is
to parse documentation, such as man pages. This approach has two main drawbacks.
First, documentation is not always consistent with the library implementation. For
example, the modify ldt man page claims three possible return values on Linux/x86
(EFAULT, EINVAL and ENOSYS), yet our LFI library fault profiler found a fourth one (ENOMEM),
which we confirmed through code inspection. We found similar inconsistencies in
libxml2, where htmlParseDocument is alleged to only return 0 or −1 for success/failure,

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:5

Fig. 2. An example fault profile for the close function of the standard C library.

yet it can also return 1 in some failure cases. More such inconsistencies have been
found recently by Rubio-González and Liblit [2010]. Disparities between documenta-
tion and reality are often the very source of program bugs so an effective fault injection
tool cannot afford to fall victim to these same disparities. Second, automated analysis
of documentation written in natural language is rarely accurate: Descriptions may be
incomplete (e.g., “the same errors that occur for link can also occur for linkat” in the
linkat man page) or ambiguous (e.g., “returns 0 if successful, a positive error code oth-
erwise” appears frequently in the libxml2 documentation, without actually specifying
the value of the error code).

Our approach is different: We employ static analysis to process library binaries
and identify the error return values for every exported library function. Moreover, if
libraries provide their callers with additional error details through side channels, our
library fault profiler identifies them as well. The final output of the profiler is a per-
library fault profile. A fault profile maps exported library functions to the sets of error
codes that those functions can return, along with possible side channels (e.g., errno).
Since fault profiles can be used for many other purposes beyond just fault injection
testing (e.g., to cross-check API documentation), we adopt an encoding format that is
both human-readable and easy to parse.

Figure 2 shows a snippet of the profile generated for the libc close function. The
profile states that, in case of error, close returns −1 and provides additional informa-
tion via a thread local storage variable (errno) at the given offset. This side-effect can
be value −9 (corresponding to EBADF = bad file descriptor), −5 (for EIO = input/output
error), or −4 (for EINTR = interrupted system call).

The rest of this section presents the algorithm employed by LFI for return-
value analysis (Section 2.1), the algorithm for detecting error-reporting side chan-
nels (Section 2.2), and an analysis of the algorithms’ time and space complexity
(Section 2.3).

2.1. Inferring Error Return Values

Given a library L, the goal is to identify for each exported function F1, F2, ... Fn the
error values that can be returned by each such Fi. These error values may originate
inside Fi’s code itself or in one of the dependent functions, that is, functions called by
Fi. These other functions may be internal to L or external, such as functions in other
libraries or system calls exported by the OS kernel. The fault profiler therefore starts
by identifying the transitive closure �L of dependencies for L using static analysis of
the libraries and system configuration information. The resulting �L contains all the
code that LFI needs to analyze.

For each function f contained in the �L code, LFI first determines f ’s error return
values that originate in f . A first question is how to identify potential error values—
LFI heuristically assumes error returns are always constants. This approach is

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:6 P. D. Marinescu and G. Candea

theoretically incomplete (i.e., it can miss error return values that are not constants),
but our analysis of the shared libraries on standard Linux systems found that non-
constant return values are used only to indicate success conditions (e.g., the number
of bytes read). This is not surprising, since error codes are typically defined in header
files with #define directives or enum constructs.

A second question is how to determine, of all potential error return values, which
ones can actually be returned by f . For all application binary interfaces (ABIs) we
know of, the return value is placed in a well-defined location (e.g., the Intel ABI spec-
ifies that the return value must always be placed in the eax register). It is therefore
sufficient to find which constants are propagated to this location (either from locally
generated constants or by calls to other functions) and remain untouched up to a sub-
sequent return instruction.

To find the true return values among all potential error return values, LFI first
constructs for each function f that is part of �L the corresponding control flow graph
CFG f , and then pieces together the CFGs into a global inter-procedural CFG. Then,
for each return instruction i (e.g., the ret instruction on x86) in each exported function
Fi of library L, LFI determines constant values that the return location l (e.g., the eax

register on x86) could contain at the time of executing return instruction i. We cast
the problem of finding the true return values as a multiple-source/single-destination
search in the CFG: Find the paths that propagate constants to return location l prior
to executing return instruction i. In other words, the algorithm performs “reverse”
constant propagation.

Algorithm 1 describes the approach more precisely. As indicated in the input defi-
nition, a variable location l can be a memory address, a processor register, or even an
immediate value. The algorithm first checks whether the instruction–variable pair has
been previously encountered (line 4); this could happen, for instance, when processing
loops. If the pair has already been encountered, the empty set is returned (line 5), oth-
erwise the pair is marked as visited (line 6), and the set of values for l is recursively
computed as the union of.

(1) l , in the case when l is itself a literal (lines 7–8);
(2) the error returns of the function called by the current instruction i, if i is a call

instruction and l is the ABI-specified location for return values (lines 9–11);
(3) the error codes potentially held by variables propagated to l by i (lines 12–14). We

say that l′ is “propagated” to l by instruction i, and write l′
i−→ l, if i copies/moves

the content of l′ to l, or if l′ and l refer to the same location and i does not modify
it. The predecessors(i) function called on line 13 returns all instructions that can
execute immediately before i, according to the CFG.

The algorithm employs two additional heuristics (not shown) in order to avoid mis-
takenly including in the fault profile those constant return codes that represent suc-
cess. First, it removes 0–return values from all functions for which more than one
constant return value was found. If only the 0–return was found, it is likely a null
pointer return, so it is preserved in the fault profile. Second, the library fault profiler
optionally eliminates functions for which none of the return codes is a failure (as in
the case of functions like isalpha()) based on an a priori list provided by the tester.

Discussion. Static analysis has limited precision in analyzing the context of a return.
Thus, fault profiles may include error codes that can be returned by the corresponding
function only under a narrow combination of circumstances. For example, the read

function in libc can return −1 and set errno to EWOULDBLOCK only when called with
an asynchronous file descriptor, not otherwise. Inferring this type of fine-grained

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:7

ALGORITHM 1: RevConstPropagate: Determine possible constant values of a given variable
at the time of executing a given instruction.
Input: Instruction i

Variable l (memory address, register, or immediate) in the program
Output: Set R of possible immediate (constant) values that variable l could hold at the time of

instruction i’s execution
static Map:〈Instruction, Location〉 → boolean Visited, initially ∅
begin

R := ∅
if Visited [〈i, l〉] then

return ∅
end
Visited [〈i, l〉] := true
if l is an immediate value then

R := {l}
end
if l is the register for return values, and i is a call to function f then

foreach return instruction iR in f ’s body do
R := R ∪ RevConstPropagate(iR, l)

end
end

foreach l′ such that l′
i−→ l do

foreach i′ ∈ predecessors(i) do
R := R ∪ RevConstPropagate(i′, l′)

end
end
return R

end

relationship between arguments and return values is beyond the capabilities of static
analysis, but we believe it can be addressed with an approach based on selective
symbolic execution [Chipounov et al. 2011].

Since LFI performs inter-procedural constant propagation analysis, the occurrence
of indirect calls could pose a challenge. Fortunately, indirect calls are uncommon,
even in event-driven and/or object-oriented code as indicated by Prasad and Chiueh
[2003] as well as our own experience. Our analysis of real libraries found that only
2.28% of indirect calls (758 out of 33,122) could actually affect the profiler’s accuracy
in static error code propagation, therefore we do not treat indirect calls specially in
our prototype. Should this be a concern, the profiler could be extended to run a points-
to analysis and to dynamically resolve indirect calls at runtime and inject the return
codes corresponding to the function called.

Certain libraries, such as the C and C++ standard libraries plus any libraries that
use them, eventually depend on OS kernel system calls, so many dependent functions
reside in the kernel. LFI therefore extends the static analysis to the kernel’s binary
image as well to identify the error codes that originate in the kernel and may be propa-
gated through the various libraries to the application. For this purpose, LFI treats the
kernel binary as a regular library and treats the system calls as a library’s exported
functions, essentially extending �L .

The fault profiling technique described here is portable: It obtains a library’s ex-
ported functions and disassembles them using standard tools that ship with most

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:8 P. D. Marinescu and G. Candea

Fig. 3. PIC code generated by gcc for accessing a TLS variable on Linux/x86.

operating systems. To build the CFG, we only need to know which instructions are
branches, calls, or returns on the target platform. All other analyses are independent
of the platform and ABI, hence it was easy to make the library fault profiler support
platforms like Linux/x86, Windows/x86, and Solaris/SPARC (see Section 8.4).

2.2. Inferring Side Channels Used to Communicate Error Codes

Besides error return values, library functions may also communicate to their callers
additional error information through side channels. LFI automatically identifies the
following three categories of side channels:

— thread-local storage (TLS) variables, like the errno mechanism used by libc;
— global variables; and
— output parameters (i.e., when the caller of function f passes as argument a pointer

to an error information data structure, and f fills it in with error details, if
necessary).

Error Codes via TLS Variables. While analyzing the propagation of possible error return
codes to a function’s ABI-specific return locations, the library fault profiler also scans
the enclosing basic block for instructions that write to global or TLS variables. Using
the same heuristic described earlier, writes that propagate constant values to these
variables are considered to be side channels for error codes.

We illustrate TLS side channel analysis for the most widely used way of building
shared libraries, position-independent code (PIC), that is, machine code that can be
loaded at any memory address and executed without modifications. In PIC, instruc-
tions accessing global or TLS memory addresses always use relative addressing. For
instance, on Linux/x86, the function prologue loads the ebx or ecx register with the in-
struction pointer, and subsequent code uses the register as a base address for accessing
global/TLS variables.

In Figure 3 we show an example from GNU libc, in which a function sets the errno

TLS variable and places the return value in the eax register after receiving an error
return from a system call. Line 1 obtains in the ecx register the current instruction
pointer by calling a helper function. In lines 2–4, the code computes the address of the
errno variable. Lines 5–6 compute the value to be stored in errno as the negative value
of eax in accordance with the Linux system call convention, and line 7 stores the value
into errno. Finally, line 8 sets the return value of the function to −1, indicating an error.

To infer the TLS-based side channels, LFI finds all TLS variables used by the
analyzed function and applies to each one RevConstPropagate() from Algorithm 1,
which determines the potential error return codes these TLS locations could hold upon
function return. In the example of Figure 3, the library fault profiler first locates line
8, where the constant error return code is created, then detects the side channel by
analyzing the containing basic block, and then concludes that exposing this particular
error requires LFI to both place −1 in eax and set errno accordingly.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:9

Table I. Use of Side Channels to Return Error Information from Shared Libraries in Linux

Function Side channel used for error codes
return type TLS variable(s) Global variable(s) Output argument(s) None

void 0% 0% 0% 23.0%
scalar 0.6% 0.4% 3.5% 56.5%
pointer 0.5% 0.5% 3.4% 11.6%

Error Codes via Global Variables. Detecting side channels based on global variables is
similar to detecting those based on TLS variables, except the address computation
mechanism is slightly different, even if the location of global variables is still com-
puted relative to the instruction pointer. The profiler identifies all memory addresses
computed in this way and uses RevConstPropagate() to determine the potential error
codes they can hold upon function return.

Error Codes via Output Parameters. Error codes can also be returned via structures or
objects initially passed to the library function as arguments. Such “output parame-
ters” are found at a well-known location, typically positive offsets from the base stack
pointer (when using frame pointers) or other stack/register combinations in general.
Positive offsets are outside the current stack frame because the stack “grows” down-
wards. The library fault profiler looks for writes to addresses obtained via positive
offsets and treats them as side channels just as in the case of TLS or global vari-
ables. For example, on x86, the library fault profiler looks for constant propagations
to locations of the form [ebp+x], where x is a small positive offset, using calls similar
to RevConstPropagate(exitInstr,[ebp+8]), where exitInstr is the final instruction of the
function analyzed.

