
The Case for Performance Interfaces
for Hardware Accelerators

Rishabh Iyer
1
, Jiacheng Ma

1
, Katerina Argyraki

1
, George Candea

1
, Sylvia Ratnasamy

2

1
EPFL, Switzerland

2
UC Berkeley

Abstract
While systems designers are increasingly turning to hard-

ware accelerators for performance gains, realizing these

gains is painstaking and error-prone. It can take several

person-months to determine if a given accelerator is a good

fit for a given piece of code, and accelerators that cost mil-

lions of dollars to build can slow down the very systems they

were designed to accelerate.

We argue that hardware accelerators must come with per-
formance interfaces—interfaces that provide usable informa-

tion about the accelerator’s performance behavior just like

semantic interfaces do for functionality—to facilitate their

correct use. Since accelerators do not provide new function-

ality and are only useful if they improve system performance,

performance interfaces are as integral to their correct use as

semantic interfaces.

ACM Reference Format:
Rishabh Iyer, Jiacheng Ma, Katerina Argyraki, George Candea,

Sylvia Ratnasamy. 2023. The Case for Performance Interfaces for

Hardware Accelerators. InWorkshop on Hot Topics in Operating Sys-
tems (HOTOS ’23), June 22–24, 2023, Providence, RI, USA. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3593856.3595904

1 Introduction
With the decline of Moore’s law, system designers are in-

creasingly reliant on hardware accelerators for performance

improvements. From datacenters to hand-held devices, hard-

ware accelerators are used to speed up a wide variety of

applications such as machine learning [4, 33, 34, 45], video

processing [21, 54], compression, encryption [14, 29] and

system infrastructure tasks [5, 22, 26, 36].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HOTOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00

https://doi.org/10.1145/3593856.3595904

However, designing and building systems that use acceler-

ators correctly (i.e., fully extract their performance benefits)

is a challenging task, because developers have little to no vis-

ibility into an accelerator’s expected performance behavior.

Every accelerator bakes certain design choices into silicon,

such as optimizing throughput over latency [49] or mak-

ing assumptions about the typical workload [36], and if the

software is a poor fit for these choices, running it on the

accelerator may result in worse performance [37, 40, 41].

Since building an accelerator requires large teams and takes

years, such efforts that miss their mark cost several million

dollars [2].

The goal of this work is to facilitate the correct use of ac-

celerators by enabling developers to answer three frequently

asked questions about accelerator performance. During the

system design phase, when no code has been written, de-

velopers should be able to answer: “What throughput and
latency can I expect from this accelerator for my expected work-
load?” and “Which of these accelerators is the best fit for my
expected workload?”. Finally, when trying to optimize the per-

formance of an existing implementation, developers should

be able to answer: “What performance can I expect from my
code if I offload (a part of it) to this accelerator?”

The onlyway developers can answer these questions today

is by porting the code to the accelerator, writing representa-

tive tests, and benchmarking it—a process that ranges from

tedious to impossible. In the best case, this takes several

person-months [48, 51, 52] since each accelerator exposes a

different Application Programming Interface (API) and Soft-

ware Development Kit (SDK). In other cases, such as during

the system design stage when no code has yet been written,

or when the accelerator is built by a manufacturer without

access to the code that would be offloaded, it is downright

impossible [23].

We argue that accelerators must come with performance
interfaces [30]—constructs that summarize performance be-

havior just like semantic interfaces summarize functionality—

to ensure their correct use. Semantic interfaces (e.g., code

documentation, header files) enable developers to quickly

and correctly answer the above questions for functionality.

Developers routinely use such interfaces to determine the

functionality of third-party libraries, which library is best

suited to their requirements, or how incorporating a library

will affect their system’s functionality as a whole. Since an

https://doi.org/10.1145/3593856.3595904
https://doi.org/10.1145/3593856.3595904

accelerator’s currency is performance—all functionality can

be implemented on general-purpose hardware—we argue

that performance interfaces are as integral to their correct

use as semantic interfaces.

What should performance interfaces for accelerators look

like? Who provides them?We propose three candidate repre-

sentations: (1) natural language text akin to code documen-

tation, (2) simple executable programs akin to specifications,

and (3) a Petri-net [47] based model akin to a precise inter-

mediate representation (IR). Each representation provides a

different balance between human readability and precision,

allowing users to pick the one best suited to their use case.

We envision these interfaces being provided by accelerator

vendors and shipping with the accelerator, just like semantic

interfaces are provided today.

Are such performance interfaces for accelerators feasi-

ble? Our initial experiences and discussions with accelerator

builders give us three reasons to be optimistic. First, since

accelerators are much simpler than today’s general-purpose

hardware, we can rely on high-fidelity models from the 80s

and 90s (summarized in [19]). Second, since a performance

interface only describes performance and not functional-

ity [30], it can abstract away all implementation details that

are only relevant to functionality, and it could be much sim-

pler than the underlying implementation. Finally, discussions

with accelerator builders indicate that they have an intuitive

understanding of the factors that impact performance. So,

we believe that, for them, writing a performance interface

for their hardware is on par (in terms of difficulty) with a

software developer writing a semantic interface for their

software.

In summary, we argue that performance interfaces for ac-

celerators are both necessary and feasible. Hardware today

provides us with semantic modularity and interfaces that

provide firm foundations for the design of complex systems.

