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Abstract

LibTrac is a tool for studying the program/library bound-
ary and answering questions like: Which library functions
are called most often? Are there library usage patterns that
distinguish one class of applications from the others? Do
programs generally retry failed I/O calls or not?

The answers to these questions are essential to anyone
employing library-level fault injection [1, 6] in software
testing. On the one hand, the program-library boundary is
an appealing location for injecting faults, because the cost
of doing so is low, and one can emulate a wide range of real-
world failures. On the other hand, developers must decide
a priori which library calls to fail, when, and in what way.
The space of possibilities is vast, so developers need tools
like LibTrac to make informed choices for test scenarios.

We used LibTrac to study 13 real-world systems; we re-
port here some of the results. Compared to existing library
tracers, LibTrac incurs one to two orders of magnitude less
overhead, thus offering considerably more realistic study
conditions.

1 Introduction

Shared libraries are used heavily by programs, because

they offer modularity and opportunities for code reuse. Al-

though the shared library infrastructure requires coopera-

tion of the compiler, linker, and runtime linker/loader, this

is all largely transparent to developers. As a result, virtually

all Linux programs use at least the standard C shared library,

while Windows programs use at least services provided by

the kernel32.dll shared library.

Even though shared libraries are widely used, little is

known about how programs use them or how they react to

library-level failures. Questions like how does a database

server handle I/O errors, which library functions are al-

ways called together, or which functions are used the most

by instant messaging clients can offer insights useful in

testing and optimization. These questions arise especially

when employing library-level fault injection for software

testing [1, 6].

Some tools [3, 8, 11] can retrieve library function call

information, but they are not aimed at testing-related tasks

and do not offer the necessary level of detail. Existing li-

brary tracers [5] are typically heavyweight and too slow

for drawing representative conclusions about application–

library interaction and behavior. This is why we developed

LibTrac, a library tracer that is an order of magnitude faster

than ltrace [5] and offers considerably richer information,

such as second-order library calls (i.e., a library calling an-

other library), rich statistics, etc.

LibTrac collects data and computes statistics about the

program-library interface to help understand program be-

havior. LibTrac retrieves at runtime all details about func-

tion calls, call site addresses, function parameters, and re-

turn values, while keeping overhead low. Systems like Mi-

crosoft Detours [4] offer an API for intercepting library

functions, but do not include the logic for automatically set-

ting up interception or gathering the data and processing it.

By using LibTrac on 13 real-world programs, we gained

unexpected knowledge about entire classes of applications.

For example, instant messengers tend to use shared libraries

in similar ways: as shown in §3.2, Pidgin and XChat, even

when used on different instant messaging networks, exhibit

strikingly similar library call distributions, despite the fact

that they do not share any code. This suggests that a library-

level fault injection scenario built for Pidgin could be pro-

ductively reused for other instant messengers.

In the rest of the paper, we present the design and imple-

mentation of LibTrac (§2), show results for several different

applications (§3), briefly review related work (§4), and con-

clude (§5).

2 Design and Implementation

We now present LibTrac’s interceptor-based de-

sign (§2.1), the techniques for ensuring that the interception

layer can safely coexist with the traced target in the same

address space (§2.2), and LibTrac’s optimizations aimed

at minimizing interference with the target program (§2.3).

Finally, we describe a LibTrac prototype for Linux (§2.4).
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2.1 Interception of Library Calls

LibTrac interposes between the program of interest and

the shared libraries that the program uses. LibTrac uses the

same mechanism as LFI [6], i.e., it automatically generates

stubs for each intercepted function, without requiring access

to source code, debug symbols, or documentation.

Figure 1. LibTrac architecture.

Every time a library function call is intercepted, LibTrac

executes before and after calling the original function. We

refer to the processing done by LibTrac before the call to

the shared library as the pre-call, and to the processing oc-

curring after the call as the post-call.
When intercepting a function call, the pre-call has to first

save the state of the program, so as to keep the interception

invisible to the hooked function (e.g., no registers may be

altered by LibTrac). Since the number and the types of the

arguments are not known, the pre-call must save all regis-

ters; this is done before starting processing, and registers

are restored before calling the original function. This im-

plies that LibTrac stubs may not store anything on the stack

across the original call, since the stack pointer must be re-

stored as well. LibTrac employs a surrogate stack (see Fig-

ure 1), which is also used to handle nested functions.

