
iProve: A Scalable Technique for Consumer-Verifiable Software Guarantees

Silviu Andrica, Horatiu Jula, and George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

Formally proving complex program properties is still con-
sidered impractical for systems with over a million lines of
code. We present iProve, an approach that enables guar-
anteeing useful properties in large Java systems. Desired
properties are proven in iProve as a combination of two
proofs: one of a complex property applied to a small piece
of code—a nucleus—using existing theorem provers, and a
proof of a simple property applied to the rest of the code—
the program body—using iProve. We show how iProve can
be used to guarantee properties such as communication se-
curity, deadlock immunity, data privacy, and resource us-
age bounds in Java programs with millions of lines of code.
iProve scales well, requires no access to source code, and
allows nuclei to be reused with an unlimited number of sys-
tems and to be written in verification-friendly languages.

1 Introduction

Programs we use everyday come with no provable cor-
rectness guarantees about their behavior. Instead of compet-
ing on provable reliability, software vendors tend to focus
on features.

Formal methods offer a rich variety of techniques for
proving properties about programs, but formal proofs of
non-trivial properties are typically limited to small pro-
grams (up to thousands of lines of code, or KLOC) that have
only limited interaction with their environment. Proofs en-
tail substantial human effort and, in larger programs, mostly
low-level properties have been proven so far, such as func-
tional correctness of linked data structures [18]. However,
if we are to provide consumers with software guarantees,
we must provesystem-levelproperties.

We accept that the only way to leverage current proof
techniques for non-trivial software properties is to apply
them to small bodies of code. Since real systems are large
(e.g., Firefox has over two million lines of code, or MLOC),
we endorse a pragmatic divide-and-conquer approach: the

property to be proven is split into a complex property and
a simple property. The complex property can be proven on
only a small part of the code (anucleus< 1 KLOC), while
the simple property is proven on the entire code (thebody>
1 MLOC). A modular combination of the two proofs yields
a proof of the complex property for the entire program.

In iProve, a program property is concentrated into a for-
mally verified component, the nucleus, which can be joined
to any program. When a nucleus is joined to a program, the
latter is automatically modified to pass control, at key points
in its execution, to the nucleus, which in turn enforces the
property over the entire program. To provide software with
guarantees, one must prove the correctness of the nucleus
and the correctness of its join to a program body. iProve re-
lies on third-party theorem provers to verify that a nucleus
is correct, and on its own join verifier to check the program-
nucleus join.

For example, we built a deadlock immunity nucleus
based on Dimmunix [8], which modifies a program’s thread
schedule so as to avoid deadlocks encountered in previous
runs. Dimmunix saves fingerprints of discovered deadlocks
in a local persistent history file. Prior to lock acquisitions
and releases, the program must yield control over to Dim-
munix, which decides, based on this local history, whether
to delay the lock operation or allow it to proceed. We
proved, using Jahob [10], that the Dimmunix nucleus avoids
deadlocks if invoked before and after each lock operation.
Using iProve, we guarantee deadlock immunity in large sys-
tems, like JBoss, ActiveMQ, and Limewire.

With iProve, the cost of building formally verified nuclei
is easy to amortize by reusing nuclei across large numbers
of programs. For example, Dimmunix can be used with any
Java program. Program bodies can be written in widely-
used languages (e.g., Java, Scala), while nuclei can be writ-
ten in languages better suited for proofs (e.g., Haskell, Pro-
log). Programs are glued to nuclei by the vendor before
shipping the software. Nuclei are verified by the consumer
prior to installing or running the software. The join verifier
runs whenever a program starts executing, to ensure that the
join is correct. In essence, iProve’s goal is to “discipline”
software, without extending its functionality.

Appears in Proceedings of the Intl. Conf. on Dependable Systems and Networks (DSN), Chicago, IL, June 2010

The contributions of this paper are: (1) a practical means
of provably constraining a program’s execution to obey cer-
tain properties, and (2) experimental evidence that formal
methods can be made practical for large programs.

The paper is organized as follows: After describing
iProve’s design (§2-§5), we present an implementation for
Java programs (§6), we demonstrate the utility of iProve
through four case studies (§7), and do a systematic perfor-
mance evaluation (§8). We close with a discussion (§9),
related work (§10) and conclusion (§11).

2 iProve Overview

Before describing the iProve components in depth, we
provide an overview of the entire iProve system (Figure 1).

There are three distinct parties involved: a system ven-
dorVS (e.g., Microsoft, RedHat), a nucleus vendorVN (e.g.,
a boutique software firm), and a consumerC. VS builds soft-
wareS and provides it toC. VN produces a nucleusN that
is meant to enforce desired propertyQ in programs (e.g.,
all communication is always encrypted with 1024-bit RSA).
For the nucleus to be effective, it must be joined to systemS
through instrumentation that is described by so-called join
conditions, also provided byVN. These conditions specify
P, a set of program points inSwhereN must be invoked if
N is to indeed guaranteeQ over the program. The nucleus
vendor proves that desired propertyQ holds for any pro-
gram that is connected toN via instrumentation described
by P. Informally,VN proves thatN ensuresP⇒ Q.

NucleusN is glued to systemS using the iProve joiner.
The iProve joiner takes as inputs the systemS, nucleusN,
and the join conditionsP, and produces a new version ofS
that is tied toN as described byP. The joiner need not be
trusted, since the instrumentation is always checked by the
iProve verifier prior to runningS.