In contrast, we do not have equivalent performance mod-

ularity or interfaces, and that ship has arguably sailed for

general-purpose hardware. Accelerators provide a golden op-

portunity to correct this and ensure that hardware provides

reliable performance interfaces that systems software can

build upon. We believe that the widespread adoption of such

interfaces could be the first step towards a future where we

can build systems with well-understood performance, just

like types and object-oriented programming enabled us to

build programs that were orders of magnitude bigger, better,

yet safer than any that came before.

2 System developers are flying blind!
We now describe three scenarios that depict how lack of

visibility into accelerators’ expected performance, makes de-

signing and building systems that use them a challenging

task. We use the term “accelerators” to refer to fixed-function

ASICs whose functionality is baked into silicon, such as the

TPU [34], the accelerators available on SoC-based Smart-

NICs [7], Protoacc [36], and Inferentia [4]. We do not con-

sider reprogrammable hardware such as FPGAs and GPUs.

Example #1: System on Chip (SoC) designer
Imagine you are leading the design of the SoC for a Smart-

NIC. A SmartNIC usually comprises a few general-purpose

cores along with hardware accelerators for compression, en-

cryption, RDMA, NVMe virtualization, NVMe-over-fabrics,

hardware clock synchronization, etc. These accelerators are

usually designed by third-party entities and sold as IP blocks

which are put together as an SoC [28].

The early stages of any SoC design requires answering

the question: “Which accelerator implementations (IP blocks)
should my SoC include and how big (area) must each be?”

There is no good way to answer this question today [27].

Simulating each configuration by porting example work-

loads is typically infeasible or outright impossible. In the

best-case scenario, the search space of all possible IP block

combinations is too large. In the worst case, you might not

even have access to the code you are building the accelerator

for. For instance, cloud providers (e.g., AWS, Azure) who

have custom accelerators manufactured for them typically

do not share their proprietary code with the manufacturer

(e.g., Intel, NVIDIA).

As a result, SoC designers typically rely on heuristics and

accumulated wisdom to decide SoC configurations [27]. This

can lead to expensive mistakes because designing an SoC

typically takes 2-3 years and costs several million dollars [2].

Example #2: Infrastructure stack developer
Imagine you are the engineer responsible for managing the

RPC stack at an enterprise datacenter. Currently, your stack

runs on commodity servers, but you are considering offload-

ing it to an accelerator. Your candidate hardware platforms in-

clude new servers with accelerators for RPC serialization/de-

serialization, such as Protoacc [36] or Optimus Prime [49]

or one of several SmartNICs.

Ideally, you want to answer questions such as: “Which
available accelerator/SmartNIC offers me the best performance
per dollar?”, “Howmany CPU cores can I save with an offloaded
stack?”, and “What is the performance impact of offloading
different portions of my stack?”
The only way to gain any intuition with respect to the

above questions is to purchase every candidate accelerator,

port the code, and benchmark it—a process that can take sev-

eral person-months per accelerator [48, 51, 52]. Most com-

mercial accelerators only describe the functionality they ac-

celerate [7] and the few that describe expected performance

only provide upper/lower bounds (e.g., maximum sustain-

able throughput) or performance for standard benchmarks

(e.g., OVS for SmartNICs) [43]. Even once you purchase the

accelerator, you do not gain access to any additional per-

formance details; you must port your code and benchmark

it. This is typically a painstaking process given that each

accelerator exposes a vendor-specific API and SDK [52].

We want to emphasize that acquiring any accelerator

and blindly offloading the code is not only suboptimal but

can also degrade system performance. Every accelerator

trades off generality for efficiency and bakes certain as-

sumptions about the workload into silicon. Among RPC data

(de)serialization accelerators for example, Optimus Prime

is best suited for small data objects (<= 300B), while Pro-

toacc is best suited for larger data objects (>= 4KB) [36]. For

workloads comprising small data objects (e.g., short strings),

Protoacc can perform worse than a regular Xeon due to the

cost of transferring the data to and from the accelerator [36].

Thus, system designers cannot blindly deploy any particular

accelerator and hope to reap performance benefits.

Example #3: Compilers for accelerators
Just like the developers above, toolchains that use accelera-

tors also suffer from the lack of performance visibility. We

demonstrate this using the example of TVM [12], a widely

used state-of-the-art compiler for machine learning.

To optimize the latency of deep-learning inference, TVM

“auto-tunes” [13] code to available accelerators using a two-

step process. In the first step, the compiler extensively pro-

files the accelerator using multiple candidate instruction

sequences and extracts a program-specific cost model. In the

second, the compiler leverages a learning-based search algo-

rithm that generates optimized code based on the extracted

model.

However, autotuning code is time-consuming and is bot-

tlenecked by the first (profiling) step. This is because the

compiler has no way to quickly and accurately answer the

question: “What latency can I expect when running this se-
quence of instructions on the accelerator?”. The compiler is

forced to treat the accelerator as a black box and profile it

either by running cycle-accurate simulations or by synthe-

sizing and running the code directly on the accelerator. Since

both the above options are known to be slow [6] autotuning

code can take several minutes to a few hours.

