Performance Interfaces for Network Functions

Rishabh Iyer, Katerina Argyraki, George Candea
EPFL, Switzerland

Abstract

Modern programmers routinely use third-party code,
and infrastructure operators deploy software they did
not write. This would not be possible without semantic
interfaces—documentation, header files, specifications—
that succinctly describe what that third-party code does.

We propose performance interfaces as a way to de-
scribe a system’s performance, akin to how a semantic in-
terface describes its functionality. We concretize this idea
in the domain of network functions (NFs) and present a
tool (PIX) that automatically extracts performance inter-
faces from NF implementations. We evaluate PIX on 12
NFs, including several used in production. The resulting
performance interfaces are accurate yet orders of mag-
nitude simpler than the code itself and take minutes to
extract. We show how developers and operators can use
performance interfaces to identify performance regres-
sions, diagnose and fix performance bugs and identify
the latency impact of NIC offloads.

PIX is available at https://github.com/dslab-epfl/pix.

1 Introduction

Semantic interfaces (e.g., abstract classes, specifications,
header files, documentation) succinctly describe a pro-
gram’s externally visible functional behavior, enabling
engineers to use the system productively. This makes it
possible for programmers to use a lot of third-party code
and makes infrastructure operators comfortable with de-
ploying software they did not write.

We do not know of an equivalent construct for describ-
ing performance behavior in a way that is simultaneously
succinct, precise, complete, and human-readable. Engi-
neers reason about performance in terms of envelopes
(e.g., “runs in O(n) time”) and benchmarks, which im-
plies that they deploy their system without understanding
the entire spectrum of performance it can exhibit. As a re-
sult, untested inputs can exercise mysterious code paths
that lead to unexpected performance behavior [4, 36, 39]
and a perpetual need to fix performance bugs [35, 43].

In this paper, we explore the idea of a performance
interface: a description of a system’s performance behav-
ior that is simultaneously succinct, precise, and human-
readable. What should such an interface look like? Like a
good semantic interface, it should be “much smaller and
simpler than the code” [48], so it must abstract away cer-
tain details—but which ones? Performance problems of-
ten lie in low-level implementation details as well as the

code’s interaction with the environment (e.g., specifics
of the underlying hardware’s cache hierarchy). Is it pos-
sible to capture all the relevant performance behaviors of
a system while being “much smaller and simpler” than
the system itself?

We propose that the performance interface of a system
be a program that accepts the same inputs as the system
and outputs how long the system would take to process
the given input'. A performance interface has a resolu-
tion, which quantifies the smallest change in performance
that it specifies (e.g., 50 ns, 1 mem-op)—the coarser the
resolution, the simpler the interface. We distinguish a
deployment-specific interface from a general-case one:
The former is much simpler and of greater interest to an
operator, who wants to understand the system’s perfor-
mance behavior in her specific environment, while the
latter is most useful to developers. This distinction, along
with resolution, makes it possible to have performance
interfaces that capture only those behaviors that are rele-
vant to the case at hand. In other words, the two concepts
enable abstraction of performance behavior.

We concretize our proposal in the context of network
functions (NFs), i.e., load balancers, firewalls, NATS, etc.
NFs are typically on the critical path of serving a user re-
quest and often face unpredictable traffic coming from
the outside world. For instance, any packet that enters a
service provider’s data center traverses at least one load
balancer/reverse proxy and typically also a firewall—the
latency that each NF adds to the packet directly impacts
the user-perceived latency. A recent survey [54] of net-
work operators found NF performance degradation to be
a frequent pain point, and such performance bugs to be
among the hardest to diagnose.

To make NF performance interfaces useful today, we
developed PIX (Performance Interface eXtractor). PIX
takes as input NF code written in C and outputs general-
case performance interfaces in the form of small Python
programs that it can then specialize into deployment-
specific interfaces for individual deployments. PIX cur-
rently supports three latency-related metrics: number of
instructions, number of memory operations, and num-
ber of CPU cycles. For each metric, PIX outputs one set
of Python programs; each set contains one Python pro-
gram per relevant range of resolutions. All PIX-extracted
performance interfaces are specific to the CPU’s ISA.
Further, the interfaces for CPU cycles are specific to

n this paper we focus on system latency, not throughput.

Appears in the 19*" Usenix Symposium on Networked Systems Design and Implementation (NSDI), 2022

https://github.com/dslab-epfl/pix

the micro-architecture of the underlying hardware and
assume that the NF does not contend for hardware re-
sources with other processes (i.e., assume either smart
process co-location [12, 31, 52] or process isolation, us-
ing techniques such as cache partitioning [77]). Under
the covers, PIX employs symbolic program analysis tech-
niques to reason about the NF’s performance behaviors.

We evaluate PIX on 12 open-source NFs, including the
Katran load balancer [71] used at Facebook, the Natasha
NAT [58] used at Scaleway and the XDP packet filter
from the Cilium project [14]. All 12 NFs were written
using either the Linux kernel’s eBPF XDP [82] frame-
work or the DPDK [21] kernel-bypass framework, two of
the most popular ways to develop high-performance NFs.
Our evaluation shows that the extracted performance in-
terfaces are accurate yet orders of magnitude simpler
than the code, and take minutes to obtain. We show how
performance interfaces extracted by PIX can be used to
identify performance regressions, diagnose and fix per-
formance bugs, and identify the latency impact of NIC
offloads.

In summary, we make two contributions in this paper:

e We propose the concept of performance interfaces,
which leverages the notions of performance resolu-
tion and deployment-specific interfaces to enable
abstraction of performance behavior.

e We demonstrate that it is feasible to build a tool
that automatically extracts performance interfaces
from NF code, and that these interfaces can be
accurate-yet-simple enough to help understand and
debug performance.

In the rest of the paper, we describe how we think a
performance interface should look like (§2). Then, we
describe PIX (§3) and use it to evaluate the feasibility and
utility of performance interfaces for NFs (§4). Finally,
we discuss how PIX can generalize to systems beyond
NFs (§5), related work (§6), and conclude (§7).

2 Performance Interfaces

In this section, we present our proposal for performance
interfaces, and describe how we envision them being
used.

Target audience: We target two categories of audience
for any system: The developers write the code for the sys-
tem and are familiar with its low-level implementation
details, but not necessarily with all possible performance
behaviors it can exhibit. The operators did not write the
code but instead seek to use/deploy/build on top of the
system in their respective environments. They are unfa-
miliar with and do not necessarily want to understand
its low-level details. Further, unlike the developers who

care about the system’s performance in all settings, they
care primarily about its performance in their specific use-
case/deployment. These categories can vary from sys-
tem to system—the developer of an application A might
themselves be building upon on a network stack B, mak-
ing them an operator for that stack.

Design goals: We envision that a “performance inter-
face” must describe the system’s externally visible perfor-
mance behaviors, just as a semantic interface describes a
system’s externally visible functionality [48].

The primary challenge in summarizing performance
is that systems typically expose a greater variety of per-
formance behaviors than semantic ones. Hence, a per-
formance interface that perfectly predicts every possible
performance behavior would likely be so complex that it
wouldn’t deserve to be called an interface.

We look for a compromise, i.e., a way to summarize
performance that achieves a good balance between the
following properties: (1) Accuracy, i.e., the ability to
summarize performance completely (for every possible
input) and precisely (with a small error). (2) Simplic-
ity, i.e., being smaller than the code and as abstract as
possible—summarize performance in terms of primitives
appropriate for a semantic interface of the system, and
reveal implementation details only when necessary.

We also aim for (3) Portability. A system’s perfor-
mance may depend significantly on its environment (e.g.,
workload, hardware). For instance, adversarial traffic
causing L3 cache misses can degrade NF latency by
3% [64]. The interface should make it easy to quantify
the impact of a particular environment on performance,
enabling porting of the interface across deployments.

State of the art: Today, performance is typically sum-
marized through upper bounds—Big-Oh notation or worst-
case execution time [79]—and statistics (e.g., x-th per-
centile latency). These descriptions maximize simplicity
at the cost of accuracy—there are many inputs for which
they do not provide accurate predictions.

We draw inspiration from two recent proposals that de-
scribe a system’s performance behavior as performance
annotations [69] and performance contracts [41] respec-
tively. Freud [69] describes a method’s performance as a
performance annotation: a set of (input/global-variable
constraints, performance formula) tuples, and each for-
mula is a mathematical function of the method’s input
and/or global variables. Bolt [41] describes an NF’s la-
tency as a “performance contract:” a set of (input con-
straints, performance formula) tuples, where each for-
mula is a function of the system input and ‘“Performance-
Critical Variables” (PCVs).

Since we reuse the idea of PCVs from performance
contracts [41], we elaborate upon them here. A PCV is a

parameter that captures the influence on performance of
all factors other than the input packet (e.g., NF configu-
ration, state built up by prior packets, hardware charac-
teristics, etc). A PCV is not always an explicit variable
in the NF implementation, rather it can be an implicit
“ghost” variable [29, 32]. For instance, if an NF employs
a hash table, a PCV could be the “number of collisions”
encountered by the current packet—this ghost variable
allows latency to be expressed as a function of, among
other things, the number of collisions. Independent prior
work [37, 38] on symbolic bounds has also argued for
the use of a PCV-like abstraction to succinctly summa-
rize the performance behavior of stateful programs.

However, neither annotations nor contracts were de-
signed to be “performance interfaces”. Contracts sacri-
fice simplicity for accuracy—they include a list of input
constraints, which can be as many as the number of ex-
ecution paths through the system and reveal low-level
implementation details even when unnecessary. Annota-
tions do not meet our accuracy goal as they do not cap-
ture how performance depends on state built from past
inputs, e.g., the contents of a hash table or a hardware
cache (Appendix A).

Definition: The performance interface of a program P
with procedures py, p, ... is a program Sp = {p], ps,...}.
A procedure p] € Sp takes the same inputs as the corre-
sponding p; € P and returns the performance of execut-
ing p;. This return value corresponds to a performance
metric (e.g., # of =86 instructions, # of CPU cycles).
The resolution r of Sp is the smallest difference in per-
formance that Sp can specify: if P (p;(I)) is p;’s perfor-
mance given input I, then |p;(I) =P (p;(I))| <r, Vp; I

A performance interface can be for the “general case”
or specific to a deployment.

In a general-case performance interface, the proce-
dures p; compute performance as a function of PCVs [41].
PCVs ensure that the interface can describe the perfor-
mance of each p; in full generality, i.e., for arbitrary
workloads and hardware configurations.

A deployment-specific performance interface is sim-
pler than the general-case one and does not contain PCVs.
Instead, procedure p; returns performance as a statis-
tic (e.g., median, max, ggth percentile), computed for a
given joint probability distribution of the PCVs that de-
scribes P’s environment for a particular deployment. In
this work, an NF’s deployment environment is defined
by its configuration read at startup, a representative work-
load, and the specific hardware it runs on.