The iProve verifier consists of the nucleus verifier and
the join verifier. The nucleus verifier automatically verifies
N’s correctness (P ⇒ Q holds) and the join verifier auto-
matically checks that systemS is indeed instrumented as
required by the nucleus (P holds). IfP⇒ Q andP hold, the
desired propertyQ clearly holds for systemS. Thus, iProve
verifies that the nucleus will indeed enforce its propertyQ
over the entire program.

We envision a usage model in which a system vendorVS

purchases or licenses nuclei from nuclei vendors, and joins
the nuclei to a product before shipping it.VS distributes the
sources of the employed nuclei together with the nucleus
join conditions; however, the code ofVS’s productS need
not be distributed. Customers configure their environment
to run iProve automatically, to check the correctness of the
nucleus and the joining before runningS. If verification
succeeds, customers can rest assured the execution of the
program will satisfy the nuclei-enforced properties.

System Vendor V Consumer C

Nucleus Vendor V

 Untrusted

iProve Joiner

Trusted iProve Verifier

(P and P=>Q) => Q

Validation / Rejection

Nucleus N

property Q

Join Conditions

 P

Prove N

 P => Q

System S

N

System S

S

N

(Java bytecode)

Figure 1. Overview of the iProve approach.

Next, we describe how to build a nucleus (§3), how to
“glue” it to a program (§4), and how the program/nucleus
pair is verified by iProve (§5).

3 The Formally Verified Nucleus

A nucleus is a body of code that enforces a desired prop-
erty, as long as it is correctly connected to a program via
specific instrumentation.

iProve draws inspiration from aspect oriented program-
ming (AOP) [9], a programming approach that increases
modularity through separation of concerns. In AOP, con-
cerns cut across multiple program abstractions and are
joined to the program using an aspect-oriented compiler. By
taking an aspect-oriented approach, we separate the concern
of provability from that of efficient development: a nucleus
is written in a way that is easy to prove, while the program
is written in a way that is easy to develop and optimize. This
AOP-inspired approach may incur some runtime overhead,
but, as we show in §8.1, many interesting properties can be
enforced with small overhead (< 30%).

The nucleus’ operation is transparent to the program
and relies on intercepting (via instrumentation) all the calls
made by the program that are relevant to the property en-
forced by the nucleus. Therefore, a nucleus is similar to
the concept of execution monitors [7], except that instead
of passively monitoring execution, it actively acts upon the
program it is supervising and alters its behavior.

A nucleus is typically small, application-agnostic, and
can be applied to multiple programs. Like most decisions in
system design, the choice of what type of program proper-
ties are well suited for a nucleus is driven by experience and
intuition. If the desired property can be expressed in terms
of the system’s execution trace, then it is a good candidate
for a nucleus. Examples include security properties [14],
resource accounting, etc. In §9 we discuss other types of
properties amenable to iProve-style enforcement.

2

Instrumentation (§4) implements an abstraction func-
tion, which transforms any program’s execution into an exe-
cution of the abstract program expected by the nucleus. Nu-
cleus vendors prove the correctness of their nucleus using a
third-party prover (e.g., Jahob [10]), as we show in §5.2.
The same theorem prover is re-run on the nucleus’ source
code by the customer, to confirm the correctness of the nu-
cleus.

The nucleus’ correctness proof is usually decomposed
into proofs of the nucleus’ entry points, i.e., the methods in-
voked by the instrumentation code. The nucleus’ join con-
ditions can be expressed asP = P1∧ ...∧Pn, wherePi is a
join condition.Pi invokes entry pointEi , i.e.,Pi ⇒ Ei

1. The
nucleus vendor proves that invokingEi provides propertyQi

to the target program (Ei ⇒ Qi). Thus, if the instrumenta-
tion is correct,Pi ⇒ Qi becausePi ⇒ Ei ∧Ei ⇒ Qi . In order
to prove that propertyQ is enforced by the nucleus (P⇒Q),
the nucleus vendor proves thatQ1∧ ...∧Qn ⇒ Q, which is
usually trivial.

iProve allows the use of easy-to-prove languages in the
nucleus and easy-to-program languages in the body, thus
affording ample flexibility in the choice of language. The
nuclei we describe in §7 are written in Java or Prolog.

The programming language used for a nucleus impacts
the trusted computing base (TCB). In iProve, the TCB in-
cludes the JVM, the layers beneath it, the iProve join veri-
fier, and the nucleus verifier. For languages that cannot run
inside a JVM, the library that mediates between the JVM
and the nucleus’ runtime must be included in the TCB.

It is possible for multiple nuclei to coexist and enforce
composable properties, such as both encrypting communi-
cation and checking to not leak private information. iProve
is conservative and considers two nuclei to conflict if they
require the same instructions inS to be instrumented. Gen-
erally, it can resolve this conflict statically, based on join
conditions; if the conflict cannot be resolved, iProve does
not continue. In general, nuclei can coexist if and only if
the properties they enforce and their respective instrumen-
tation code are orthogonal.

Assembling a proof for a sophisticated nucleus can take
many days, even months. Proof-carrying code [12] showed
that, even though generating a proof is a substantial bur-
den, it makes sense for this burden to fall on the vendor. In
our approach, provable code becomes more attractive, since
nuclei are decoupled from the program bodies, so they can
be reused across unlimited numbers of programs that desire
the property enforced by the nucleus. This allows the cost
of one expensive nucleus proof to be amortized across many
uses of that nucleus in programs from many vendors.

1WheneverEi appears in a logic formula, we take it to mean the equiv-
alent of statement “Ei is executed.”