To get a sense of how frequently these three different mechanisms are used to re-
turn error information, we analyzed more than 20,000 functions exported by the li-
braries with development headers available in Ubuntu 9.04 Linux and obtained the
breakdown shown in Table I. Row labels indicate function return type, column labels
indicate the method for providing error details, and values in cells indicate the corre-
sponding fraction of all the functions we analyzed. We used the ELSA C/C++ parser
[ELSA 2009] to analyze all the library headers, and then combined this information
with the automated analyses performed by LFI.

We found that almost 10% of shared library functions use side channels so auto-
mated fault injection tools must be able to identify these side channels.

2.3. Complexity Analysis of Fault Profiling

Having shown how to automatically identify the errors exposed by library functions,
we now turn our attention to the complexity of performing this analysis.

The time complexity of Algorithm 1 is O(|I|), where |I| is the number of instruc-
tions in the analyzed code (i.e., in the transitive closure �L). To understand why, we
first observe that the algorithm does a depth-first traversal on a graph where nodes are
〈instruction, location〉 pairs, and edges result from data transfer instructions. The time
complexity of the depth-first search algorithm is O(|V|+|E|), where V is the set of nodes
and E the set of edges in the graph. The second observation is that we only need to an-
alyze the strongly connected component generated by the source 〈i, l〉 so the complexity
is dominated by the number of edges |E|. Each data transfer instruction corresponds to
at most one edge because we do not do a points-to analysis for the operands of the data
transfer instructions. (This approximation does not lose precision because, in real sys-
tems, return values have a short lifetime and are referred through the same location.)
Therefore, the number of edges is bounded from above by the number of data transfer

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:10 P. D. Marinescu and G. Candea

Fig. 4. Common bug pattern.

instructions, itself bounded from above by the size of the analyzed code. The result-
ing time complexity is thus O(|I|). This is the best possible asymptotic complexity for
the entire algorithm since we necessarily need to read, disassemble, and construct the
function CFG, and this requires time linear in the size of the analyzed code.

The space complexity of the algorithm is O(|I|) as well. To reach this result, we
start from the underlying search algorithm with space complexity O(|V|). Since
the elements of V are generated on-the-fly, only when data transfer instructions
affect a new 〈instruction, location〉 pair, we bound from above the space complexity
via a similar argument as in the time complexity analysis, obtaining again a space
complexity linear in the size of the code analyzed.

This section described a technique for automatically extracting from shared library
binaries information on how those libraries expose failures to their callers. The key
idea is to statically analyze the binaries and identify (a) the constant values that can be
returned by each exported function, and (b) the side channels through which additional
error information can be conveyed to the caller. As we will show in Section 8, these
analyses have high accuracy and are fast, taking on the order of seconds to analyze
even the largest libraries. Having shown how LFI answers the “WHAT” question of
fault injection, we now describe how it answers the “WHERE” question.

3. IDENTIFYING HIGH-VALUE INJECTION TARGETS

A key goal of LFI is to increase the productivity of using fault injection in testing. The
LFI callsite analyzer therefore prioritizes the testing of recovery code that appears to
be buggy, while deemphasizing code that appears to be fine. This strategy significantly
reduces the number of candidate injection points and enables developers to invest test-
ing time where it is most likely to find bugs.

To illustrate the notion of a high-value injection target, consider the code snippet
in Figure 4, which is a simplified form of a bug we found in several systems, includ-
ing BIND and Git. Since the return value of opendir is not checked, the argument
to readdir could be a null pointer. The code works properly most of the time, when
pathToDir points to an existing directory, but crashes if the directory does not exist
or opendir cannot allocate sufficient memory. The call to opendir in this example is a
high-value injection target because making opendir fail is likely to uncover a bug.

LFI’s approach to identifying such injection targets consists of searching the target
program binary for callsites where a library function is called, and then using dataflow
analysis to determine whether the caller checks for all possible error codes (and corre-
sponding side channels) that the function could return as per the corresponding library
fault profile. Callsites where return values or side channels are not properly checked
constitute promising places to inject faults.

Algorithm 2 describes a simplified version of the analysis. The inputs are the pro-
gram binary X , the library function of interest f , and the set E of returnable error
codes obtained from the library’s fault profile. The output consists of three sets of call-
sites: The set Call of sites where f ’s return (or side channel) is checked for all error
codes, Csome where it is checked for only some of the error codes in E, and Cnone where
it is not checked for any error codes in E.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:11

ALGORITHM 2: Callsite analysis (simplified)
Input: Executable X , function name f , set E of returnable error codes
Output: Set Call of fully checked calls,

Set Csome of partially checked calls,
Set Cnone of completely unchecked calls

begin
Call := Csome := Cnone := ∅
callSites f := all callsites in X that invoke f
foreach site ∈ callSites f do

cfg := partial CFG for code that follows site
〈Chkeq, Chkineq〉 :=dataflow analysis on cfg and X
if Chkeq ⊇ E ∨ Chkineq �= ∅ then

Call := Call ∪ {site}
else if Chkeq �= ∅ ∧ Chkeq ⊂ E then

Csome := Csome ∪ {site}
else

Cnone := Cnone ∪ {site}
end

end
return 〈Call, Csome, Cnone〉

end

Lines 2–3 initialize these sets and find the set callSites f of places in the target
binary where f is called. For each such callsite (line 4), we construct a partial control
flow graph for the instructions that follow right after the call to f (line 5) in order to
determine how the return value and side effects are handled. The number of post-call
instructions to analyze is configurable in LFI; we empirically found 100 instructions
to be sufficient for building this partial CFG because errors are almost always either
checked shortly after a function call or never checked.

We then perform dataflow analysis (line 6) to follow the propagation of the function’s
return (or side channel) value through the program. We look at all targets to which the
value is copied and look at all literals to which this value (or a copy of it) is compared.
We iterate through loops as long as the set of copies of the return (or side channel)
value increases. In practice, this set usually stabilizes after a few iterations. Since all
correct real systems we analyzed do a local check for error conditions before passing
the return value to other functions, LFI performs the dataflow analysis only inside
function f . However, it could be done inter-procedurally as well.

The dataflow analysis for each site that calls f yields two sets, Chkeq and Chkineq,
corresponding to error codes checked via equality as in if (retval==−1), and those that
are checked via inequality as in if (retval<0). If all error codes in E are checked via
equality, then the callsite goes into the set of fully checked calls (lines 7–8). If error
codes are checked via inequality, we assume the entire range of error codes is covered,
hence the disjunction on line 7. If only some of the error codes in E are checked via
equality, then the callsite goes into the set of partially checked calls (lines 9–10). If no
error codes in E are checked, the site goes into the set of completely unchecked calls
even if error codes outside E are checked (lines 11–12).

The dataflow analysis is described by Algorithm 3, which solves the general problem
of finding all constant values to which the return code (or side channel) of a library
function is compared to for either equality or inequality.

We employ a modified depth-first traversal of the control flow graph: Starting from
a given instruction i and variable l, we search for execution paths that compare i’s

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:12 P. D. Marinescu and G. Candea

ALGORITHM 3: FindComparedConsts: dataflow analysis for determining the constant values
to which a variable is compared
Input: Instruction i and variable l (memory address or CPU register)
Output: Sets Chkeq, Chkineq of constants that l is checked against for equality and inequality,

respectively
static Map: 〈Instruction, Location〉 → boolean Visited, initially ∅
begin

Chkeq := Chkineq := ∅
if Visited [〈i, l〉] then

return ∅
end
Visited [〈i, l〉] := true
if i is a comparison instr comp(l,v) and v is an immediate value then

if comparison to v is via equality then
Chkeq := Chkeq ∪ {v}

else
Chkineq := Chkineq ∪ {v}

end
end

foreach l′ such that l
i−→ l′ do

foreach i′ ∈ successors(i) do
〈Chkeq, Chkineq〉:=〈Chkeq, Chkineq〉 ∪ FindComparedConsts(i′, l′)

end
end
return 〈Chkeq, Chkineq〉

end

value (or a copy of it) to an immediate value. For LFI, we solve a specific instance of
this problem, namely, the one in which i is the instruction immediately following the
call to f , and the location l is the function return (or side channel) location.

The algorithm first checks whether the instruction–variable pair 〈i, l〉 has already
been processed (line 4). If yes, the empty set is returned right away (line 5); otherwise,
the pair is marked as processed (line 6). If instruction i compares location l to an
immediate value v (line 7), then v must be added to either Chkeq or Chkineq, depending
on whether it is compared via equality (line 9) or inequality (line 11).

Instruction i may propagate location l to one or more location(s) l′, that is, i can copy
or move the content of l to l′. In this case, the algorithm adds to Chkeq and Chkineq
the constants to which location l′ is subsequently compared (lines 12–14) since these
constants represent values to which l is being (implicitly) compared.

For brevity, we omit the side-channel analysis, as it is virtually identical to the one
used for return values.

Discussion. Once the analysis is complete, the LFI callsite analyzer automatically
generates two fault injection scenarios, one corresponding to Cnone and one correspond-
ing to Csome. The LFI runtime interceptor (described in Section 6) can then execute
these scenarios and inject the faults at the vulnerable callsites. We expect testers to
start with Cnone and, after exhausting the corresponding bug vulnerabilities, to move
on to Csome. Note that the role of the callsite analyzer is not to check the correctness
of error handling code, but rather to relieve human testers of the burden of choosing
where to inject faults.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:13

Both the time and space complexity of Algorithms 2 and 3 are O(|I|), that is, linear
in the size of the code analyzed. The explanation is similar to the one already presented
in Section 2.3, due to the similar underlying depth-first search.

It is also possible to adopt a dynamic approach to identifying “vulnerable” code.
For example, we developed LibTrac [Bisolfati et al. 2010], a tool that monitors and
records all interaction between an application and dynamic libraries. It then employs
data mining techniques to identify calls that could be of interest to fault injection, for
example, it detects callsites where faults were never encountered during the execution
of the default test suite, indicating untested (i.e., not covered) recovery code. An
advantage of LFI’s static analysis is that it is faster than LibTrac.

This section has shown how LFI automatically finds high-value injection targets
in program binaries. The key idea is to use static analysis to find the places where
library functions are called but the potential resulting errors are not properly checked,
and then to prioritize injecting faults at those callsites. Even though a vulnerable
callsite does not necessarily indicate a bug, this technique substantially reduces the
space of candidate injection locations; fault injection tests are then used to confirm
or refute the hints provided by static analysis. As we show in Section 8, the callsite
analysis algorithm presented in this section is highly accurate in practice. Having
described how LFI answers the “WHAT” and “WHERE” questions of fault injection, we
now describe how it addresses the “WHEN” question.

4. FAULT INJECTION TRIGGERS

LFI provides a mechanism for testers to specify with high precision when exactly in the
course of a program’s execution a fault should be injected; we refer to this mechanism
as an injection trigger. Triggers are in essence predicates which, when evaluated by
the LFI runtime, indicate whether a given intercepted library function should fail or
not; an injection scenario ties triggers to the logic that indicates what fault should
be injected where. A trigger can inspect any part of system state: it can look not
only at program state but also at environment state. We describe a set of triggers
we developed as part of LFI that can be used simply by referencing them in injection
scenarios (Section 4.1). LFI also provides an interface (Section 4.2) that allows testers
to tailor stock triggers or write their own triggers from scratch (Section 4.3).

4.1. Stock Triggers

We identified seven types of injection triggers that appear to be used most often by LFI
users. We wrote generic triggers using the LFI trigger interface that are customizable
via parameters specified in a fault injection scenario. The stock triggers can be used
for any intercepted library function.

The callstack-based trigger allows injecting faults based on whether the current
callstack (or part of it) matches a user-specified set of stack frames. By looking at the
callstack, the trigger can learn from which program module the call is being made (e.g.,
from Apache’s SSL module) as well as the call path followed by the program to reach
the current location. Callsites in stack frames can be specified using offsets within
an object file name or program/library binary, file name/line number pairs if available,
or combinations thereof. The LFI callsite analyzer (described earlier in Section 3)
automatically produces fault injection scenarios that use callstack-based triggers to
inject faults in the locations where error checking seems incomplete.