In the pre-call, LibTrac retrieves and logs the name of the

called library function, its arguments, the order of the call

(i.e., the number of intercepted library functions currently

on the stack), and the call site address. Before executing the

original function, the return address is modified to ensure

control is returned to the stub after the original returns.

After executing the original library function, the post-

call stage is executed, where LibTrac saves the value re-

turned by the original call and performs various housekeep-

ing before returning control back to the traced program: it

creates a new log file if fork was called, and flushes the log

collector thread’s buffers to disk, if they are full.

LibTrac heuristically determines the number of argu-

ments each library function takes by statically analyzing

the program’s binary: for each call, LibTrac checks which

registers are modified in the instructions preceding the

call, each corresponding to an argument according to the

architecture-specific calling convention. The final number

of arguments is obtained by taking the most often encoun-

tered result over all the calls to the same function. To mea-

sure the accuracy of this heuristic, we compared the docu-

mentation of the library function with the number inferred

by LibTrac—LibTrac got the number of parameters right

96% of the time. Over half of the remaining 4% errors were

due to variadic functions like printf; the rest were induced

by compiler optimizations not yet handled by LibTrac.

2.2 LibTrac – Library Coexistence

When intercepting library calls, two classes of issues

arise. First, the classic method to obtain the address of the

original function in an interceptor would be to invoke the

dynamic linker (e.g., the dlsym function in Unix). Alas,

this can result in an infinite loop when intercepting func-

tions called by dlsym itself. To circumvent this problem,

LibTrac computes the address where each library function

is loaded by analyzing the memory image of the executable

and computing the actual address by adding the offset of

each function to the base address of its library.

Second, programs like Web browsers may decide late in

their execution which libraries to use. For instance, for each

plugin, Firefox on Linux uses the dlopen function to dy-

namically load its associated library only when the plugin

is first invoked. Since LibTrac cannot determine a priori

which shared libraries will be used, it must intercept each

dlopen call and analyze the arguments in order to deter-

mine the name of the external libraries being used.

2.3 Minimizing Interference

LibTrac’s first design goal is to never alter the behavior

of the traced program. This, however, limits the flexibility

of the interceptors. For example, LibTrac can only use li-

brary functions that are reentrant, because LibTrac calling

non-reentrant functions would affect the traced program’s

subsequent calls to that same function (e.g., strtok).

Another design goal is to reduce performance interfer-

ence, because introducing delays in the target program can

alter indirectly its behavior. Such performance interference

can be indeed substantial in the case of existing tools, as we

show in Table 1: we report the time it takes the Apache Web

server to serve 1,000 HTTP GET requests and the Emacs text

editor to indent a C source file in batch mode.

System No tracing LibTrac Callgrind ltrace

Apache 0.2 sec 0.9 sec 3.9 sec 42.0 sec

Emacs 0.2 sec 0.5 sec 14.0 sec 61.0 sec

Table 1. Performance interference of library tracers.
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The two main bottlenecks in library tracers are context

switches and/or I/O operations that record data to disk. To

avoid these bottlenecks, LibTrac writes the collected data

asynchronously to disk, via a dedicated I/O thread, thus

also avoiding context switches. LibTrac also does not suffer

from Callgrind’s performance penalty imposed by run-

ning the target application on a virtual processor. Finally,

compared to statistical profilers like Intel VTune [12], Lib-

Trac has a similarly low overhead, but has the advantage of

collecting all the information regarding library calls—not

just samples—along with all their details.

2.4 Implementation

Our LibTrac prototype runs on Linux as a shim library

loaded via the LD_PRELOAD mechanism, thus being able to

run in the same address space as the traced program. Even

though this mechanism is Unix-specific, LibTrac’s design

can be applied to other operating systems. For example, on

Windows one can use the tools analogous to ldd and readelf,
while the interception itself can be implemented using the

Microsoft Detours [4] library. Interception is by necessity

specific to the OS and CPU architecture, but all the data

analysis algorithms are generic.

