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Abstract

Developers spend a lot of time searching for the root causes
of software failures. For this, they traditionally try to re-
produce those failures, but unfortunately many failures are
so hard to reproduce in a test environment that developers
spend days or weeks as ad-hoc detectives. The shortcomings
of many solutions proposed for this problem prevent their
use in practice.

We propose failure sketching, an automated debugging
technique that provides developers with an explanation
(“failure sketch”) of the root cause of a failure that occurred
in production. A failure sketch only contains program state-
ments that lead to the failure, and it clearly shows the differ-
ences between failing and successful runs; these differences
guide developers to the root cause. Our approach combines
static program analysis with a cooperative and adaptive form
of dynamic program analysis.

We built Gist, a prototype for failure sketching that relies
on hardware watchpoints and a new hardware feature for ex-
tracting control flow traces (Intel Processor Trace). We show
that Gist can build failure sketches with low overhead for
failures in systems like Apache, SQLite, and Memcached.

1. Introduction

Debugging—the process of finding and fixing bugs—is
time-consuming (around 50% [44] of the development time).
This is because debugging requires a deep understanding of
the code and the bug. Misunderstanding the code or the bug
can lead to incorrect fixes, or worse, to fixes that introduce
new bugs [39].
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Traditionally, debugging is done in an iterative fashion:
the developer runs the failing program over and over in a
debugger, hoping to reproduce the failure, understand its
root cause, and finally fix it. Fixing bugs generally requires
the diagnosis of the root cause.

Intuitively, a root cause is the gist of the failure; it is a
cause, or a combination of causes, which when removed
from the program, prevents the failure associated with the
root cause from recurring [74]. More precisely, a root cause
of a failure is the negation of the predicate that needs to be
enforced so that the execution is constrained to not encounter
the failure [80].

The ability to reproduce failures is essential to traditional
debugging, because developers rely on reproducing bugs to
diagnose root causes. A recent study at Google [57] revealed
that developers’ ability to reproduce bugs is essential to
fixing them. However, in practice, it is not always possible to
reproduce bugs, and practitioners report that it takes weeks
to fix hard-to-reproduce concurrency bugs [18].

The greatest challenge though, is posed by bugs that
only recur in production and cannot be reproduced in-house.
Diagnosing the root cause and fixing such bugs is truly
hard. In [57], developers noted: “We don’t have tools for

the once every 24 hours bugs in a 100 machine cluster.” An
informal poll on Quora [54] asked “What is a coder’s worst

nightmare,” and the answers were “The bug only occurs in

production and can’t be replicated locally,” and “The cause

of the bug is unknown.”

A promising method to cope with hard to reproduce bugs
is using record/replay systems [2, 46]. Record/replay sys-
tems record executions and allow developers to replay the
failing ones. Even though these systems are helpful, they
have not seen widespread adoption in production systems
due to the high overheads of software-only systems [14, 68],
or due to lack of the hardware support that they rely on [20,
46]. The recorded execution contains all statements present
in the original run. While this is very useful, the recorded
execution also contains statements that do not contribute to
the failure. Root cause diagnosis may be more time consum-



ing and thereby more difficult if the recorded execution con-
tains elements that do not pertain to the failure [42] (e.g.,
print statements that are not related to a failure). Ultimately
record/replay systems merely aim to reproduce bugs, so root
cause diagnosis remains a time-consuming developer task
that is done manually.

Other approaches to bug reproduction and root cause
diagnosis either assume knowledge of failing program in-
puts [50, 58, 76] or rely on special runtime support for
checkpointing [67] or special hardware extensions [4, 52]
that are not deployed. Some techniques sample the execu-
tion for root cause diagnosis [5, 25, 38] and therefore, may
miss information present in the execution. This increases the
latency of root cause diagnosis, especially for elusive bugs.

In this paper, we present failure sketching, a technique
that automatically produces a high level execution trace
called the failure sketch that includes the statements that
lead to a failure and the differences between the properties
of failing and successful program executions. Our evaluation
shows that these differences, which are commonly accepted
as pointing to root causes [38, 58, 81], indeed point to the
root causes of the bugs we evaluated (§5).

Fig. 1 shows an example failure sketch for a bug in
Pbzip2, a multithreaded compression tool [16]. Time flows
downward, and execution steps are enumerated along the
flow of time. The failure sketch shows the statements (in
this case statements from two threads) that affect the failure
and their order of execution with respect to the enumerated
steps (i.e., the control flow). The arrow between the two
statements in dotted rectangles indicates the difference be-
tween failing executions and successful ones. In particular,
in failing executions, the statement f->mut from T1 is ex-
ecuted before the statement mutex_unlock(f->mut) in
T2. In non-failing executions, cons returns before main sets
f->mut to NULL. The failure sketch also shows the value of
the variable f->mut (i.e., the data flow) in a dotted rectan-
gle in step 7, indicating that this value is 0 in step 7 only in
failing runs. A developer can use the failure sketch to fix the
bug by introducing proper synchronization that eliminates
the offending thread schedule. This is exactly how pbzip2
developers fixed this bug, albeit four months after it was
reported [16].

The insight behind the work presented here is that failure
sketches can be built automatically, by using a combination
of static program analysis and cooperative dynamic analysis.
The use of a brand new hardware feature in Intel CPUs
helps keep runtime performance overhead low (3.74% in our
evaluation).

We built a prototype, Gist, that automatically generates a
failure sketch for a given failure. Given a failure, Gist first
statically computes a program slice that contains program
statements that can potentially affect the program statement
where the failure manifests itself. Then, Gist performs data
and control flow tracking in a cooperative setup by targeting

main(){

  queue* f = init(size);

  create_thread(cons, f);

  ...

  free(f->mut);

  f->mut = NULL; 

  ...

}
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Figure 1: The failure sketch of pbzip2 bug.

either multiple executions of the same program in a data
center or users who execute the same program. Gist uses
hardware watchpoints to track the values of data items in the
slice, and uses Intel Processor Trace [23] to trace the control
flow.

This paper makes the following contributions:

• A low overhead technique to automatically build failure

sketches by combining static analysis with cooperative
and adaptive dynamic analysis.

• A first and practical demonstration of how Intel Proces-
sor Trace, a new technology that started shipping in early
2015 Broadwell processors [23], can be used to perform
root cause diagnosis.

Although Gist relies on Intel Processor Trace and hard-
ware watchpoints for practical and low-overhead control and
data flow tracking, Gist’s novelty is in the combination of
static program analysis and dynamic runtime tracing to judi-
ciously select how and when to trace program execution in
order to best extract the information for failure sketches.

We evaluated our Gist prototype using 11 failures from
7 different programs including Apache, SQLite, and Mem-
cached. The Gist prototype managed to automatically build
failure sketches with an average accuracy of 96% for all the
failures while incurring an average performance overhead of
3.74%. On average, Gist incurs 166× less runtime perfor-
mance overhead than a state-of-the art record/replay system.

In the rest of the paper, we describe the challenges of
root cause diagnosis (§2), Gist’s design (§3) and our pro-
totype implementation (§4), an evaluation on real-world ap-
plications (§5). We then discuss open questions and limita-
tions (§6), related work (§7), and finally we conclude (§8).

2. Challenges

We now identify some of the key challenges of root cause
diagnosis.

(1) Non-reproducible and infrequent bugs: it is chal-
lenging to diagnose root causes of failures that are hard to
reproduce in house. When developers can’t reproduce fail-



ures, they have to “fill in the gaps” and potentially spend a
lot of time.