The coverage-improvement trigger also looks at the callstack, but it automatically
records and stores the callstacks where faults are injected. This enables a strategy of
subsequently injecting faults only when new callstacks are encountered with the goal

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:14 P. D. Marinescu and G. Candea

of exercising new recovery code. We used this trigger in conjunction with the default
test suites of mature programs to improve their recovery code coverage from just a few
percentage points up to 60%, as will be seen in Section 8.2.

The program-semantic trigger injects faults depending on whether a given relation-
ship between program variables holds (e.g., numConnections==maxConnections). This
trigger allows checking for relationships between both local and global variables, and
it can be easily extended with arbitrary operators. In Section 8.5 we show how to
specialize this trigger for data structures specific to the Apache Web server.

The call-count trigger allows for specifying that an injection should occur exactly on
the n-th call to a given library function. Besides its obvious use in testing, this trigger
can also be used during debugging to replay observed failures in programs that are
driven deterministically by interactions with the environment.

The singleton trigger injects a fault exactly once. This type of trigger is often com-
bined with other triggers in a conjunction of predicates. For example, combined with
a program-semantic trigger, a singleton trigger can ensure that a fault is injected only
the first time numConnections == maxConnections holds and never again afterwards.
Trigger composition is described in more detail in Section 5.2.

The random trigger injects a fault with a configurable probability. It can also be
augmented with supplementary conditions through composition (Section 5.2).

The distributed trigger is used for testing distributed systems. A central controller
receives information on intercepted calls (function name, arguments, and callstack)
and, based on a global view of the system under test, decides whether a node-local
trigger should fire or not. This allows setting up distributed failure scenarios, such as
the ones we used for testing the PBFT replication system (Section 8.2).

4.2. Trigger Interface

In addition to stock triggers, LFI also provides an interface that allows testers to write
new triggers from scratch. This interface enables triggers to obtain runtime informa-
tion to decide whether to inject a fault or not, provides means for triggers to pass this
decision on to the LFI runtime, and finally allows testers to configure triggers through
declarative injection scenarios. This latter point enables trigger reuse, for example, the
previously described random trigger can be used to inject faults with a 10% probability
just as well as with 80% or any other probability.

Triggers can maintain any amount of state in order to provide the desired semantics.
For example, a trigger T may choose to keep track of when in the past it decided to
inject a fault or how many times a library function was invoked but T did not choose
to induce a failure. A simple case of this is the singleton trigger, which injects a given
fault exactly once during the entire program execution.

The LFI runtime informs triggers only about the library function currently being
intercepted and its arguments. It is the trigger’s responsibility to directly obtain any
other information it needs about the environment or program. For example, a trig-
ger can use the GNU libc backtrace() function to inspect the callstack and determine
whether the intercepted library function was called by a program, by a function in the
intercepted library, or by code in some other library. This approach makes triggers able
to access any part of the system state, but it has the downside that testers must write
the corresponding code. However, LFI mitigates this aspect by offering out-of-the-box
most code required for accessing relevant information.

Triggers are independent modules, written as C++ implementations of the Trigger

interface. The boilerplate code needed for a trigger is minimal: Usually less than 100
lines of code are needed to write a useful trigger. In our initial LFI prototype, prior
to the one described in this article, we wrote triggers directly inside the runtime; this

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:15

Fig. 5. LFI’s C++ interface for defining injection triggers.

made them difficult to extend and required knowledge of LFI internals. With the new
Trigger interface, shown in Figure 5, this is no longer the case.

The Init method is optional, and its default implementation is empty. It is called by
the runtime after a trigger instance is created and before its Eval function is called for
the first time. The main purpose of the Init function is to provide support for trigger
parametrization as we illustrate by example in Section 5.1.

The Eval method is where the main trigger logic resides. It is called every time a
library function (associated with an instance of this trigger by the injection scenario)
is intercepted. Its return value indicates to the runtime whether to inject a fault or
not. Since Eval may end up being called quite frequently, its code must be efficient.
Eval is a variadic function in order to be capable of receiving the original arguments of
any intercepted library call. Its first argument indicates the name of the intercepted
function; based on this name, the trigger decides how many actual arguments to ex-
pect and what their meaning is. The number of arguments must be explicitly specified
in the injection scenario; since LFI does not access source code or documentation, it
cannot automatically infer the number of arguments to pass. It is possible though to
extend LFI with heuristic techniques for inferring function arguments [Bisolfati et al.
2010; Zhang et al. 2007].

In Figure 6 we illustrate trigger construction with a sketch of how to build a cus-
tom trigger. It is used in an injection scenario where errors are to be injected in read

whenever the corresponding file descriptor is a pipe, the number of bytes to be read is
between 1KB and 4KB, and the calling thread holds a POSIX mutex.

The Trigger interface provides access not only to the information that would be
available if fault injection was hard-coded in the target system, but also to global ex-
ecution information, such as the number of calls made so far to a particular library
function. Furthermore, unlike hard-coded approaches, LFI decouples the decision of
“WHEN” to inject from the target code as well as from the “WHAT” and “WHERE” ques-
tions. This makes triggers substantially easier to extend and maintain. In essence,
LFI provides a clean separation between tested code and testing code.

4.3. Designing Triggers

When building a trigger using the Trigger interface, several design decisions must be
made. In this section we provide guidelines for making these decisions.

Since each trigger includes a predicate (e.g., S ISFIFO(st.st mode) && size>=1024 &&

size<=4096 in Figure 6), a decision must be made on how often to evaluate this predi-
cate. One option is to evaluate it every time the trigger’s Eval function is called as is
done in ReadPipe1K4KwithMutex. Another option is to track the changes made to the parts
of the program and environment state whose values influence the predicate and only
re-evaluate the predicate when one of these changes. For example, a trigger T may in-
spect a portion of a file to make its decision; doing this frequently could be quite expen-
sive. Instead, T can remember the most recent value of the predicate along with the
modification time (mtime) information; subsequently, T can choose to reinspect the file
only when the new mtime differs from the cached one, otherwise it returns the remem-
bered predicate value. Clearly, the former approach is simpler and suitable when the
trigger is not expected to be invoked often (or when tracking changes to the relevant

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:16 P. D. Marinescu and G. Candea

Fig. 6. An example custom LFI trigger.

system state adds high overhead); the latter approach is attractive when the trigger
depends on state that changes relatively slowly or that can be evaluated incrementally.

In order to minimize runtime overhead, heavyweight checks (e.g., involving net-
work communication or expensive system calls) should be preceded whenever possible
by “lightweight” checks that may directly prove the predicate to be false (e.g., local
checks). Triggers should resort to heavyweight checks only if the lightweight checks
do not decide the value of the trigger condition on their own.

In theory, one should write triggers that achieve perfect precision, that is, they de-
cide to inject a fault only in the specific situation targeted by the tester. However, in
our experience, such high precision is not always ideal: The induced runtime overhead
can become nonnegligible, and it takes more effort to write a highly precise trigger. In
most cases, we favor an approach where triggers are precise enough, that is, inject in
all targeted situations and perhaps have a couple of false positives. We provide in our
evaluation (Section 8.2) an example of a precise-enough trigger that achieves 100%
precision on a real system, although in theory it can yield false positives.

Besides lack of precision, another source of false positives is the injection of
unrealistic faults. For example, failing an I/O call that was made on a blocking file
descriptor and setting errno to EAGAIN is arguably unnecessarily paranoid given that
EAGAIN would normally only occur on nonblocking file descriptors. In LFI, such cases
can be handled by composing with a trigger that evaluates to true only when the file
descriptor supplied to the I/O call is nonblocking (e.g., the trigger can check the file
descriptor with fcntl).

LFI’s trigger mechanism provides an arbitrarily precise way of specifying “when”
to inject faults. One can define triggers in an imperative way (as a C++ class) or
declaratively employ the ready-made configurable triggers. Having described how LFI

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:17

Fig. 7. Example scenario for injecting faults in specific calls to read().

addresses the “what”, “when”, and “where” of fault injection, we now show how these
three mechanisms are glued together to form full-fledged tests.

5. PUTTING IT ALL TOGETHER: INJECTION SCENARIOS

LFI fault injection scenarios are written in a scenario description language
(Section 5.1) that also enables flexible composition of triggers (Section 5.2) and pro-
ductive reuse of fault injection scenarios across multiple systems and test suites. To
make the testing process efficient, LFI employs several optimizations in the evaluation
of triggers aimed primarily at minimizing runtime overhead (Section 5.3).

5.1. Scenario Description Language

Scenarios are constructed using two main constructs: trigger declarations and asso-
ciations between trigger instances and intercepted library functions. A trigger dec-
laration makes a trigger implementation known to LFI and creates a named trigger
instance. An association links a named trigger instance to an intercepted library func-
tion and to a fault (i.e., “what”); the trigger is then evaluated whenever the function is
called, and it decides “when” and “where” to inject.

Fault injection scenarios can be written by hand, but we believe practitioners fa-
vor using automated tools for generating and modifying these scenarios, such as the
callsite analyzer described earlier in Section 3. For scenarios to be both human-
readable and machine-readable, we chose for our prototype an XML-based language;
the widespread support for parsing and generating XML makes this choice practical.
In the remainder of this section, we provide an overview of the language and describe
it formally using a BNF grammar.

Consider the earlier example, where we injected faults in read only when the corre-
sponding file descriptor was a pipe, the number of bytes requested was between 1KB
and 4KB, and a mutex was held by the calling thread. That ReadPipe1Kto4KwithMutex

trigger can be associated with the relevant library calls as shown in Figure 7.
The <trigger> element declares a trigger instance identified by the name

readTrig1K4K and implemented by the C++ class ReadPipe1Kto4KwithMutex (written by
the tester or chosen from among the LFI stock triggers). The same trigger class can
be used for multiple trigger instances in the same scenario and, of course, in other
scenarios.

The first <function> element creates an association between the read library function
and the readTrig1K4K trigger instance. Whenever read is called by the target program,
readTrig1K4K is asked for a yes/no answer regarding whether to inject a fault or not. To
make this decision, readTrig1K4K is given by LFI three arguments (numargs attribute)

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:18 P. D. Marinescu and G. Candea

Fig. 8. The BNF grammar for LFI’s fault injection scenario description language.

from the original callstack; these arguments correspond to the file descriptor, buffer
pointer, and number-of-bytes parameters of the intercepted read call. The trigger uses
the values of these arguments to determine whether the file descriptor is a pipe and
whether the requested number of bytes falls in the target range. If readTrig1K4K re-
turns true, then LFI returns to the caller a return value of −1 (return attribute) from
read and sets the errno variable to EINVAL (errno attribute). The errno attribute is an
example of LFI’s support for commonly used side channels; testers can further extend
LFI with their own choice of side channels.

The other two <function> associations serve the purpose of informing the trigger
about the corresponding mutex lock/unlock calls, giving the trigger instance the oppor-
tunity to update its state. Since these associations will never result in injections, the
return and errno attributes are set to “unused”.

The scenario description language also enables trigger parametrization, that is, al-
lows arguments to be passed to the trigger instance at initialization time. This means,
for instance, that one could replace the ReadPipe1Kto4KwithMutex class with a new class
that takes the upper and lower bound of the number of bytes as arguments instead of
hardcoding them to 1KB and 4KB. An example of such a class is the ReadPipe trigger
class shown in the next section.

The scenario description language has the grammar shown in Figure 8.
Both the trigger list and the association list may be empty; an empty trigger list

means faults should be injected every time a function is intercepted, while an empty
function list means no library calls are to be intercepted. The arguments component
provides optional parameters passed to the trigger’s Init function. numargs is an op-
tional element specifying the number of arguments of the original function to pass to
the trigger’s Eval function (by default, none are passed). Finally, errno can be expressed
both as a symbolic constant, such as EINTR, or directly as a number.

Having shown the basic way of tying together triggers and functions, we now de-
scribe how multiple triggers can be composed in LFI.