In summary, the design (examples #1 and #2) and imple-

mentation (example #3) of systems that use accelerators is

impaired by the lack of usable information about their per-

formance behavior. We believe that the status quo is equiva-

lent to writing software without semantic interfaces. With

accelerators expected to become ubiquitous in the near fu-

ture [44, 61], this status quo must change.

3 Performance Interfaces for Accelerators
We now describe our proposal for what performance in-

terfaces for accelerators should look like. Throughout this

section, we use 4 open-source accelerators as running ex-

amples: a Bitcoin miner [8], a JPEG decoder [35], an RPC

message (de)serializer from Google named Protoacc [36] and

the VTA deep-learning accelerator [42].

We propose three candidate representations for perfor-

mance interfaces: (1) natural language (English), (2) simple,

executable programs (Python), and (3) a Petri net [47]. We

picked these three representations as counterparts to widely

used representations for semantic interfaces: we expect the

English text to resemble semantic interfaces extracted from

code documentation by frameworks such as Doxygen [18]

and Javadoc [32], the Python programs to resemble func-

tional specifications, and the Petri nets to resemble an inter-

mediate representation like LLVM.

Each representation provides a different balance between

human readability (being smaller and simpler than the imple-

mentation) and precision (being accurate enough to reason

about the several factors that impact performance). Natu-

ral language interfaces are the easiest to read but can only

describe a few key performance properties. Programs are

harder for developers to read but can provide more details

such as the specific request types the accelerator is best

suited for. Finally, Petri nets are not human-readable but

can accurately (< 2% average error in our experiments) pre-

dict the accelerator’s throughput and latency for arbitrary

workloads.

We expect the first two representations to be most useful

during the system design stage, when either no code has

been written (example #1 in §2) or when developers and

tools do not have access to the accelerator (example #2). We

expect the Petri-net IR to be most useful during the system

implementation and optimization stages (example #3).

Natural language interfaces
Fig. 1 illustrates three interfaces as natural language text

for the JPEG decoder, Bitcoin miner, and Protoacc. All three

interfaces describe only the key performance aspects at a

high level. For the JPEG decoder, the latency is inversely

proportional to the compression rate (
𝑜𝑢𝑡𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒

𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
) since

the accelerator must perform a similar computation on every

input byte. For the Bitcoin miner, a user can simultaneously

configure both the latency and size of the accelerator using

the parameter Loop. This is because the accelerator imple-

ments a SHA-256 hash calculation with Loop controlling the

extent to which the hash function’s loop is unrolled in hard-

ware. Finally, Protoacc’s throughput decreases as the degree

of nesting within a message increases, since each nesting

involves a pointer-chasing operation.

Latency is inversely proportional to the input image’s compression rate

Latency (cycles) is equal to the configuration parameter Loop. However,
the area occupied by accelerator grows inversely with Loop.

Throughput decreases as the degree of nesting in a messages increases

Figure 1: Example interfaces as English text for the JPEG
decoder, Bitcoin miner, and Protoacc (top to bottom).

This simple representation of performance has two ben-

efits: (1) It helps developers understand how performance

varies across inputs for what are otherwise black boxes. For

instance, the SoC designer in example #1 could use the inter-

face of the Bitcoinminer to decide howmuch area on the chip

she should allocate to it while knowing how that impacts

overall latency. (2) It offers the lowest barrier to adoption. In

all our discussions with accelerator builders, they were able

to produce such interfaces within seconds. We envision such

interfaces being similar to the Big-𝑂 notation, which, despite

providing only asymptotic bounds, continues to be used even

in today’s microsecond-scale systems (e.g., Redis [55]).

Interfaces as executable programs
Figures 2,3 provides examples of latency interfaces as Python

programs for two accelerators: the JPEG decoder and Pro-

toacc. Just like a specification, the programs take the same

inputs as the accelerator—an image and the message to be

serialized, respectively—but instead of describing how the

accelerator computes the correct output, they only describe

the accelerator’s latency and throughput as a function of the

input.

Such interfaces provide a more precise characterization

of accelerator performance than the natural language inter-

faces above. For example, the JPEG decoder’s latency inter-

face not only provides the constant factors in the latency

expression but also indicates that latency has an upper bound

(𝑠𝑖𝑧𝑒 ∗ 136.5). Similarly, Protoacc’s throughput interface tells

us the achievable throughput for each of its read and write

stages, allowing developers to identify which messages are

bottlenecked by each stage. Providing a closed-form for-

mula for Protoacc’s latency is hard. This is because the read

and write latencies for a single message overlap in com-

plex, message-dependent ways. Hence the latency interfaces

in Fig. 3 only provide an upper and lower bound, which is

still much better than no information at all.

Interfaces as Python programs can provide reasonably

accurate performance predictions. We evaluated JPEG’s la-

tency and throughput interfaces using 1500 random images

and observed an average (maximum) prediction error of 2.1%

(10.3%) and 2.2% (11.2%) respectively. Similarly, when evalu-

ating Protoacc’s throughput and latency interfaces using 32

message formats from its test suite, we observed an average

1 def latency_jpeg_decode(img):
2 size = img.orig_size /64
3 return max(size *136.5 ,
4 size /64*((5/ img.compress_rate)*3+6) *1.5)
5

6 def tput_jpeg_decode(img):
7 # Images are processed one -by-one
8 return 1/ latency_jpeg_decode(img)

Figure 2: Interfaces as Python programs for the JPEGdecoder.