Example: We illustrate with an example implemen-
tation of a MAC learning bridge (Fig. 1) that uses a
fast MAC table, implemented in hardware, and a slow

void bridge (pkt* p, time_t now) {
expire_stale_ports (now);
if (invalid_hdr(p)) {
DROP (p) ;
return;
}
/* Learning source MAC addr =/
if(!slow_MACtable_get (p—->src_mac, &p->port))
slow_MACtable_put (p—>src_mac, &p->port) ;
else
slow_MACtable_update (p—>src_mac, now);
/* Forwarding based on dest MAC addr =/
if (fast_MACtable_get (p—>dst_mac, &out_port))
FORWARD (p, out_port) ;
else if (slow_MACtable_get (p—>dst_mac, &
out_port))
FORWARD (p, out_port) ;
else
BROADCAST (p, p—>port) ;
}

Figure 1. Example implementation of a MAC learning bridge

software-based table, based on a cuckoo hash table. Ta-
ble 1 shows the performance cost of this implementa-
tion’s procedures in terms of executed lines of pseu-
docode (LOP), a performance metric we use for illustra-
tion only. For now, we assume these costs, we elaborate
on how they are obtained in §3.

| Operation | Performance [LOP] \
expire_stale_ports () 40 + 60X n_stale
invalid_hdr () 5
DROP 1
FORWARD 60
BROADCAST 200
fast_MACtable_get () 10
slow_MACtable_get () 50
slow_MACtable_update () | 70
expire_stale_ports() 40 + 60 x n_stale
slow_MACtable_put () 110 + 80 X n_evicted

+ 120 X occ X rehashing

Table 1. General-case performance of procedures called by the
code in Fig. 1. Two have non-constant performance: expiring
learned ports is linear in the number of stale ports, and doing a
put () in the cuckoo hash table depends on the number of keys
that must be evicted and whether rehashing is necessary.

Fig. 2 shows two performance interfaces of this im-
plementation. Since it exposes a single procedure, the
performance interface also has a single procedure. The
resolution of the performance interfaces is r = 50 LOP.

The general-case interface gives performance as a
function of 4 PCVs: number of stale flows (n_stale),
hash-table occupancy (occ), number of hash-table evic-
tions triggered by this input (n_evictions), and whether
rehashing is needed (rehashing=1 if yes, O otherwise).
Since the performance metric LOP is independent of
the underlying hardware, all 4 PCVs are specific to the
bridge’s implementation. If the bridge stored the MAC

def perf_bridge_gc (p,now) :
Metric: LOP, Resolution: 50
NF state: slow_MACtable, fast_MACtable

if invalid_hdr(p):
return 46 + 60x n_stale

if fast_MACtable_get (p->dst_mac) or
slow_MACtable_get (p—>dst_mac) :
return 280 + 60+ n_stale + 80«
n_evictions + (120% occ) * rehashing

else
return 445 + 60* n_stale + 80«
n_evictions + (120% occ) = rehashing

def perf_bridge_ds (p, now) :
Metric: LOP, Resolution: 50
Statistic: 50th percentile
NF state: slow_MACtable, fast_MACtable

if invalid_hdr (p):
return 106 #(46+60)

if fast_MACtable_get (p->dst_mac) or
slow_MACtable_get (p—>dst_mac) :
return 340 #(280+60)

else
return 505 #(445+60)

Figure 2. General-case (left) and deployment-specific (right) performance interfaces for the bridge (Fig. 1). Each return value in the
latter is the median LOP executed for the assumed PCV distribution.

table using a binary tree instead of a cuckoo hash table,
the interface would describe performance using different
PCVs (tree_depth instead of rehashing).

The deployment-specific interface gives the median la-
tency for a deployment where the expected workload is
such that 50% of input packets encounter no hash colli-
sions and expire < 1 stale ports. The interface produces
concrete numbers corresponding to this deployment-specific
PCV distribution. Note, the deployment-specific inter-
face does not restrict the inputs (e.g., the types of pack-
ets), it only instantiates the PCVs.

This performance interface captures all the perfor-
mance behaviors of the bridge that are externally visible
at resolution r=50. It is accurate, in that it correctly pre-
dicts performance (at the given resolution) for every pos-
sible input. It is smaller and simpler than the implemen-
tation: each procedure considers only three operations
(invalid header check, fast table lookup, and slow table
lookup), since these are the only ones that affect perfor-
mance at r=50. Unlike the general-case interface, the
deployment-specific interface makes assumptions about
the expected workload.

Why represent the interface as a Python program?
We believe that an interface that presents performance
like the system itself—through code that branches on the
input—is more intuitive than a list of input constraints
for developers and operators. We chose Python due to its
ubiquitous use [33].

Resolution: Often, developers and operators do not
care about certain performance differences, either be-
cause they do not affect their performance targets, or be-
cause they are masked by the environment. For example,
developers building minute-scale applications may not
care about ps-scale variability in the networking stack,
while those building ps-scale ones typically do.

The notion of resolution enables the developer/opera-
tor reading the interface to choose between multiple lev-
els of abstraction (trading off accuracy for simplicity) in
a controlled manner. A performance interface at a speci-
fied resolution only differentiates between input classes
whose performance differs by more than the resolution—
implementation details that cause variability relevant to
the specific developer/operator are abstracted away. In
our bridge example, a performance interface with a reso-
lution of 1 LOP must report the performance of each for-
warding behavior separately; an interface with resolution
>= 45 LOP can abstract away the difference between a
fast and slow lookup, and an interface with resolution
>= 115 LOP can abstract away the difference between a
successful and unsuccessful lookup.

Picking the right resolution: We envision developer-
s/operators picking their respective resolutions based on
the performance variability they are willing to tolerate
in their deployment scenarios. In §3, we show how PIX
goes a step further for those unsure of the “right” reso-
lution, by identifying a minimal set of resolution thresh-
olds that yield all the possible different performance in-
terfaces. This is possible since the performance interface
can only elide each implementation detail at a distinct
resolution threshold, which results in it not changing be-
tween two such thresholds. In our bridge example, {1, 20,
45, 115, 210} is such a minimal set of resolution thresh-
olds, i.e., other resolutions don’t yield different interfaces
(e.g., the interface at r = 50 is identical to that at r = 46).
By identifying these resolution thresholds, PIX enables
developers and operators to easily pick the resolution
(and corresponding interface) that achieves the desired
trade-off between accuracy and simplicity.

Deployment-specific interfaces: We chose to have
separate general-case and deployment-specific interfaces
to provide a different balance between accuracy and sim-
plicity for operators and developers respectively.

General-case interfaces are meant for developers. De-
velopers cannot always predict where/how their code will
be deployed, and are hence often interested in the perfor-
mance of their system when deployed in arbitrary envi-
ronments. The general-case interface provides them with
such a description by summarizing the impact of the envi-
ronment on the system’s performance using PCVs. While
PCVs do reveal implementation details (e.g., n_evicted,
rehashing reveal the use of a cuckoo-hash table), these
details are necessary to summarize performance for an
arbitrary workload, so they must be represented in the
general-case interface.

We designed the deployment-specific interface for op-
erators. Since operators are unfamiliar with the system’s
implementation and only care about the system’s perfor-
mance behavior in their particular deployment environ-
ment, the deployment-specific interface does away with
the hard-to-understand PCVs by instantiating them with
a distribution specific to that deployment. This enables
the deployment-specific interface to summarize perfor-
mance in an NF-generic way—any NF would normally
involve a header check and state lookups—and be under-
stood by almost any NF operator. Of course, it does re-
veal one important aspect of the implementation, namely
the distinct fast and slow tables. However, this aspect
(which would have no place in a semantic interface) is
crucial to any bridge operator interested in performance.

That said, we do not envision the separation between
the general-case and the deployment-specific interfaces

being set in stone—developers may refer to the deployment-

specific interface to understand performance in the face
of specific workloads, while operators may refer to the
general-case interface to understand performance beyond
their expected workload.

3 Extracting Performance Interfaces

We now describe PIX, which takes as input an NF im-
plemented in C and automatically extracts performance
interfaces in the form of Python programs.

We designed PIX to meet two goals: (1) miniminal de-
veloper effort: developers/operators should not need to
write performance test suites or proof lemmas, and (2) al-
low for proprietary NFs: NF vendors typically provide
operators with only binaries [55]; it’s ok for them to pro-
vide a performance interface, but not source code.

Fig. 3 presents an overview of PIX. The NF developer
gives the PIX back-end the NF source, augmented with
a few single-line annotations akin to instantiating a type
in a higher-level language. PIX combines this with a pre-
analysis of the data structures used by the NF and extracts
the general-case interfaces for all meaningful resolution
ranges. The NF operator provides the PIX front-end with
an NF binary and general-case interface (provided by

PIX Back-end
4
]
& c
L2 @ [)
2 z| | % 2| g8
> 7]] © S
<|| NF w E ® R GC
> ~— > > c =2 H-> .
L || source = E G ST interface
>] - = Q 0
e} o w > [
=z a L]
c
=]
4
2 PIX Front-end
§| &
® € Pkt traces
5 o >0 7]
g = O c o €
o \ o9 c .0 DS
S £ S
w > i (<=1 25| |
z & | | NFbinary 14 2 8[| E2[[| interface
FA s%| |83
z 0.2 2
c o o
5l s GC =
frs interface

Figure 3. Overview of PIX. GC and DS refer to general-case
and deployment-specific respectively.

the NF developer), along with a (set of) packet trace(s)
that represent the expected workload in their deployment.
From these, PIX extracts the deployment-specific inter-
faces for all meaningful resolution ranges. NF developer-
s/operators can also query PIX with a specific resolution,
to get the interface at that resolution.

Limitations and Assumptions: The PIX back-end
uses exhaustive symbolic execution (ESE) [45] to auto-
matically analyze the NF code. For this to work, the NF
needs to be single-threaded, all its loops except the top-
level event loop must have statically computable bounds,
and it must keep all history-dependent state in data struc-
tures with clear interfaces. PIX cannot extract perfor-
mance interfaces for NFs that do not meet these require-
ments.

Many (not all) data-plane NFs meet these require-
ments. For instance, many NFs are written using the
eBPF [82] framework as stateless modules that keep
their state in cleanly separated, kernel-maintained eBPF
maps [24]. Other examples include recently proposed
NF frameworks that build upon the DPDK kernel-bypass
framework [21] like FastClick [5] and Vigor [83], which
impose the use of a specific set of well-separated data
structures to store NF state. Counterexamples include In-
trusion Detection Systems (IDSes) and TCP-terminating
NFs; in general PIX cannot extract interfaces for them
and we describe this limitation in more detail in §5.

PIX-extracted interfaces only summarize the process-
ing latency for each packet and do not reason about queu-
ing latencies. Reasoning about these latencies would re-
quire PIX to reason about multiple inputs together, and
for this, we need to employ techniques more sophisti-
cated than ESE [83]. Reasoning only about processing
latency allows PIX to avoid reasoning about load-based

variability since processing latency (unlike queueing la-
tency) does not vary with load.

To capture how hardware affects performance with rea-
sonable accuracy, PIX assumes that the NF runs pinned
to a core and does not significantly contend for hardware
resources, e.g., due to smart process isolation [12, 31, 52,
77]. We believe network operators keen on predictable
performance are likely to employ such techniques.

Implementation: PIX builds on the KLEE symbolic
execution engine [9]. We extended KLEE with 4629 lines
of C++ code to implement the first two steps of the back-
end. We synthesize the Python-based interfaces using
1825 lines of OCaml. We implemented resolution-based
merging and the PIX front-end in 1221 lines of Python.

3.1 Extracting general-case interfaces

We now describe how the PIX back-end extracts general-
case interfaces from NF source code.