5.2. Trigger Composition

Trigger composition associates multiple trigger instances with a single library func-
tion. Associating multiple triggers within one <function> declaration specifies a con-
junction of the triggers, that is, they all have to evaluate to true in order for a fault
to be injected. Triggers can also be composed in a disjunction (i.e., a fault is injected

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:19

Fig. 9. A fault injection scenario using a parametrized trigger.

whenever one or more triggers in the composition return(s) true) by adding multiple
<function> elements using the same function name, each one associated with a different
trigger.

Trigger composition allows broad reuse of triggers and, together with parametri-
zation, encourages writing flexible, general triggers. Consider the earlier pipe read

example: Instead of using the ReadPipe1Kto4KwithMutex class, we can use a conjunction
of two trigger classes, ReadPipe and WithMutex. The first one handles injections in the
read function when the file descriptor is a pipe and the number of bytes requested is
between a configurable minimum and maximum. The second one injects a fault in any
function as long as the caller holds at least one mutex.

The scenario in Figure 9 illustrates the composition of two trigger instances,
readTrig1K4K and mutexTrig. The first <trigger> declaration illustrates the initializa-
tion of the parametrized ReadPipe trigger class when the upper and lower bound on the
number of bytes are passed to the Eval method of the ReadPipe trigger.

Besides conjunctions and disjunctions, LFI also supports negation, whereby the re-
sult of a trigger is simply “inverted”. Using disjunction, conjunction, and negation, LFI
users can assemble a wide range of trigger combinations.

Compared to exhaustive fault injection, injection scenarios allow testers to devise
concise and precise tests. A fully exhaustive fault injection campaign is infeasible for
all but the most trivial programs because the number of possible failure combinations
is an exponential function of the number of library function calls. For example, when
the Git version control system clones a 1MB repository, it performs on the order of
5,300 library function calls and takes about 0.5 seconds to complete. If we wanted to
test only 250 of them (i.e., ∼5% of the calls), going through all of the single-function
failures on a single machine would take 2 minutes, all two-function failures would
take over 4 hours, and all three-function failures would take nearly 15 days, a period
unacceptable for most development teams.

More importantly though, exhaustive injection leads to false positives when the
program is exposed to failure combinations impossible to encounter in practice. A

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:20 P. D. Marinescu and G. Candea

tester can use injection scenarios to specify only the cases where a fault is valid and
thus avoid spending time on debugging infeasible scenarios.

5.3. Efficient Trigger Evaluation

In order to minimize collateral interference between the testing framework and the
system under test, LFI implements several optimizations.

In the case of trigger compositions, LFI invokes the smallest number of triggers
needed to determine the result of the composition. For example, in the case of con-
junctions (i.e., multiple trigger instances referenced in the same <function> element),
evaluation stops immediately after a trigger evaluates to false. This optimization is
similar to the short-circuit evaluation used in most modern programming languages.
It can also be leveraged to implement specific trigger semantics, for instance, adding
the stock singleton trigger to the end of a conjunction ensures that the corresponding
fault is injected at most once.

This optimization ensures that LFI evaluates on average a constant number of trig-
gers, regardless of the size of the conjunction. First, consider the simple case of a
conjunction consisting of n triggers, each having an independent probability 0 < p ≤ 1
of evaluating to true. The naive approach of evaluating each trigger every time has
time complexity O(n). The optimized approach still has worst-case complexity O(n),
corresponding to the case when all triggers evaluate to true, but the expected value
of the number of trigger evaluations is O(1). Second, this also holds for the general
case when each trigger Ti has its own probability 0 < pi ≤ 1 of being true. In this
case, the expected number of evaluated triggers is at most equal to the case when all
triggers have the probability max(pi) of evaluating to true, therefore it is O(1) as well.
The same reasoning can be applied to disjunctions as well.

Two other optimizations are at the level of LFI’s internal data structures. One
ensures that the list of triggers for the currently intercepted function is obtained in
O(1) time, that is, it is independent of the size of the fault injection scenario. The other
one minimizes runtime overhead during program startup by using lazy initialization:
Each trigger is initialized just before it is invoked for the first time.

In summary, we have shown in this section how tests based on fault injection can
be specified using fault injection scenarios. The scenarios can be written by hand,
gluing together library functions, triggers, and faults with the LFI scenario description
language or they can be generated automatically by tools such as the callsite analyzer
described in Section 3. In the next section, we describe the final component of LFI’s
architecture, the mechanism for intercepting library calls.

6. INTERCEPTING LIBRARY CALLS

The interception mechanism present in LFI offers an automated alternative to the
prevalent manual form of fault injection. In the manual method, the developer adds a
check in the program before each library function call; depending on the outcome of the
check, either the library function is called or a specific error code is assigned directly
to the return value. LFI moves all this logic outside the tested application by adding a
level of indirection between the application and the libraries.

LFI auto-generates shim libraries to intercept library calls. Based on the fault injec-
tion scenario, the shim libraries either pass control to the original function or return an
error value. The shim libraries have the same API as the original ones but underneath
this API they encode the fault injection logic. These libraries are shimmed between
the program being tested and the original library(ies); multiple shimmed synthetic li-
braries can coexist simultaneously. This design means that LFI requires no access to

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:21

Fig. 10. A typical stub used by LFI in generated shim libraries.

application source code or any application domain knowledge. The tested application
is not aware that its calls are being intercepted nor can it differentiate between errors
reported by actual library functions vs. injected errors.

LFI coordinates the entire testing process: It interprets the injection scenario,
generates the corresponding interception stubs, and combines them with a small
runtime to produce a new library. Once the stubs are generated and installed, LFI
invokes a developer-provided script that starts the program under test, exercises
it with the desired workload, and monitors its behavior to determine whether it
terminates normally or with an error exit code. The script may also test for more
sophisticated application-specific properties. This information is collected in a log,
which developers subsequently use to diagnose and fix bugs in the program.

The LFI log records each injected error code, the injected side effects (e.g., errno),
and the events that triggered that injection (e.g., call count, stack trace). This informa-
tion can be used to match injections to observed program behavior as well as to refine
the fault scenario. This also helps pinpoint and fix the bugs that cause test failures.
Third-party systems, like R2 [Guo et al. 2008], can be used to replay deterministically
all program failures of interest.

7. THE LFI PROTOTYPE

We implemented the call interception mechanism, the fault profiler, callsite an-
alyzer, and trigger system in a prototype that we distribute in source form at
http://lfi.epfl.ch. So far, LFI has been used by both software companies and research
teams to test a variety of general-purpose software systems.

At the heart of LFI is a system-specific library call interception mechanism, similar
in spirit to the one employed by FIG [Broadwell et al. 2002]. LFI creates a shim library
that exports stub functions with the same name as the ones being intercepted. On
UNIX-style platforms (Linux, Solaris, Mac OS, etc.) we take advantage of the dynamic
linker and its library preload mechanism [Curry 1994]; on Windows we use Microsoft
Detours [Hunt and Brubacher 1999].

A stub function determines the address of the original function and evaluates the
triggers provided in the fault injection scenario. If an injection is to be done, the stub
gets the return value and side effect to be injected from the injection scenario and
injects them. If no injection is to be done, the stub cleans up the stack and jumps to
the original function. A typical stub is shown in Figure 10.

Since LFI has no access to source code or documentation to get the prototypes of
intercepted functions, the stub functions do not have any arguments. When calling
the original function (i.e., no fault injected), the stub merely removes the current frame
from the stack (i.e., the one corresponding to the stub) and passes control directly to the
original. This has the advantage of not requiring any information about the number

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:22 P. D. Marinescu and G. Candea

of arguments and their type. When having to pass arguments to a trigger, LFI relies
on the injection scenario to specify the number of arguments.

The implementation of the static analysis algorithms used by the library fault pro-
filer (Section 2) and callsite analyzer (Section 3) is optimized for performance. After
using a third-party tool to disassemble the binary (e.g., ldd and objdump on Linux and
Solaris, otool on MacOS, dumpbin on Windows), LFI constructs the control flow graph
using an algorithm similar to the classic one by Aho et al. [1986]. The algorithm per-
forms two passes through the program. In the first pass, the CFG nodes (i.e., the basic
blocks) are determined by identifying the basic block leaders. A basic block leader is
either the first instruction in the code, a jump target, or an instruction directly fol-
lowing a jump. Each basic block leader starts a basic block containing all instructions
up to the next leader. In the same pass, LFI constructs a mapping between program
addresses and basic blocks. In the second pass, LFI adds the edges to the CFG. An un-
conditional jump induces an edge from the basic block containing the jump to the basic
block associated with the jump target, while a conditional jump induces an additional
edge to the basic block containing the instruction immediately following the jump. The
algorithms described in earlier sections then operate on this representation.

While indirect branches can make building the CFG hard, they are rare in shared
libraries: We analyzed 9,633 functions in 30 commonly used libraries and found that
only 0.13% of branches (104 out of 78,292) are indirect. The LFI prototype currently
ignores any CFG incompleteness that results from indirect branches.

LFI must be able to disassemble the libraries in order to analyze them; this may not
work if the code is obfuscated. However, Prasad and Chiueh [2003] report that over
99% disassembly accuracy can be achieved on commercial-grade applications. There-
fore, LFI assumes the disassembler output is correct and does not attempt to further
validate it. Since the disassembler is decoupled from the library fault profiler and
callsite analyzer, it is possible to employ the best disassembler available.

Our goals were to have an extensible trigger mechanism and allow developers to
simply drop trigger classes into a directory and then be able to refer to the triggers
by their class name in injection scenarios. In other words, we wanted a mechanism
similar to Java’s Class.forName() method. We used a variation of the Registry design
pattern where each trigger class automatically inherits a factory method and a static
member variable whose initialization causes the class name along with the associated
factory method to be added to a global map. LFI instantiates a trigger by searching in
this map and using the corresponding factory method.

To maximize ease of use, LFI can directly handle DWARF debug information
[Libdwarf 2010] if present in the tested binaries. For example, the callstack trigger
allows testers to specify program locations either by their offset in the binary or by file
name and line number. Another example is the callsite analyzer, which can provide
developers the exact source-code location of a vulnerable callsite.

In the next section we evaluate key properties of this LFI prototype.

8. EVALUATION

LFI’s main strength is precision; it allows testers to specify exactly what fault to inject,
where to do it, and when to do it. LFI can be used to selectively inject faults on a par-
ticular call when servicing a specific workload, when the program enters a particular
state, or when control flow passes through specific program locations. A developer with
good knowledge of the target system or application can test it thoroughly using LFI.

When system knowledge is not available, tools like the library fault profiler and
callsite analyzer help improve testers’ productivity; we focus our evaluation on how
LFI can be used productively even without knowledge of the target code. We answer
the following questions: Do real systems contain bad error handling code (Section 8.1)?

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:23

Table II. Crashes Found Automatically by LFI in 3 MacOS
Applications: Safari, iCal, and Preview

Application SIGSEGV SIGABRT SIGTRAP

Safari 13 2 0
iCal 8 2 2
Preview 12 3 1

Can LFI find bugs in real systems, and how much code coverage improvement can be
obtained (Section 8.2)? What is the accuracy and efficiency of the automated identifi-
cation of vulnerable callsites (Section 8.3)? What is the accuracy of the library fault
profiler (Section 8.4)? How much overhead is introduced by LFI when testing real sys-
tems (Section 8.5)? LFI found 12 previously unknown bugs in mature, widely used
software systems and improved recovery code coverage from virtually none up to 60%.
We find that LFI’s static analysis techniques have high levels of accuracy, and the
overhead introduced by LFI during testing is negligible.

We evaluate LFI on five systems: BIND 9.6.1, MySQL 5.1.44, Git 1.6.5.4, Pidgin
2.5.5 and PBFT 2008-12-09. These represent five different classes of software. BIND
is currently one of the most popular Domain Name System (DNS) servers used in the
Internet, and it is the de facto standard for most UNIX-based network infrastructures.
MySQL is the most widely used open-source database server with 40% market share
and over 65,000 downloads every day [MySQL 2010d]. Git is a modern distributed
version control system that was initially designed and developed for Linux kernel de-
velopment and has experienced tremendous popularity since then. Pidgin [2010] is a
popular instant messaging client. PBFT [Castro and Liskov 1999] is a practical repli-
cated Byzantine fault-tolerance system designed to correctly serve requests in the face
of f Byzantine replica failures as long as there are at least 3 f + 1 replicas in total.