Due to the LD_PRELOAD-based interception, LibTrac can

only collect data regarding functions in shared libraries.

Most libraries are shared, so LibTrac addresses the common

case. Nevertheless, LibTrac could use binary instrumenta-

tion to also intercept calls to statically linked libraries, while

keeping the overall design the same.

3 Using LibTrac in Practice

In this section we show how LibTrac can be used to de-

tect patterns of behavior in 13 real-world applications; these

patterns can then be used to improve the efficiency of test-

ing, especially fault injection. We show in Table 2 the target

applications; the last column (imported functions) indicates

the number of library functions used by each application.

We traced the target executables using LibTrac, while

applying a workload specific to the type of application. For

each library function call, LibTrac records its order, call

site, arguments, and the return and errno values. Lib-

Trac’s offline component processes the recorded data and

computes statistics.

For databases, we used the TPC-W and TPC-C bench-

marks [9]. For browsers, we used Google’s V8 bench-

mark suite, which exercises the browser’s JavaScript capa-

bilities [10]. For instant messengers and text editors, we

hand-crafted a representative workload. All programs were

evaluated under two x86_64 Linux distributions (Archlinux

2009.08 and Ubuntu 9.04), running on a quad-core 2GHz

Intel Xeon processor with 4GB of RAM.

Class Program Size Imported

(KB) functions

Databases

MySQL 5.1.41 8806 248

SQLite 3.6.20 51 118

PostgreSQL 8.4.1 4505 282

Web browsers

Epiphany 2.28.1 84 1508

Firefox 3.5.5 88 54

Seamonkey 2.0.4 17500 2027

Instant messengers

BitchX 1.1 1433 153

XChat 2.8.6 632 782

Pidgin 2.6.4 923 1789

Text editors

emacs 23.1 11264 753

gedit 2.28.2 659 1245

scite 2.01 1843 519

nano 2.0.9 165 135

Table 2. Applications used in our study.

In the rest of this section, we provide a few data points on

how applications behave when they encounter naturally oc-

curring failures, how often this happens, and how we can

leverage this information (§3.1). Afterward, we explain

how non-failure behavior can also provide valuable infor-

mation for testing, in particular for fault injection (§3.2).

Additional data can be found at http://lfi.epfl.ch/.

3.1 Behavior in the Face of Failure

In this paper, we say a library function “fails” when it re-

turns an error value (e.g., a NULL pointer) and potentially

sets the errno variable. However, LibTrac allows specify-

ing custom failure-detection criteria on a per-function basis,

which offers far more control than shown here.

Interestingly, LibTrac detected function call failure in all

analyzed programs, even though there were no underlying

failures. This shows that error recovery code should be ex-

pected to be exercised even under “normal” operating con-

ditions. Moreover, in our experiments, when one failure oc-

curred, it typically triggered cascading failures; these were

generally well handled by the applications we studied.

We determined the number of failed calls to each shared

library function and compared it to the total number of calls

to that function and to the total number of intercepted calls.

This directly provides information about function failure

modes. It can be used, for instance, to do fault injection ex-

periments with a realistic distribution of faults, i.e., one that

has similar statistical characteristics to observed real behav-

ior. Moreover, identifying ways in which functions fail in

some parts of the program enables testers to inject similar

failure behavior in other parts of that program where fail-

ures may not normally occur.

In the applications we analyzed, the read function call

was the one that set errno the most often. In fact, the

read function can fail in more than a third of its invoca-
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tions. In Table 3 we show sample data for gedit; the “fail-

ure rate” column indicates what fraction of the correspond-

ing calls resulted in failure. The most frequently set value

of errno is EAGAIN, indicating “resource temporarily un-

available.” This means that a file descriptor was marked for

non-blocking I/O, and no data was ready to be read at the

time when the read call was made.