1 def read_cost(msg):
2 cost=0
3 for sub_msg in msg:
4 cost+= read_cost(sub_msg)
5 return cost+6 + avg_mem_latency *2 + (4+

avg_mem_latency) * ceil(msg.num_fields /32)
6

7 def tput_protoacc_ser(msg):
8 sub_msg_cost = 0
9 for sub_msg in msg:
10 sub_msg_cost += read_cost(sub_msg)
11 read_tput = 1/((4+ avg_mem_latency)*ceil(msg.

num_fields /32) + sub_msg_cost)
12 write_tput = 1/(5+ msg.num_writes)
13 return min(read_tput ,write_tput)
14

15 def min_latency_protoacc_ser(msg):
16 return (5+msg.num_writes)*avg_mem_latency
17

18 def max_latency_protacc_ser(msg):
19 sub_msg_cost = 0
20 for sub_msg in msg:
21 sub_msg_cost += read_cost(sub_msg)
22 return min_latency_protoacc_ser(msg) + (4+

avg_mem_latency)*ceil(msg.num_fields /32) +
sub_msg_cost

Figure 3: Interfaces as Python programs for Protoacc.

(maximum) error of 5.9% (13.3%) for throughput, while the

latency was always within the predicted bounds.

We envision such interfaces being used during the sys-

tem design stage to (1) quickly compute the speedup for the

computation offloaded to the accelerator and (2) compare

multiple accelerator implementations that provide identical

functionality. For instance, the infrastructure stack designer

in example #2 could use such interfaces to compute which

RPC data transformation accelerator or SmartNIC gives her

the maximum speedup per dollar for her expected work-

load, by running the corresponding Python programs on

representative RPC objects.

Formal Petri net interfaces
With this representation, we seek to create a “performance

IR” for accelerators, i.e., an abstraction that enables tools (as

opposed to humans) to precisely reason about accelerator

performance, just like how LLVM IR [39] enables compilers

to reason about code semantics. We cannot reuse existing IRs

because they are designed for software’s sequential execution

model. In contrast, accelerators typically comprise multiple

pipeline stages operating in parallel, leading to complexities

such as backpressure, internal queueing, and asynchronous

processing.

Acce- Avg (max) prediction error Complexity
lerator Latency Throughput w.r.t implem.
JPEG 0.09% (0.50%) 0.09% (0.51%) 2.5%

VTA 1.49% (9.3%) 1.44% (8.55%) 2.6%

Table 1: Prediction accuracy and complexity of interfaces as
Petri nets. Complexity is measured as the ratio of LOC in the
Petri net as compared to the LOC in the implementation.

We therefore choose to represent the performance IR as

Petri nets [47], a class of graphs designed for modeling paral-

lel asynchronous systems. Petri nets consist of four elements:

places, tokens, transitions, and edges. Places represent data

queues (e.g., buffers, registers), tokens represent individual

data units flowing through the system, transitions represent

data transformations (e.g., an ALU computation) and edges

connect places and transitions. The flow of data through the

net is determined by the firing of its transitions. Transitions

fire whenever all their input places have sufficient tokens;

when they do, they consume tokens from their input places

and produce tokens in their output places.

We model accelerators using Petri nets as follows: For

each processing element in the accelerator, we write a tran-

sition function that a) captures its delay, i.e., how long it

takes to process input data (tokens) and b) transforms the

tokens to ensure that downstream transition functions can

accurately compute their delays. Since multiple transitions

can fire simultaneously, and edges capture inter-element de-

pendencies, our Petri net-based performance IR accurately

captures both the accelerator’s parallel execution model and

factors such as internal queuing and backpressure. Thus, the

Petri net represents a circuit that is “performance equivalent”

to the accelerator’s circuit.

We manually derived Petri net interfaces for two acceler-

ators: the JPEG decoder and VTA. We evaluated their pre-

diction accuracy using 50 random images and 1500 random

code sequences respectively (Table 1). We observed that the

JPEG decoder’s Petri net predicted both latency and through-

put with an average and maximum error of 0.09% and 0.5%

respectively, both of which are about 20× lower than the

corresponding errors of the Python programs. For the more

complex VTA, the average and maximum prediction error

is higher, about ≈ 1.5% and ≈ 9% respectively. These errors

arise due to us deliberately cutting corners to make the man-

ual derivation of the Petri nets easier. We are confident that

with extra effort, the Petri nets can be fully precise.

To show how the Petri net-based IR can be immediately

useful, we added support for it in TVM’s auto-tuning engine

and used it to profile VTA for the 1500 code sequences. We

observed that the Petri-net interfaces lead to a maximum

(minimum) speedup of 1, 312 × (2.1×) over state-of-the-art
cycle-accurate simulation [63]. This speedup stems from the

fact that the Petri net does not concern itself with the seman-

tics of the accelerator, but rather it only aims to have the

same performance properties. This makes it much simpler

than the accelerator’s internal circuit (Table 1) and enables

it to run much faster.

A natural question at this point is: “Why propose the pre-

vious representations when we can have a precise IR?” The

answer is that Petri nets are hard to understand for a de-

veloper unfamiliar with the accelerator’s internal circuitry.

Such developers (which we expect to be the majority) can

only use tools to analyze or run the Petri net. In contrast, de-

velopers can quickly eyeball the human-readable interfaces

in English or Python and tell how performance will vary

across inputs.