4 The iProve Joiner

The purpose of the iProve joiner is to connect a nucleus
to a target program, so that the program is controlled by
the nucleus whenever necessary. Join conditions describe
to the joiner and the verifier how the connection ought to be
realized.

A join condition is a triplet[B, I,A]. It states that, for
every occurrence of instructionI in the program, instruction
sequenceB must execute immediatelybefore Iand instruc-
tion sequenceA immediatelyafter I. Join conditions are
independent of program run-time state, and they apply to
every occurrence of instructionI in the program.

Join conditions abstract a program in a way that is suit-
able for proving the nucleus. The abstract program con-
tains only the instructions relevant to the property the nu-
cleus enforces. For example, for deadlock immunity, the
program is treated as a sequence of lock and unlock oper-
ations. Such abstraction allows nuclei to be written in an
application-agnostic fashion, making them easy to reuse.

Using join conditions, the nucleus developer specifies
which program instructions are part of the abstraction.
The B and A sequences transfer control to nucleusN
or relay information to it. For example, the join con-
ditions for the deadlock immunity nucleus (§7.1) spec-
ify the monitorenter and monitorexit bytecode in-
structions to be of interest, as these correspond to the
acquisition/release of locks in Java. In the case of a
monitorenter, B invokes the nucleus function that de-
cides whether to allow the lock operation to proceed or not,
andA notifies the nucleus that the target lock has been ac-
quired.

A second type of join condition is a triplet that is univer-
sally quantified over an inheritance hierarchy. Such a triplet
specifies that the instruction of interest is a call to method
mof classK or of any subclass ofK. For example, the Java
join conditions for the RSA-Crypt nucleus (§7.2) specify
that calls tojava.io.OutputStream.write are of inter-
estalong withall write calls in classes that inherit from
java.io.OutputStream.

Finally, the third type of join condition is universally
quantified over all execution paths, and it states control
flow properties. One example is the requirement that a
monitorenter(x) instruction must be followed on all ex-
ecution paths by amonitorexit(x) instruction applied to
the same objectx. This type of join condition will typically
have an emptyB or emptyA .

The iProve joiner instruments the target program as re-
quired by the join conditions. Building a joiner is relatively
straightforward, so we do not describe further design issues
here. The only aspect of interest is the case where multiple
nuclei are used at the same time. After applying join condi-
tion P1 = [B1, I ,A1] and thenP2 = [B2, I ,A2], the resulting

3

program instrumentation will beB1B2IA2A1. Thus,P2

shiftsP1 away fromI , causingP1 to not hold any more, as it
is no longer adjacent toI . The join verifier accounts for this
shift as described in §5.1.

The iProve joiner need not be trusted. We note that it is
easier to verify a posteriori the correctness of instrumenta-
tion than to guarantee a priori correct instrumentation.

The key element that enables iProve to scale to large sys-
tems is the decoupling of the nucleus from the body of the
code. This enables the proof of a complex property on the
small nucleus and a relatively simple instrumentation prop-
erty on the body. This requires trusting the soundness of
the join conditions (i.e., the nucleus is correctly invoked)
and their completeness (i.e., all instructions of interestare
covered). Incorrect join conditions void a nucleus-enforced
property. Choosing appropriate join conditions is the re-
sponsibility of the nucleus vendor.

5 The iProve Verifier

The iProve verifier (Figure 2) consists of a join veri-
fier (§5.1), which checks that the given join conditions have
been correctly applied to systemS, and a nucleus veri-
fier (§5.2), which checks the correctness of the nucleus, in-
dependently ofS. The iProve verifier is a distinctive feature
of iProve compared to aspect oriented programming.

5.1 The iProve Join Verifier

Using a join verifier allows iProve to minimize the size
of the trusted computing base (TCB); a smaller TCB means
fewer assumptions, and therefore stronger guarantees. The
amount of code in the join verifier is substantially less than
in an instrumentation tool like AspectJ. Moreover, the join
verifier uses algorithms that are simple and easy to manu-
ally check in an open-source implementation, thus making
it easy to trust.

The join verifier’s inputs are systemS and join condi-
tions [B, I ,A]. It checks that all relevant program paths
satisfy the join conditions, thus soundly verifying the pro-
gram/nucleus join. More specifically, for every methodm
of the systemS, if m contains an instructionI that is part
of a join condition, then every execution path withinm that
traversesI must containB beforeI andA after it.

The join verifier algorithm uses a “bank account” data
structure to detect violations of join conditions. A bank ac-
count has a savings and a debt component.

We can think of the control flow graph (CFG) of a
method as a directed network of bank tellers, through which
bank account ledgers are transferred from one teller to its
successors. Each instruction in the method is viewed as
a bank teller taking in bank accounts ledgers, performing

Join Verifier

Join Conditions

Annotated N

N

System S

Nucleus Verifier

AND

iProve Verifier

Figure 2. Architecture of the iProve verifier.

transactions, then forwarding them to another teller. The
end goal is for there to be no debt in the system.

An edgeE = n1 → n2 in the CFG is labeled with the re-
lation between its vertices as follows:normal, if the pro-
gram execution flows normally fromn1 to n2, or excep-
tional, if n2 is executed within the handler of an excep-
tion thrown byn1. A bank tellerb takes as inputin(b) a
set of account ledgers from its predecessors, denoted by
pred(b). A bank teller’s predecessors are grouped in two
sets:predn(b), containing predecessorsp such that the edge
E = p → b is labeled asnormal, andprede(b), containing
the other predecessors. The normal output of a bank teller,
outn(b), is obtained by performingtransactionson its input,
i.e.,outn(b) = transaction(in(b)). However,b can fail (i.e.,
if the instruction it models can throw an exception) and not
perform the transaction—in this case,b simply passes its
input as exceptional output,oute(b) = in(b). Ledgers are
transferred between bank tellers according to edge labels:
for normaledges,in(n2) = outn(n1) = transaction(in(n1)),
while for exceptionaledges,in(n2) = oute(n1) = in(n1).