Name Failures Failure rate

read 901 33%

open 191 25%

fopen 68 74%

Table 3. Top 3 most often failing library function calls

in the gedit text processor.

Which functions have the highest failure rate is strongly

dependent on the class of applications. Table 4 shows re-

sults typical of instant messaging clients: file and network-

related function failures are quite common. Note that a

failed call to close can result in data loss, if the data writ-

ten to the corresponding file descriptor is not flushed.

Name Failures Failure rate

access 56 86%

close 1 33%

connect 1 50%

Table 4. Top 3 most often failing functions in the

BitchX instant messaging client.

We found that usually less than 0.2% of all library calls

result in failure. Yet, among these 0.2%, there exist func-

tions that are called only once and fail (i.e., a failure rate

of 100% for that function). We suspect this has the effect

of disabling certain features in the program; for instance, a

failure to open a file with write access causes gedit to com-

pletely disable the “save” functionality for that file.

LibTrac can detect if, upon encountering a failed library

call, the target program retries the call. For this, LibTrac

uses an offline heuristic analysis: if two calls are made “one

after the other” from the same location, and the first failed,

LibTrac concludes that the second one was a retry. We de-

fine “one after the other” in terms of the number N of in-

tercepted calls separating the two calls. The value of N was

computed by starting from a small value and gradually in-

creasing it until the heuristic started producing false posi-

tives. We found N=10,000 calls to be suitable for most ap-

plications with a GUI and generally for applications with

deep call stacks; smaller values offer better accuracy for

other applications (e.g., console-based ones). We manually

analyzed the accuracy of this heuristic for gedit, and Table 5

Name Correctly detected Not detected

read 840 22

open 185 2

fopen 56 3

Table 5. Number of detected and missed function re-

tries for gedit, using LibTrac’s offline heuristic.

summarizes the results.

In the case of editors or text processors, like gedit, more

than half of the read retries eventually succeed.

3.2 Behavior under Success Conditions

Interesting observations can be made even when looking

at successful operation. For example, for practically all ap-

plications, the number of times a library function is called

drops quickly: a difference of more than 40% is common

between the first and the second most called functions, as

illustrated for Pidgin in Figure 2. The number of times a

function is called is an important consideration when decid-

ing which is the most “promising” candidate function for

fault injection.
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Figure 2. Top 10 most called functions in Pidgin, with

their respective order (i.e., number of other library

calls on the stack at the time of the considered call).

In general, the deeper a fault occurs or is injected, the

higher the probability that the fault does not propagate to the

application. In other words, injecting an error in an order-

0 function is more likely to find application bugs than in-

jecting in an order-10 function—in the latter case, there are

more layers that could mask the injected fault and prevent

its propagation to the application. In fact, injecting at a high
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order will more likely test the library than the application.

The order average, however, is not sufficient to decide on

how to construct a test scenario—the variance of the order

is important as well. In Table 6 we show the average func-

tion order and its variance for applications with graphical

user interfaces, like instant messengers and editors. Usu-

ally, GUI functions are called as zeroth order functions, and

they in turn call other library functions; in terms of fault

injection, chances are that injected faults will be handled

directly by the graphics library. We see that a high average

call order is associated with a high variance, which suggests

that faults injected in high-order functions still have a fairly

high chance of propagating to the applications.

Program Average Variance

Pidgin 3.26 5.07

XChat 2.44 3.04

BitchX 0.62 0.24

Firefox 2.81 5.07

Seamonkey 2.46 5.23

Epiphany 2.38 4.11

Table 6. Library function call-order average and vari-

ance for instant messengers and browsers.

In the remainder of this section, we present a few inter-

esting characteristics of individual classes of applications,

as revealed by LibTrac.

Instant Messengers: Despite IM clients being network

applications, we found that string-related functions (not net-

work functions) are the ones called most often. Such func-

tions are not particularly interesting for library-level fault

injection, because their outcome depends solely on their ar-

guments and, when they fail, they do not return error val-

ues. However, this dominance of string functions can point

the test engineer in another direction: the large amount of

text processing done by such applications can make them a

good target for fuzz testing [7], a technique which aims to

find bugs by providing random or malformed inputs.