In summary, we propose three representations for acceler-

ator performance interfaces that enable developers and tools

to reason about latency and throughput at different levels

of precision. Our initial experiences make us optimistic that

such interfaces are both useful and feasible. However, there

remain several challenges that must be overcome for this

vision to become a reality; we discuss these further in §5.

4 Related Work
Performance modeling:While traditional approaches to

summarizing performance (such as upper bounds and bench-

mark scores) are useful, they are ill-suited to being perfor-

mance interfaces because they cannot tell developers what to
expect for their code and workload. For instance, an acceler-

ator like Optimus Prime can sustain a maximum throughput

of 33 Gbps, but this drops to 14 Gbps for realistic workloads.

Similarly, while standardized benchmark suites have been

widely used in the computer architecture (e.g., SPEC [59]),

databases (e.g., TPC-C [62]) andmachine learning (e.g., Dawn-

bench [17]) communities, developers must extrapolate how

similar their code is to each program in the benchmark suite

if they are to know what performance to expect [50].

We were heavily inspired by more recent work on per-

formance modeling of both software [15, 16, 24, 25, 30, 31,

38, 52, 56, 64, 65] and hardware [9, 10, 19, 20, 27, 28, 37]. In

particular, we borrowed the notion of performance interfaces

as programs from PIX [30] and Freud [56], although both

use such interfaces for software running on general-purpose

hardware and neither can reason about throughput.

Better compilers for accelerators: To eliminate the effort

of porting code across accelerators, researchers have pro-

posed several compilers that automatically generate code

that runs on different accelerators [12, 46, 53, 57]. We see

such compilers as being complementary to interfaces be-

cause they are only useful once the developer has both an

implementation and access to the accelerator, and cannot

answer questions during the system design stage. Further-

more, compilers themselves can benefit from performance

interfaces to generate better code, as shown in example #3.

5 Open Questions
Are performance interfaces for accelerators feasible as
accelerator complexity increases? Our initial experience
with Petri nets makes us optimistic. After all, VTA is a fairly

complex accelerator with internal queuing, parallelism, and

deep pipelines, and our Petri net model was able to sum-

marize its throughput and latency for arbitrary instruction

sequences with an average prediction error of < 2%.

That said, there are still several open challenges, most of

which do not arise from the accelerator’s internal circuitry,

but rather from how it interacts with other hardware struc-

tures, such as the TLB and interconnects. For example, since

co-processors like Protoacc access memory via the TLB [36],

the Petri net model would need to include the TLB state

to be able to reason precisely about memory access laten-

cies. Similarly, a Petri net for a SmartNIC will likely need to

include a model of the interconnect, since it can have a sig-

nificant impact on performance [41]. One possible solution

to this challenge could be to develop individual Petri nets

for such components once and reuse them across multiple

accelerators.

How should accelerator vendors produce performance
interfaces for their hardware? As a start, we believe that
accelerator designers can manually produce performance

interfaces, akin to how software developers are responsible

for writing semantic interfaces. We found that accelerator

builders usually possess an intuitive understanding of the fac-

tors that impact the performance of their hardware and can

immediately come up with natural language interfaces that

describe whether their accelerators are memory-/compute-

bound and what aspects of the input workload are likely

to lead to performance variability. Producing the other two

representations is harder and typically took us ≈ 2 person-

days to extract and test, once we had fully understood the

accelerator’s implementation. Contrary to our expectations,

the Python programs took as long as the Petri nets, since it

was often hard to decide what level of abstraction to expose

in the program while translating a circuit into a Petri net

was a fairly mechanical process.

That said, we believe that building tools that can automati-

cally extract interfaces as Petri nets or Python programs from

accelerator implementations is a promising direction for fu-

ture work. While there has been recent work on tools for

automatic (semantic) analysis of Verilog code [1, 3, 11, 58, 60],

using these tools to analyze the performance of production

ASICs remains an open question.

How can one use performance interfaces to reason
about end-to-end performance? Predicting the impact of

a partial offload on end-to-end application performance is a

hard problem. To do so accurately, onemust take into account

factors such as how the original codebase will need to change,

data movement costs, etc. whichwill vary from application to

application. Merely plugging performance interfaces into the

original code is not sufficient; while the interface can return

performance, it will not return a semantically meaningful

response andmay cause the calling code to behave arbitrarily.

Nevertheless, we believe that executable performance in-

terfaces such as Python programs and Petri nets can enable

developers to answer this question with a little extra effort. A

strawman solution would work as follows: The application is

first run with a software implementation of the accelerator’s

API and all requests and responses are saved. The application

is then re-run with a simple simulator that spins idly for the

latency computed by the interface for the input request and

then returns the correct, saved response. Since accelerator

invocations are typically pure functions, such a strawman

should work, at least for deterministic applications.

6 Conclusion
We argue that hardware accelerators should ship with inter-

faces that provide usable information about their expected

performance behavior and that such interfaces are as inte-

gral to their correct use as semantic interfaces that describe

functionality. We believe that such interfaces can be the

first step toward a future where we build systems with well-

understood performance, just like types and object-oriented

programming enabled us to build programs that were orders

of magnitude bigger, yet safer than any that came before.