Algorithm 1 describes thetransactionoperation. There
are two types of instructions in a method: instructions of in-
terest (targeted by join conditions) and normal instructions
(the rest). We definesize(B) as the number of instructions
present in theB component of a join condition. A bank
teller processes its input ledgers one at a time (line 2). An
instruction of interest (line 3) withdraws the topsize(B) in-
structions from the savings and compares them to those in
B (line 4). If they match, the instructions inA are pushed
onto the current debt (line 5). Normal instructions first try
to cover a debt (lines 9-11). If there is no debt, they are
pushed onto the savings (line 16). A new ledger is created
with the new savings and debt (line 17). When a transaction
cannot be performed (lines 7 and 13), an error is generated
and the verification fails. Pushing an instruction on the debt
requires the respective instruction to be the first one covered
(i.e., popped off the debt stack).

The iProve join verifier employs an intra-procedural
analysis shown in Algorithm 2. First, it adds to a worklistW
the bank tellers corresponding to all the instructions in the
method currently analyzed (line 1). Initially, the input and
output of every bank teller is an empty set of bank accounts
(line 3), except for the one modeling the method’s entry

4

Algorithm 1 : Thetransactionalgorithm
Input : program instructioni, set of ledgersL
Data: set of join conditionsJ
Output : new set of ledgersL′, or error if the

transaction cannot be performed
L′ := /01

foreach< savings,debt>∈ L do2

if ∃ < B, i,A >∈ J then3

if top(savings) = B then4

savings′ := pop(B,savings)5

debt′ := push(A ,debt)
else6

return error7

else8

if debt 6= /0 then9

if i = top(debt) then10

debt′ := pop(debt)11

else12

return error13

savings′ := savings14

else15

savings′ := push(i,savings)16

debt′ := debt

L′ := L′∪{< savings′,debt′ >}17

return L′18

point,start(m), whose input is a set with an empty bank ac-
count (line 4). Next, while there are elements inW (line 5),
the algorithm takes the first element inW (line 6), and com-
putes its input (line 7) and its output (lines 10 and 11). If
the node’s output changed since the last time it was visited
(line 12), its successors are added toW (line 13). Verifica-
tion succeeds if the exit pointsexit(m) of the method cur-
rently analyzed cover all debts (line 14) whenW is empty
(i.e., all debts created byB have been covered).

When verifying multiple join conditions, all the debts
created by all encountered instructions of interest must be
covered for the analysis to succeed.

Join conditions that are specified over an inheritance hi-
erarchy are verified using the same algorithm. These join
conditions apply to methods calls only. To match a method
call K j .m in a join condition to a method callKp.m in the
program’s code whose prototype matches, the join veri-
fier analyzes the type relation betweenK j andKp. If the
type ofKp is a subtype ofK j ’s type, the match is success-
ful. For example, in Java, ifObject.toString() is of
interest and the currently analyzed method has a call to
AnyClass.toString(), the two instructions match, be-
causeObject is a superclass of all types.

The iProve verifier can check control flow properties.

Algorithm 2 : The ledger transferalgorithm
Input : methodm
Data: CFG of methodm
Output : true if verification of the join conditions

succeeds for methodm, falseotherwise
W := instructions(m)1

foreach i ∈W do2

in(i) := outn(i) := oute(i) := /03

in(start(m)) := {< /0, /0 >}4

while W 6= /0 do5

i := dequeue(W)6

in(i) :=
⋃

p∈predn(i)
outn(p)∪

⋃

p∈prede(i)
oute(p)

7

outold
n (i) := outn(i)8

outold
e (i) := oute(i)9

outn(i) := transaction(i, in(i))10

oute(i) := in(i)11

if outn(i) 6= outold
n (i)∨oute(i) 6= outold

e (i) then12

enqueue(W,succ(i))13

if ∀i ∈ exit(m) : debt(outn(i)) = debt(oute(i)) = /014

then
return true15

else16

return false17

Consider two instructions of interest,φ and ψ ; we want
to express the fact thatφ is always followed byψ , but we
do not want to constrain the number of program instruc-
tions spanned by this relation. Such relations are suitable
for pairs of methods or pairs of operations, e.g., acquiring
and releasing a lock. Figure 3a depicts this relation. In this
property,ψ acts as a debt whose maturity date is prolonged.
However, for the verification to succeed,ψ must eventually
be covered. Debts with prolonged maturity dates must be
covered in the reverse order of their creation.

(a) ψ always followsφ . (b) φ always precedesψ .

Figure 3. Verifiable control flow properties.

A second type of control flow property is precedence of
program instructions. For example, we may want to express
that φ always occurs beforeψ , as illustrated in Figure 3b.

5

While the property “ψ always followsφ ” allows ψ to ap-
pear without a precedingφ , the property “φ always precedes
ψ” forbids it. In this case, the join condition forψ marks
φ as “anticipated” inB. Whenψ is reached, the algorithm
searches forφ in the savings part.