We use the binary distributions of the systems just mentioned. We resort to source
code only for manual confirmation of LFI’s results. All experiments reported here are
performed on a 4-core 2GHz Intel Xeon server with 4GB of RAM, running Ubuntu 9.04
with Linux kernel 2.6.28, as well as on a 2-core 2.66GHz Intel i7 MacBook Pro with
4GB of RAM, running MacOS X 10.6.8.

8.1. Error Handling Case Study

To see the extent to which poor error handling affects real applications, we used LFI to
inject faults into three MacOS applications: the Safari Web browser, the iCal calendar
application, and the Preview document viewer.

Since we do not have source code or knowledge of the internal application logic, we
use a simple injection methodology: Choose a set of 8 libc functions and inject once per-
program execution, each time in a different location. We compare locations by means
of a custom trigger that analyzes the callstack at the moment of the library call. To ex-
ercise the programs automatically, we build several Automator and AppleScript [Cook
2007] scripts: for Safari we load http://www.yahoo.com and http://acid3.acidtest.org,
for iCal we select a particular date to display, refresh all remote calendars, and then
modify an event, and for Preview we load a JPEG image and a PDF document.

Table II shows our results. In a total of 504 automated executions, we experience
43 crashes caused by segmentation faults (SIGSEGV column), aborts corresponding to
uncaught exceptions or assertion failures (SIGABRT), and debugger traps correspond-
ing to errors that would break into the debugger (SIGTRAP). The number of unique
callers invoking failed library functions, roughly equivalent to the number of unique
problems in the code, is 12. Due to the absence of source code, we could not analyze
the crashes in detail. However, we looked at the disassembly of one particular case

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:24 P. D. Marinescu and G. Candea

Table III. Bugs Found Automatically by LFI (See Referenced Bug Reports for Details)

System Bug

BIND Crash if call to xmlNewTextWriterDoc fails while a user is retrieving statistics via HTTP
[BIND 2010b]

BIND Abort due to incorrectly handled malloc return value in method dst lib init [BIND 2010a]
MySQL Abort after a double mutex unlock, due to a failed close [MySQL 2010a]
MySQL Crash due to a failed read (error code EIO) while processing errmsg.sys [MySQL 2010b]
Git Data loss caused by running an external command with an incomplete environment, due to

failed setenv [Git 2010b]
Git Crash due to calling readdir with a NULL pointer returned by a previously failed opendir

call [Git 2010a]
Git Crash due to unhandled malloc return value on line 567 in xdiff/xmerge.c [Git 2010c]
Git Crash due to unhandled malloc return value on line 571 in xdiff/xmerge.c [Git 2010c]
Git Crash due to unhandled malloc return value on line 191 in xdiff/xpatience.c [Git 2010c]
Pidgin Abort after calling g malloc with an arbitrary value after a failed write call [Pidgin 2009]
PBFT Crash caused by a failed recvfrom call
PBFT Crash due to calling fwrite with a NULL pointer returned by a previously failed fopen call

and found that, after a failed open call, Safari does not check the returned value and
uses it instead to create a memory-mapped file via mmap. This fails, but the program
again does not check the return value and dereferences the corresponding null pointer,
resulting in an invalid memory access.

We conclude that improper error checking abounds in today’s applications, and tools
like LFI can help developers find these problems.

8.2. Effectiveness of Testing: Bugs, Precision, and Coverage

When assessing an automated testing tool, there are generally two measures of inter-
est: how many high impact bugs it finds and to what extent it improves code coverage.
In this section, we run the callsite analyzer on target binaries for Linux and directly
apply, with no modifications, the injection scenario generated by LFI. Of course, the
deeper the knowledge one has of the system tested, the more effectively LFI’s injec-
tion triggers can be used. However, here we focus solely on what can be done entirely
automatically.

8.2.1. Effectiveness. As a first measure of effectiveness, Table III lists 12 previously
unknown bugs found by LFI entirely on its own, along with references to the corre-
sponding bug reports we filed. We expect that, in the hands of a knowledgeable human
tester, LFI could find substantially more bugs.

We use the last bug in Table III to illustrate the process we follow in these experi-
ments. After running on the PBFT binary, the callsite analyzer generates an injection
scenario of which we show a fragment in Figure 11. The scenario targets a “vulnerable”
call to the fopen library function present at offset 0x8054a69 in the PBFT simple-server

binary. We then pass this scenario to the LFI runtime, which runs the test with a
standard workload. Upon inspecting the report of the test, we find that a replica is
crashed due to a segmentation fault; the log indicates the id of the trigger that fired in
that particular test case. Based on the trigger and an inspection of the source code, we
find that the replica’s shutdown code attempted to write a checkpoint to a file without
checking that the file was actually open.

The other PBFT bug (“crash when recvfrom fails”) does not manifest in the debug
build but only in the release build, that is, only when compiled with the -NODEBUG option.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:25

Fig. 11. Fragment of scenario generated by the callsite analyzer for PBFT.

We simulate deteriorated network conditions by injecting faults in sendto and recvfrom

successively in calls made by different replicas: inject fault in a call made by replica
R1, then in a call made by replica R2, etc. This type of network misbehavior causes
a segmentation fault in the view-change phase of PBFT when a replica tries to access
a previously committed message. The reason this bug does not manifest in the debug
build is that, when the debug flag is on, the PBFT implementation performs some
extra checking and halts as soon as a problem is found. The non-debug build skips
this check.

The malloc bug in BIND and the close bug in MySQL represent examples of buggy
recovery code. In BIND, the dst lib init method checks the return value of malloc

calls and, if any such call fails, it destroys the created data structures by calling
dst lib destroy. The first statement in this method is an assertion, checking that the
dst data structures have been initialized. However, the call from dst lib init is made
before the dst initialized flag is set, therefore triggering the assertion. In MySQL,
the mi create method has error handling code that releases resources, including a par-
ticular mutex. However, a failed close call can trigger this code after the mutex has
already been released by the “normal” (nonfailure) program flow, leading to a double
unlock and an application crash.

These scenarios illustrate the importance of tools targeted at testing recovery code:
Such code is hard to exercise in the testing lab without LFI-like tools, and it rarely
gets exercised in the field. Yet, whenever it runs, it is expected to run flawlessly since
it needs to rescue the system from failure.

The second MySQL bug (“crash while processing errmsg.sys”) is caused by an unini-
tialized data structure access after a failed read. If the errmsg.sys MySQL configura-
tion file exists, but reading from it fails for reasons such as low-level I/O errors, MySQL
logs the error and skips the initialization of a certain data structure. However, MySQL
“forgets” about the initial file problem and subsequently accesses that data structure,
which causes MySQL to crash.

When testing MySQL, we started out with the random injection trigger. MySQL
is robust and almost always checks function return values so we wanted to see how
well it does this. 1,000 random injection tests targeting different functions cause 35
distinct crashes in MySQL. We analyzed the 35 core dumps and found the two bugs
presented in Table III. After writing a specific callstack trigger to reproduce each one,
we attached a debugger and stepped through the code until the bug manifested again.
In this way, we connected the injected fault to the bug manifestation.

To summarize, LFI is able to find new bugs in mature, real systems without requir-
ing source code or knowledge of the tested system’s internal logic.

8.2.2. Precision of Custom Triggers. In the context of fault injection, precision denotes
the degree to which identical runs of the target program trigger the same injections.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:26 P. D. Marinescu and G. Candea

Table IV. Precision of Three Triggers Hunting for the close
MySQL Bug Described in Table III

Trigger scenario Precision

Random (10%) 16%
Random (10%) within bug’s file 45%
Close shortly after mutex unlock 100%

For example, consistently injecting a fault in a given call only when the system pro-
cesses a specific request (e.g., a database answering a specific SQL query), but not
for any other server requests, even if the same library function is called, is a precise
injection. We define the precision of a trigger relative to a bug or class of bugs, as:

Precision =
test runs that activate the bug

total # of test runs
.

In other words, a highly precise trigger will decide to inject the fault precisely at the
right time and place so as to cause each run of a given test to fail; an imprecise trigger
will make poorer choices and cause fewer identical runs of the test to fail.

To see how triggers can increase testing precision compared to random injection,
we evaluate the precision of three injection scenarios. Table IV reports the number of
times the close MySQL bug presented in Table III is activated while running 100 times
MySQL’s merge-big test suite component. This is a test that exercises MySQL paths in
the area around the bug we are targeting.

(1) The first scenario uses random injection with a 10% injection probability in each
close call. This approach triggers the bug 16 times. Perhaps counter-intuitively,
larger injection probabilities lower the precision because faults end up being in-
jected in other close calls that precede our target so execution takes alternate re-
covery paths that do not include the target close call.

(2) In the second scenario, we leverage a hint about the bug’s location and use the
callstack trigger to inject faults with a 10% probability only in calls issued from
the code in the file where the bug resides. This scenario triggers the bug 45 times.

(3) For the final scenario, we observe that the close call happens after a mutex unlock
so we inject faults in close calls that happen shortly after a mutex unlock in the
hope that the fault will trigger cleanup code that then causes the double unlock.
We create a parametrized trigger that allows specifying the maximum distance
(in number of lines of code) between the injection site and the last mutex unlock.
We then configure the trigger with different distances. With a distance of 2, this
trigger reproduces the bug 100% of the time. This result exemplifies our earlier
argument (Section 4.3) that triggers need not be perfect but only precise enough.

The three preceding steps illustrate a typical sequence of steps for building progres-
sively more precise custom triggers for a given category of bugs.

8.2.3. Recovery-Code Coverage. Improving coverage of recovery code is notoriously
difficult because exercising such code requires errors that typically appear outside
the scope of the developed program and are hard to simulate. Although scenarios
that exercise recovery code are rarely encountered in practice, programs that must
operate reliably (e.g., servers) are expected to recover gracefully from such faults
without corrupting user data or crashing. Since Git and BIND are mature, widely
used applications, we expect them to have robust recovery code for a large set of
possible environment errors.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:27

Table V. Automated Improvement in Lines-of-Code Coverage

BIND Git

Additional recovery code covered 60% 35%
Final recovery-code coverage with LFI 63.6% 37.7%

Total code coverage with LFI 61.8% 79.6%
Total code coverage without LFI 61.2% 78.7%

To assess the coverage improvements that LFI can achieve, we first use gcov [Gcov
2010] and lcov [Lcov 2010] to measure the level of recovery-code coverage obtained by
the test suite that ships with each of the applications. We manually identify in the lcov
results the recovery-code blocks for the functions we target for injection—a tedious job,
but necessary for an accurate comparison. We then run the LFI callsite analyzer on the
two target applications. To be conservative, we trim the resulting injection scenarios
down to approximately 25 library function calls that are known to fail on occasion (e.g.,
fopen, read, sendto, fstat) and exclude all others. We rerun the default test suite and
measure the new level of coverage (see Table V).

Without any human assistance, LFI makes the default test suites for BIND and Git
cover up to an additional 60% of the recovery code. This suggests that even developers
of mature software can substantially benefit from LFI out-of-the-box. Quite remark-
ably, this substantial increase of recovery-code coverage makes only a tiny difference
in overall code coverage: an additional 0.6% for BIND and an additional 0.9% for Git.
This suggests that total code coverage is a poor way of assessing the quality of test
suites for mission-critical servers; for a system like BIND, despite the fact that almost
none of the recovery code is tested, overall coverage is essentially the same as when
most of the recovery code is covered.

Note that the numbers reported in Table V are a conservative estimate of how much
LFI can improve testing because (a) we did not write any new tests, but rather relied
on the workload generated by the default test suite; (b) we did not test any of the calls
for which there was no recovery code at all even if there should have been (i.e., when
the necessary recovery code is missing); and (c) we injected faults in only a subset of
the library calls made by the applications.