Step 0: Pre-processing: This step outputs the perfor-
mance of each execution path of the NF in terms of
hardware-independent metrics as a function of PCVs
specific to the NF’s implementation (we refer to these
PCVs as hardware-independent PCVs henceforth). PIX
currently supports two hardware-independent metrics—
instruction count and memory-access count. We call this
Step 0 because it is not part of our contribution, we
largely reuse the approach and tool from Bolt [41].

Bolt relies on the observation that data-plane NFs tend
to use the same, relatively few data structures, mainly
hash tables/maps and buffers/rings. One can therefore
collect these data structures in a library, have an expert
“pre-analyze” them once, and then amortize this analy-
sis cost across all NFs that use the library. Bolt’s pre-
analysis consists of two manual tasks for each call in the
library’s interface: (1) identify the PCVs relevant to that
call, and (2) write a simple symbolic model of the call.
Such manual effort is reasonable because it is a rare effort
(e.g., once per update to the Linux kernel’s eBPF maps)
and it is done by the maintainer of the data structure li-
brary instead of its users. To illustrate, there were 34 new
commits in Linux’s eBPF maps last year [23] while the
Cilium project [14] alone—just one among hundreds of
projects that leverage eBPF maps—had an order of mag-
nitude more commits during that same period [13]. Fur-
ther, independent prior work [38] has observed that most
data structures require only a “few” PCVs, and identi-
fying them is “straightforward”. Our experience as the
“experts” for this work corroborated this observation—
identifying PCVs required only single-line loop annota-
tions which took < 1 person-hour for someone familiar
with the data structure code.

The Bolt tool takes as input the NF source code, as
well as the symbolic models and loop annotations for the
state-accessing calls made by the NF; and outputs the
performance of each execution path through the NF as a
function of the hardware-independent PCVs.

In Step 0, PIX uses the Bolt tool as stated above, and
also automatically instruments the NF code such that it
can log the values of the hardware-independent PCVs for
each input packet encountered.

Step 1: NF-domain hardware model: This step char-
acterizes the performance of each execution path of the
NF in terms of hardware-dependent metrics (CPU cy-
cles), by introducing hardware-dependent PCVs; i.e.,
PCVs that capture the interaction between NF and hard-
ware.

PIX uses the notion of a CPI (Cycles Per Instruction)
stack [27] to compute the number of CPU cycles of an ex-
ecution path. A CPI stack breaks down the average CPI
for a program executing on a given microprocessor into a
base CPI plus various CPI components that reflect "lost"
cycle opportunities due to miss events such as branch
mispredictions and cache/TLB misses. In general, repli-
cating a perfect CPI stack is infeasible—it is equivalent
to analyzing each execution path to the depth provided
by a cycle-accurate simulator.

We leverage NF-domain knowledge to eliminate CPI
components and pick only the necessary set of hardware-
dependent PCVs. When an NF runs pinned to a core and
with limited contention for hardware resources, the dom-
inant hardware factor that influences its performance is
the last-level cache (LLC) [20, 52, 77]. Hence, PIX intro-
duces only two hardware-dependent PCVs—base_CPI
and LLC_miss_latency—and expresses a path’s CPU
cycle count as instructions - base_CPI + LLC_misses -
LLC_miss_latency. Note, while PIX uses the same two
PCVs for all NFs, the values of these PCVs vary with
each <NF, HW> pair (§3.2). To track possible LLC
misses, PIX leverages taint-analysis [70] to identify in-
dependent heap accesses specific to the current input; it
then branches on each such access, with one outcome be-
ing an LLC miss and the other an LLC hit.

Step 2: Python program: The previous steps specify
an NF execution path as a set of symbolic constraints
on the input packet and symbols arising from calls to
data structures; this step translates these constraints into
human-readable python code and outputs a general-case
performance interface of the NF with a resolution of 1.

PIX translates symbolic constraints on the input packet
using knowledge of the header format of the popular net-
working protocols (e.g., IPv4, TCP, QUIC). For instance,
the constraint pkt[23 : 24] == 6 on a non-tunnelled IPv4
packet is translated to pkt.isTCP.

| # Developer annotation:
2 DS_INIT (&map, "macTable", "ethaddr", struct
eth_addr, "port", int);

4 # Starting condition derived from implem:

5 1f bpf_map.unnamed_symbol

6 # Transform based on called library function
7 if bpf_map.contains (pkt[7:12])

8§ # Transform based on developer annotation

9 if macTable.contains (pkt.src_mac)

Figure 4. Example of PIX’s constraint rewriting.

PIX translates symbols arising from calls to data struc-
tures using call context and developer-provided anno-
tations (one annotation per instantiated data structure).
Fig. 4 illustrates such a translation: Line 2 shows a de-
veloper’s annotation for a data structure of type map: it
indicates that this NF uses this map as a "macTable",
which maps "ethaddr" keys to "port" values; these are
human-friendly terms chosen by the developer to help
the generation of simple performance interfaces. Line 5
shows a constraint derived from the NF code that con-
cerns this map. Line 7 shows how PIX rewrites this con-
straint because it knows that this is a call to bpf_map_-
lookup_elem () With an argument corresponding to bytes
7 — 11 of the input packet. Line 9 shows how PIX further
rewrites the constraint because the developer’s annota-
tion enables PIX to identify the given bytes as the input
packet’s source MAC address.

The annotation on Line 2 is the only annotation that
the NF developer needs to provide. We believe such one-
line annotations are reasonable since they are similar to
instantiating a type in a higher-level language.

Step 3: Resolution-based merging: This step uses the
notion of resolution to simplify the performance inter-
face: First, it calculates the maximum performance im-
pact of each constraint, i.e., the maximum performance
difference between two execution paths that only differ
w.r.t this constraint. The set of distinct "maximum per-
formance impacts" forms the minimal set of resolution
thresholds. Second, it eliminates all constraints with an
impact smaller than the target resolution.

3.2 Extracting deployment-specific interfaces

To extract a deployment-specific interface, the PIX front-
end takes as input the NF binary and its general-case
interface?, provided by the NF developer/vendor; along
with a (set of) deployment-specific packet trace(s), pro-
vided by the NF operator. It then runs the NF binary using
the packet trace(s) as input, infers the deployment’s PCV

2The operator cannot be certain that this general-case interface is ac-
curate for the production binary, but we do not see this as a barrier to
adoption: operators routinely deploy NF binaries while relying only on
non-attested configuration interfaces and vendor manuals [55].

distributions, and instantiates the deployment-specific in-
terface. Running the NF allows PIX to extract accurate
deployment-specific interfaces since it can precisely mea-
sure the performance impact of the NF’s environment as
opposed to modeling it.

PIX infers three PCV distributions per NF, deploy-
ment:

Hardware-independent PCVs: PIX leverages the in-
strumentation introduced in Step 0 to measure the values
of these PCVs encountered by each packet in the pro-
vided trace(s). It then computes a joint probability distri-
bution of these PCVs, since they tend to be highly cor-
related (e.g., in Table 1, n_stale and n_evictions are
both functions of occ).

Base CPI: PIX measures this using hardware perfor-
mance counters [75] available on all major processors to-
day. Since the packet trace(s) may not exercise all execu-
tion paths, PIX assumes the same base-CPI distribution
across all paths, and it provides warnings if it detects sig-
nificant differences (e.g, some paths use expensive x86
instructions, like integer divide, while others don’t). We
think this is a reasonable assumption because the base
CPI is only a function of the instruction mix (it does not
include any miss events). In §4.1, we experimentally val-
idate this.

LLC miss latency: Measuring the distribution of LLC
miss latency ideally requires sophisticated NF-specific
testing [64], to account for the NF’s particular instruction-
and memory-level parallelism. PIX avoids this because it
targets NFs that keep all their state in a relatively small set
of pre-analyzed data structures. For each data structure,
we craft a microbenchmark that triggers LLC misses.>
PIX estimates the LLC-miss-latency distribution of each
data-structure call in a given deployment, by running
the corresponding microbenchmark on the deployment’s
hardware. In §4.1, we experimentally show that our ap-
proximation, performs well in practice (avg. error of <
10%). Note, our approximation concerns the latency intro-
duced by LLC misses, not the number of LLC misses—
the PIX back-end tracks LLC misses per path in Step 1.

Finally, PIX instantiates each formula in the general-
case interface with these inferred distributions to com-
pute the requested latency statistic (e.g., 50 percentile
in Fig. 2). We show examples of deployment-specific in-
terfaces and their distributions in §4.

3The expert must do this once per data structure, like the pre-analysis.

DPDK firewall | Per-flow state
Table 2. Network functions used to evaluate PIX.

4 Evaluation

In this section, we address two main questions: (1) does
PIX extract good performance interfaces, and (2) can per-
formance interfaces make NF developers and NF oper-
ators more productive? To answer the former, we quan-
titatively evaluate the complexity of PIX-extracted in-
terfaces, their accuracy, and the time it takes to obtain
them (§4.1). We find that they are one to two orders of
magnitude simpler and more accurate than prior work.
To answer the latter question, we show how developers
can use PIX-extracted interfaces to catch performance re-
gressions and fix performance bugs (§4.2). We then show
how operators can use interfaces to pick the NF variant
best suited for their target hardware and to perform root-
cause diagnosis of performance anomalies (§4.3).

We evaluate PIX on 12 dataplane NFs that cover a wide
variety of functionality and network protocols (Table 2).
These include the Katran load balancer used in produc-
tion at Facebook [71], the Natasha NAT used in produc-
tion at Scaleway [58], the XDP packet filter from the Cil-
ium project [14] and an implementation of Google’s Ma-
glev load balancing algorithm [25]. The NFs were writ-
ten using DPDK [21] and eBPF XDP [82], arguably the
two most popular frameworks today for building high-
performance software NFs. VigNAT, Policer, Router and
Bridge come from the Vigor project [83], the CRAB
load balancer from [46], and the hXDP firewall from [8].
The Vigor and eBPF NFs are written in the commonly
used stateless/stateful split model, which makes them
amenable to exhaustive symbolic execution. We modi-
fied Natasha and DPDK NAT to also have such a clean
split; this took ~3 person-days per NF.

The performance metrics we use for DPDK-based
NFs are x86 instruction count, x86 memory access count,
and x86 CPU cycles (thus wall-clock time). Note, PIX
is not specific to x86 and can just as easily predict the
corresponding metrics for another ISA (e.g., ARM) if
the PIX front-end is given the corresponding binary. For
eBPF NFs, we only analyze the NF itself, and not the
eBPF maps that are part of Linux, so we only report
hardware-independent metrics.