This is exacerbated if the failure recurs rarely in produc-
tion, but not rarely enough to be ignored or if it is a catas-
trophic bug [65]. This can slow down the process of gath-
ering failure-related information from production runs (i.e.,
executions in a data center or at user endpoints), and ulti-
mately delay root cause diagnosis. Existing root cause diag-
nosis techniques that rely on sampling program state during
the execution increase the latency of root cause diagnosis.

(2) Accuracy: it is not enough to quickly bootstrap the
root cause diagnosis process, it is also necessary to eventu-
ally diagnose the root cause accurately. This is hard for com-
plex software with many modules and interactions. Devel-
opers have limited time to do root cause diagnosis, therefore
they should not be misled by inaccurate root cause diagnosis
information.

Two main factors determine the accuracy of root cause di-
agnosis: the correct identification of relevant program state-
ments that cause the failure and the correct identification of
program properties (execution order of statements, data val-
ues, etc) that cause the failure.

(3) Overhead and intrusiveness: any practical root cause
diagnosis technique should incur low performance overhead
in production and minimally perturb real-user executions.

To reduce overhead, existing root cause diagnosis tech-
niques rely on special runtime and hardware support that is
not readily available. Solutions that perturb the actual behav-
ior of production runs nondeterministically may mask the
bug frequently but not always, and thus make it harder to
diagnose the root cause and remove the potential for (even
occasional) failure [47].

Gist addresses the key challenges of root cause diagno-
sis using a hybrid static-dynamic analysis. To quickly boot-
strap the root cause diagnosis process, Gist builds a first fail-
ure sketch after a single manifestation of a failure. This first
failure sketch is not perfect: it lacks elements that may be
useful for understanding the root cause of a bug, and it has
some elements that are not needed for root cause diagnosis.
Therefore, for bugs that recur, Gist gathers more control and
data flow information from different production runs that en-
counter the same failure1. This step improves the accuracy of
failure sketches by eliminating most of the aforementioned
imperfections.

3. Design

Gist, our system for building failure sketches has three main
components: the static analyzer, the failure sketch compu-
tation engine, and the runtime that tracks production runs.
The static analyzer and the failure sketch computation en-
gine constitutes the server side of Gist, and they can be cen-
tralized or distributed, as needed. The runtime constitutes the

1 Gist identifies the same failure across multiple executions by matching the
program counters and stack traces of those executions.
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Figure 2: The architecture of Gist

client-side of Gist, and it runs in a cooperative setting such
as in a data center or in multiple users’ machines, similar to
RaceMob [32].

The usage model of Gist is shown in Fig. 2. Gist takes as
input a program (source code and binary) and a failure report
1 (e.g., stack trace, the statement where the failure mani-

fests itself, etc). Gist, being a developer tool has access to the
source code. Using these inputs, Gist computes a backward
slice [72] by computing the set of program statements that
potentially affect the statement where the failure occurs. Gist
uses an interprocedural, path-insensitive and flow-sensitive
backward slicing algorithm. Then, Gist instructs its runtime,
running in a data center or at user endpoints, 2 to instru-
ment the programs and gather more traces (e.g., branches
taken and values computed at runtime). Gist then uses these
traces to refine the slice 3 : refinement removes from the
slice the statements that don’t get executed during the exe-
cutions that Gist monitors, and it adds to the slice statements
that were not identified as being part of the slice initially.
Refinement also determines the inter-thread execution order
of statements accessing shared variables and the values that
the program computes. Refinement is done using hardware
watchpoints for data flow and Intel Processor Trace (Intel
PT) for control flow. Gist’s failure sketch engine gathers
execution information from failing and successful runs 4 .
Then, Gist determines the differences between failing and
successful runs and builds a failure sketch 5 for the devel-
oper to use.

Gist operates in a cooperative setting [32, 38] where mul-
tiple instances of the same software execute in a data cen-
ter or in multiple users’ machines. Gist’s server side (e.g.,
a master node) performs offline analysis and distributes in-
strumentation to its client side (e.g., a node in a data center).
Gist incurs low overhead, so it can be kept always-on and
does not need to resort to sampling an execution [38], thus
avoiding missing information that can increase root cause
diagnosis latency.

Gist operates iteratively: the instrumentation and refine-
ment continues as long as developers see fit, continuously
improving the accuracy of failure sketches. Gist generates
a failure sketch after a first failure using static slicing. Our
evaluation shows that, in some cases, this initial sketch is



sufficient for root cause diagnosis, whereas in other cases
refinement is necessary (§3.2).

We now describe how each component of Gist works and
explain how they solve the challenges presented in the pre-
vious section (§2). We first describe how Gist computes the
static slice followed by slice refinement via adaptive track-
ing of control and data flow information. Then we describe
how Gist identifies the root cause of a failure using multiple
failing and successful runs.

3.1 Static Slice Computation

Gist uses an interprocedural, path-insensitive and flow-
sensitive backward slicing algorithm to identify the program
statements that may affect the statement where the failure
manifests itself at runtime. We chose to make Gist’s slic-
ing algorithm interprocedural because failure sketches can
span the boundaries of functions. The algorithm is path-
insensitive in order to avoid the cost of path-sensitive anal-
yses that do not scale well [3, 55]. However, this is not a
shortcoming, because Gist can recover precise path informa-
tion at runtime using low-cost control flow tracking (§3.2.2).
Finally, Gist’s slicing algorithm is flow-sensitive because it
traverses statements in a specific order (backwards) from the
failure location. Flow-sensitivity generates static slices with
statements in the order they appear in the program text (ex-
cept some out-of-order statements due to path-insensitivity,
which are fixed using runtime tracking), thereby helping the
developer to understand the flow of statements that lead to a
failure.

Algorithm 1 describes Gist’s static backward slicing: it
takes as input a failure report (e.g., a coredump, a stack trace)
and the program’s source code, and it outputs a static back-
ward slice. For clarity, we define several terms we use in the
algorithm. CFG refers to the control flow graph of the pro-
gram (Gist computes a whole-program CFG as we explain
shortly). An item (line 7) is an arbitrary program element. A
source (line 8, 16) is an item that is either a global variable,
a function argument, a call, or a memory access. Items that
are not sources are compiler intrinsics, debug information,
and inline assembly. The definitions for a source and an item
are specific to LLVM [36], which is what we use for the pro-
totype (§4). The function getItems (line 1) returns all the
items in a given statement (e.g., the operands of an arithmetic
operation). The function getRetValues (line 11) performs
an intraprocedural analysis to compute and return the set of
items that can be returned from a given function call. The
function getArgValues (line 14) computes and returns the
set of arguments that can be used when calling a given func-
tion. The function getReadOperand (line 20) returns the
item that is read, and the function getWrittenOperand

(line 23) returns the item that is written.
Gist’s static slicing algorithm differs from classic static

slicing [72] in two key ways:
First, Gist addresses a challenge that arises for multi-

threaded programs because of the implicit control flow edges

Algorithm 1: Backward slice computation (Simplified)

Input: Failure report report, program source code program

Output: Static backward slice slice

workSet ← getItems(failingStmt)1

function init ()2

failingStmt← extractFailingStatement(report)3

function computeBackwardSlice (failingStmt,program)4

c f g← extractCFG(program)5

while !workSet.empty() do6

item← workSet.pop()7

if isSource(item) then8

slice.push(item)9

if isCall(item) then10

retValues← getRetValues(item,cfg)11

workSet← workSet ∪ retValues12

else if isArgument(item) then13

argValues← getArgValues(item,cfg)14

workSet← workSet ∪argValues15

function isSource (item)16

if item is (global||argument||call||memory access) then17

return true18

else if item is read then19

workSet← workSet ∪ item.getReadOperand()20

return true21

else if item is write then22

workSet← workSet ∪ item.getWrittenOperand()23

return true24

return f alse25

that get created due to thread creations and joins. For this,
Gist uses a compiler pass to build the thread interprocedural

control flow graph (TICFG) of the program [75]. An inter-

procedural control flow graph (ICFG) of a program connects
each function’s CFG with function call and return edges.
TICFG then augments ICFG to contain edges that represent
thread creation and join statements (e.g., a thread creation
edge is akin to a callsite with the thread start routine as the
target function). TICFG represents an overapproximation of
all the possible dynamic control flow behaviors that a pro-
gram can exhibit at runtime. TICFG is useful for Gist to track
control flow that is implicitly created via thread creation and
join operations (§3.2.2).