8.3. Callsite Analysis: Accuracy and Efficiency

The callsite analyzer can suggest vulnerable parts of the code to be targeted with new
or additional tests, thus helping developers write thorough test suites with less effort.
We now evaluate the accuracy and efficiency of this component of LFI.

8.3.1. Accuracy. There are two ways to identify good injection targets, manually or
automatically. We believe the most practical approach is one in which injection tar-
gets are first identified automatically, by tools like the LFI callsite analyzer, and then
developers manually refine the generated injection scenarios either based on knowl-
edge of the target system or iteratively, by trying out increasingly more focused failure
scenarios.

To be useful, a tool that automatically identifies injection targets must be accurate
so that developers can trust its results. Accuracy is typically defined in terms of the
number of true positives (TP), true negatives (TN), false positives (FP), and false neg-
atives (FN) as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:28 P. D. Marinescu and G. Candea

Fig. 12. Definition of true/false negatives/positives for the LFI callsite analyzer.

Table VI. LFI’s Callsite Analysis Accuracy with No Human
Assistance, No Documentation, and No Source Code

System Function TP+TN FN FP Accuracy

BIND malloc 17 0 0 100%
BIND unlink 6 0 0 100%
BIND open 5 0 1 83%
BIND close 39 0 0 100%
Git malloc 25 0 0 100%
Git close 127 0 0 100%
Git readlink 7 0 0 100%
PBFT fopen 6 0 0 100%

In the context of LFI’s callsite analyzer, a true negative occurs when LFI believes
the error code is checked, and indeed this is so, while a true positive occurs when LFI
believes the error code is not checked, and indeed this is so. More specifically, we define
true/false negatives/positives with the matrix shown in Figure 12.

We use the LFI callsite analyzer to identify places in various target systems where
libc calls are made and their return code is not checked. We then manually inspect
the code to determine whether LFI’s identification is correct or not; the results appear
in Table VI. It is worth noting that we show here all the calls for which we performed
the manual inspection and validation, that is, we did not specifically select the ones
favorable to LFI.

Based on these results, we conclude that LFI’s callsite analysis is highly accurate
for libc calls even though it is performed directly on x86 binaries; we expect this ac-
curacy to carry over to other libraries beyond libc. It is therefore reasonable to expect
that LFI can automatically provide out-of-the-box a good set of injection scenarios that
developers can then adjust as needed for their tests.

8.3.2. Efficiency. The callsite analyzer is accurate, but is it fast? Testers are unwilling
to wait long for results. For example, it is frequently said that the long running times
of model checkers have discouraged their widespread use in testing.

In our experiments, analysis time ranged from 1 second to a maximum of 10 sec-
onds for BIND, and in each of these cases, there were more than 100 callsites. The
measurements also confirm our theoretical complexity analysis in Section 3: Callsite
analysis time is influenced solely by program size, measured in number of machine
instructions.

Developers can process the results of the callsite analyzer fairly quickly. With each
callsite deemed to be vulnerable, the details regarding file name and line number are
provided (whenever debug symbols are available), and this information guides the
developer in inspecting the source code.

In summary, LFI’s automated analysis of the binaries to be tested can identify with
high accuracy the callsites that are likely to contain corner-case bugs, and its effi-
ciency in doing so makes LFI’s callsite analyzer a convenient complement to (or even
a replacement for) manual identification of good candidates for fault injection.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:29

Fig. 13. Definition of true/false positives/negatives for the LFI library fault profiler.

8.4. Library Fault Profiler: Accuracy and Efficiency

Just like the callsite analyzer, the library fault profiler must also be accurate if it is
to be useful in practice because developers will not trust the profiler’s results if they
turn out to be off the mark. In this context, we define true/false positives/negatives as
shown in Figure 13.

A true positive is an error return code that was correctly found, a false positive
is a reported error code that cannot actually be returned, and a false negative is a
returnable error that was not found. The notion of a true negative is no longer defined
because the profiler does not explicitly identify the values that cannot be returned as
error codes. We therefore define accuracy of the fault profiler as:

Accuracy =
TP

TP + FP + FN
.

The ground truth for deciding what is a false vs. true positive or negative cannot
be easily determined because written documentation is not reliable. To obtain precise
numbers, we performed labor-intensive manual code inspection. We limit our initial
evaluation to a thorough analysis of a small library, libpcre, with 20 exported functions.
We find that the library profiler’s accuracy is 84%: It has 52 true positives, 0 false pos-
itives, and 10 false negatives (due to compiler optimizations that our implementation
is not yet tuned for).

As explained in Section 2.1, another factor that can influence accuracy is the num-
ber of indirect branches and indirect calls because they pose a challenge to the static
construction of the control flow graph. Accuracy can also be influenced by library de-
sign: The number of false positives increases as functions maintain more state from
one call to another, based on which they decide the appropriate return value.

In order to assess these effects, we broadened our evaluation to 18 additional li-
braries on 3 different platforms, but this time we used the documentation as the
ground truth. We wrote automated parsers for each library’s documentation. While
this evaluation is inexact (given that documentation is not always correct), it is the
only practical method of comparison. In Table VII we show the results of running the
library fault profiler on the respective binaries.

In summary, with no access to documentation, source code, or human assistance,
the library fault profiler typically achieves 80%–90% accuracy. False negatives result
in missed failure scenarios, while false positives result in time wasted by the developer
establishing that the injected fault cannot actually occur in reality. Neither of these is
particularly problematic as long as their number is small.

In terms of efficiency, the LFI profiler is practical. We measured profiling times
ranging from 0.2 seconds for a small library, libdmx, with 18 exported functions and an
8 KB code segment, to 20 seconds for a very large library, libxml2, with 1,612 exported
functions and an 897KB code segment. To profile all 1,000+ libraries found on a typical
Linux system took us roughly 5 hours. In practice though, such a full system profile
is unlikely to be done often, rather testers will profile only the libraries used by the
program of interest. When updating a library on the system, which occurs rather

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:30 P. D. Marinescu and G. Candea

Table VII. Profiler Accuracy with No Human Assistance, No
Documentation, and No Source Code on Linux/x86, Solaris/SPARC,
and Windows/x86. True/False Negatives/Positives are Relative to the

Respective Library Documentation

Library Platform Accuracy TPs FNs FPs

libgtkspell Linux 100% 7 0 0
libhesiod Linux 100% 10 0 0
libcdt Linux 100% 15 0 0
libXss Linux 92% 12 1 0
libnetfilter q Linux 92% 24 2 0
libpanel Linux 91% 21 2 0
libdaemon Linux 91% 30 3 0
libdns sd Linux 89% 50 4 2
libldap Linux 85% 368 45 21
libgimpthumb Linux 84% 31 3 3
libxml2 Linux 80% 989 152 102
libao Linux 80% 12 3 0
libdmx Linux 76% 26 8 0
libvorbisfile Linux 75% 133 4 39
libpanel Solaris 100% 23 0 0
libpctx Solaris 83% 10 0 2
libxml2 Solaris 81% 1003 138 88
libssl Windows 87% 164 18 6

infrequently, it takes on the order of minutes to update its fault profile by reanalyzing
the updated library and its dependencies.

Profiling time is mainly influenced by code size, that is, by the number of machine
instructions. The number of hops in the propagation of return codes to the eax return
register (or equivalent) also has an impact, but we found this distance to not exceed
3 instructions in practice—most likely due to compiler optimizations, like constant
propagation and constant folding—so its effect is negligible.

8.5. Triggers and The Precision/Performance Trade-Off

LFI triggers can be designed with arbitrary levels of precision, using information in
callstacks, program variables, system state, etc. We wish to quantify the cost of this
precision. If, for instance, the process of injecting library-level faults via LFI slows
down the system to the point that its behavior is no longer representative, then the
value of testing is decreased (though not eliminated).

To evaluate the cost of precision in the LFI trigger mechanism, we measure on Linux
two commercial-grade servers that are performance-sensitive: the Apache 2.2.14 Web
server and the MySQL 5.1.44 database server. We compute the induced overhead as a
function of the number of triggers, frequency of triggering, and type of triggers. We use
the Apache benchmark (AB) [Apache 2010] on Apache and the SysBench [SysBench
2010] Online Transaction Processing benchmark on MySQL.

We focus measurement on the triggering mechanism by making the triggers pass
all calls through to the real library functions without injecting errors, because our
purpose is not to measure how long it takes the servers to recover after encountering
a fault, but rather to measure the overhead introduced by evaluating LFI’s triggers.

For Apache, we construct injection scenarios that combine up to five different trig-
gers that target calls to the Apache Runtime library (APR) as follows.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:31

Table VIII. Apache Web Server Performance on the AB Benchmark while Using LFI
with Up to 5 Triggers. The Baseline Represents Apache httpd Without any

Interference From LFI

Employed Triggers Static HTML (overhead) PHP (overhead)
Baseline (no triggers) 0.179 sec 1.562 sec
TA 0.179 sec (0.0%) 1.564 sec (0.1%)
TA + TB 0.179 sec (0.0%) 1.574 sec (0.8%)
TA + TB + TC 0.179 sec (0.0%) 1.577 sec (1.0%)
TA + TB + TC + TD 0.186 sec (3.9%) 1.585 sec (1.5%)
TA + TB + TC + TD + TE 0.188 sec (5.0%) 1.589 sec (1.7%)

— Trigger TA targets apr file read() calls whose file descriptor argument points to a
socket; this trigger uses the apr stat function to check the argument’s type.

— Trigger TB checks that the caller of the intercepted APR function is the Apache core,
in order to avoid injecting faults in any calls coming from Apache’s dynamically
loaded modules; TB reuses the callstack trigger described in Section 4.1.

— Trigger TC further narrows TB’s focus down to function calls made from the core
while Apache is processing a request. For this, TC uses the callstack trigger to fire
only when Apache’s ap process request internal() appears on the callstack.

— Trigger TD further narrows TC ’s focus to inject only when the HTTP POST method
is used to generate the request seen by the server. For this, TD reuses LFI’s de-
fault application state trigger to examine the method number field in the request rec

argument passed to ap process request internal().
— Trigger TE is a custom trigger that intercepts and remembers mutex locks and un-

locks in order to inject faults only in calls made while holding a mutex.

Table VIII summarizes the measurements obtained with two different benchmark
workloads: static HTML and dynamic PHP requests. The former, consisting of 1,000
requests of a static HTML page, fires the triggers 32,612 times (a rate of ∼1.7×105 trig-
gerings/second) for the maximum number of 5 triggers. The second workload consists
of 1,000 requests of a PHP page which calls the phpinfo() function. This is computa-
tionally more demanding on Apache and results in fewer library calls per unit of time:
a total of 45,228 triggerings (a rate of ∼2.8×104 triggerings/second). In both cases, the
overheads introduced by trigger evaluation are negligible in testing, maximum 5.0%
and 1.7%, respectively, suggesting that LFI does not substantially affect the target’s
behavior other than through injected faults.

We also run the SysBench benchmark on MySQL with LFI injecting faults in calls
to libc. The injection scenarios use up to four triggers targeted at fcntl().

— Trigger T1 injects an error return code when fcntl’s cmd argument is F GETLK.
— Trigger T2 injects an error in the call to fcntl only when the total thread count

exceeds 64. To determine this, the trigger reads the global MySQL variable
thread count using the default application state trigger.

— Trigger T3 injects an error only while the system is shutting down. It checks for this
condition by looking at the global MySQL variable shutdown in progress.

— Trigger T4 injects an error when the call to fcntl is made by the main application
module and not by other libraries. For this, it uses the default callstack trigger.

Table IX shows the results of applying combinations of these triggers under two
different SysBench workloads: read-only and read/write. For the highest number of 4
triggers, we obtain ∼1.4 × 104 triggerings/second.