As an optimization, if it encounters a sequence of in-
structions not specified in any join condition and there is no
debt, the iProve join verifier adds only the first instructionto
the savings, thus reducing the corresponding ledger’s size.

The iProve join verifier bounds the analysis to ensure the
algorithm terminates. Loops in the CFG can cause the bank
accounts to increase savings indefinitely. Every occurrence
of an instruction of interestI in the program body is called
an “instance” ofI and noted asIp. For the verification to
succeed, everyIp must be preceded byB and followed by
A , and this must be statically determinable. Hence, iProve
does not accept join conditions that depend on the number
of loop iteration. Thus, it is enough to analyze a single loop
iteration to decide whether the join is done correctly or not.

5.2 The iProve Nucleus Verifier

iProve uses trusted third-party automated theorem
provers to verify the correctness of nuclei. Our case stud-
ies (§7) rely on Jahob [10]. For some nuclei, verification
may not even be necessary: for example, we used Prolog
to write the privacy protector nucleus (§7.4), which can be
treated as an executable formal specification.

The iProve verifier consists of the combination of the
join verifier and the nucleus verifier—together they gener-
ate a modular proof that the systems instrumented with the
nucleus will satisfy the stated property.

6 Implementation

We have built an iProve prototype that supports pro-
grams written in Java and nuclei written in Java and Prolog.

The iProve joiner uses AspectJ [2] to instrument pro-
grams. The join conditions are written as pointcuts and
advices, as required by AspectJ. Pointcuts define the join
points where the advice needs to be inserted. Advices spec-
ify what instructions to run before and after the pointcut.

The iProve join verifier uses instrumentation agents de-
fined via thejava.lang.instrument package to be in-
voked every time a class is loaded. iProve employs load-
time verification because, due to the advent of load-time
instrumentation, verifying the persistent representation of a
class does not guarantee the analysis’ results will still hold
at run time. This approach ensures that the verification of
join conditions is done on the code that is actually run.

iProve verifies both the program and all linked libraries,
i.e., it all the classes the program can interact with, includ-
ing the JDK classes. It is crucial for iProve to do so, because

nuclei-provided properties can be voided by improperly in-
strumented libraries or already loaded classes.

The iProve join verifier uses a cache of previously veri-
fied classes to avoid redundant work. Prior to analyzing a
class, the join verifier checks the cache, based on a hash of
the class’ bytecode. If found, the class is no longer verified.
Experimental evidence shows that using a cache consider-
ably speeds up system verification.

iProve relies on the JVM bytecode verifier to enforce
correct types. iProve checks for instrumentation correct-
ness, which is orthogonal to what the JVM’s bytecode ver-
ifier checks: language construct violations, references to
fields and methods, correct use of types, etc.

7 Four Case Studies

We wrote several iProve nuclei. In this section, we
present four of them: deadlock immunity (§7.1), secure
communication (§7.2), bounding of resource consump-
tion (§7.3), and privacy protection (§7.4). These four case
studies illustrate a wide range of provable properties.

7.1 Dimmunix: Deadlock Immunity

Deadlock immunity [8] is a property by which pro-
grams, once afflicted by a given deadlock, develop resis-
tance against future occurrences of that deadlock. The Dim-
munix nucleus relies on program instrumentation to inter-
cept all lock/unlock operations, watches for deadlocks at
runtime and, when they occur, adds a corresponding fin-
gerprint to a persistent history file. If Dimmunix observes
that the instrumented program is headed toward a deadlock
whose fingerprint is in the history, it schedules threads so
as to avoid the deadlock. Augmenting programs with this
property helps consumers cope with hard-to-fix deadlocks.
iProve can be used by software vendors to prove that their
(potentially complex) software has deadlock immunity.

We wrote the nucleus in∼600 lines of Java, and used Ja-
hob to prove its correctness. Writing this relatively complex
nucleus taught us that, given today’s provers, knowledge
of the intended proof methodology is crucial to writing the
code appropriately. This further strengthens our belief that
isolating desired properties into nuclei that are independent
of the main body of code is the only tractable way to prove
properties of real software today.

The join conditions require the nucleus’ method
beforeLock(x)to be called before eachmonitorenter(x).
After acquiring the lock, Dimmunix must be notified via
afterLock(x). Beforemonitorexit(x), beforeUnlock(x)
needs to be called.

Despite the extensive effort involved in proving this nu-
cleus (8 developer-weeks), we believe it was worthwhile,

6

since it can be reused across an unlimited number of Java
programs. As we show in §8, we applied the Dimmunix
nucleus to real systems, including JBoss, a system that cu-
mulatively has>3 MLOC. Access to these systems’ source
code was not required. Runtime performance overhead in-
troduced by the Dimmunix nucleus is less than 30%.

7.2 RSACrypt: Secure Communication

The second nucleus is targeted at securing the com-
munication between systems. The RSACrypt nucleus is
written in Java and encrypts/decrypts using RSA all data
sent/received via Java I/O mechanisms.

The secure communication property is merely a math-
ematical statement that all messages sent are suitably en-
crypted according to the RSA algorithm (i.e., if messageM
is written, thenMe modn is actually sent out, where(e,n)
is the recipient’s public key) and all messages received are
suitably decrypted. Like for Dimmunix, we used Jahob to
prove the nucleus’ correctness.

The join conditions state that each call towrite(x)
in OutputStream and any classes that extend
OutputStream must be preceded by a call to the nu-
cleus’ methodencrypt(x), and similarly for decryption on
the inboundInputStream.read. If the target program
uses custom I/O mechanisms, the join conditions must also
cover these mechanisms.