Second, unlike other slicing algorithms [59], Gist does
not use static alias analysis. Alias analysis could determine
an overapproximate set of program statements that may af-
fect the computation of a given value and augment the slice
with this information. Gist does not employ static alias anal-
ysis because, in practice, it can be over 50% inaccurate [32],
which would increase the static slice size that Gist would
have to monitor at runtime, thereby increasing its perfor-
mance overhead. Gist compensates for the lack of alias anal-



ysis with runtime data flow tracking, which adds the state-
ments that Gist misses to the static slice (§3.2.3).

The static slice that Gist computes has some extraneous
items that do not pertain to the failure, because the slicing
algorithm lacks actual execution information. Gist weeds
out this information using accurate control flow tracking at
runtime (§3.2.2).

3.2 Slice Refinement

Slice refinement removes the extraneous statements from
the slice and adds to the slice the statements that could not
be statically identified. Together with root cause identifica-
tion (§3.3), the goal of slice refinement is to build what we
call the ideal failure sketch.

We define an ideal failure sketch to be one that: 1) contains
only statements that have data and/or control dependencies
to the statement where the failure occurs; 2) shows the fail-
ure predicting events that have the highest positive correla-
tion with the occurrence of failures.

Different developers may have different standards as to
what is the “necessary” information for root cause diagnosis;
nevertheless, we believe that including all the statements that
are related to a failure and identifying the failure predicting
events constitute a reasonable and practical set of require-
ments for root cause diagnosis. Failure predictors are identi-
fied by determining the difference of key properties between
failing and successful runs.

For example, failure sketches display the partial order of
statements involved in data races and atomicity violations,
however certain developers may want to know the total order
of all the statements in an ideal failure sketch. In our experi-
ence, focusing on the partial order of statements that matter
from the point of view of root cause diagnosis is more useful
than having a total order of all statements. Moreover, obtain-
ing the total order of all the statements in a failure sketch
would be difficult without undue runtime performance over-
head using today’s technology.

We now describe Gist’s slice refinement strategy in de-
tail. We first describe adaptive tracking of a static slice to
reduce the overhead of refinement (§3.2.1), then we de-
scribe how Gist tracks the control flow (§3.2.2) and the data
flow (§3.2.3) to 1) add to the slice statements that get exe-
cuted in production but are missing from the slice, and 2)
remove from the slice statements that don’t get executed in
production.

3.2.1 Adaptive Slice Tracking

Gist employs Adaptive Slice-Tracking (AsT) to track in-
creasingly larger portions of the static slice, until it builds
a failure sketch that contains the root cause of the failure
that it targets. Gist performs AsT by dynamically tracking
control and data flow while the software runs in production.
AsT does not track all the control and data elements in the
static slice at once in order to avoid introducing performance
overhead.
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Figure 3: Adaptive slice tracking in Gist

It is challenging to pick the size of the slice, σ , to monitor
at runtime, because 1) a too large σ would cause Gist to
do excessive runtime tracking and increase overhead; 2) a
too small σ may cause Gist to track too many runs before
identifying the root cause, and so increase the latency of root
cause diagnosis.

Based on previous observations that root causes of most
bugs are close to the failure locations [53, 71, 82], Gist ini-
tially enables runtime tracking for a small number of state-
ments (σ = 2 in our experiments) backward from the fail-
ure point. We use this heuristic because even a simple con-
currency bug is likely to be caused by two statements from
different threads. This also allows Gist to avoid excessive
runtime tracking if the root cause is close to the failure (i.e.,
the common case). Nonetheless, to reduce the latency of root
cause diagnosis, Gist employs a multiplicative increase strat-
egy for further tracking the slice in other production runs.
More specifically, Gist doubles σ for subsequent AsT iter-
ations, until a developer decides that the failure sketch con-
tains the root cause and instructs Gist to stop AsT.

Consider the static slice for a hypothetical program in
Fig. 3.(a), which displays the failure point (bottom-most
solid line) and the root cause (dashed line). In the first itera-
tion (Fig. 3.(b)), AsT starts tracking σ1 = 2 statements back
from the failure location. Gist cannot build a failure sketch
that contains the root cause of this failure by tracking 2 state-
ments, as the root cause lies further backwards in the slice.
Therefore, in the second and third iterations (Fig. 3.(c-d)),
AsT tracks σ2 = 4 and σ3 = 8 statements, respectively. Gist
can build a failure sketch by tracking 8 statements.

In summary, AsT is a heuristic to resolve the tension be-
tween performance overhead, root cause diagnosis latency,
and failure sketch accuracy. We elaborate on this tension in
our evaluation (§5). AsT does not limit Gist’s ability to track
larger slices and build failure sketches for bugs with greater
root-cause-to-failure distances, although it may increase the
latency of root cause diagnosis.

3.2.2 Tracking Control Flow In Hardware

Gist tracks control flow to increase the accuracy of failure
sketches by identifying which statements from the slice get
executed during the monitored production runs. Static slic-
ing lacks real execution information such as dynamically
computed call targets, therefore tracking the dynamic con-
trol flow is necessary for high accuracy failure sketches.



Static slicing and control flow tracking jointly improve
the accuracy of failure sketches: control flow traces iden-
tify statements that get executed during production runs that
Gist monitors, whereas static slicing identifies statements
that have a control or data dependency to the failure. The in-
tersection of these statements represents the statements that
relate to the failure and that actually get executed in produc-
tion runs. Gist statically determines the locations where con-
trol flow tracking should start and stop at runtime in order to
identify which statements from the slice get executed.

Although control flow can be tracked in a relatively
straightforward manner using software instrumentation [40],
hardware facilities offer an opportunity for a design with
lower overhead. Our design employs Intel PT, a set of new
hardware monitoring features for debugging. In particular,
Intel PT records the execution flow of a program and outputs
a highly-compressed trace (~0.5 bits per retired assembly
instruction) that describes the outcome of all branches ex-
ecuted by a program. Intel PT can be programmed to trace
only user-level code and can be restricted to certain address
spaces. Additionally, with the appropriate software support,
Intel PT can be turned on and off by writing to processor-
specific registers. Intel PT is currently available in Broad-
well processors, and we control it using our custom kernel
driver (§4). Future families of Intel processors are also ex-
pected to provide Intel PT functionality.

We explain how Gist tracks the statements that get ex-
ecuted via control flow tracking using the example shown
in Fig. 4.(a). The example shows a static slice composed of
three statements (stmt1, stmt2, stmt3). The failure point is
stmt3. Let us assume that, as part of AsT, Gist tracks these
three statements. At the high level, Gist identifies all en-
try points and exit points to each statement and starts and
stops control-flow tracking at each entry point and at each
exit point, respectively. Tracing is started to capture control
flow if the statements in the static slice get executed, and is
stopped once those statements complete execution. We use
postdominator analysis to optimize out unnecessary track-
ing.