Even with complex combinations of conditions that check various parts of the
system state, LFI introduces overhead that is consistently less than 5% in our

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:32 P. D. Marinescu and G. Candea

Table IX. MySQL Database Server Performance While Using LFI with Up to 4 Triggers.
We show Transaction Throughput as Reported by the SysBench OLTP Benchmark

Employed Triggers Read-Only (t-put drop) Read/Write (t-put drop)
Baseline (no triggers) 1076 txns/sec 326 txns/sec
T1 1064 txns/sec (1.1%) 319 txns/sec (2.1%)
T1 + T2 1060 txns/sec (1.5%) 318 txns/sec (2.5%)
T1 + T2 + T3 1056 txns/sec (1.9%) 316 txns/sec (3.1%)
T1 + T2 + T3 + T4 1056 txns/sec (1.9%) 316 txns/sec (3.1%)

measurements. This level of overhead is negligible during testing. This offers an
advantageous precision/performance trade-off, meaning that testers can afford to use
sophisticated triggers without being concerned that trigger evaluation will bias the
behavior of the system under test.

In this section, we showed LFI’s effectiveness in finding previously unknown bugs
and in improving recovery code coverage from a few percentage points up to 60%. We
showed that the callsite analyzer and the library fault profiler are both accurate and
efficient and that they enable testers to automate most tasks involved in testing error
recovery code. Finally we showed that fault injection triggers are efficient and can be
used to specify precisely the what, where, and when of fault injection. We therefore
conclude that LFI is a practical tool for testing recovery code, especially given that it
requires no domain knowledge or source code access.

9. DISCUSSION

In this section we discuss some of the decisions made during the design, implemen-
tation, and evaluation of LFI and look at LFI’s limitations and possible alterna-
tives. We first discuss the practical implications of using LFI for testing (Section 9.1),
then discuss the changes needed to port our implementation to a different plat-
form (Section 9.2), and finally analyze the implications of exceptions-based error prop-
agation in library-level fault injection (Section 9.3).

9.1. Using LFI in Practice

The main advantage of LFI is that it provides a “surgical” method for injecting faults,
thus offering an alternative to random or exhaustive injection. Testing with exhaustive
fault injection is generally not practical: Given n candidate library calls, each with an
average of k error returns, the number of scenarios in which some of the n calls fail
is on the order of kn. Even for small values of n and k, this quickly yields millions (or
more) test possibilities. For a system like MySQL, assuming an optimistic average of
1 minute/test to bring it up, run a test workload, then bring it down, such exhaustive
fault injection testing would take years, even decades, to complete. One might argue
that one injection per scenario is enough, but in practice such testing is too weak.
Conversely, when employing exhaustive fault injection and finding a bug, tracking
down the cause of the observed failure may be difficult: Which of the many injections
really was the culprit? Callsite analysis and injection triggers focus the testing effort
in a way that can save substantial amounts of time.

LFI works by injecting faults into an application and monitoring its behavior for
failures. In essence, there exist two classes of failures: those that are universally ac-
cepted as bad behavior (e.g., crashes, hangs) and those that are tied to a specification
of the system. The current LFI prototype detects only the former; the latter can only
be caught by user-provided correctness-checking scripts or as deviations from a speci-
fication of correct behavior.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:33

The number of bugs reported in the evaluation is significantly lower than what we
expect a tester to find when combining LFI with knowledge of the system under test.
First, we used LFI in a fully automatic way so it only looked for “low-level” univer-
sal bad behaviors. Second, we tested highly mature software systems, like MySQL,
without employing knowledge of their internal logic. Third, the scenarios generated
automatically are limited in their complexity. Deeper knowledge of the system under
test allows for: (a) devising scenarios based on the semantic assumptions made by the
code and (b) creating injection scenarios tightly connected to the workloads used in
the tests. Custom triggers allow the tester to further refine the fault injection pro-
cess, eliminating unnecessary injections and focusing on scenarios that are difficult to
otherwise reason about.

9.2. Generalization of the LFI Approach

Injecting faults at the boundary between programs and external functions is a testing
technique applicable to virtually all platforms and programming languages. Our LFI
prototype addresses a widely used case, namely x86 and x86 64 executables and dy-
namic libraries. However, the general techniques presented here carry over to other
architectures and languages as well. In this section we describe how each LFI compo-
nent can be implemented for other types of environments.

Fault Profiling works on a disassembled version of the program, which can be
obtained most of the time with standard tools. For compiled languages, these usually
are disassemblers, while for interpreted languages (e.g. JavaScript, Python) this
facility is usually offered by the interpreters themselves (e.g., the JavaScript V8
shell’s --print code option [V8 JavaScript Engine 2011]) or by the standard library
(e.g., the Python dis module [CPython 2011]). Fault profiling can also work with source
code, but the simplicity of disassembly or an intermediate representation is often an
advantage.

Callsite Analysis is generally straightforward to implement as it has similar re-
quirements to the fault profiler: the availability of disassembly or an intermediate
program representation.

Injection Triggers can be reused in other environments because we implemented
injection triggers using an XML-based language that is independent of the target ar-
chitecture or system. XML has broad support on today’s platforms.

Function Interception is generally available on every platform. Intercepting library
function calls is done via LD PRELOAD on UNIX-style systems like Linux and Solaris,
via DYLD INSERT LIBRARIES on MacOS, and via the Detours library on Windows. For
languages where library functions and external dependencies are not invoked via dy-
namic library calls, other options for function interception are usually provided. Most
dynamic languages (e.g., Ruby) offer a direct way of modifying the type system at run-
time, making function interception straightforward. Languages that have the aspect-
oriented programming paradigm (e.g. Java with AspectJ) offer the ability to intercept
function calls via pointcuts and advices.

9.3. Exceptions Instead of Error Return Codes

Besides error return codes, exception handling is another technique for dealing with er-
rors. Exceptions are an out-of-band mechanism for bypassing normal program control
flow when an error is encountered and directly invoking the corresponding handling
code. LFI does not support exception-based error signaling.

However, exceptions are not generally used to pass error information from dynamic
libraries to applications due to the lack of a standardized exception handling ABI. In
practice, this means that a program and a dynamic library can safely exchange error

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:34 P. D. Marinescu and G. Candea

information through exceptions only if they are compiled using the same compiler.
This is not usually possible because (a) dynamic libraries and applications are
provided through different distribution channels, which may use different compilers
in the build process, and (b) libraries must be able to interoperate at any time with
multiple applications. Therefore, most dynamic library developers choose a C-style
interface to maximize interoperability.

One notable exception is the standard C++ library, libstdc++, which is a component
of the gcc toolchain. The functions that it exports use a mix of return values and excep-
tions to report errors, which works in this particular case because the library is part of
the compiler distribution. LFI can be used to inject faults only through return values
and side effects. Extending it to the exception handling paradigm involves adapting
LFI’s fault profiler to detect the possible exceptions a method can throw and inferring
the structure of each exception type, possibly using tools such as Howard [Slowinska
et al. 2011]. The interception mechanism does not change, but the intercepting code
throws the exception previously inferred using the standard C++ throw mechanism in-
stead of returning an error code.

Dealing with exceptions in interpreted programming languages is usually easier
due to the availability of reflection APIs that allow for creating exception objects on-
the-fly. The appropriate values for the exceptions can be obtained through an analysis
similar to fault profiling.

10. RELATED WORK

This article described LFI, to our knowledge the first library-level fault injector prac-
tical enough for real-world use. LFI builds upon the experience of many prior fault
injection tools, and we describe here some of the more representative ones. Since LFI
targets general-purpose systems, not real-time or safety-critical ones, we focus on the
approaches relevant to this target domain.

Library-level fault injection is an inexpensive testing method that first appeared
in FIG [Broadwell et al. 2002], a tool that verifies the error handling code responsi-
ble for GNU libc errors. FIG has several important limitations, such as only allowing
the injection of faults in GNU libc functions and not allowing the selection of spe-
cific callsites in which to inject. Most importantly, though, FIG requires hardcoding
the injected error values, which entails significant manual effort. A refinement was
presented by Süßkraut and Fetzer [2006] in the form of a system that finds bugs via
library-level fault injection and then patches the vulnerable applications to protect
against these bugs. Like FIG, this system is also limited to GNU libc functions and
does not have the means to automatically search for vulnerable callsites, nor to specify
complex injection conditions via triggers. Ballista [Koopman et al. 1997] approaches
the problem from a different perspective: It allows unit-testing of library code by in-
jecting faults in library function arguments.

There exist fault injection testing tools that target the library or function call inter-
face for specific classes of applications: TestApi [TestApi 2010] for .NET applications,
the Hadoop Fault Injection framework [Hadoop FI 2010] for Hadoop’s distributed file
system, Holodeck [2010] for Windows applications, etc. These tools generally do not as-
sist testers in deciding WHAT, WHERE and WHEN to inject; they either perform “blind”
fault injection or require testers to have extensive knowledge of the target applica-
tion’s internal structure. One of LFI’s key aims is to provide an entire tool chain
that assists testers in all the steps required for fault injection, thus improving their
productivity.

Many tools inject faults at layers below the library layer [Barton et al. 1990;
Kanawati et al. 1995; Ng and Chen 1999; Stott et al. 2000; Tsai and Iyer 1995].

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:35

These tools have been used to test or validate the robustness of systems and protocols
[Dawson et al. 1997], and there exist well developed methodologies for this [Arlat et al.
1990]. When employing low-level injection tools for general-purpose software, one typ-
ically faces two challenges: It may not be reasonable to expect an application to handle
such low-level faults (e.g., BIND cannot be expected to recover from arbitrary memory
chip failures), and the large number of layers that separate the low-level injection point
from the application level makes pinpointing the location of a possible bug tedious in
complex systems. This leads both to false positives (i.e., observed failures that are not
caused by application bugs, rather by the developer’s decision to not take into account
hardware failures) and to difficulty in pinpointing the cause of observed failures. The
application/library boundary exploited by LFI does not have these shortcomings. Pro-
grams are expected to react properly to error conditions signaled by components with
which they interact and determining the point where a fault transformed into an error
is easier.

Other fault injection systems [Chillarege and Bowen 1989; Barbosa et al. 2007] fol-
low another approach to testing: They mutate the target binary code according to sta-
tistical bug models or rely on human-provided pre- and postconditions that are then
purposely violated by dynamically modifying the program state [Bieman et al. 1996],
in an attempt to simulate real failures. In a similar vein, tools and techniques have
been proposed [Prabhakaran et al. 2005; Bairavasundaram et al. 2008; Gunawi et al.
2010] that employ deep system knowledge in order to trim down the space of faults to
be injected; they aim to avoid injecting faults that are known to be irrelevant. LFI’s
callsite analysis is an example of doing such trimming of the fault space without any
system knowledge but rather using automated program analysis. Nevertheless, we
expect that techniques that leverage system knowledge can significantly strengthen
LFI, for instance, by eliminating false positives caused by the fact that LFI does not
track library state across calls.

Ideas similar to callsite analysis have also been proposed by Gunawi et al. [2008].
The authors targeted Linux file system implementations at the source-code level and
used block-level fault injection to confirm several categories of bugs. Tools for ana-
lyzing the propagation of Java exceptions have also been described by Candea et al.
[2003], Fu et al. [2004], as well as Weimer and Necula [2008]. These tools use func-
tional specifications that are known a priori. The tools then use either runtime or
compile-time mechanisms to cause the desired exceptions to manifest; the propaga-
tion of exceptions uncovers bugs during testing. Our approach is complementary: We
target different types of systems and use fault injection at a different level, while not
assuming any a priori knowledge of the target software.

Several studies found that documentation, although relied on by programmers, is
rarely kept up-to-date as code changes [Lethbridge et al. 2003; Singer 1998]. This has
led to proposals for extracting possible function error return values from the source
code, such as Rubio-González and Liblit [2010]. This approach focuses on file systems
and discovers mismatches between the documentation and the actual code, proving
once more that documentation can be inaccurate. In contrast to approaches that rely
on source code, LFI’s library fault profiler directly analyzes the libraries’ binaries, thus
it is a good fit for closed-source libraries, too.