7.3 CPUBound: Resource Utilization

This nucleus guarantees that a target Java system will not
utilize CPU time more than a given percentage during any
1-minute interval. The nucleus throttles the application’s
threads when CPU consumption approaches the threshold:
it checks CPU utilization periodically and decides whether
it is safe to let the application continue running with all its
threads. If doing so presents a risk that the threshold will
be exceeded for the remainder of the current 1-minute slid-
ing window, the nucleus temporarily suspends the most ac-
tive threads. Threads are resumed when there is no risk of
overstepping the CPU time limit. To prevent thread star-
vation, the nucleus performs a round-robin scheduling of
threads every minute: suspended threads are resumed and
other threads are suspended instead.

It is imperative that the nucleus thread be started before
all the other threads. We therefore use a special join con-
dition which specifies that the first instruction in the pro-
gram’smain function is a call to the nucleus. We employed
Jahob to prove the correctness of the CPUBound.

7.4 PrivacyGuard: No Data Leaks

The final nucleus is a “firewall” meant to prevent pro-
grams from accidentally leaking private information.

We used iProve in hybrid mode: we targeted Java pro-
grams, but wrote the nucleus in Prolog—a programming
language that is a direct representation of formal logic. Pro-
log programs contain Horn clauses that represent a subset of
first-order predicate logic; Prolog clauses are either “facts”
about the world, or “predicates.”

What is interesting about writing a nucleus in Prolog is
that, being itself written in first-order logic, the programcan
be treated as an executable formal specification. This illus-
trates the power of supporting nuclei written in languages
different from the main body: they can be written in a way
that is well suited for proving, while the bodies can be writ-
ten in languages suited for the task of interest.

The join conditions target the same write instructions as
for the RSACrypt nucleus, and connect the Java program
to the Prolog environment via the JPL extension [6]. The
instrumentation invokes the nucleus immediately prior to
sending data and translates the Prolog query results into a
buffer that is passed down to the JDK for sending.

8 Evaluation

In this section, we systematically evaluate iProve, em-
phasizing consumer-visible aspects. In §8.1 we show that
iProve can be used to verify interesting properties in large
Java systems. We show it is practical to have the join veri-
fier in the critical path of running all software on a system.
In §8.2 we show it is practical to construct and verify nuclei,
and that the added effort is worth the promise of software
guarantees.

Table 1 shows information on the systems we used in
our evaluation. JBoss is an enterprise application server,
Limewire is a peer-to-peer file sharing application, and
Apache ActiveMQ is a message broker. We show the num-
ber of classes, methods, and LOC in the standard distribu-
tion package. This includes only classes that are directly
checked by iProve; due to packaging artifacts, the same
class may appear (and be verified) more than once, e.g.,
when it is part of statically linked libraries.

System # Classes # Methods LOC
JBoss-4.0.2 34,081 269,598 3.17×106

Limewire-4.18 19,176 138,990 1.51×106

Apache
ActiveMQ-4.0

1,865 15,568 1.33×105

Table 1. Real-world software systems used to
evaluate iProve.

7

8.1 Performance

Table 2 summarizes how long the instrumentation ver-
ification takes. After the program is executed for the first
time, the user will not notice any substantial delays, since
only modified classes will be re-verified. Thefirst execu-
tion time includes verifying auxiliary classes (e.g., JDK or
AspectJ classes). The third column shows the latency a user
would normally observe; the majority of the time is spent
computing the hashes of loaded classes. The results validate
our design choice to use a cache. The time needed to verify
the nuclei (§8.2) must be added to the reported verification
time, but only marginally increases the reported times.

System
Time to verify at ...

First execution Subsequent executions
JBoss-4.0.2 23 min 18 sec 14 sec
Limewire-4.18 3 min 18 sec 71 sec
Apache
ActiveMQ-4.0

2 min 59 sec 19 sec

Table 2. Time to perform join verification.

To assess the runtime performance overhead introduced
by nuclei, we measured JBoss with the RUBiS e-commerce
benchmark [13]. There are no standard benchmarks for
Limewire and ActiveMQ, so we ran benchmarks included
with these systems: upload throughput and client-side
throughput tests for Limewire, and JMS queue throughput
tests for ActiveMQ. We exercised each system with every
nucleus in isolation and also with an ensemble of nuclei
comprising Dimmunix, RSACrypt, and CPUBound. Ta-
ble 3 summarizes the results. Overhead is mostly below
30%, because the iProve join verifier always analyzes the
minimum set of instructions necessary to validate the prop-
erty. The one notable exception (JBoss with the 3-nuclei en-
semble) is due to the CPU consumption limitation imposed
by the CPUBound nucleus: it throttles the CPU-intensive
RSACrypt nucleus.

Having seen the end-to-end results in real systems, we
now focus on characterizing in detail the performance of
the iProve verifier. In particular, we evaluate the join veri-

Nucleus JBoss Limewire ActiveMQ
Dimmunix 13.0% 27.2% 3.1%
RSACrypt 15.1% 13.4% 0.7%
PrivacyGuard 10.0% 7.3% 1 .0%
CPUBound 0.0% 3.9% 0.1%
CPUBound &
Dimmunix &

RSACrypt
118.4% 32.1% 3.9%

Table 3. Runtime overhead of single nuclei
and an ensemble of 3 nuclei.

fier’s performance as a function of the number of join con-
ditions. The more join conditions are in the specification,
the more work the iProve verifier has to do. Figure 4 shows
the results. We wrote 1 to 50 join conditions targeting dif-
ferent instructions of interest. Each join condition specifies
a method that needs to be invoked before the instruction of
interest and another one after. For each number of join con-
ditionsn, we wrote a class that contains 10 methods. Each
method contains a permutation of then instructions of in-
terest, with code that contains loops in between join condi-
tions. The results show that the iProve join verifier scales
well with the number of join conditions it needs to verify.