In this example, Gist starts its analysis with stmt1. Gist
converts the branch decision information to statement exe-
cution information using the technique shown in box I in
Fig. 4.(a). It first determines bb1, the basic block in which
stmt1 resides, and determines the predecessor basic blocks
p11...p1n of bb1. The predecessor basic blocks of bb1 are
blocks from which control can flow to bb1 via branches. As
a result, Gist starts control flow tracking in each predecessor
basic block p11...p1n (i.e., entry points). If Gist’s control flow
tracking determines at runtime that any of the branches from
these predecessor blocks to bb1 was taken, Gist deduces that
stmt1 was executed.

Gist uses an optimization when a statement it already
processed strictly dominates the next statement in the static
slice. A statement d strictly dominates a statement n (written
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d sdom n) if every path from the entry node of the control
flow graph to n goes through d, and d 6= n. In our example,
stmt1 sdom stmt2, therefore, Gist will have already started
control flow tracking for stmt1 when the execution reaches
stmt2, and so it won’t need special handling to start control
flow tracking for stmt2.

However, if a statement that Gist processed does not
strictly dominate the next statement in the slice, Gist stops
control flow tracking. In our example, after executing stmt2,
since the execution may never reach stmt3, Gist stops control
flow tracking after stmt2 gets executed. Otherwise tracking
could continue indefinitely and impose unnecessary over-
head. Intuitively, Gist stops control flow tracking right after

stmt2 gets executed as shown in box II of Fig. 4.(a). More
precisely, Gist stops control flow tracking after stmt2 and
before stmt2’s immediate postdominator. A node p is said
to strictly postdominate a node n if all the paths from n to
the exit node of the control flow graph pass through p, and
n 6= p. The immediate postdominator of a node n (ipdom(n))
is a unique node that strictly postdominates n and does not
strictly postdominate any other strict postdominators of n.

Finally, as shown in box III in Fig. 4.(a), Gist processes
stmt3 using the combination of techniques it used for stmt1
and stmt2. Because control flow tracking was stopped after
stmt2, Gist first restarts it at each predecessor basic block
p31...p3n of the basic block bb3 that contains stmt3, then Gist
stops it after the execution of stmt3.

3.2.3 Tracking Data Flow in Hardware

Similar to control flow, data flow can also be tracked in
software, however this can be prohibitively expensive [67].
Existing hardware support can be used for low overhead data
flow tracking. In this section, we describe why and how Gist
tracks data flow.

Determining the data flow in a program increases the
accuracy of failure sketches in two ways:

First, Gist tracks the total order of memory accesses that it
monitors to increase the accuracy of the control flow shown
in the failure sketch. Tracking the total order is important



mainly for shared memory accesses from different threads,
for which Intel PT does not provide order information. Gist
uses this order information in failure sketches to help devel-
opers reason about concurrency bugs.

Second, while tracking data flow, Gist discovers state-
ments that access the data items in the monitored portion
of the slice that were missing from that portion of the slice.
Such statements exist because Gist’s static slicing does not
use alias analysis (due to alias analysis’ inaccuracy) for de-
termining all statements that can access a given data item.

Gist uses hardware watchpoints present in modern pro-
cessors to track the data flow (e.g., x86 has 4 hardware
watchpoints [22]). They enable tracking the values written
to and read from memory locations with low runtime over-
head.

For a given memory access, Gist inserts a hardware
watchpoint for the address of the accessed variable at a
point right before the access instruction. More precisely,
the inserted hardware watchpoint must be located before the
access and after the immediate dominator of that access.
Fig. 4.(b) shows an example, where Gist places a hardware
watchpoint for the address of variable x, just before stmt2
(read(x)).

Gist employs several optimizations to economically use
its budget of limited hardware watchpoints when tracking
the data flow. First, Gist only tracks accesses to shared vari-
ables, it does not place a hardware watchpoint for the vari-
ables allocated on the stack. Gist maintains a set of active
hardware watchpoints to make sure to not place a second
hardware watchpoint at an address that it is already watch-
ing.

If the statements in the slice portion that AsT monitors
access more memory locations than the available hardware
watchpoints on a user machine, Gist uses a cooperative ap-
proach to track the memory locations across multiple pro-
duction runs. In a nutshell, Gist’s collaborative approach in-
structs different production runs to monitor different sets of
memory locations in order to monitor all the memory loca-
tions that are in the slice portion that Gist monitors. How-
ever, in practice, we did not encounter this situation (§5).

3.3 Identifying the Root Cause

In this section, we describe how Gist determines the differ-
ences of key execution properties (i.e., control and data flow)
between failing and successful executions in order to do root
cause diagnosis.

For root cause diagnosis, Gist follows a similar approach
to cooperative bug isolation [4, 25, 38], which uses statisti-
cal methods to correlate failure predictors to failures in pro-
grams. A failure predictor is a predicate that, when true, pre-
dicts that a failure will occur [37]. Carefully crafted failure
predictors point to failure root causes [38].

Gist-generated failure sketches contain a set of failure
predictors that are both informative and good indicators
of failures. A failure predictor is informative if it contains
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Figure 5: Four common atomicity violation patterns

(RWR, WWR, RWW, WRW). Adapted from [4].

enough information regarding the failure (e.g., thread sched-
ules, critical data values). A failure predictor is a good indi-
cator of a failure if it has high positive correlation with the
occurrence of the failure.

Gist defines failure predictors for both sequential and
multithreaded programs. For sequential programs, Gist uses
branches taken and data values computed as failure predic-
tors. For multithreaded programs, Gist uses the same pred-
icates it uses for sequential programs, as well as special
combinations of memory accesses that portend concurrency
failures. In particular, Gist considers the common single-
variable atomicity violation patterns shown in Fig. 5 (i.e.,
RWR (Read, Write, Read), WWR, RWW, WRW) and data
race patterns (WW, WR, RW) as concurrency failure predic-
tors.

For both failing and successful runs, Gist logs the order
of accesses and the value updates to shared variables that are
part of the slice it tracks at runtime. Then, using an offline
analysis, Gist searches the aforementioned failure-predicting
memory access patterns in these access logs. Gist associates
each match with either a successful run or a failing run. Gist
is not a bug detection tool, but it can understand common
failures, such as crashes, assertion violations, and hangs.
Other types of failures can either be manually given to Gist,
or Gist can be used in conjunction with a bug finding tool.

Once Gist has gathered failure predictors from failing and
successful runs, it uses a statistical analysis to determine
the correlation of these predictors with the failures. Gist
computes the precision P (how many runs fail among those
that are predicted to fail by the predictor?), and the recall
R (how many runs are predicted to fail by the predictor
among those that fail?). Gist then ranks all the events by
their F-measure, which is the weighted harmonic mean of
their precision and recall Fβ = (1+β 2) P.R

β 2
.P+R

to determine
the best failure predictor. Gist favors precision by setting
β to 0.5 (a common strategy in information retrieval [56]),
because its primary aim is to not confuse the developers with
potentially erroneous failure predictors (i.e., false positives).

The failure sketch presents the developer with the highest-
ranked failure predictors for each type of failure predictor
(i.e., branches, data values, and statement orders). An exam-
ple of this is shown in Fig. 1, where the dotted rectangles
show the highest-ranked failure predictor.