However, any such interfaces will have to come from hard-

ware vendors, and they will only do so if there is sufficient

pressure from their primary customers, i.e., the systems com-

munity. Hence, we invite the community to actively pursue

research on what performance information these interfaces

should expose, how they can be used, and how they can be

provided by hardware vendors.

7 Acknowledgements
We thank our shepherd Jialin Li and the HotOS reviewers

for their detailed feedback that significantly improved the

paper. We are also grateful to the many people whose in-

puts helped shape our thoughts—Thomas Bourgeat, Mahyar

Emami, Narek Galstyan, Siddharth Gupta, Sagar Karandikar,

Sahand Kashani, and James Larus.

References
[1] Andraus, Z. S., Liffiton, M. H., and Sakallah, K. A. Reveal: A

Formal Verification Tool for Verilog Designs. In Logic for Programming,
Artificial Intelligence, and Reasoning (2008).

[2] The Economics of ASICs. https://www.electronicdesign.com/

technologies/embedded-revolution/article/21808278/ensilica-the-

economics-of-asics-at-what-point-does-a-custom-soc-become-

viable.

[3] Athalye, A., Kaashoek,M. F., and Zeldovich, N. VerifyingHardware

Security Modules with Information-Preserving Refinement. In Symp.
on Operating Sys. Design and Implem. (2022).

[4] AWS Inferentia Accelerators for Deep Learning Inference. https://aws.

amazon.com/machine-learning/inferentia/.

[5] AWS Nitro System. https://aws.amazon.com/ec2/nitro/.

[6] Beamer, S. A Case for Accelerating Software RTL Simulation. In IEEE
Micro (2020).

[7] NVIDIA Bluefield-2 DPU. https://www.nvidia.com/content/dam/en-

zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-

dpu.pdf.

[8] Open Source Bitcoin Miner. https://github.com/progranism/Open-

Source-FPGA-Bitcoin-Miner.

[9] Boran, N. K., Yadav, D. K., and Iyer, R. Performance Modelling and

Dynamic Scheduling on Heterogeneous-ISA Multi-core Architectures.

In Intl. Symp. on VLSI Design and Test (2019).
[10] Boran, N. K., Yadav, D. K., and Iyer, R. Classification based scheduling

in Heterogeneous ISA Architectures. In Intl. Symp. on VLSI Design and
Test (2020).

[11] Chattopadhyay, S., Lonsing, F., Piccolboni, L., Soni, D., Wei, P.,

Zhang, X., Zhou, Y., Carloni, L. P., Chen, D., Cong, J., Karri, R.,

Zhang, Z., Trippel, C., Barrett, C. W., and Mitra, S. Scaling Up

Hardware Accelerator Verification using A-QED with Functional De-

composition. In Formal Methods in Computer Aided Design (2021).

[12] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E. Q., Shen, H., Cowan,

M., Wang, L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy,

A. TVM: An Automated End-to-End Optimizing Compiler for Deep

Learning. In Symp. on Operating Sys. Design and Implem. (2018).
[13] Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L., Guestrin,

C., and Krishnamurthy, A. Learning to Optimize Tensor Programs.

In Advances in Neural Information Processing Systems (2018).
[14] Chiosa,M., Maschi, F., Müller, I., Alonso, G., andMay, N. Hardware

Acceleration of Compression and Encryption in SAP HANA. In Intl.
Conf. on Very Large Databases (2022).

[15] Coppa, E., Demetrescu, C., and Finocchi, I. Input-sensitive Profiling.

In Intl. Conf. on Programming Language Design and Implem. (2012).
[16] Coppa, E., Demetrescu, C., Finocchi, I., and Marotta, R. Estimating

the Empirical Cost Function of Routines with Dynamic Workloads. In

Intl. Symp. on Code Generation and Optimization (2014).

[17] DAWNBench: An End-to-End Deep Learning Benchmark and Compe-

tition. https://dawn.cs.stanford.edu/benchmark/.

[18] Doxygen. https://www.doxygen.nl.

[19] Eeckhout, L. Computer Architecture Performance Evaluation Meth-

ods. In Synthesis Lectures on Computer Architecture (2010).
[20] Eyerman, S., Eeckhout, L., Karkhanis, T., and Smith, J. E. A Per-

formance Counter Architecture for Computing Accurate CPI Com-

ponents. In Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (2006).

[21] Facebook: Video transcoding with Mount Shasta. https:

//engineering.fb.com/2019/03/14/data-center-engineering/

accelerating-infrastructure/.

[22] Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A.,

Andrewartha,M., Angepat, H., Bhanu, V., Caulfield, A.M., Chung,

E. S., Chandrappa, H. K., Chaturmohta, S., Humphrey, M., Lavier,

J., Lam, N., Liu, F., Ovtcharov, K., Padhye, J., Popuri, G., Raindel,

S., Sapre, T., Shaw, M., Silva, G., Sivakumar, M., Srivastava, N.,

Verma, A., Zuhair, Q., Bansal, D., Burger, D., Vaid, K., Maltz, D. A.,

and Greenberg, A. G. Azure Accelerated Networking: SmartNICs in

the Public Cloud. In Symp. on Networked Systems Design and Implem.
(2018).

[23] Formal Methods Only Solve Half My Problems. https://brooker.co.za/

blog/2022/06/02/formal.html.