Framework NF Functionality Implementation HW independent HW dependent Bolt contract
K LB Per-flow state, per-VIP state, consistent NF LOC oC ngt(e:rface ((l:’éX) i‘j(t;éface ((l:’éX) TOC cC
eBPF atran hashing, IPv6, ICMP, QUIC, tunneling
XDP Cifium filier | Longest prefix matching, IPV6 Natasha 2932 192] 1.8% 8.9% | 2.8% | 15.1% | 17.4% | 97.3%
CRABLB | Readonly state Maglev 3168 29 [0.9% 379% | 1.6% | 655% | 2.1% | 82.1%
o VigNAT 2770 221 0.7% 36.3% | 0.9% 2% | 1.8% | 81%
hXDP firewall | Per-flow state _ Bridge 2837|219 0.5% 27% | 2.1% | 10.5% | 22.1% | 98.6%
Natasha NAT | Per-flow state, handles fragmentation, Router 1260 17 04% | 176% | 1.0% | 294% | 30% | 823%
UDPLite, ICMP, ARP Policer 2466 16 | 0.4% 312% | 0.6% | 37.5% | 1.4% | 812%
Maglev LB | Per-flow state, consistent hashing DPDKFW | 2508 21| 0.8% 38% | 1.0% 45% | 2.0% | 85.7%
VigNAT Per-flow state, header rewriting DPDK NAT 1780 35| 0.6% 27% | 0.9% 39% | 4.5% 80%
DPDK Bridge Packet duplication Katran 2661 3226 | 2.8% 0.8% - - | 363% | 100%
Router Longest prefix matching Cilium filter 784 42| 32% 14.3% - - 110.7% | 100%
Policer Per-flow state, fine-grained timing CRAB 437 4]20% 100% - - 2% | 100%
DPDK NAT | Per-flow state, header rewriting, cksum offload hXDP FW 312 33 3.8% 15.1% -| 30% | 100%

Table 3. Complexity of extracted interfaces and Bolt contracts
vs NF implementation. “(x%)” means “x% of implementation”.
For each NF, the complexity is calculated for an interface with
resolution equal to 10% of the maximum latency variability the
NF can exhibit. Since Bolt computes the worst-case perfor-
mance for HW-dependent metrics (not shown), the numbers
are identical to those for HW-independent metrics.

Our testbed consists of two directly connected servers:
a device under test (DUT) and a traffic generator and
sink (TG). The servers are identical, with an Intel Xeon
E5-2667 v2 processor @ 3.30 GHz, 32 GB of DRAM,
and Intel 82599ES 10-Gbps NICs. The DUT runs one
of the NFs and measures the performance, while the TG
uses MoonGen [26] to generate traffic.

4.1 Does PIX Work?

In this section, we show that extracted interfaces are 1-2
orders of magnitude simpler than both the NF implemen-
tations and the equivalent Bolt contracts (§4.1.1). Their
accuracy is 100% for reasonable resolutions, while at the
finest resolution they are still practical and considerably
better than Bolt, the state of the art (§4.1.2). Extracting a
performance interface typically takes minutes (§4.1.3).

4.1.1 Are performance interfaces user-friendly?

To evaluate the “human palatability” of the performance
interfaces, we (1) measure their complexity in terms of
both lines of code (LOC) and cyclomatic complexity
(CC) [78], and (2) evaluate whether the primitives ex-
posed by the performance interfaces are those that NF
developers and operators are familiar with.

Table 3 compares the complexity of the PIX-extracted
interfaces and the Bolt contracts, measured as a fraction
of LOC and CC of the implementation. In a nutshell, the
extracted interfaces have 26—-210x fewer LOC than the
corresponding implementations and are 3—124X less cy-
clomatically complex, ignoring CRAB, which is already
simple to start with. The performance resolution allows
PIX-extracted interfaces to be 2.3—129% shorter than the
Bolt contracts, and 2.1-124x less cyclomatically com-
plex, by abstracting away irrelevant details. The more
complex an NF, the higher this reduction in complexity,

which argues for the real-world utility of performance
interfaces.

Fig. 5 illustrates the impact of varying resolution on
the complexity of Katran’s performance interface. At the
finest granularity, Katran’s instruction-count interface,
like the Bolt contract, is fairly complex (LOC=9675,
CC=3226 independent paths). Since no two packets in
Katran can incur an instruction count that differs by more
than 854 instructions (number determined by PIX and
verified by us), for resolutions above 854 the interface
becomes a simple upper bound. In between these two
extremes, we see how low-level details get abstracted
away—for instance, at resolution=50 instructions, we see
a 125x drop in complexity (LOC=75, CC=26). The Bolt
contract, however, lacks the notion of resolution and thus
remains 3.6X longer and just as cyclomatically complex
as the implementation.

= PIX Interface LOC == PIX Interface CC
1000.00% T

Bolt Contract LOC = Bolt Contract CC

363.59%

100.00%

10.00%

1.00% +

Complexity as % of impl

0.10% +

0.01% } ' |
1 10 50 100 1000
Resolution in number of instructions

Figure 5. Impact of varying resolution on the size (LOC) and
complexity (CC) of Katran’s performance interface.

We conclude that PIX-extracted performance inter-
faces are significantly simpler than the NF implemen-
tations, which argues for them making it easier to un-
derstand performance behaviors by reading the interface
than reading the code. The notion of resolution succeeds
in abstracting a performance interface, giving the reader
a knob with which to control the amount of detail con-
tained in the interface.

Another aspect of palatability is how familiar the inter-
face looks to a human reader. To illustrate this, we show
an example of the general-case interface for VigNAT
in Fig. 6, restricted to TCP/UDP packets for space con-
siderations. The interface is a succinct, self-descriptive
Python program. The conditions in if statements are
expressed in terms of fields in the input packet header
(e.g., pkt.port) or semantic operations on data struc-
tures (e.g., nat_flowtable.contains), Which are primi-
tives we expect both developers and operators to under-
stand. Being a stateful NF, VigNAT’s performance is in-
fluenced by NF state, and the interface reflects this via
PCVs, documented in the header. Bolt, on the other hand,

def perf_vignat_gc (pkt):
Perf metric: x86 instructions
Resolution: 10
NF H

expired flows
t - bucket_traversals
c - hash_collisions

q

R
)
)

x = 19xext + 40xexc + 227xe + 123
if not (pkt.is_IP) or not (pkt.is_TCP or pkt.
is_UDP) :
return x + 7
else:
if pkt.port != internal_network_port:
if flowtable.contains (pkt.flow):
return x + 289
else:
return x + 68
else:
if flowtable.contains (pkt.flow):
return x + 18+t + 30xc + 395
else:
return x + 31t + 30%c + 547

Figure 6. Extracted general-case interface for VigNAT.

does not translate low-level details and exposes primi-
tives such as the starting condition on line 4 of Fig. 4.
While such details are understandable to the NF’s devel-
oper, they make the contract hard to read for those unfa-
miliar with the code.

Finally, we illustrate the impact of deployment-specific
instantiation of interfaces on their palatability. Fig. 7
shows the interfaces for VigNAT’s 50" and 95 per-
centile latencies and the distribution underlying them,
for a particular <workload, HW> pair. The deployment-
specific instantiation turns each formula (expressed in
terms of PCVs in the general-case interface) into con-
crete values specific to the environment and workload,
thus tailoring the interface to an operator’s needs. The
latency CDF also enables interested operators to under-
stand how VigNAT’s percentile latency varies.

4.1.2 Accuracy of performance interfaces

We now evaluate the prediction error of PIX-extracted
interfaces, i.e., the difference between the latency pre-
dicted by the interfaces and the measured latency.

To do so, we use PIX to extract interfaces for all 8
DPDK NFs* for two hardware-independent metrics (x86
instructions and memops) and one hardware-dependent

one (x86 cycles). For each NF, we instantiate two deployment-

specific interfaces corresponding to two very different
deployments—typical traffic representative of university
networks [6] and adversarial traffic that seeks denial-of-
service [64]. The above deployments represent opposite
ends of the spectrum for absolute NF latencies [64]—
e.g., adversarial traffic incurs 2.1x greater latency than
typical traffic in VigNAT. To instantiate each deployment-
specific interface, we use PCAP traces of 100M packets
each. These traces are similar to what an operator could
obtain with tcpdump on their domain gateway and are
not specific to any particular NF implementation.

4PIX does not support HW-dependent metrics for eBPF NFs

def perf_vignat_ds (pkt):
Metric: CPU cycles, Resolution: 200 # Metric:
Percentile: 50 3 # Percentile:
NF state flowtable # NF state

I def

95

if flowtable.contains (pkt.flow) : 6
return 301 7
8 else:
if pkt.port != internal_ network_port:
return 92 10
else: 11
return 558 12

return 395
else:

return 97
else:
return 1037

perf_vignat_ds (pkt) :
CPU cycles,

flowtable

if flowtable.contains (pkt.flow) :

if pkt.port != internal_network_port:

New flow —Existing flow —External dropped

1000

Resolution: 200

800

400

200 J

100

Latency (cycles)

Percentile

Figure 7. Deployment-specific interfaces for VigNAT (50t and 95t percentile) and the latency CDF (resolution=200 cycles).

For ground-truth measurements, we manually generate
synthetic packet traces for each <NF, deployment> pair
akin to Scaleway’s NAT test suite [57]. We playback
these traces against the NF and measure the latency of
each packet (the ground truth). Note, the synthetic traces
are only used to measure the ground truth and not for
predicting performance, thus avoiding any overfitting.

To compare to Bolt [41], the closest prior work, we use
their published code [1]. We run each deployment trace
through the Bolt distiller, which computes the PCVs and
concretizes the performance contracts. For a comparison
to Freud [69], please see Appendix A.

We present here the prediction error for the 50" per-
centile, 90" percentile and 99" percentile latencies (which
is the point at which PIX’s limitations become evident). Ap-
pendix B provides the details for the entire spectrum. We
compute all prediction errors by subtracting the relevant
statistic of the measured latency distribution from that of
the predicted latency distribution. The results reported
are at resolution 1, where PIX does the worst.

50tM percentile (median) latency: Table 4 describes
the maximum and average error for median latencies
across all NFs for each metric and deployment regime.
Note, despite the absolute NF latency differing widely,
PIX’s prediction accuracy is similar for both deploy-
ments, showing that the PIX front-end correctly instanti-
ates each deployment-specific interface.

Instr’s error Memops error Cycles error

Typ ‘ Adv Typ ‘ Adv Typ ‘ Adv

PIX 1.8% 1.7% 4% | 3.7% 26% 24%
(1.5%) | (1.2%) | (1.6%) | (1.5%) | (11%) (9%)

Bolt 75% | 7.6% | 7.5% | 7.6% | 308% 186%
(3.7%) | (4.0%) | (3.7%) | (4.0%) | (164%) | (103%)

PIX 4.1x 4.4x% 1.8x 2.0x 11.8x 7.7x
improvement | (2.4x) | (3.3x) | (2.3x) | (2.6x) | (14.9%) | (11.4%)

Table 4. Max (average) median latency prediction error for PIX
and Bolt for typical (Typ) and adversarial (Adv) traffic.

We find that, even in the worst case for PIX (i.e., finest
resolution), the error for hardware-independent metrics
is <4%, which is small enough to make PIX practical.
At any reasonable resolution, the error vanishes and PIX
becomes 100% accurate. PIX outperforms Bolt by 4.4x.

10

For the CPU cycles, PIX has a maximum error of 26%.
This is due to the overhead of the instrumentation used
to measure the CPI and LLC miss latencies. Neverthe-
less, PIX’s accuracy is an order of magnitude better than
Bolt’s since PIX reasons about hardware performance as
a distribution, while Bolt only models the worst case.

90" percentile latency: Table 5 describes the predic-
tion error for 90" percentile latencies. The results are
similar to those for median latency with PIX outperform-
ing Bolt by up to an order of magnitude. This is once
again due to PIX reasoning about each of the PCVs as a
distribution, while Bolt only models the worst-case.