As an example, consider the execution trace shown in
Fig. 6.(a). Thread T1 reads x, after which thread T2 gets
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scheduled and writes to x. Then T1 gets scheduled back
and reads x twice in a row, and the program fails (e.g., the
second read could be made as part of an assertion that causes
the failure). This execution trace has three memory access
patterns that can potentially be involved in a concurrency
bug: a RWR atomicity violation in Fig. 6.(b) and two data
races (or order violations) in Fig. 6.(c) and 6.(d). For this
execution, Gist logs these patterns and their outcome (i.e.,
failure and success: 6.(b) and 6.(d) fail, whereas the pattern
in 6.c succeeds. Gist keeps track of the outcome of future
access patterns and computes their F-measure to identify the
highest ranked failure predictors.

There are two key differences between Gist and coopera-
tive bug isolation (CBI). First, Gist tracks all data values that
are part of the slice that it monitors at runtime, allowing it to
diagnose the root cause of failures caused by a certain input,
as opposed to CBI, which tracks ranges of some variables.
Second, Gist uses different failure predictors than CCI [25]
and PBI [4], which allow developers to distinguish between
different kinds of concurrency bugs, whereas PBI and CCI
use the same predictors for failures with different root causes
(e.g., invalid MESI ([49] state for all of RWR, WWR, RWW
atomicity violations)).

4. Implementation

In this section, we describe several implementation details
of our Gist prototype.

We implemented Gist in 2,673 lines of C++ code for
static analyses and instrumentation, 664 lines of C code for
the Intel PT kernel driver [34], and 3,165 lines of Python
code for the cooperative framework. We also built a 10,518-
lines C++ simulator for Intel PT based on PIN [40], and
used this simulator to evaluate the overhead of control flow
tracking in software.

Gist’s static slicing algorithm is built on the LLVM
framework [36]. As part of this algorithm, Gist first aug-
ments the intraprocedural control flow graphs of each func-
tion with function call and return edges to build the in-
terprocedural control flow graph (ICFG) of the program.
Then, Gist processes thread creation and join functions (e.g.,
pthread_create, pthread_join) to determine which
start routines the thread creation functions may call at run-

time and where those routines will join back to their callers,
using data structure analysis [35]. Gist augments the edges
in the ICFGs of the programs using this information about
thread creation/join in order to build the thread interproce-
dural control flow graph (TICFG) of the program. Gist uses
the LLVM information flow tracker [27] as a starting point
for its slicing algorithm.

Gist currently inserts a small amount of instrumentation
into the programs it runs, mainly to start/stop Intel PT track-
ing and place a hardware watchpoint. To distribute the in-
strumentation, Gist uses bsdiff to create a binary patch file
that it ships off to user endpoints or to a data center. We plan
to investigate more advanced live update systems such as
POLUS [11]. Another alternative is to use binary rewriting
frameworks such as DynamoRio [9] or Paradyn [45].

Trace collection is implemented via a Linux kernel mod-
ule which we refer to as the Intel PT kernel driver. The
kernel driver configures and controls the hardware using
the documented MSR (Machine Specific Register) interface.
The driver allows filtering of what code is traced using the
privilege level (i.e. kernel vs. user-space) and CR3 values,
thus allowing tracing of individual processes. The driver
uses a memory buffer sized at 2 MB, which is sufficient to
hold traces for all the applications we have tested. Finally,
Gist-instrumented programs use an ioctl interface that our
driver provides to turn tracing on/off.

Gist’s hardware watchpoint use is based on the ptrace

system call. Once Gist sets the desired hardware watch-
points, it detaches from the program (using the PTRACE_-
DETACH), thereby not incurring any performance overhead.
Gist’s instrumentation handles hardware watchpoint triggers
atomically in order to maintain a total order of accesses
among memory operations. Gist logs the program counter
when a hardware watchpoint is hit, which it later translates
into source line information at developer site. Gist does not
need debug information to do this mapping: it uses the pro-
gram counter and the offset at which the program binary is
loaded to compute where in the actual program this address
corresponds to.

5. Evaluation

In this section we aim to answer the following questions
about Gist and failure sketching: Is Gist capable of automat-
ically computing failure sketches (§5.1)? Are these sketches
accurate (§5.2)? How efficient is the computation of failure
sketches in Gist (§5.3)?

To answer these questions we benchmark Gist with sev-
eral real world programs: Apache httpd [21] is a popular web
server. Cppcheck [43] is a C/C++ static analysis tool inte-
grated with popular development tools such as Visual Stu-
dio, Eclipse, and Jenkins. Curl [62] is a data transfer tool
for network protocols such as FTP and HTTP, and it is part
of most Linux distributions and many programs, like Libre-
Office and CMake. Transmission [66] is the default BitTor-
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Apache-1 2.2.9 224,533 45605 7 ( 23) 8 (23) 8 (23) 5 <4m:22s> (1m:28s)
Apache-2 2.0.48 169,747 25520 35 ( 137) 4 (16) 4 (16) 4 <3m:53s> (0m:55s)
Apache-3 2.0.48 169,747 21287 354 ( 968) 6 ( 6) 8 ( 8) 3 <4m:17s> (1m:19s)
Apache-4 2.0.46 168,574 21285 335 ( 805) 9 (12) 13 (16) 4 <5m:34s> (1m:23s)

Cppcheck-1 1.52 86,215 3238 3,662 (10,640) 11 (16) 11 (16) 4 <5m:14s> (2m:32s)
Cppcheck-2 1.48 76,009 2782 3,028 ( 8,831) 3 ( 8) 3 ( 8) 3 <3m:21s> (1m:40s)

Curl 7.21 81,658 965 15 ( 46) 6 (17) 6 (17) 5 <1m:31s> (0m:40s)
Transmission 1.42 59,977 1818 680 ( 1,681) 2 ( 7) 3 ( 8) 3 <0m:23s> (0m:17s)

SQLite 3.3.3 47,150 1672 389 ( 1,011) 3 ( 4) 3 ( 4) 2 <2m:47s> (1m:43s)
Memcached 1.4.4 8,182 127 237 ( 1,003) 6 (13) 8 (16) 4 <0m:56s> (0m:02s)

Pbzip2 0.9.4 1,492 N/A 8 ( 14) 6 (13) 9 (14) 4 <1m:12s> (0m:03s)

Table 1: Bugs used to evaluate Gist. Bug IDs come from the corresponding official bug database. LOC are measured

using sloccount [73]. We report slice and sketch sizes in both source code lines and LLVM instructions. Time is reported

in minutes:seconds.

rent client in Ubuntu and Fedora Linux, as well as Solaris.
SQLite [60] is an embedded database used in Chrome, Fire-
fox, iOS, and Android. Memcached is a distributed memory
object cache system used by services such as Facebook and
Twitter [15]. Pbzip2 [16] is a parallel file compression tool.

We developed an extensible framework called Bug-
base [7] in order to reproduce the known bugs in the afore-
mentioned software. Bugbase can also be used to do perfor-
mance benchmarking of various bug finding tools. We used
Bugbase to obtain our experimental results.

We benchmark Gist on bugs (from the corresponding bug
repositories) that were used by other researchers to evalu-
ate their bug finding and failure diagnosis tools [5, 31, 50].
Apart from bugs in Cppcheck and Curl, all bugs are con-
currency bugs. We use a mixture of workloads from ac-
tual program runs, test suites, test cases devised by us and
other researchers [77], Apache’s benchmarking tool ab, and
SQLite’s test harness. We gathered execution information
from a total of 11,360 executions.

The distributed cooperative setting of our test environ-
ment is simulated, as opposed to employing real users, be-
cause CPUs with Intel PT support are still scarce, having
become available only recently. In the future we plan to use
a real-world deployment. Altogether we gathered execution
information from 1,136 simulated user endpoints. Client-
side experiments were run on a 2.4 GHz 4 core Intel i7-
5500U (Broadwell) machine running a Linux kernel with an
Intel PT driver [24]. The server side of Gist ran on a 2.9 GHz
32-core Intel Xeon E5-2690 machine with 256 GB of RAM
running Linux kernel 3.13.0-44.