The concept of injection triggers was used by FERRARI [Kanawati et al. 1995] and
other tools for OS robustness evaluation [Johansson et al. 2007]. These early trigger
mechanisms were relatively coarse as they could only specify injection criteria such as
injecting after the n-th function call or after a determined amount of time. LFI offers
substantially higher flexibility in targeting injections, and LFI’s stock triggers and the
Trigger interface allow testers to achieve a level of precision in recovery-code testing
that was previously not available.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:36 P. D. Marinescu and G. Candea

11. CONCLUSION

This article described LFI, a reusable and scalable library-level fault injection
framework. It consists of a complete tool chain that helps answer the three key
questions that arise when employing fault injection: what, where, and when to inject.
The LFI fault profiler employs static analysis of library binaries to infer the possible
error codes and side effects that result from calling the exported library functions.
The LFI callsite analyzer identifies in a program’s binary the vulnerable spots where
that program fails to check all manifestations of errors in the called libraries. Finally,
LFI injection triggers allow testers to specify with high precision where and when to
inject a fault. LFI comes with a set of default stock triggers as well as a mechanism
for extending these triggers to fit practitioners’ needs.

We used LFI successfully in testing real systems. LFI found entirely on its own 12
new bugs in the BIND name server, the MySQL database server, the Git version con-
trol system, the Pidgin IM client, and the PBFT replication system. LFI also achieved
35%-60% recovery-code coverage, with no human involvement. We have shown that
LFI introduces only negligible runtime overhead during testing.

LFI is freely available and can be downloaded from http://lfi.epfl.ch.

ACKNOWLEDGMENTS

We thank Radu Banabic for his help on the experimental section of this article. We are indebted to the
anonymous reviewers and our EPFL colleagues for their generosity in helping us improve this work and its
presentation.

REFERENCES
AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques, and Tools. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA.
APACHE. 2010. Apache Benchmark (AB). http://httpd.apache.org/docs/2.0/programs/ab.html.
ARLAT, J., AGUERA, M., AMAT, L., CROUZET, Y., FABRE, J.-C., LAPRIE, J.-C., MARTINS, E., AND POWELL,

D. 1990. Fault injection for dependability validation: A methodology and some applications. IEEE Trans.
Softw. Engin. 16, 2.

BAIRAVASUNDARAM, L. N., RUNGTA, M., AGRAWAL, N., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., AND SWIFT, M. M. 2008. Analyzing the effects of disk-pointer corruption. In Proceedings of
the International Conference on Dependable Systems and Networks.

BARBOSA, R., SILVA, N., DURAES, J., AND MADEIRA, H. 2007. Verification and validation of (real time)
COTS products using fault injection techniques. In Proceedings of the International Conference on
Commercial-off-the-Shelf-Based Software Systems.

BARTON, J., CZECK, E., SEGALL, Z., AND SIEWIOREK, D. 1990. Fault injection experiments using FIAT.
IEEE Trans. Comput. 39, 4.

BIEMAN, J. M., DREILINGER, D., AND LIN, L. 1996. Using fault injection to increase software test coverage.
In Proceedings of the International Symposium on Software Reliability Engineering.

BIND. 2010a. BIND aborts in dst api.c.
https://lists.isc.org/pipermail/bind-users/2010-January/078493.html.

BIND. 2010b. BIND crashes in statschannel.c.
https://lists.isc.org/pipermail/bind-users/2010-January/078428.html.

BISOLFATI, E., MARINESCU, P. D., AND CANDEA, G. 2010. Studying application–library interaction and
behavior with LibTrac. In Proceedings of the International Conference on Dependable Systems and
Networks.

BROADWELL, P. A., SASTRY, N., AND TRAUPMAN, J. 2002. FIG: A prototype tool for online verification
of recovery mechanisms. In Proceedings of the Workshop on Self-Healing, Adaptive and Self-Managed
Systems.

CADAR, C., DUNBAR, D., AND ENGLER, D. R. 2008. KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the Symposuim on Operating System
Design and Implem.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

Efficient Testing of Recovery Code Using Fault Injection 11:37

CANDEA, G., DELGADO, M., CHEN, M., AND FOX, A. 2003. Automatic failure-path inference: A generic
introspection technique for software systems. In Proceedings of the Workshop on Internet Applications.

CASTRO, M. AND LISKOV, B. 1999. Practical Byzantine fault tolerance. In Proceedings of the Symposium on
Operating Systems Design and Implementation.

CHILLAREGE, R. AND BOWEN, N. S. 1989. Understanding large system failures - a fault injection experi-
ment”. In Intl. Symp. on Fault-Tolerant Computing.

CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. 2011. S2E: A platform for in-vivo multi-path analysis of
software systems. In Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems.

COOK, W. R. 2007. Applescript. In Proceedings of the Conference on History of Programming Languages.
CPYTHON. 2011. http://www.python.org/.
CURRY, T. W. 1994. Profiling and tracing dynamic library usage via interposition. In Proceedings of the

USENIX Summer Technical Conference.
DAWSON, S., JAHANIAN, F., AND MITTON, T. 1997. Experiments on six commercial TCP implementations

using a software fault injection tool. Softw. Pract. Exper. 27.
DOWSON, M. 1997. The Ariane 5 software failure. ACM SIGSOFT Softw. Engin. Notes 22, 2.
ELSA. 2009. http://www.eecs.berkeley.edu/~smcpeak/elkhound/sources/elsa/. (Accessed on 3/09).
FU, C., RYDER, B. G., MILANOVA, A., AND WONNACOTT, D. 2004. Testing of Java web services for robust-

ness. In Proceedings of the International Symposium on Software Testing and Analysis.
GCOV 2010. GCC coverage testing tool. http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
GIT. 2010a. Git crashes on make test. http://marc.info/?l=git&m=125985479417107.
GIT. 2010b. Git fails when running commands in wrong environment.

http://marc.info/?l=git&m=125986795807036.
GIT. 2010c. Git unchecked malloc’s. http://marc.info/?l=git&m=126298802319662.
GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND LIBLIT, B.

2008. EIO: Error handling is occasionally correct. In Proceedings of the USENIX Conference on File and
Storage Technologies.

GUNAWI, H. S., DO, T., JOSHI, P., HELLERSTEIN, J. M., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,
AND SEN, K. 2010. Towards automatically checking thousands of failures with micro-specifications.
Tech. rep. UCB/EECS-2010-98, University of California.

GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M., KAASHOEK, M. F., AND ZHANG, Z. 2008. R2: An
application-level kernel for record and replay. In Proceedings of the Symposium on Operating Systems
Design and Implementation.

HADOOP FI. 2010. Hadoop Fault Injection framework.
http://hadoop.apache.org/hdfs/docs/r0.21.0/faultinject_framework.html.

HOLODECK. 2010. Win32 fuzz testing and fault injection.
http://www.securityinnovation.com/holodeck/.

HUNT, G. AND BRUBACHER, D. 1999. Detours: Binary Interception of Win32 Functions. In Proceedings of
the USENIX Windows NT Symposium.

JOHANSSON, A., SURI, N., AND MURPHY, B. 2007. On the impact of injection triggers for OS robustness
evaluation. In Proceedings of the International Symposium on Software Reliability Engineering.

KANAWATI, G. A., KANAWATI, N. A., AND ABRAHAM, J. A. 1995. FERRARI: A flexible software-based fault
and error injection system. IEEE Trans. Comput. 44, 2.

KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAHDAT, A. 2007. Life, death, and the critical transition:
Finding liveness bugs in systems code. In Proceedings of the Symposium on Networked Systems Design
and Implementation.

KOOPMAN, P., SUNG, J., DINGMAN, C., SIEWIOREK, D., AND MARZ, T. 1997. Comparing operating systems
using robustness benchmarks. In Proceedings of the International Symposium on Software Reliability
Engineering.

LCOV. 2010. LTP gcov extension. http://ltp.sourceforge.net/coverage/lcov.php.
LETHBRIDGE, T. C., SINGER, J., AND FORWARD, A. 2003. How software engineers use documentation: The

state of the practice. IEEE Softw. 20, 6.
LI, X., MARTIN, R., NAGARAJA, K., NGUYEN, T. D., AND ZHANG, B. 2002. Mendosus: A san-based fault-

injection test-bed for the construction of highly available network services. In Proceedings of the Work-
shop on Novel Uses of System Area Networks.

LIBDWARF. 2010. Libdwarf. http://reality.sgiweb.org/davea/dwarf.html.

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

11:38 P. D. Marinescu and G. Candea

MARINESCU, P. D., BANABIC, R., AND CANDEA, G. 2010. An extensible technique for high-precision testing
of recovery code. In Proceedings of the USENIX Annual Technical Conference.

MYSQL. 2009. MySQL crashes due to bus error during shutdown.
http://bugs.mysql.com/bug.php?id=42109.

MYSQL. 2010a. MySQL crashes due to double unlock. http://bugs.mysql.com/bug.php?id=53268.
MYSQL. 2010b. MySQL crashes due to error while reading errmsg.sys.

http://bugs.mysql.com/bug.php?id=53393.
MYSQL. 2010c. MySQL InnoDB crashes during shutdown. http://bugs.mysql.com/bug.php?id=52546.
MYSQL. 2010d. http://www.mysql.com/.
NG, W. T. AND CHEN, P. M. 1999. The systematic improvement of fault tolerance in the Rio file cache. In

Proceedings of the International Symposium on Fault-Tolerant Computing.
PIDGIN. 2009. Pidgin SIGABRTs on memory alloc. http://developer.pidgin.im/ticket/8672.
PIDGIN. 2010. Pidgin. http://www.pidgin.im.
PRABHAKARAN, V., BAIRAVASUNDARAM, L. N., AGRAWAL, N., GUNAWI, H. S., ARPACI-DUSSEAU, A. C.,

AND ARPACI-DUSSEAU, R. H. 2005. IRON file systems. In Proceedings of the Symposium on Operating
Systems Principles.

PRASAD, M. AND CHIUEH, T. 2003. A binary rewriting defense against stack-based buffer overflow attacks.
In Proceedings of the USENIX Annual Technical Conference.

RUBIO-GONZÁLEZ, C. AND LIBLIT, B. 2010. Expect the unexpected: Error code mismatches between docu-
mentation and the real world. In Proceedings of the Workshop on Program Analysis for Software Tools
and Engineering.

SINGER, J. 1998. Practices of software maintenance. In Proceedings of the International Conference on Soft-
ware Maintenance.

SLOWINSKA, A., STANCESCU, T., AND BOS, H. 2011. Howard: A dynamic excavator for reverse engineering
data structures. In Proceedings of the Network and Distributed System Security Symposium.

STOTT, D. T., FLOERING, B., KALBARCZYK, Z., AND IYER, R. K. 2000. A framework for assessing de-
pendability in distributed systems with lightweight fault injectors. In Proceedings of the International
Computer Performance and Dependability Symposium.

SÜßKRAUT, M. AND FETZER, C. 2006. Automatically finding and patching bad error handling. In Proceed-
ings of the European Dependable Computing Conference.

SYSBENCH. 2010. http://sysbench.sourceforge.net.
TESTAPI. 2010. Library of test and utility APIs. http://testapi.codeplex.com/.
TSAI, T. K. AND IYER, R. K. 1995. Measuring fault tolerance with the FTAPE fault injection tool. In Pro-

ceedings of the International Conference on Modelling Techniques and Tools for Computer Performance
Evaluation.

V8 JAVASCRIPT ENGINE. 2011. http://code.google.com/p/v8/.
WEIMER, W. AND NECULA, G. C. 2008. Exceptional situations and program reliability. ACM Trans. Pro-

gram. Lang. Syst. 30, 2.
ZHANG, J., ZHAO, R., AND PANG, J. 2007. Parameter and return-value analysis of binary executables. In

Proceedings of the Annual Intrenational Computer Software and Applications Conference.

Received December 2010; revised August 2011; accepted August 2011

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 11, Publication date: December 2011.