Instr’s error Memops error Cycles error

Typ| Adv Typ| Adv Typ| Ady

PIX 1.4% 1.2% 3.2% 2.8% 22% 19%
(0.9%) | (0.9%) | (1.4%) | (12%) | (10%) | (7%)

Bolt 5.9% 5.3% 6.6% 6.1% 234% 153%
(2.4%) | (3.1%) | 2.9%) | 32%) | 122%) | (94%)

PIX 4.2x 4.4x 2.0x 2.1x 10.6x 8x
improvement | (2.6x) | (3.4x) | (2.1x) | (2.6x) | (12.2%) | (13.4x)

Table 5. Max (average) prediction error for gpth percentile

latencies for typical (Typ) and adversarial (Adv) traffic.

99th percentile latency: PIX cannot accurately predict
the latency at the very end of the tail (nor can Bolt). PIX’s
predictions have an error of <61% (average 22%), while
Bolt’s predictions have an error of <45% (average 14%).

It is interesting to note that PIX underestimates the
99th percentile latency while Bolt overestimates it; this
contrasting behavior is due to the different hardware mod-
els underlying the two tools. PIX underestimates the 99"
percentile latency since its simple hardware model (in-
structions * CPI + LLC_misses * miss_latency) is invalid
at this percentile where other hardware aspects also im-
pact latency significantly. Bolt, on the other hand, over-
estimates the 99 percentile latency since its hardware
model is designed to estimate the absolute worst-case la-
tency. However, PIX’s simple hardware model enables
it to accurately predict performance at all percentiles ex-
cept the tail (details in Appendix B); a task that Bolt’s
worst-case-only model is incapable of.

4.1.3 Time to extract performance interfaces

Table 6 shows the time it takes PIX to extracts the general-
case interfaces for all the NFs in this evaluation. We
believe that these numbers make it feasible to incorporate
performance interfaces extraction part of the regular NF
development cycle, e.g., as part of continuous integration.

z | g g
< & |z = E
> S
S|B5|Z|gls|8 ||| E|m|
sl |Z |2 |8l alE|2|l<|a
S| & |2 E S|l &8 |=x] X
NF Z|2 |5 |lda|lg|la|lAa|la|¥|0|0|=
PIX [15 [5 1[4 [17 [0.73]3 |4 |6 |32 0.43]0.15/0.23
BOLT|6 [4 [2 [7 [035[1.7 |2 [3 |28 |0.26/0.1 [0.13

Table 6. Time, in minutes, for PIX and Bolt to extract the
general-case interfaces and contracts, respectively.

The time required to obtain the deployment-specific
interface is largely a function of the time required to run
the provided workload. In our experiments, we ran PCAP
files with 100M packets, and it took PIX <= 5 mins to
generate the deployment-specific interface for a given
<workload, HW> pair from the general-purpose inter-
face, regardless of NF. We conclude that PIX fulfills the
portability requirement (§3) well: operators can down-
load an NF with its general-case interface, provide a
PCAP file specific to their deployment, and PIX quickly
produces the deployment-specific interface.

4.2 Are interfaces useful to NF developers?

In this section, we present two workflows that NF devel-
opers can use to understand (§4.2.1) and debug (§4.2.2)
the performance behavior of their code.

4.2.1 Flagging performance regressions

Programmers often introduce involuntarily performance
regressions. Using performance test suites to catch such
regressions is not easy, because they require environment
setup, are fragile, and take long to run. We show here
how a developer or a tool can instead compare the per-
formance interface before and after a commit to identify
performance regressions more quickly, conveniently, and
precisely than with a performance test suite.

We wrote a script that retrieves each Katran commit
and uses PIX to extract the corresponding instruction-
count interface, at resolution=1. For each pair of commits
a and b, there is a corresponding pair of interfaces S, and
Sp. The script finds the maximum latency (in terms of
LLVM instruction count) predicted by each of the two
interfaces and compares the two. We report LLVM (not
eBPF bytecode) instructions since PIX builds on KLEE
which interprets LLVM IR. Reporting eBPF instructions
would require us to build on a tool that interprets eBPF
bytecode (e.g., Serval [59])—this is an engineering task

11

we leave to future work. We run PIX on all commits to
the eBPF portion of Katran’s code.

Table 7 shows the commits where a performance re-
gression occurs. Over the past three years, the maximum
latency for new flows regressed by 14.6%.

Commit ID Perf before Perf after Performance
[LLVM instr’s] | [LLVM instr’s] | regression [%]
Orig commit - 1771 -
873d0501695¢c 1765 1896 7.42%
39e58b530a8a 1896 1914 0.95%
4582a0907b68 1914 1933 0.99%
15f81d0e7ec6 1930 1946 0.83%
74c3338c2f7e 1952 1983 1.59%
d0790d3a3823 1983 2030 2.37%
[Allcommits | 1771 | 2030 | 14.62% |

Table 7. Perf regressions in Katran (handling new flows).

We imagine using this workflow as part of continuous
integration (CI) to automatically identify unintended per-
formance regressions. The CI system can present to the
developer a before-and-after comparison of performance
that directly highlights for which classes of inputs the
regression occurs and what the magnitude of the regres-
sion is. Compared to performance tests, this workflow
consumes less developer time and fewer resources and
offers better completeness.

4.2.2 Fixing performance bugs

By helping developers understand the code’s performance
more quickly and deeply, interfaces can help fix perfor-
mance bugs. We illustrate this with two examples of per-
formance bugs in the map used by Vigor NFs [50].

The top of Fig. 8 shows a snippet of the performance
interface of the contains operation in libVig’s map.

if map.contains(key): # —-—-— BEFORE —-——

if not (cached (key)) :
Warning: 2+t integer divides
return (4xt)s*miss_latency + (21xt+27)*CPI

if map.contains(key): # ——— AFTER ———

if not (cached(key)):
return (lxt)sxmiss_latency +

(18%xt+27) xCPI

Figure 8. Interface for map_contains () before and after the
bug fix. t is the PCV for traversals in the hash ring.

The first red flag is the warning issued by PIX itself,
based on tracking of expensive x86 instructions that ad-
versely impact CPI. Looking for integer divides in the
map code, we found that, on each traversal, it uses two
costly modulo operations. To fix the issue, we replaced
them with one bitwise and.

The second red flag is that each traversal requires 4
independent heap accesses (4+t). It turns out that key
metadata is being stored in four distinct arrays of int

https://github.com/facebookincubator/katran/commit/24e832c3e53cd929b7fca474b757590d9acb67d5#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/873d0501695cbfb4518afc3f54685f66b09f4a2e#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/39e58b530a8a2e26b7797da72037f6645370c7e7#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/458aa0907b68496bbf3a7be0996e5440d560c1fb#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/15f81d0e7ec60a6e96dc40a3397f3a1f28c6cf71#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/74c3338c2f7ea4d305e2f9440a668d4454643235#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630
https://github.com/facebookincubator/katran/commit/d0790d3a3823d34373a94ff41dc9b6435e3f7ba7#diff-1fe4cd2e8c82be13181a400cabad55e87193ad7f16fc5004597ec3d26c708630

elements. Our fix was to encapsulate key’s metadata in
a single struct and use a single array with elements of
this struct type. The rest remained unchanged.

Table 8 shows the impact of our fixes, based on Vigor’s
benchmarks: the two fixes, together, improve NF latency
by 22% on average, and throughput by 19%.

NF Throughput [Mpps] Latency [ns]

Orig | Fix I | Fix2 | Change | Orig | Fix I | Fix 2 | Change
VigNAT | 3.88 | 4.36 | 4.68 | 20.62% | 317 | 276 | 236 | 25.55%
Bridge | 3.05 | 3.59 | 3.62 | 18.69% | 410 | 332 | 323 | 21.22%
Maglev | 2.58 | 2.86 | 3.04 | 17.83% | 482 | 423 | 391 | 18.88%

Table 8. Throughput and latency of three NFs using map, shown
before/after each performance bug fix.

4.3 Are interfaces useful to NF operators?

Operators typically care about how an NF performs in
their specific deployment, not in general for everyone’s
deployment. We show how operators can use perfor-
mance interfaces to pick the NF variant best suited to
their hardware (§4.3.1) and to do a root-cause diagnosis
of deployment-specific performance anomalies (§4.3.2).

4.3.1 Which NF variant for my NIC?

Modern NICs provide the ability to offload specific tasks
(like checksums and encryption) to specialized hardware.
It is therefore useful to know which variant of an NF
takes max advantage of the offloads available on a NIC.

Fig. 9 shows the interfaces for two variants of a NAT,
and the interaction with checksum offload on Mellanox
ConnectX-4 [15] and Intel Ixgbe [40] NICs. The for-
mally verified VigNAT does not do any offloading, whereas
DPDK NAT does. The strings in the if conditions on
lines 3 and 6 are identical to the one used by the NIC dri-
ver to identify itself [22]. The interface also shows the
difference in latency: Ixgbe requires the software to com-
pute a pseudo-header checksum, whereas ConnectX-4
allows full offload, so it has lower latency.

Based on this performance interface, an operator can
make an informed deployment decision: if using Ixgbe
NICs, choosing the verified VigNAT makes sense; else,
it’s a trade-off to make carefully.

4.3.2 Why do I get bad performance?

NFs running in production can face workloads that trig-
ger surprising performance degradation. To address such
anomalies, operators must first diagnose the root cause,
and this often takes a lot of work.

PIX helps the search for a root cause by providing
a list of possible explanations for the observed perfor-
mance, ranked by likelihood. Given a problematic work-
load and an NF (or its general-case interface), PIX in-
stantiates the PCVs in a deployment-specific manner and
then measures the distributions for each PCV and the NF
latency. It then ranks the PCVs based on the correlation

12

Snippet from VigNAT interface

if flowtable.contains (pkt.flow) :

return 18+t + 30xc + 518 # No offload
else:

Snippet from DPDK NAT interface
if flowtable.contains (pkt.flow) :
1f(NIC_family == "net_mlx5"):

return 18+t + 30*xc + 265 + cksum_offload()
else:
1if (NIC_family == "net_ixgbe"):
return 18+t + 30xc + 478 + cksum_offload()
else:
return 18+t + 30xc + 564
else:

Figure 9. Interfaces for VigNAT and DPDK NAT: VigNAT
does checksums in software, while DPDK NAT offloads check-
sums to the NIC as much as possible.

between the latency distribution and that of the PCV (us-
ing least-square fit linear regression).

To illustrate this workflow, we refer to three perfor-
mance bugs that span both hardware and software root
causes, shown in Table 9. The first bug occurs due to the
uniform random workload causing hash collisions in a
widely used hash function [42] used by Bridge; typical
workloads with Zipfian distributions do not suffer from
hash collisions. The second bug is caused by VigNAT’s
batches expiry of flows, which results in a latency spike
that only becomes evident for traffic with high churn.
The third bug occurs when the active flowtable in Maglev
overflows the last-level cache of the server; this makes the
latency spike be highly dependent on LLC configuration.

Identified as

Root cause most-likely cause?

Bug

Spike in median latency of Bridge
for uniform random workload
Spike in tail latency of VigNAT
due to high churn

Spike in median latency of Maglev
on a particular x86 server

Table 9. Performance bugs used for root-cause diagnosis.