5.1 Automated Generation of Sketches

For all the failures shown in Table 1, Gist successfully com-
puted the corresponding failure sketches after gathering exe-
cution information from 11,360 runs in roughly 35 minutes.
The results are shown in the rightmost two columns. We ver-

operate(struct char* url, ...){

 for(i = 0; (url = next_url(urls))); i++){

 }

}

next_url(urls* urls){  

 len = strlen(urls->current);

}

Time

1

2

3

4

5

6

7

Failure Sketch for Curl bug #965

Type: Sequential bug, data-related

url

1

2

3

4

5

6

7

horizontal line 

separates 

different functions

urls->current

Failure (segmentation fault)

0

“{}{”

{
Figure 7: The failure sketch of Curl bug #965.

ified that, for all sketches computed by Gist, the failure pre-
dictors with the highest F-measure indeed correspond to the
root causes that developers chose to fix.

In the rest of this section, we present two failure sketches
computed by Gist, to illustrate how developers can use them
for root cause diagnosis and for fixing bugs. These two com-
plement the failure sketch for the Pbzip2 bug already de-
scribed in §1. Aside from some formatting, the sketches
shown in this section are exactly the output of Gist. We re-
named some variables and functions to save space in the fig-
ures. The statements or variable values in dotted rectangles
denote failure predicting events with the highest F-measure
values. We integrated Gist with KCachegrind [70], a call
graph viewer that allows easy navigation of the statements
in the failure sketch.

Fig. 7 shows the failure sketch for Curl bug #965, a se-
quential bug caused by a specific program input: passing
the string “{}{“ (or any other string with unbalanced curly
braces) to Curl causes the variable urls->current in func-
tion next_url to be NULL in step 6. The value of url in
step 2 (“{}{“) and the value of urls->current in step 6
(0) are the best failure predictors. This failure sketch sug-
gests that fixing the bug consists of either disallowing un-
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cally computes.

balanced parentheses in the input url, or not calling strlen

when urls->current is NULL. Developers chose the for-
mer solution to fix this bug [61].

Fig. 8 shows the failure sketch for Apache bug 21287, a
concurrency bug causing a double free. The failure sketch
shows two threads executing the decrement_refcount

function with the same obj value. The dec function decre-
ments obj->refcount. The call to dec, the if condi-
tion checking, namely !obj->refcount, and the call to
free are not atomic, and this can cause a double free if
obj->refcount is 0 in step 6 in T2 and step 8 in T1. The
values of obj->refcount in steps 4 and 5 (1 and 0 respec-
tively), and the double call to free(obj) are the best fail-
ure predictors. Developers fixed this bug by ensuring that the
decrement-check-free triplet is executed atomically [63].

The grayed-out statements in the failure sketch in Fig. 8
are not part of the ideal failure sketch. The adaptive slice
tracking part of Gist tracks them during slice refinement, be-
cause Gist does not know the statements in the ideal failure
sketch a priori. For the Curl bug in Fig. 7, we do not show
any grayed-out statements, because, adaptive slice tracking
happens to track only the statements that are in the ideal fail-
ure sketch.

5.2 Failure Sketch Accuracy

In this section, we measure the accuracy (A) of failure
sketches computed by Gist (ΦG), as compared to ideal fail-
ure sketches that we computed by hand (ΦI), according to
our ideal failure sketch definition (§3.2). We define two com-
ponents of failure sketch accuracy:

1) Relevance measures the extent to which a failure
sketch contains all the statements from the ideal sketch and
no other statements. We define relevance as the ratio of the
number of LLVM instructions in ΦG ∩ ΦI to the number of
statements in ΦG ∪ ΦI . We compute relevance accuracy as
a percentage, and define it as AR = 100 · |ΦG∩ΦI |
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Figure 9: Accuracy of Gist, broken down into relevance

accuracy and ordering accuracy.

2) Ordering measures the extent to which a failure sketch
correctly represents the partial order of LLVM memory ac-
cess instructions in the ideal sketch. To measure the similar-
ity in ordering between the Gist-computed failure sketches
and their ideal counterparts, we use the normalized Kendall
tau distance [33] τ , which measures the number of pairwise
disagreements between two ordered lists. For example, for
ordered lists <A, B, C> and <A, C, B>, the pairs (A, B) and
(A, C) have the same ordering, whereas the pair (B, C) has
different orderings in the two lists, hence τ = 1. We com-
pute the ordering accuracy as a percentage defined by AO =

100 · (1− τ(ΦG,ΦI)
# of pairs in ΦG∩ΦI

). Note that # of pairs in ΦG ∩ΦI

can’t be zero, because both failure sketches will at least con-
tain the failing instruction as a common instruction.

We define overall accuracy as A = AR+AO
2 , which equally

favors AO and AR. Of course, different developers may have
different subjective opinions on which one matters most.

We show Gist’s accuracy results in Fig. 9. Average rele-
vance accuracy is 92%, average ordering accuracy is 100%,
and average overall accuracy is 96%, which leads us to con-
clude that Gist can compute failure sketches with high accu-
racy. The accuracy results are deterministic from one run to
the next.

Note that, for all cases when relevance accuracy is below
100%, it is because Gist’s failure sketches have (relative
to the ideal sketches) some excess statements in the form
of a prefix to the ideal failure sketch, as shown in gray
in Fig. 8. We believe that developers find it significantly
easier to visually discard excess statements clustered as a
prefix than excess statements that are sprinkled throughout
the failure sketch, so this inaccuracy is actually not of great
consequence.

We show in Fig. 10 the contribution of Gist’s three analy-
sis and tracking techniques to overall sketch accuracy. To ob-
tain these measurements, we first measured accuracy when
using just static slicing, then enabled control flow tracking
and re-measured, and finally enabled also data flow tracking
and re-measured. While the accuracy results are consistent
across runs, the individual contributions may vary if, for ex-
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Figure 10: Contribution of various techniques to Gist’s

accuracy.

ample, workload non-determinism causes different paths to
be exercised through the program.

A small contribution of a particular technique does not
necessarily mean that it does not perform well for a given
program, but it means that the other techniques that Gist
had enabled prior to this technique “stole its thunder” by
being sufficient to provide high accuracy. For example, in
the case of Apache-1, static analysis performs well enough
that control flow tracking does not need to further refine the
slice. However, in some cases (e.g., for SQLite), tracking
the inter-thread execution order of statements that access
shared variables using hardware watchpoints is crucial for
achieving high accuracy.

We observe that the amount of individual contribution
varies substantially from one program to the next, which
means that neither of these techniques would achieve high
accuracy for all programs on its own, and so they are all
necessary if we want high accuracy across a broad spectrum
of software.

5.3 Efficiency

Now we turn our attention to the efficiency of Gist: how long
does it take to compute a failure sketch, how much runtime
performance overhead does it impose on clients, and how
long does it take to perform its offline static analysis. We also
look at how these measures vary with different parameters.