The top-10 most called library functions for Pidgin and

XChat are quite similar (Figures 2 and 3), even though they

do not share the same code and were tested on different in-

stant messaging networks. There is however a difference

in their call orders. The distribution of the locations of

call sites (places from where a function is called) is simi-

lar as well, suggesting perhaps that the applications’ design

is similar. Testing scenarios that are effective for one of the

programs may offer good results for the other as well.

Browsers: Firefox and Seamonkey exhibited similar li-

brary usage, including average call order and variance. In

this case, the results were expected, since the applications

share code by using the same HTML rendering engine.
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Figure 3. Top 10 functions called for XChat, with

their respective order.

Text Editors: The editors we analyzed use mostly string

processing functions, memory allocation functions, and

calls to the C standard library.

In the case of Emacs, however, we noticed substantially

fewer library calls than in any other editor; in some cases

there were an order of magnitude fewer for the same work-

load (e.g., much fewer calls to strcmp than in gedit). We

suspect this is because Emacs, being written in Lisp, uses

a large number of internal functions and does not rely on

external libraries, thus evading LibTrac’s interception. Fig-

ure 4 shows the top-10 most called functions seen by Lib-

Trac, ordered by the number of different call sites.

Databases: We found memory management and mem-

ory manipulation functions to be the most frequently called
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ones in database systems. For example, the memcpy func-

tion is the most often called in MySQL, and it appears in

the top-10 for both PostgreSQL and SQLite. In the case of

SQLite, we observed a large number of memory allocation

calls compared to the other database systems, suggesting

that SQLite does not use a custom memory allocator.

We sometimes observed imbalances in func-

tions that normally appear in pairs. For example,

pthread_mutex_unlock is sometimes called more often

than pthread_mutex_lock. The same applies for the

free/malloc pair, where free is called more often than

malloc. The extra calls to free receive a NULL argument,

which turns into a no-op. Perhaps this is a design choice

that chooses code readability over squeezing out the last

ounce of performance.

Good injection scenarios can be suggested by these im-

balances reported by LibTrac. For example, a mutex must

be unlocked regardless of whether its holder terminates suc-

cessfully or not. Yet, a seldom-occurring error recovery

path may miss the unlock instruction. Therefore, it can be

of interest to inject errors while the mutex is held, and to

verify that it is eventually properly released.

Another common pairing is access and open. The

access function is used to verify that the specified file can

be opened with the desired attributes, as in:

if (access(file, R_OK) != 0) {

exit(1);

}

f = fopen(file, "r");

This code pattern constitutes a “time of check to time

of use” bug when executed by a setuid program. A race

condition can occur, in which another process modifies the

file between the call to access and the call to open. This

can lead to a compromise of the system if an attacker can

replace the original file with a symbolic link to another (re-

stricted) file, which the setuid program will unknowingly

open and overwriting or disclose to unauthorized parties.

4 Related Work

Using library interposition for analyzing programs is not

new: historically, it has found various uses in research and

industry, ranging from record/replay to profiling [2]. In-

tercepting library calls is also done in the standard Linux

library tracer, ltrace [5], but it introduces large overhead be-

cause the interception uses breakpoints. Performance im-

provements were made by [3] using binary module injec-

tion and function redirection, but still the overhead is high.

Of course, this offers more flexibility, by allowing the trac-

ing of both internal functions and library calls, but the high

overhead can impact the representativeness of observed ap-

plication behavior.

In the context of this prior work, LibTrac’s contribution

is a way to trace library calls with low overhead. Further-

more, none of the existing tools can analyze program behav-

ior from an error handling point of view—most tools offer

only limited information that is useful for testing.

5 Conclusion

We presented LibTrac, a tool that analyzes the interac-

tion between applications and shared libraries with the main

purpose of providing useful information for testing. Lib-

Trac has an order of magnitude less overhead than other

library tracers and answers important questions related to li-

brary function usage patterns. We evaluated LibTrac on four

classes of applications, totaling 13 real-world programs,

and presented here a subset of the facts we learned about

these applications.
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