Yes

hash-collisions

expired-flows
(batched)

active-flowtable—

Yes

Yes

size

For each bug, we generated a workload that triggers
it and provided the PCAP file to PIX, along with the
general-case interface of the corresponding NF. For each
bug, PIX correctly reported the culprit PCV as the most
likely root cause. Of course, PIX can only track bugs that
arise from PCVs it accounts for. It would be unable, for
instance, to identify the root cause for a latency spike due
to LLC evictions caused by a noisy neighboring process,
since PIX does not account for contention.

This example illustrates how PIX can help focus the
operators’ attention on likely explanations for the per-
formance they observe, thereby reducing the amount of
work needed to find the root cause.

In conclusion, our evaluation shows that PIX is practi-
cal: the complexity of extracted interfaces is significantly
lower than the NF implementation, their accuracy is high,
and the time taken to extract them is reasonable. Further,
NF developers and operators can use these interfaces to
identify performance regressions, diagnose and fix per-
formance bugs, and pick the NFs that are best suited to
their hardware.

5 Does PIX Generalize?

In this section, we explore how PIX can generalize in
two directions: (1) programs other than NFs, that are
nevertheless still amenable to ESE; and (2) NFs that are
not amenable to ESE. Overall, we find that the design of
PIX—split into a modular back-end and front-end that
produce general-case and deployment-specific interfaces,
respectively—enables generalization by adapting just the
necessary modules in the PIX pipeline.

Beyond NFs: We have successfully applied PIX to the
OpenSSL library, to uncover digital side-channels, and
to eBPF extensions for user-space file systems.

Extracting interfaces for finding digital side-channels
required modifying only PIX’s hardware model (i.e., step
1 in the back-end). Implementing a new model focused
on sources of constant-time violations (using the exhaus-
tive list in [3]) took us 2 person months. We ran PIX on
12 cryptographic primitives from OpenSSL 3.0 [61] and
found a constant-time violation in the AES cipher un-
padding function. This violation was acknowledged by
the OpenSSL maintainers [62]. We have submitted a pull
request [63] that has undergone multiple rounds of re-
view and is in the final stages of getting merged.

Our experience with OpenSSL reinforced our belief
(from §4.2.1) that a tool that automatically extracts per-
formance interfaces would be of great use to develop-
ers. For example, we learned that the violation we uncov-
ered had been latent since OpenSSL 1.1.1 because the
developer “just reused the code” and had somehow been
missed despite the extremely thorough code reviews that
OpenSSL goes through. If performance interfaces of the
OpenSSL code were extracted regularly, e.g., as part of
continuous integration, it is unlikely that this violation
would have persisted for this long.

Extracting interfaces for eBPF file system extensions
was more straightforward since the code is similar to
that of eBPF NFs. Here, we only had to add translation
rules (step 2 in the PIX back-end) corresponding to the
supported system calls. This took 4 person-days, after
which PIX was able to automatically extract interfaces
for the extFUSE extensions [7].

Code not amenable to ESE: To evaluate the limits of
PIX’s ESE-based approach, we used PIX on Snort [73],

13

a popular IDS that independent prior work has shown to
not be amenable to ESE [53, 81]. Our results corrobo-
rated those from prior work; while PIX did extract perfor-
mance interfaces for the networking stack and all detec-
tion rules that look only at packet headers, attempting to
extract a complete interface caused PIX to time out. Ex-
tracting an interface from Snort with PIX requires either
that we modify its code to cleanly separate the stateful
components, or that we replace Bolt in the PIX back-end
with a manual theorem prover.

6 Related Work

We compared PIX to Bolt [41] w.r.t the design (in §2)
and results (in §4.1). We do not do so again here.

Here we provide a qualitative comparison of PIX against
Freud, Appendix A provides a detailed quantitative one.
Freud treats code almost as a black box and relies on
developers to provide comprehensive performance test
suites in order to guide the exploration of performance be-
haviors and ensure prediction accuracy. PIX is white-box
because it analyzes source code. Analyzing the source
ensures that PIX can analyze the system once, and in-
stantiate the interface for different deployments, while
Freud users must re-run the tool for each new <workload,
hardware> pair. Lastly, Freud’s performance formulae
are limited to being expressed in terms of program vari-
ables, but the performance of stateful code typically de-
pends on (implicit) PCVs instead [37, 38].

Performance upper bounds and adversarial work-
loads: Worst-Case Execution Time (WCET) Analysis
derives formal upper bounds on performance; [79] pro-
vides an overview of the state of the art. These bounds
are particularly popular in the domain of real-time and
safety-critical systems where performance guarantees
are a part of functional correctness. While WCET only
looks at one aspect of the performance profile—the ab-
solute worst-case—performance interfaces characterize
performance in the face of any arbitrary input, whether
typical, ideal, or adversarial. Further, to enable stringent
upper bounds, real-time systems tend to avoid dynamic
data structures and input-dependent memory accesses—
aspects that are commonplace in NFs.

Considerable prior work focuses on generating and an-
alyzing adversarial workloads that attack software perfor-
mance [2, 18, 49, 60, 64, 65, 67, 72, 76]. As with WCET,
all of this work focuses only on worst-case inputs, while
interfaces reflect the entire performance profile.

Performance profilers: Traditional profilers [51] mea-
sure the execution cost (e.g., running time, executed in-
structions, cache misses) of a piece of code. Trend Profil-
ing [34], Algorithmic Profiling [85] and Input-Sensitive
Profiling [16, 17] take this one step further: by extracting
a cost function defining the relationship between input

size and execution cost. However, like Freud, these tools
treat the code as a black-box and require developers to
provide comprehensive performance test suites to guide
the exploration of performance behavior.

Performance analysis for SmartNIC-based NFs:
Krude et al. [47] use SMT solvers to analyze NF code
written for processor-based SmartNICs and provide lower
bounds on throughput. Focussing solely on throughput
lower bounds results in their approach being limited to an-
alyzing worst-case latency, much like WCET. Clara [68]
uses machine learning to analyze NF code written in C to
identify “effective porting strategies” that result in low la-
tency when the NF is ported to a SmartNIC. Unlike PIX
that focusses on accurately predicting the NF latency,
Clara focusses on identifying how the NF implementa-
tion can make best use of the SmartNIC hardware (e.g.,
accelerator usage, NF state placement strategies, etc).

Program analysis for NF code running on commod-
ity hardware: Several instances of prior work have pro-
posed using program analysis to help understand, debug,
and verify the semantic behavior of software NFs [10, 11,
19, 44, 66, 74, 84, 86]. PIX builds upon the experience
of all of this prior work, but analyzes NF performance.

NF performance monitoring and diagnosis: Several
instances of prior work [28, 35, 56, 80] diagnose perfor-
mance issues such as packet drops or low throughput in
NF deployments. Such work is complementary to PIX
since it helps diagnose performance issues once they oc-
cur in production, while PIX provides a summary of NF
performance before the NF is deployed.

7 Conclusion

We proposed the notion of a performance interface—
a program that accepts the same inputs as the system
and outputs the latency incurred by the given input. For
the interface to be simultaneously simple, accurate and
human-readable we proposed (a) the notion of a perfor-
mance resolution to eliminating unnecessary details, and
(b) separate deployment-specific interfaces to tailor the
interface to particular <workload, environment> pairs.

We described a tool (PIX) that automatically extracts
performance interfaces from NF implementations. and
evaluated it on 12 NFs, including several used in produc-
tion. Our results show that PIX is practical—the com-
plexity of extracted interfaces is significantly lower than
the NF implementation, their accuracy is high, and the
time to extract them is reasonable. Finally, we show how
NF developers and operators can use these interfaces to-
day, to identify performance regressions, diagnose and
fix performance bugs, and pick the NFs that are best
suited to their hardware.

14

8 Acknowledgements

We thank our shepherd Theo Benson and the anony-
mous OSDI, SOSP and NSDI reviewers for their detailed
feedback that significantly improved the paper. We are
also grateful to the many people who provided helpful
feedback on drafts of the paper at various stages—Solal
Pirelli, Arseniy Zaostrovnykh, Marios Kogias, Adrien
Ghosn, Can Cebeci, Yugesh Kothari, Ayoub Chouk, Jo-
hannes Kinder, Jonas Wagner, Ed Bugnion and James
Larus.

References

[1] Bolt source code. https://github.com/bolt-perf-contracts/bolt.
[2] AFEK, Y., BREMLER-BARR, A., HARCHOL, Y., HAY, D., AND
KORAL, Y. Making DPI engines resilient to algorithmic com-
plexity attacks. IEEE/ACM Trans. on Networking (2016).
ALMEIDA, J. B., BARBOSA, M., BARTHE, G., DUPRESSOIR,
F., AND EMMI, M. Verifying constant-time implementations. In
USENIX Security Symp. (2016).

WSIJ: Facebook, google and apple hit by unusual out-
ages. https://www.wsj.com/articles/facebook-and-instagram-
suffer-lengthy-outages-11552539752.

BARBETTE, T., SOLDANI, C., AND MATHY, L. Fast userspace
packet processing. In ACM/IEEE Symp. on Architectures for
Networking and Communications Systems (2015).

BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In Internet Measure-
ment Conf. (2010).

BIILANI, A., AND RAMACHANDRAN, U. Extension framework
for file systems in user space. In USENIX Annual Technical Conf.
(2019).

BRUNELLA, M. S., BELOcCHI, G., BONOLA, M.,
PONTARELLI, S., SIRACUSANO, G., BIANCHI, G., CAM-
MARANO, A., PALUMBO, A., PETRUCCI, L., AND BIFULCO,
R. hxdp: Efficient software packet processing on FPGA NICs. In
Symp. on Operating Sys. Design and Implem. (2020).

CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In Symp. on Operating Sys. Design and
Implem. (2008).

CANINI, M., KosTIC, D., REXFORD, J., AND VENZANO, D.
Automating the testing of OpenFlow applications. Intl. Workshop
on Rigorous Protocol Engineering (2011).

CANINI, M., VENZANO, D., PERESINI, P., KOSTIC, D., AND
REXFORD, J. A NICE way to test openflow applications. In
Symp. on Networked Systems Design and Implem. (2012).
CHEN, S., DELIMITROU, C., AND MARTINEZ, J. F. PARTIES:
QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (2019).

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13] Commits to the eBPF code in the Cilium project. https://
github.com/cilium/cilium/commits/master/bpf.

[14] Cilium Project. https://cilium.io.

[15] Mellanox ConnectX-4 Network Adapter Cards. https://
downloadcenter.intel.com/download/14687.

[16] CoPPA, E., DEMETRESCU, C., AND FINOCCHI, I. Input-

sensitive profiling. In Intl. Conf. on Programming Language De-
sign and Implem. (2012).

https://github.com/bolt-perf-contracts/bolt
https://www.wsj.com/articles/facebook-and-instagram-suffer-lengthy-outages-11552539752
https://www.wsj.com/articles/facebook-and-instagram-suffer-lengthy-outages-11552539752
https://github.com/cilium/cilium/commits/master/bpf
https://github.com/cilium/cilium/commits/master/bpf
https://cilium.io
https://downloadcenter.intel.com/download/14687
https://downloadcenter.intel.com/download/14687

[17]

[18]

[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32

[33]

[34]

[35]

[36]
[37]

(38]

[39]

CoPPA, E., DEMETRESCU, C., FINOCCHI, 1., AND MAROTTA,
R. Estimating the empirical cost function of routines with dy-
namic workloads. In Intl. Symp. on Code Generation and Opti-
mization (2014).