1

10

100

700

 5 10 15 20 25 30 35 40 45 50
T

im
e

to
 v

er
ify

 [m
se

c]
 (

lo
g)

Number of join conditions

Figure 4. Verification time as a function of the
number of join conditions.

8.2 Effort to Write and Prove Nuclei

Table 4 quantifies the effort and complexity of develop-
ing and proving the nuclei reported in this paper. All the nu-
clei were written in Java, except PrivacyGuard, which was
written in Prolog. We consider the results to be represen-
tative of what one could expect in practice. As mentioned
before, the investment in developing formally proven nuclei
can easily be amortized across multiple programs.

Metric

D
im

m
un

ix

R
S

A
C

ry
pt

C
P

U
B

ou
nd

P
riv

ac
yG

ua
rd

Time to develop the
nucleus

1 week 6 hrs 2 days 4 hrs

Time to develop the
proof specification

8 weeks 3 days 2 days N/A

Nucleus size (LOC) 607 73 180 8
of annotations 253 24 47 N/A
of assumptions 38 0 17 N/A
Proof complexity (#
of proof obligations)

2668 179 264 N/A

Time (for Jahob) to
prove nucleus

121 sec 3.3 sec 7.7 sec N/A

Table 4. Costs of writing and proving nuclei.

8

9 Discussion and Limitations

iProve provides a bridge between static analysis and for-
mal proofs. The properties enforced by the four nuclei pre-
sented here cannot be checked with pure static analysis, so
they require a runtime component. However, only providing
the runtime component cannot guarantee that it will always
be correctly invoked, or that it is free of bugs. iProve pieces
together the static and runtime parts in a way that can be
proven to achieve the desired property.

In theory, it would be ideal for nucleus vendors to also
provide a proof that joining systemS with nucleusN does
not alterS’s functionality. In many cases, the orthogonal
nature of the iProve nucleus makes it easy to check (e.g.,
as in the case of encrypting/decrypting incoming/outgoing
network traffic). In less obvious cases, the most practical
approach is for software vendors to use their existing teststo
validate their program’s functionality, and then use iProve
to prove to consumers that the program they are about to
install or run has the desired properties.

The current version of iProve assumes the JDK, the
JVM, and the OS are correct. In other words, the trusted
computing base includes the layers below the program and
iProve. Without iProve, the program itself would have to
be part of the TCB; with iProve, the consumer is no longer
required to trust the program.

Not all properties are suitable for verification with the
iProve approach, and this is a limitation that results directly
from the nucleus/body partition we propose. For example,
a nucleus cannot enforce liveness properties.

Properties targeting thread scheduling, like signal/wait
pairing, can be enforced with iProve. A nucleus will store
information about incorrect behavior and modify the thread
schedule to avoid it. If a property can be expressed as a pure
function, then it can also be an iProve nucleus. Prevention
of SQL injection attacks, for instance, can be cast as a pure
function that, given a string representing the SQL query
to be executed, removes any parts ofWHEREclauses that
could turn into tautologies (e.g.,WHERE ... OR ’t’=’t’).

A nucleus can enforce properties related to the pro-
gram/environment interaction. An example is a nucleus
that enforces a given policy for accessing resources, such as
files or network ports. Although implementable using other
approaches as well, using iProve makes the work reusable
across several different programs and OSes.

For system developers, using iProve requires that they
architect their software slightly differently. There is strong
synergy between the iProve approach and both aspect-
oriented programming and agile development, both of
which advocate decoupled designs. iProve proposes a sys-
tem architecture in which non-functional properties are ex-
ternalized as formally proven nuclei that exercise control
over program features. This decoupled design allows each

component of the program to focus on its primary goal.
Finally, whereas most of the static analyzers, theorem

provers, or model checkers require access to source code,
iProve only needs access to the nucleus’ source code. This
permits software vendors to provide consumer-verifiable
guarantees without disclosing their proprietary code.

10 Related Work

iProve aims to enable software with guarantees. In so do-
ing, we build upon a rich history of prior work, withproof-
carrying code (PCC) [12] having inspired us the most.
Whereas PCC could prove mostly low-level properties, like
type and memory safety, iProve proves higher-level prop-
erties, like deadlock immunity. In iProve, unlike PCC, a
change in the program (e.g., a software update) does not re-
quire redoing the nucleus proof—the nucleus can be reused
across unlimited versions of the same program. iProve dif-
fers from PCC in two main aspects: First, in PCC, one needs
to provide a proof for the entire system, whereas in iProve
only a proof of the nucleus and the verification of simple
join conditions are needed. Second, in iProve, the nucleus
is automatically verified using a theorem prover; in PCC,
the proof is usually written manually, which is significantly
harder than providing hints to an automated theorem prover.