[24] Fu, S., Gupta, S., Mittal, R., and Ratnasamy, S. On the use of ML

for blackbox system performance prediction. In Symp. on Networked
Systems Design and Implem. (2021).

[25] Goldsmith, S., Aiken, A., andWilkerson, D. S. Measuring empirical

computational complexity.

[26] Google-Intel Infrastructure Processing Unit (IPU). https:

//www.intel.com/content/www/us/en/products/details/network-

io/ipu/e2000-asic.html.

[27] Hill, M., and Janapa Reddi, V. Gables: A Roofline Model for Mobile

SoCs. In Intl. Symp. on High-Performance Computer Architecture (2019).
[28] Hill, M. D., and Reddi, V. J. Accelerator-level parallelism. In Commu-

nications of the ACM (2021).

[29] Intel QAT: Accelerating Data Compression and Encryption.

https://www.intel.com/content/www/us/en/architecture-and-

technology/intel-quick-assist-technology-overview.html.

[30] Iyer, R., Argyraki, K., and Candea, G. Performance Interfaces for

Network Functions. In Symp. on Networked Systems Design and Implem.
(2022).

[31] Iyer, R., Pedrosa, L., Zaostrovnykh, A., Pirelli, S., Argyraki, K.,

and Candea, G. Performance Contracts for Software Network Func-

tions. In Symp. on Networked Systems Design and Implem. (2019).
[32] Javadoc. https://docs.oracle.com/javase/8/docs/technotes/tools/

windows/javadoc.html.

[33] Jouppi, N. P., Yoon, D. H., Ashcraft, M., Gottscho, M., Jablin, T. B.,

Kurian, G., Laudon, J., Li, S., Ma, P. C., Ma, X., Norrie, T., Patil, N.,

Prasad, S., Young, C., Zhou, Z., and Patterson, D. A. Ten Lessons

From Three Generations Shaped Google’s TPUv4i : Industrial Product.

In Intl. Symp. on Computer Architecture (2021).
[34] Jouppi, N. P., Young, C., Patil, N., Patterson, D. A., Agrawal, G.,

Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle,

R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M.,

Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland,

W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D.,

Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Kille-

brew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,

Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore,

A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni,

R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,

Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G.,

Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson,

G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang,

W., Wilcox, E., and Yoon, D. H. In-Datacenter Performance Analysis

of a Tensor Processing Unit. In Intl. Symp. on Computer Architecture
(2017).

[35] High throughput, pipelined JPEG decoder. https://github.com/

ultraembedded/core_jpeg.

[36] Karandikar, S., Leary, C., Kennelly, C., Zhao, J., Parimi, D., Nikolic,

B., Asanovic, K., and Ranganathan, P. A Hardware Accelerator for

Protocol Buffers. In IEEE/ACM Intl. Symp. on Microarchitecture (2021).
[37] Kim, M. A., and Edwards, S. A. Computation vs. Memory Systems:

Pinning down Accelerator Bottlenecks. In Intl. Symp. on Computer
Architecture (2010).

[38] Krude, J., Rüth, J., Schemmel, D., Rath, F., Folbort, I., and Wehrle,

https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://www.electronicdesign.com/technologies/embedded-revolution/article/21808278/ensilica-the-economics-of-asics-at-what-point-does-a-custom-soc-become-viable
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/ec2/nitro/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://dawn.cs.stanford.edu/benchmark/
https://www.doxygen.nl
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://brooker.co.za/blog/2022/06/02/formal.html
https://brooker.co.za/blog/2022/06/02/formal.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://github.com/ultraembedded/core_jpeg
https://github.com/ultraembedded/core_jpeg

K. Determination of Throughput Guarantees for Processor-based

SmartNICs. In Intl. Conf. on Emerging Networking Experiments and
Technologies (2021).

[39] Lattner, C., and Adve, V. LLVM: A Compilation Framework for

Lifelong Program Analysis and Transformation. In Intl. Symp. on Code
Generation and Optimization (2004).

[40] Liu, J., Maltzahn, C., Ulmer, C. D., and Curry, M. L. Performance

Characteristics of the BlueField-2 SmartNIC. arxiv.org/cs (2021).
[41] Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S., and Gupta,

K. Offloading Distributed Applications onto SmartNICs Using IPipe.

In ACM SIGCOMM Conf. (2019).
[42] Moreau, T., Chen, T., Vega, L., Roesch, J., Yan, E. Q., Zheng, L.,

Fromm, J., Jiang, Z., Ceze, L., Guestrin, C., and Krishnamurthy, A.

A Hardware-Software Blueprint for Flexible Deep Learning Specializa-

tion. In IEEE Micro (2019).
[43] Netronome Agilio OVS Benchmarking. https://www.netronome.com/

media/documents/WP_OVS-TC_40G.pdf.

[44] Nider, J., and Fedorova, A. S. The last CPU. In Workshop on Hot
Topics in Operating Systems (2021).

[45] Norrie, T., Patil, N., Yoon, D. H., Kurian, G., Li, S., Laudon, J.,

Young, C., Jouppi, N. P., and Patterson, D. A. Google’s Training

Chips Revealed: TPUv2 and TPUv3. In IEEE Hot Chips Symposium
(2020).