CROSBY, S. A., AND WALLACH, D. S. Denial of service via al-
gorithmic complexity attacks. In USENIX Security Symp. (2003).
DOBRESCU, M., AND ARGYRAKI, K. Software dataplane ver-
ification. In Symp. on Networked Systems Design and Implem.
(2014).

DOBRESCU, M., ARGYRAKI, K., AND RATNASAMY, S. Toward
predictable performance in software packet-processing platforms.
In Symp. on Networked Systems Design and Implem. (2012).
DPDK: Data plane development kit. https://dpdk.org.
Ethtool Driver Identifier.
docs.huihoo.com/doxygen/linux/kernel/3.7/
include_2uapi_2linux_2ethtool_8h_source.html#/00085.
Commits to eBPF maps in the Linux Kernel. https://github.com/
torvalds/linux/commits/master/kernel/bpf.

eBPF maps. https:/prototype-kernel.readthedocs.io/en/
latest/bpf/ebpf_maps.html.

EIseNBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C.,
KoNoNoOV, R., MANN-HIELSCHER, E., CILINGIROGLU, A.,
CHEYNEY, B., SHANG, W., AND HOSEIN, J. D. Maglev: A fast
and reliable software network load balancer. In Symp. on Net-
worked Systems Design and Implem. (2016).

EMMERICH, P., GALLENMULLER, S., RAUMER, D., WOHL-
FART, F., AND CARLE, G. MoonGen: A scriptable high-speed
packet generator. In Internet Measurement Conf. (2015).
EYERMAN, S., EECKHOUT, L., KARKHANIS, T., AND SMITH,
J. E. A performance counter architecture for computing accurate
CPI components. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (2000).
FAYAZBAKHSH, S. K., CHIANG, L., SEKAR, V., YU, M., AND
MoGUL, J. C. Enforcing network-wide policies in the presence
of dynamic middlebox actions using flowtags. In Symp. on Net-
worked Systems Design and Implem. (2014).

FILLIATRE, J., GONDELMAN, L., AND PASKEVICH, A. The
spirit of ghost code.

Freud source code repository. https:/github.com/usi-systems/
freud.

FRIED, J., RUAN, Z., OUSTERHOUT, A., AND BELAY, A. Cal-
adan: Mitigating interference at microsecond timescales. In Symp.
on Operating Sys. Design and Implem. (2020).

Ghost variables in software verification. http://whiley.org/
2014/06/20/understanding-ghost-variables-in-software-
verification/.

GITHUB. The 2020 state of the Octoverse.
octoverse.github.com, Dec. 2020.

GOLDSMITH, S., AIKEN, A., AND WILKERSON, D. S. Measur-
ing empirical computational complexity. In Symp. on the Founda-
tions of Software Eng. (2007).

GONG, J., L1, Y., ANWER, B., SHAIKH, A., AND YU, M. Mi-
croscope: Queue-based performance diagnosis for network func-
tions. In ACM SIGCOMM Conf. (2020).

Google cloud storage incident.
status.cloud.google.com/incident/storage/19002.
GULWANI, S. SPEED: symbolic complexity bound analysis. In
Intl. Conf. on Computer Aided Verification (2009).

GULWANI, S., MEHRA, K. K., AND CHILIMBI, T. M. SPEED:
precise and efficient static estimation of program computational
complexity. In Symp. on Principles of Programming Languages
(2009).

GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,
PATANA-ANAKE, T., DO, T., ADITYATAMA, J., ELIAZAR, K. J.,

https:/

https:/

https:/

15

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]
[51]

[52]

(53]
(54

[55]

[56]

(571

[58]
[59]

[60]

[61]

LAKSONO, A., LUKMAN, J. F., MARTIN, V., AND SATRIA,
A. D. What bugs live in the cloud? A study of 3000+ issues in
cloud systems. In Symp. on Cloud Computing (2014).

Intel Network AdIntel 82599 10 GbE Controller Datasheetapter
Driver for PCle Intel 10 Gigabit Ethernet Network Connections.
https://downloadcenter.intel.com/download/14687.

IYER, R., PEDROSA, L., ZAOSTROVNYKH, A., PIRELLIL S.,
ARGYRAKI, K., AND CANDEA, G. Performance contracts for
software network functions. In Symp. on Networked Systems
Design and Implem. (2019).

Java String hashCode. https://docs.oracle.com/javase/6/docs/
api/java/lang/String.html#hashCode().

JIN, G., SONG, L., SHI, X., SCHERPELZ, J., AND LU, S. Un-
derstanding and detecting real-world performance bugs. In Intl.
Conf. on Programming Language Design and Implem. (2012).
KHALID, J., GEMBER-JACOBSON, A., MICHAEL, R., AB-
HASHKUMAR, A., AND AKELLA, A. Paving the way for NFV:
Simplifying middlebox modifications using statealyzr. In Symp.
on Networked Systems Design and Implem. (2016).

KING, J. C. Symbolic Execution and Program Testing. J. ACM
19,7 (1976).

KoGIAS, M., IYER, R., AND BUGNION, E. Bypassing the load
balancer without regrets. In Symp. on Cloud Computing (2020).
KRUDE, J., RUTH, J., SCHEMMEL, D., RATH, F., FOLBORT, I.,
AND WEHRLE, K. Determination of throughput guarantees for
processor-based smartnics. In Intl. Conf. on Emerging Networking
Experiments and Technologies (2021).

LAMPSON, B. Hints and principles for computer sys-
tem design. https://www.microsoft.com/en-us/research/
uploads/prod/2019/09/Hints-and-Principles-v1-full.pdf, No-
vember 2020.

LEMIEUX, C., PADHYE, R., SEN, K., AND SONG, D. Perffuzz:
automatically generating pathological inputs. In Intl. Symp. on
Software Testing and Analysis (2018).

libVig source code . https://github.com/vigor-nf/vigor/tree/
master/libvig/verified.
The Linux Perf Tool.
Perf_(Linux).
MANOUSIS, A., SHARMA, R. A., SEKAR, V., AND SHERRY, J.
Contention-aware performance prediction for virtualized network
functions. In ACM SIGCOMM Conf. (2020).

MEHROTRA, P., AND GOSWAMI, S. Analyzing Snort. Tech. rep.,
University of British Columbia, 2018.

Microscope survey form and results. https://www.dropbox.com/
s/66cp4k3wl8zm0qg5/survey.pdf?di=0.

MOON, S., HELT, J., YUAN, Y., BIERI, Y., BANERJEE, S.,
SEKAR, V., WU, W., YANNAKAKIS, M., AND ZHANG, Y. Alem-
bic: Automated model inference for stateful network functions.
In Symp. on Networked Systems Design and Implem. (2019).
NAIK, P., SHAW, D. K., AND VUTUKURU, M. NFVPerf: Online
performance monitoring and bottleneck detection for NFV. In
IEEE Conf. on Network Function Virtualization and Software
Defined Networks (2016).

Performance Tests for Natasha. https:/github.com/scaleway/
natasha/tree/master/test/perf.

Scaleway Natasha. https:/github.com/scaleway/natasha.
NELSON, L., BORNHOLT, J., GU, R., BAUMANN, A., TORLAK,
E., AND WANG, X. Scaling symbolic evaluation for automated
verification of systems code with Serval. In Symp. on Operating
Systems Principles (2019).

OLIVO, O., DILLIG, I., AND LIN, C. Detecting and exploiting
second order denial-of-service vulnerabilities in web applications.
In Conf. on Computer and Communication Security (2015).
OpenSSL. https://github.com/openssl/openssl.

https://en.wikipedia.org/wiki/

https://docs.huihoo.com/doxygen/linux/kernel/3.7/include_2uapi_2linux_2ethtool_8h_source.html#l00085
https://docs.huihoo.com/doxygen/linux/kernel/3.7/include_2uapi_2linux_2ethtool_8h_source.html#l00085
https://docs.huihoo.com/doxygen/linux/kernel/3.7/include_2uapi_2linux_2ethtool_8h_source.html#l00085
https://github.com/torvalds/linux/commits/master/kernel/bpf
https://github.com/torvalds/linux/commits/master/kernel/bpf
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html
https://github.com/usi-systems/freud
https://github.com/usi-systems/freud
http://whiley.org/2014/06/20/understanding-ghost-variables-in-software-verification/
http://whiley.org/2014/06/20/understanding-ghost-variables-in-software-verification/
http://whiley.org/2014/06/20/understanding-ghost-variables-in-software-verification/
https://octoverse.github.com
https://octoverse.github.com
https://status.cloud.google.com/incident/storage/19002
https://status.cloud.google.com/incident/storage/19002
https://downloadcenter.intel.com/download/14687
https://docs.oracle.com/javase/6/docs/api/java/lang/String.html#hashCode()
https://docs.oracle.com/javase/6/docs/api/java/lang/String.html#hashCode()
https://www.microsoft.com/en-us/research/uploads/prod/2019/09/Hints-and-Principles-v1-full.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/09/Hints-and-Principles-v1-full.pdf
https://github.com/vigor-nf/vigor/tree/master/libvig/verified
https://github.com/vigor-nf/vigor/tree/master/libvig/verified
https://en.wikipedia.org/wiki/Perf_(Linux)
https://en.wikipedia.org/wiki/Perf_(Linux)
https://www.dropbox.com/s/66cp4k3wl8zm0q5/survey.pdf?dl=0
https://www.dropbox.com/s/66cp4k3wl8zm0q5/survey.pdf?dl=0
https://github.com/scaleway/natasha/tree/master/test/perf
https://github.com/scaleway/natasha/tree/master/test/perf
https://github.com/scaleway/natasha
https://github.com/openssl/openssl

[62] Github issue raising constant-time violation in OpenSSL’s Ci-
pherblock Unpadding. https://github.com/openssl/openssl/
issues/16230.

Pull request to fix constant-time violation in OpenSSL’s Ci-
pherblock Unpadding. https://github.com/openssl/openssl/
pull/16323.

PEDROSA, L., IYER, R., ZAOSTROVNYKH, A., FIETZ, J., AND
ARGYRAKI, K. Automated synthesis of adversarial workloads
for network functions. In ACM SIGCOMM Conf. (2018).
PETSIOS, T., ZHAO, J., KEROMYTIS, A. D., AND JANA, S.
Slowfuzz: Automated domain-independent detection of algorith-
mic complexity vulnerabilities. In Conf. on Computer and Com-
munication Security (2017).

PIRELLI, S., VALENTUKONYTE, A., ARGYRAKI, K., AND CAN-
DEA, G. Automated verification of network function binaries. In
Symp. on Networked Systems Design and Implem. (2022).

[67] PUSCHNER, P., AND NOSSAL, R. Testing the results of static
worst-case execution-time analysis. In Real-Time Systems Symp.
(1998).

Qiu, Y., XING, J., Hsu, K.-F., KANG, Q., Liu, M.,
NARAYANA, S., AND CHEN, A. Automated smartnic offloading
insights for network functions. In Symp. on Operating Systems
Principles (2021).

ROGORA, D., CARZANIGA, A., DIWAN, A., HAUSWIRTH, M.,
AND SOULE, R. Analyzing system performance with probabilis-
tic performance annotations. In ACM EuroSys European Conf. on
Computer Systems (2020).

SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All you
ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In IEEE
Symp. on Security and Privacy (2010).

SHIROKOV, N., AND DASINENI, R. Open-sourcing Katran, a
scalable network load balancer. https://engineering.fb.com/
2018/05/22/open-source/open-sourcing-katran-a-
scalable-network-load-balancer, May 2018.

SMITH, R., ESTAN, C., AND JHA, S. Backtracking algorithmic
complexity attacks against a NIDS. In Annual Computer Security
Applications Conf. (2006).

Snort. https://www.snort.org.

STOENESCU, R., POPovICI, M., NEGREANU, L., AND RAICIU,
C. Symnet: Scalable symbolic execution for modern networks.
In ACM SIGCOMM Conf. (2016).

TERPSTRA, D., JAGODE, H., YOU, H., AND DONGARRA, J. J.
Collecting performance data with PAPI-C. In Workshop on Paral-
lel Tools for High Performance Computing (2009).

TOFFOLA, L. D., PRADEL, M., AND GROSS, T. R. Synthesizing
programs that expose performance bottlenecks. In Intl. Symp. on
Code Generation and Optimization (2018).

TOOTOONCHIAN, A., PANDA, A., LAN, C., WALLS, M., AR-
GYRAKI, K. J., RATNASAMY, S., AND SHENKER, S. Resq: En-
abling slos in network function virtualization. In Symp. on Net-
worked Systems Design and Implem. (2018).

WATSON, A. H., AND MCCABE, T. J. Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity Metric.
Computer Systems Laboratory, National Institute of Standards
and Technology, 1996.

WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N.,
THESING, S., WHALLEY, D., BERNAT, G., FERDINAND,
C., HECKMANN, R., MITRA, T., MUELLER, F., PuAuUT, I.,
PUSCHNER, P., STASCHULAT, J., AND STENSTROM, P. The
worst-case execution-time problem — overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst. (2008).

Wu, W., HE, K., AND AKELLA, A. PerfSight: Performance
diagnosis for software dataplanes. In Internet Measurement Conf.

[63]

[64]

[65]

[66]

[68]

[69]

[70]

[71]

[72]

[73]
[74

[75]

[76]

(771

[78]

[79]

[80]

16

(2015).
[81] WU, W., ZHANG, Y., AND BANERJEE, S. Automatic synthesis
of nf models by program analysis. In ACM Workshop on Hot
Topics in Networks (2016).
Express data path.
Express_Data_Path.
ZAOSTROVNYKH, A., PIRELLI, S., IYER, R. R., R1zzo, M.,
PEDROSA, L., ARGYRAKI, K. J., AND CANDEA, G. Verifying
software network functions with no verification expertise. In
Symp. on Operating Systems Principles (2019).
ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI,
K., AND CANDEA, G. A formally verified NAT. In ACM SIG-
COMM Conf. (2017).
ZAPARANUKS, D., AND HAUSWIRTH, M. Algorithmic profiling.
In Intl. Conf. on Programming Language Design and Implem.
(2012).
ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN,
N. Automatic test packet generation. In Intl. Conf. on Emerging
Networking Experiments and Technologies (2012).

[82] https://en.wikipedia.org/wiki/

[83]

[84]
[85]

[86]

Appendix A Using Freud on NFs

In this section, we describe our experience experiment-
ing with Freud. We used the publicly available Freud
code [30] at commit ID e6e7a91006.

Freud takes as input a binary and a test suite, and out-
puts an expression of performance (runtime) as a function
of input and global variables. So, by design, it strikes a
different generality/accuracy balance than PIX: It is more
general, in the sense that it can run on any program—
not just NFs that are amenable to ESE—and requires no
source code and no data-structure pre-analysis. It is less
accurate, in two ways: (a) It cannot reason about the per-
formance of execution paths that are not triggered by the
test suite (since it does not symbex the program, and it
does not analyze the source code). (b) It cannot reason
about how past inputs affect performance in stateful code
(since it does not know anything about the data structures
where the state is stored).

To assess Freud’s generality/accuracy balance, espe-
cially in the context of NFs, we used it on three classes of
programs: (a) A stateless program that spins for a period
of time proportional to the input length. (b) Data struc-
tures commonly used by NFs: a longest prefix match
(LPM) trie and a hash map. (c) NFs: VigNAT (academic
prototype), Natasha (production NAT used at ScaleWay),
and Maglev (DPDK implementation of Google’s load
balancer). Natasha comes with an open-source perfor-
mance test suite [57], making it an ideal fit for Freud. For
the remaining programs, we used as test suites the packet
traces on which we evaluated PIX.

Table 10 summarizes our results, discussed below.

Freud-vanilla: First, we ran Freud on unmodified pro-
grams, and it behaved as expected: It successfully char-
acterized the spinning program’s runtime as a function
of the input length, but it could not produce meaningful
performance annotations for the data structures or NFs.

https://github.com/openssl/openssl/issues/16230
https://github.com/openssl/openssl/issues/16230
https://github.com/openssl/openssl/pull/16323
https://github.com/openssl/openssl/pull/16323
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://www.snort.org
https://en.wikipedia.org/wiki/Express_Data_Path
https://en.wikipedia.org/wiki/Express_Data_Path
https://github.com/usi-systems/freud/tree/e6e7a91006972a6d0a390c5cb66617105426bee6

‘ Freud mode ‘ Program Accurate annotation? ‘
Synthetic stateless NF | Yes
Freud-vanilla | LPM trie No
Hashmap No
Real NFs No
Synthetic stateless NF | Yes
Freud-nf LPM trie Yes
Hashmap No
Real NFs No

Table 10. Summary of our experiments with Freud.

This is normal, since, in the latter programs, runtime is a
function of implicit variables that capture the interaction
between current and past inputs (e.g., number of itera-
tions of while (bucket [i].is_full ==1)).

Freud-nf: Next, to compare with PIX more fairly, we
explicitly modified our programs to work with Freud:
we identified conditions that we knew impacted perfor-
mance (essentially PCVs) and manually added them as
global variables (which Freud tracks). For instance, in
the hashmap, we added a global variable to explicitly
track the number of collisions; in the LPM trie, we added
a global variable to explicitly track the depth traversed.

The results for the data structures were mixed: For the
LPM trie, Freud produced an accurate performance anno-
tation. For the hashmap, Freud mistook a correlation for
a causation: when a test caused every packet to experi-
ence a collision, Freud concluded that runtime was deter-
mined by occupancy, as opposed to the number of colli-
sions. We expect that this issue can be resolved at the cost
of extra developer effort (to produce a smarter test suite).

For the real NFs, Freud could not produce meaningful
performance annotations (despite our modifications to
the NF source code). This is not surprising, given that
Freud does not analyze the source code, hence is unable
to track how a sequence of state-accessing calls affects
runtime. For instance, in Maglev, known client packets
that are destined to a now-stale backend-server undergo
consistent hashing once again, to pick a new backend.
Since Freud does not analyze the source code, it cannot
track how this call sequence affects runtime, looking
instead to express runtime as a function of individual
variables—which does not work. We observed similar
scenarios in the other NFs.

Conclusion: In its current form, Freud cannot produce
accurate performance annotations for stateful NFs. To
do so, it would need to track how a sequence of state-
accessing calls affects performance. We think that that
would necessarily require (a) some assumption about the
structure of the code (akin to our clean state assumption),
(b) a nuanced test suite for the NF’s data structures to
reveal which aspects of state affect performance (which
is done, in our approach, with the manual extraction
of PCVs during pre-analysis), and (c) leveraging call
context. We think that adding these elements to Freud

17

would bring it very close to PIX; we expect it would
achieve similar accuracy, but at the cost of its current
generality.

Appendix B Accuracy of performance
interfaces

This section provides more detailed answers to the fol-
lowing questions: (1) What is the prediction error for
both PIX and Bolt for each individual NF? (2) What is
the prediction error for both PIX and Bolt as a function
of the percentile latency?

Prediction error for individual NFs: Table 11 pro-
vides detailed per-NF results for PIX’s prediction accu-
racy for hardware-independent metrics, i.e., x86 instruc-
tion count and x86 memory accesses. We see that the re-
sults are similar across all the NFs, with PIX consistently
outperforming Bolt.

Spade Prediction Error | Bolt Prediction Error ‘

NF ‘

| x86 instructions | x86 mem-ops | x86 instructions | x86 mem-ops |
VigNAT 1.2% 1.3% 3.1% 4.0%
Bridge 0.8% 1.1% 3.6% 3.6%
Maglev 1.1% 1.1% 5.1% 4.2%
Router 1.7% 3.9% 6.8% 6.1%
Policer 1.4% 1.7% 4.2% 5.1%
Natasha 2.6% 3.2% 5.1% 5.6%
DPDK NAT 0.9% 1.1% 2.3% 2.9%
DPDK FW 1.1% 1.4% 2.7% 3.7%

Table 11. Prediction error for median latency for x86 instruc-
tion count and memory accesses for all 8 DPDK NFs in the
deployment characterized by the typical traffic. The numbers
for adversarial traffic are similar.

= Typical traffic = Adversarial traffic
20.00%
10.00% ﬁ: T~
0.00%

-10.00%

Prediction Error (%)

-20.00%

0 25 50 75 100

Latency percentile

Figure 10. PIX’s average prediction error for CPU cycles across
two deployments as a function of the percentile latency

Prediction error as a function of the percentile la-
tency: Fig. 10 illustrates PIX’s average prediction er-
ror across all 8 NFs for each deployment. First, we see
that the average error shows similar trends across deploy-
ments, proving that PIX characterises the deployment-
specific workload correctly. Second, we see that for both
deployments the average error is more or less stable at

= Typical traffic = Adversarial traffic
1000.00%

800.00%
600.00%

400.00%

200.00%

Prediction Error (%)

0.00%

-200.00%
25 50 75 100

Percentile latency

Figure 11. Bolt’s average prediction error for CPU cycles
across two deployments as a function of the percentile latency

around 8% up to the 95" percentile showing that for

18

these percentiles, PIX characterises the interaction of the
NF with the hardware correctly. Lastly, we see that at the
tail, the prediction errors become negative. This is due
to the fact that the simple HW model that PIX employs
(instructions * CPI + LLC_misses * miss_latency) is in-
valid at the tail, where other hardware aspects kick in.

Fig. 11 illustrates Bolt’s average prediction error across
all 8 NFs for each deployment. Bolt estimates only worst-
case latency and this is evident in the results—note the
change in scale on the y-axis from Fig. 10. For all per-
centiles except the tail, Bolt is widly inaccurate with er-
rors up to 900%. On the other hand, Bolt does not under-
estimate latency at the tail since it accounts for myriad
worst-case scenarios in the underlying hardware worst-
cases that PIX ignores to ensure accuracy across the re-
mainder of the spectrum.

	Abstract
	1 Introduction
	2 Performance Interfaces
	3 Extracting Performance Interfaces
	3.1 Extracting general-case interfaces
	3.2 Extracting deployment-specific interfaces

	4 Evaluation
	4.1 Does PIX Work?
	4.2 Are interfaces useful to NF developers?
	4.3 Are interfaces useful to NF operators?

	5 Does PIX Generalize?
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References
	A Using Freud on NFs
	B Accuracy of performance interfaces