The idea of concentrating code that enforces properties
in a single component was pioneered byreference moni-
tors [1] and implemented in Data Secure Unix (DSU) [17].
There, the efforts were focused on formally specifying and
verifying that a security kernel has the mechanisms to en-
force any security policy. iProve can be thought of as us-
ing the join conditions to abstract a program into a security
kernel, and the join verifier checks that the kernel has the
mechanisms to enforce a property. DSU’s policy manager
could be an iProve nucleus. While the security kernel can
be used only with DSU, iProve nuclei work for all Java pro-
grams.

iProve usesaspect oriented programming[9] to ease
the writing join conditions. While AOP allows program se-
mantics to be altered, an iProve nucleus is not allowed to do
that. The iProve join verifier is complementary to AOP: it
checks that the instrumentation performed by an AOP com-
piler is correct.

The idea of proving properties of an aspect in isolation
appeared in SuperJ [15], which proved that an aspect pro-
vides a certain propertyF to any system. SuperJ needs a
generic program that captures all possible behaviors rele-
vant to the aspect: ifF holds for the generic program instru-
mented with the aspect, thenF holds for any system instru-
mented with the same aspect. One can use model checking
techniques to prove thatF holds for the generic program.
The drawback of this approach is that the generic program
must be written manually.

9

JavaMOP [3] definesruntime monitors to supervise
program properties at runtime. When a property is violated,
the monitor can perform error recovery actions, but these
actions are system-dependent. In contrast, an iProve nu-
cleus is system-independent and prevents the program from
violating the desired property.

Runtime verification systems, like Java Path Ex-
plorer [5], can check high-level system properties in large
applications, in the same way iProve can; these properties
are often expressed as temporal logic formulae. These sys-
tems perform only passive runtime monitoring, to check if
some property holds; they do not enforce the property.

The systems presented in [11] and [16] can be imple-
mented as iProve nuclei. The communication between a
distributed system’s nodes can be augmented with timing-
related properties by using [11]. In [16], on every method
call, an integrity kernel checks if the caller object has the
right to access the callee object, to prevent usage of un-
trusted data by critical parts of the system.

The iProve join verifier is similar to ESP [4]; however,
there are some important differences between the two. First,
ESP checks program-wide properties, while the iProve join
verifier only needs to check local intra-procedural proper-
ties. Second, the iProve join verifier also handles exception
control flows, whereas ESP does not.

11 Conclusion

iProve is a technique for formally verifying complex pro-
gram properties in systems with over a million lines of
code. Desired properties are proven as a combination of two
proofs: one of a complex property applied to a nucleus and
one of a simple property applied to the program body. We
demonstrated iProve’s feasibility through four case studies,
in which nuclei enforce deadlock immunity, secure com-
munication, resource usage bounds, and dataflow control in
three real systems: JBoss, ActiveMQ, and Limewire. Our
experiments show that iProve can verify large systems in
minutes. iProve requires no access to program source code
and allows nuclei to both be reused for unlimited numbers
of systems and to be written in verification-friendly lan-
guages. Thus, iProve enables developers to produce and
distribute software with customer-verifiable guarantees.

Acknowledgments

We are indebted to Pranav Garg for his work on prov-
ing the Dimmunix nucleus. We thank our shepherd Keith
Marzullo, the anonymous reviewers, and our EPFL col-
leagues for their help in refining our paper. We are espe-
cially indebted to Viktor Kuncak for his help with Jahob.

References

[1] J. P. Anderson. Computer security technology
planning study. Technical Report ESD-TR-73-51,
ESD/AFSC, 1972.

[2] AspectJ. http://www.eclipse.org/aspectj.
[3] F. Chen and G. Rosu. Java-MOP: A monitoring ori-

ented programming environment for Java. InIntl.
Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, 2005.

[4] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. InConf. on
Programming Language Design and Implementation,
2002.

[5] K. Havelund. An overview of the runtime verification
tool Java PathExplorer. InFormal Methods in System
Design, 2004.

[6] Java-Prolog. http://sourceforge.net/projects/jpl,2009.
[7] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A

lightweight architecture for program execution moni-
toring. InWorkshop on Program Analysis for Software
Tools and Engineering, 1998.

[8] H. Jula, D. Tralamazza, C. Zamfir, and G. Can-
dea. Deadlock immunity: Enabling systems to defend
against deadlocks. InSymp. on Operating Systems De-
sign and Implementation, 2008.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. InEuropean Conf. on Object-
Oriented Programming, 1997.

[10] V. Kuncak.Modular Data Structure Verification. PhD
thesis, EECS, MIT, 2007.

[11] P. Martins, P. J. P. de Sousa, A. Casimiro, and P. Veris-
simo. Dependable adaptive real-time applications in
wormhole-based systems. InIntl. Conf. on Depend-
able Systems and Networks, 2004.

[12] G. C. Necula and P. Lee. Safe kernel extensions with-
out run-time checking. InSymp. on Operating Systems
Design and Implementation, 1996.

[13] RUBiS. http://rubis.objectweb.org, 2007.
[14] F. B. Schneider. Enforceable security policies.ACM

Trans. Inf. Syst. Secur., 3(1):30–50, 2000.
[15] M. Sihman and S. Katz. Superimpositions and aspect-

oriented programming.The Computer Journal, 2003.
[16] E. Totel, J. P. P. Blanquart, Y. Deswarte, and D. Pow-

ell. Supporting multiple levels of criticality. InIntl.
Symp. on Fault-Tolerant Computing, 1998.

[17] B. J. Walker, R. A. Kemmerer, and G. Popek. Spec-
ification and verification of the UCLA Unix Security
Kernel. Communications of the ACM, 23(2), 1980.

[18] K. Zee, V. Kuncak, and M. Rinard. Full functional
verification of linked data structures. InConf. on
Programming Language Design and Implementation,
2008.

10