[46] Pereira, F., Matos, G., Sadok, H., Kim, D., Martins, R., Sherry, J.,

Ramos, F. M. V., and Pedrosa, L. Automatic Generation of Network

Function Accelerators using Component-based Synthesis.

[47] Peterson, J. L. Petri nets. In ACM Computing Survey (1977).

[48] Phothilimthana, P. M., Liu, M., Kaufmann, A., Peter, S., Bodík,

R., and Anderson, T. E. Floem: A Programming System for NIC-

Accelerated Network Applications. In Symp. on Operating Sys. Design
and Implem. (2018).

[49] Pourhabibi, A., Gupta, S., Kassir, H., Sutherland, M., Tian, Z., Dru-

mond, M. P., Falsafi, B., and Koch, C. Optimus Prime: Accelerating

Data Transformation in Servers. In Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems (2020).

[50] The Problem with Benchmarking Hardware. https://semiengineering.

com/the-problem-with-benchmarks/.

[51] Qiu, Y., Kang, Q., Liu, M., and Chen, A. Clara: Performance Clarity

for SmartNIC Offloading. In ACM Workshop on Hot Topics in Networks
(2020).

[52] Qiu, Y., Xing, J., Hsu, K.-F., Kang, Q., Liu, M., Narayana, S., and Chen,

A. Automated SmartNIC Offloading Insights for Network Functions.

In Symp. on Operating Systems Principles (2021).
[53] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and

Amarasinghe, S. P. Halide: a Language and Compiler for Optimizing

Parallelism, Locality, and Recomputation in Image Processing Pipelines.

In Intl. Conf. on Programming Language Design and Implem. (2013).
[54] Ranganathan, P., Stodolsky, D., Calow, J., Dorfman, J., Hechtman,

M. G., Smullen, C., Kuusela, A., Laursen, A. J., Ramirez, A., Wijaya,

A. A., Salek, A., Cheung, A., Gelb, B., Fosco, B., Kyaw, C. M., He,

D., Munday, D. A., Wickeraad, D., Persaud, D., Stark, D., Walton,

D., Indupalli, E., Perkins-Argueta, E., Lou, F., Wu, H. K., Chong,

I. S., Jayaram, I., Feng, J., Maaninen, J., Lucke, K. A., Mahony, M.,

Wachsler, M. S., Tan, M., Penukonda, N., Dasharathi, N., Konge-

tira, P., Chauhan, P., Balasubramanian, R., Macias, R., Ho, R.,

Springer, R., Huffman, R. W., Foss, S., Bhatia, S., Gwin, S. J., Sekar,

S. K., Sokolov, S. N., Muroor, S., Rautio, V.-M., Ripley, Y., Hase,

Y., and Li, Y. Warehouse-Scale Video Acceleration: Co-design and

Deployment in the Wild. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (2021).

[55] Redis Documentation including Big-O Time Complexity for each com-

mand. https://redis.io/commands.

[56] Rogora, D., Carzaniga, A., Diwan, A., Hauswirth, M., and Soulé,

R. Analyzing System Performance with Probabilistic Performance

Annotations. In ACM EuroSys European Conf. on Computer Systems
(2020).

[57] Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J. K., Shao, C.,

Mishra, A., and Esmaeilzadeh, H. From high-level deep neural

models to FPGAs. In IEEE/ACM Intl. Symp. on Microarchitecture (2016).
[58] Singh, E., Lonsing, F., Chattopadhyay, S., Strange, M., Wei, P.,

Zhang, X., Zhou, Y., Chen, D., Cong, J., Raina, P., Zhang, Z., Bar-

rett, C., and Mitra, S. A-QED Verification of Hardware Accelerators.

In Design Automation Conference (2020).
[59] Standard Performance Evaluation Corporation (SPEC). https://spec.

org/benchmarks.html.

[60] SymbiYosys. https://github.com/YosysHQ/sby.

[61] Tork, M., Maudlej, L., and Silberstein, M. Lynx: A SmartNIC-driven

Accelerator-centric Architecture for Network Servers. In Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems (2020).

[62] TPC-C: An On-Line Transaction Processing Benchmark. https://www.

tpc.org/tpcc.

[63] Verilator. https://www.veripool.org/verilator.

[64] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,

Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T.,

Mueller, F., Puaut, I., Puschner, P., Staschulat, J., and Stenström,

P. The Worst-case Execution-time Problem — Overview of Methods

and Survey of Tools. ACM Trans. Embed. Comput. Syst. (2008).
[65] Zaparanuks, D., and Hauswirth, M. Algorithmic Profiling. In Intl.

Conf. on Programming Language Design and Implem. (2012).

https://www.netronome.com/media/documents/WP_OVS-TC_40G.pdf
https://www.netronome.com/media/documents/WP_OVS-TC_40G.pdf
https://semiengineering.com/the-problem-with-benchmarks/
https://semiengineering.com/the-problem-with-benchmarks/
https://redis.io/commands
https://spec.org/benchmarks.html
https://spec.org/benchmarks.html
https://github.com/YosysHQ/sby
https://www.tpc.org/tpcc
https://www.tpc.org/tpcc
https://www.veripool.org/verilator

	Abstract
	1 Introduction
	2 System developers are flying blind!
	3 Performance Interfaces for Accelerators
	4 Related Work
	5 Open Questions
	6 Conclusion
	7 Acknowledgements
	References