The last column of Table 1 shows Gist’s failure sketch
computation latency broken down into three components.
We show the number of failure recurrences required to reach
the best sketch that Gist can compute, and this number varies
from 2 to 5 recurrences. We then show the total time it took
in our simulated environment to find this sketch; this time
is always less than 6 minutes, varying from <0m:23s> to
<5m:34s>. Not surprisingly, this time is dominated by how
long it takes the target failure to recur, and in practice this
depends on the number of deployed clients and the variabil-
ity of execution circumstances. Nevertheless, we present the
values for our simulated setup to give an idea as to how long
it took to build a failure sketch for each bug in our evaluation.
Finally, in parentheses we show Gist’s offline analysis time,
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Figure 11: Gist’s average runtime performance overhead

across all runs as a function of tracked slice size.

which consists of computing the static slice plus generating
instrumentation patches. This time is always less than 3 min-
utes, varying between <0m:2s> and <2m:32s>. We therefore
conclude that, compared to the debugging latencies expe-
rienced by developers today, Gist’s automated approach to
root cause diagnosis presents a significant advantage.

In the context of adaptive slice tracking, the overhead
incurred on the client side increases monotonically with the
size of the tracked slice, which is not surprising. Fig. 11
confirms this experimentally. The portion of the overhead
curve between the slice sizes 16 and 22 is relatively flat
compared to the rest of the curve. This is because, within
that interval, Gist only tracks a few control flow events for
Apache-1 and Curl (these programs have no additional data
flow elements in that interval), which introduces negligible
overhead.

The majority of the overhead incurred on the client side
stems from control flow tracking. In particular, the overhead
of control flow tracking varies from a low of 2.01% to a high
of 3.43%, whereas the overhead of data flow tracking varies
from a low of 0.87% to a high of 1.04%.
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Figure 12: Tradeoff between slice size and the resulting

accuracy and latency. Accuracy is in percentage, latency

is in the number of failure recurrences.

What is perhaps not immediately obvious is the trade-
off between initial slice size σ and the resulting accuracy
and latency. In Fig. 12, we show the average failure sketch
accuracy across all programs we measured (right y-axis) and
Gist’s latency in # of recurrences (left y-axis) as a function
of σ that Gist starts with (x-axis). As long as the initial
slice size is less than the one for the best sketch that Gist
can find, Gist’s adaptive approach is capable of guiding the
developer to the highest accuracy sketch. Of course, the time
it takes to find the sketch is longer the smaller the starting
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Figure 13: Comparison of the full tracing overheads of

Mozilla rr and Intel PT.

slice size is, because the necessary # of recurrences is higher.
There is thus an incentive to start with a larger slice size.
Unfortunately, if this size overshoots the size of the highest
accuracy sketch, then the accuracy of the outcome suffers,
because the larger slice includes extraneous elements.

As we mentioned in §5.2, the extraneous statements that
can lower Gist’s accuracy are clustered as a prefix to the
ideal failure sketch, allowing developers to easily ignore
them. Therefore, if lower root cause diagnosis latency is
paramount to the developers, they are comfortable ignoring
the prefix of extraneous statements, and they can tolerate
the slight increase in Gist’s overhead, it is reasonable to
configure Gist to start with a large σ (e.g., σ = 23 achieves
a latency of one failure recurrence for all our benchmarks).

For the benchmarks in our evaluation, starting AsT at
σ = 4 would achieve the highest average accuracy at the
lowest average latency of 3, with an average overhead of
3.98%.

Finally, Fig. 13 compares Intel PT, the hardware-based
control flow tracking mechanism we use in Gist, to Mozilla
rr, a software-based state-of-the-art record & replay sys-
tem. In particular, we compare the performance overhead
imposed by the two tracking mechanisms on the client ap-
plication. The two extremes are Cppcheck, where Mozilla
rr is on par with Intel PT, and Transmission and SQLite,
where Mozilla rr’s overhead is over many orders of magni-
tude higher than Intel PT’s 2. For the benchmarks in our eval-
uation, full tracing using Intel PT incurs an average overhead
of 11%, whereas full program record & replay incurs an av-
erage runtime overhead of 984%. Unlike Intel PT, Mozilla
rr also gathers data flow information, but with Gist we have
shown that full program tracing is not necessary for automat-
ing root cause diagnosis.

In conclusion, our empirical evaluation shows that Gist,
a failure sketching prototype, is capable of automatically
computing failure sketches for failures caused by real bugs

2 Full tracing overheads of Transmission and SQLite are too low to be reli-
ably measured for Intel PT, thus they are shown as 0%, and the correspond-
ing Mozilla rr/Intel PT overheads for these systems are shown as ∞.

in real systems (§5.1), these sketches have a high accuracy
of 96% on average (§5.2), and the average performance
overhead of failure sketching is 3.74% with σ = 2 (§5.3).
We therefore believe failure sketching to be a promising
approach for helping developers debug elusive bugs that
occur only in production.

6. Discussion and Limitations

In this section, we discuss Gist’s limitations, some remaining
open questions and future work.

Intel PT is a mechanism we used in our failure sketch-
ing prototype Gist. It is instrumental for achieving low over-
head control flow tracking, and therefore is important for
building a practical tool. However, failure sketching is com-
pletely independent from Intel PT; it can be entirely imple-
mented using software instrumentation, although our experi-
ments using our Intel PT software simulator yielded runtime
performance overheads that range from 3× to 5,000×. Fur-
thermore, failure sketching’s novelty is in combining heavy
static program analysis with lightweight runtime monitoring
to help developers perform root cause diagnosis.

Intel PT has certain shortcomings that Gist compensates
using a combination of other mechanisms. First, Intel PT
traces are partially ordered per CPU core, whereas diagnos-
ing the root cause of most concurrency bugs requires having
a control flow trace that is totally ordered across the CPU
cores. Second, Intel PT only traces control flow, and does
not contain any data values. Gist addresses these first two
challenges using hardware watchpoints. The third challenge
is that Intel PT may trace statements that do not necessarily
pertain to the failure, which Gist mitigates by using static
analysis. Finally, Intel PT’s tracing overhead can be pro-
hibitive if it is left always on, which Gist manages using a
combination of static analysis and adaptive slice tracking.

Full control flow tracking using Intel PT will have even
lower runtime overheads in future generations of Intel pro-
cessors [8] after Broadwell. Therefore, in the near future, it is
conceivable to have Intel PT tracing always on for some ap-
plications. Regardless, Gist can be used to further reduce the
overhead to unnoticeable levels, and reducing the amount of
collected information is especially useful for highly concur-
rent software, where the trace volume will be larger. Further-
more, the combination of static analysis and adaptive slice
tracking is necessary to utilize the scarce number of hard-
ware watchpoints judiciously. Regardless of performance
improvements, Gist will remain useful for producing con-
cise failure sketches.

We argue that additional hardware support would im-
prove Gist’s performance even further. For example, if Intel
Processor Trace also captured a trace of the data addresses
and values along with the control-flow, we could eliminate
the need for hardware watchpoints and the complexity of a
cooperative approach.



Unlike some other root cause diagnosis approaches [37,
58], Gist does not track predicates on data values such as
ranges and inequalities, but it simply tracks data values
themselves. As future work, we plan to track range and in-
equality predicates in Gist to provide richer information on
data values.

A cooperative framework like Gist can have privacy im-
plications depending on its exact deployment setup. If Gist
targets a data center setting, there are fewer privacy con-
cerns, as generally all the data that programs operate on is
already within the data center. We plan to investigate ways
to quantify and anonymize [64] the amount of information
Gist ships from production runs at user endpoints to Gist’s
server.

Using ptrace for placing hardware watchpoints has chal-
lenges and limitations with respect to performance and us-
ability. With regards to performance, using ptrace to place
a hardware watchpoint incurs the overhead of the ptrace

system call. In the future, this overhead can be mitigated us-
ing a user space instruction (similar to RDTSC [22]). With
regards to usability, if a program is already using ptrace, Gist
cannot attach to it using ptrace to place the hardware watch-
points necessary for data flow tracking. This situation can be
remedied using several strategies. One option is to augment
the existing ptrace functionality in the program to support
the placement of hardware watchpoints. Another strategy is
to use a third party interface (e.g., a new syscall or an ioctl)
to place the hardware watchpoints.

Gist does not track variables that are allocated on the
stack. It is technically possible for a thread to allocate mem-
ory on the stack and communicate the address of this mem-
ory to other threads, which can then use this address to share
data. However, sharing stack addresses can make small pro-
gramming errors catastrophic and difficult to isolate [10].

Debugging using failure sketches is strictly complemen-
tary to existing debugging techniques. In particular, we ar-
gue that failure sketches always help the debugging effort of
developers. Failure sketches can also augment existing bug
fixing techniques. For example, developers can use failure
sketches to help tools like CFix [26] automatically synthe-
size fixes for concurrency bugs.

Finally, as future work, we plan to evaluate the effective-
ness and efficiency of Gist in a real-world scenario, either in
a data center or at user endpoints.

7. Related Work

In this section, we review a variety of techniques that have
been developed to date to understand the root causes of
failures and to help developers with debugging.

Delta debugging [81] isolates program inputs and vari-
able values that cause a failure by systematically narrowing
the state difference between a failing and a successful run.
Delta debugging achieves this by repeatedly reproducing the
failing and successful run, and altering variable values. Delta

debugging has also been extended to isolate failure-inducing
control flow information [13]. As opposed to delta debug-
ging, Gist targets bugs that are hard to reproduce and aims
to build a (potentially imperfect) sketch even with a single
failing execution. If failures recur at the user endpoint, Gist
can build more accurate sketches.

Gist’s cooperative approach is inspired by work on coop-
erative bug isolation techniques such as CBI [38], CCI [25],
PBI [4], LBRA/LCRA [5]. Gist builds upon the statistical
techniques introduced in this line of work. Gist uses dif-
ferent failure predicting events for multithreaded code than
these systems, to allow developers to differentiate between
different types of concurrency bugs. Gist has low overhead,
so it is always on and has low root cause diagnosis latency,
because it does not rely on sampling like CBI, CCI, PBI. Un-
like LCRA, Gist does not rely on a custom hardware exten-
sion, but it uses Intel PT, a hardware feature present in com-
modity processors. LBRA/LCRA works well for bugs with
short root cause to failure distances, whereas failure sketch
sizes are only limited by persistent storage size. Gist uses
a different F-measure for failure ranking that favors preci-
sion over recall, because it aims to avoid false positives in
root cause diagnosis. LBRA/LCRA preserves the privacy of
users to some extent, because it does not track the data flow
of a program, whereas Gist does not have mechanisms to
protect privacy (although in theory it could), therefore mak-
ing Gist more suitable to use cases where privacy is not a
major concern.

Gist is also inspired by Windows Error Reporting (WER)
[17], a large-scale cooperative error reporting system oper-
ating at Microsoft. After a failure, WER collects snapshots
of memory and processes them using a number of heuristics
(e.g., classification based on call stacks and error codes) to
cluster reports that likely point to the same bug. WER can
use failure sketches built by Gist to improve its clustering of
bugs, and help developers fix the bugs faster.

Symbiosis [41] uses a technique called differential sched-
ule projections that displays the set of data flows and
memory operations that are responsible for a failure in a
multithreaded program. Symbiosis profiles a failing pro-
gram’s schedule and generates non-failing alternate sched-
ules. Symbiosis then determines the data flow differences
between the failing schedule and the non-failing schedule in
order to help developers identify root causes of failures. Un-
like Symbiosis, Gist does not assume that it has access to a
failing program execution that can be reproduced in-house.
Furthermore, the statistical analysis in Gist allows root cause
diagnosis of sequential bugs, whereas Symbiosis is targeted
towards concurrency bugs only.

Previous work explored adaptive monitoring for testing
and debugging. SWAT [19] adaptively samples program seg-
ments at a rate that is inversely proportional to their execu-
tion frequency. RaceTrack [78] adaptively monitors parts of
a program that are more likely to harbor data races. Bias



free sampling [29] allows a developer to provide an adap-
tive scheme for monitoring a program’s behavior. Adaptive
bug isolation [6] uses heuristics to adaptively estimate and
track program behaviors that are likely predictors of failures.
Gist relies on static analysis to bootstrap and guide its adap-
tive slice monitoring, thereby achieving low latency and low
overhead in root cause diagnosis.

PRES [50] records execution sketches, which are ab-
stractions of real executions (e.g., just an execution log of
functions), and performs state space exploration on those
sketches to reproduce failures. Failure sketches also abstract
executions. Unlike PRES, Gist helps developers do root di-
agnosis.

HOLMES [12] uses path profiles to perform bug isola-
tion. HOLMES does not track any data values, whereas Gist
relies on tracking data values for performing root cause di-
agnosis of concurrency bugs involving shared variables and
also for providing richer debugging information to develop-
ers.

SherLog [79] uses a combination of program analysis and
execution logs from a failed production run in order to au-
tomatically generate control and data flow information that
aims to help developers diagnose the root causes of errors.
Unlike Gist, Sherlog relies on logging to be always enabled
at execution time, and works only for single-threaded pro-
grams.

ConSeq [82] computes static slices to identify shared
memory reads starting from potentially failing statements
(e.g., assert). It then records correct runs and, during re-
play, it perturbs schedules around shared memory reads to
try to uncover bugs. Gist uses static slicing to identify all
control and data dependencies to the failure point and does
root cause diagnosis of a given failure, without relying on
record and replay.

Triage [67], Giri [58], and DrDebug [69] use dynamic
slicing for root cause diagnosis. Triage works for systems
running on a single processor and uses custom checkpoint-
ing support. DrDebug and Giri assume that failures can be
reproduced in-house by record/replay and that one knows
the inputs that lead to the failure, respectively. Gist relies on
hardware tracking for slice refinement at low performance
cost, and does not assume that failures can be reproduced
in-house.

Tarantula [28] and Ochiai [1] record all program state-
ments that get executed during failing and successful runs,
to perform statistical analysis in the recorded statements for
root cause diagnosis. Gist does not record all program state-
ments, and thus it can be used in production runs.

Unlike other low overhead, in-production root cause di-
agnosis techniques we know of, Gist tracks data flow in ad-
dition to control flow. Triage has alluded to the necessity of
tracking data flow, but did not implement it because of poten-
tially high overheads [67]. Gist is able to track the data flow
with low overhead due to AsT and hardware watchpoints.

Exterminator [48] and Clearview [51] automatically de-
tect and generate patches for certain types of bugs (e.g.,
memory errors and security exploits). Gist can assist these
tools in diagnosing failures for which they can generate
patches.

Initial ideas regarding Gist were explored in a recent
workshop paper [30]. This submission presents the design
in depth, formalizes the algorithms, reports on our imple-
mentation using real hardware, evaluates the prototype on
real-world systems, and describes insights we gained from
the design and implementation effort.

8. Conclusion

In this paper, we describe failure sketching, a technique
that provides developers with a high-level explanation of
the root cause of a failure. Failure sketches contain state-
ments, values, and statement orders that cause a failure. Fail-
ure sketches display differences in key program properties
between failing and successful runs.

We describe the design and implementation of Gist, a
tool that combines in-house static analysis with cooperative
adaptive dynamic analysis to build failure sketches. Gist
is effective, accurate, and efficient. All the failure sketches
built by Gist in our evaluation point to root causes that
developers used when fixing the failure.
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