
Exterminating Bugs via Collective Information Recycling

George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

End-user software is executed billions of times daily,
but the corresponding execution details (“by-products”)
are discarded. We hypothesize that, if suitably cap-
tured and aggregated, these by-products could substan-
tially speed up the process of testing programs and prov-
ing them correct. Ironically, both testing and debugging
involve simulating real-world conditions and executions,
in essence trying to recreate in the lab some of these (pre-
viously available, but discarded) execution details.

This position paper proposes a way to recoup the ex-
ecution information that is lost during everyday software
use, aggregate it, and automatically turn it into bug fixes
and proofs. The goal is to enable software to improve it-
self by “learning” from past failures and successes, lever-
aging the information-rich execution by-products that to-
day are being wasted. We view every execution of a pro-
gram as a test run and aggregate executions across the
lifetime of a program into one gigantic test suite—i.e.,
we remove the distinction between software use and soft-
ware testing and verification—with the purpose of sub-
stantially reducing software bug density.

1 Introduction

The quality of the software we use on a daily basis is
poor, and this results from two seemingly insurmount-
able challenges: the cognitive difficulty of writing use-
ful, complex software that is also provably correct, and
the computational cost of verifying already written soft-
ware. The cognitive aspect appears to be an inherent lim-
itation of the human mind to formally reason about com-
plex behaviors, such as those of software with millions of
lines of code. The computational challenge faced by au-
tomated testing and proving techniques is due to the fact
that the number of possible states and paths in a program
is roughly exponential in the size of the program.

These two challenges—one cognitive and the other
computational—make quality assurance expensive. Even
though more than half of the resources in a typical devel-
opment cycle are invested in testing and debugging [21],
quality is still lacking: bugs manifest after software is
shipped to users and persist long thereafter.

One could argue that we are losing the arms race
against bugs. Empirical observation suggests the density

of bugs in industrial-strength code has stayed relatively
constant [21], yet the volume of code that goes into a
general software product today has increased by many or-
ders of magnitude (e.g., MS-DOS 1.0 had 4×103 lines of
code in 1981, while the more recent Windows Vista has
5×107 lines of code [23]). This means that the number of
overall bugs is growing at an alarming rate. If this trend
continues, the lack of dependability in general-purpose
end-user software could significantly affect a society that
relies on software at every step: mobile phones, house-
hold appliances, entertainment, communication, office
productivity, social networks, etc.

There exists a vast body of work aimed at improv-
ing software quality, and without this work one couldn’t
fathom building today’s software systems. For example,
some bugs can be eradicated using static analysis [10].
Alas, they often generate many false positives, potentially
thousands for large-scale software, which then have to be
inspected by human programmers [3]. Another approach
to finding bugs is to use model checkers [25, 15]—they
achieve high coverage and are sound, but suffer from
poor scalability on large programs: the explored state
space increases exponentially in the size of the program
and the number of threads. Recently, several research
projects have made progress in using symbolic execu-
tion to find bugs [12, 5]. Despite finding bugs with lit-
tle human assistance, symbolic execution is still limited
to small programs and cannot automatically synthesize
fixes for the bugs it finds.

The cognitive challenge of software dependability can
be overcome through automated learning, while the com-
putational challenge can be overcome through massively
distributed computation. To this end, we propose Soft-
Borg, a system that records execution information from
programs running “in the wild” and automatically turns
this information into fixes that make the programs more
reliable over time, enabling software to improve itself
in the same way intelligent beings accumulate experi-
ence and become more proficient with time. We advocate
against the view that software use is separate from soft-
ware testing or verification, and argue that these are in
fact three naturally symbiotic facets of a program’s life.

Appears in Proc. 7th Workshop on Hot Topics in System Dependability (HotDep), Hong Kong, China, June 2011 1

2 The Case for Information Recycling

In an abstract sense, the execution of a program P

produces information by-products: information on which
branches were taken, how many times each loop was exe-
cuted, which locks were acquired and in what order, val-
ues returned by system calls, etc. Such information is key
to verifying program properties—for example, traces of
lock acquisitions/releases in a program’s threads can be
used to reason about the presence/absence of deadlocks.

Users execute software billions of times around the
world—the equivalent of running billions of tests—yet,
the corresponding execution by-products are discarded.
If we could treat every end-user execution of a program
as a test run, then the aggregation of all executions across
the lifetime of a program (and across all copies of that
program) would be equivalent to one big test suite. It is
ironic that, when testing or debugging, developers try to
simulate a tiny subset of possible executions, while that
same information is being wasted at every program run.
Such waste is even more absurd in light of the fact that no
software organization can match the aggregate resources
of a real user population—e.g., Microsoft Office runs on
>500 million computers [22], which exceeds by orders
of magnitude even the most optimistic estimates of how
many servers are housed in Google’s data centers [2].

In the battle against exponential bug proliferation,
the aggregate hardware resources employed by end-users
(laptops, tablets, smartphones, game consoles, desktops,
servers, etc.) are more likely to be an effective weapon
than the resources of any one organization. We postu-
late that the proper exploitation of end-user executions
for testing and verification is key in arresting bug prolif-
eration. However, this faces several challenges: captur-
ing the by-products at low cost, collecting and analyz-
ing them efficiently and securely, and turning them into
practical fixes and proofs. Furthermore, these steps must
be performed automatically, to enable software to self-
improve, without relying on slow humans at every step.

To this end, we propose SoftBorg, a distributed plat-
form that enables the various executing instances of an
arbitrary program P to cooperate in (1) identifying the
correct code in P and proving it correct, and (2) iden-
tifying the incorrect code and “correcting” it such that
future failures are averted. When running on SoftBorg,
the more a program is used, the more reliable it should
become. We expect this can lead to orders-of-magnitude
reduction in the bug density of popular software.

3 The SoftBorg Platform

SoftBorg is a collective of pods that lie underneath
(ideally every) instance of a program P executing any-
where in the world. The pods observe P’s execution and
relay the by-products over the Internet to the hive, a pro-
cessing center (see Figure 1). The hive may be physically
centralized (a cluster behind a web service), entirely dis-
tributed (running on end-users’ machines), or hybrid.

The hive merges information extracted from by-
products with its existing knowledge of P, identifies mis-
behaviors in P, synthesizes fixes that improve P, and dis-
tributes these fixes back to the pods, to be applied to their
respective instances of P. For example, if P exhibits a
deadlock pattern, SoftBorg can synthesize instrumenta-
tion that “protects” P from thread schedules that trigger
that deadlock bug, thus avoiding future occurrences of
that deadlock in P [16]. For correct behaviors, SoftBorg’s
hive produces and publishes proofs of P’s properties.

P

P

P

P P
pod

program

Hive

proofs

by-products

 xes

Figure 1. SoftBorg platform architecture

SoftBorg can also guide the execution of P’s instances
to cover execution paths about which SoftBorg does
not yet have sufficient information—for instance, it may
guide P in exploring previously unseen thread schedules.
Such steering augments the collective’s knowledge de-
rived from “naturally occurring” executions, accelerating
the learning process. SoftBorg can also capture end-user
feedback on program behavior, either directly or by infer-
ence (e.g., a user-terminated program was likely hung).

3.1 Capturing Execution By-Products

By-products that are of interest to SoftBorg fixes and
proofs are primarily related to control flow, and they can
be obtained by pods with a mix of dynamic and static
instrumentation of P : aspect-oriented approaches [1],
dynamic binary rewriting [19], and/or specialized run-
times [16]. To capture which branches were taken dur-
ing an execution, we need one bit per branch—indicating
whether the then or else branch was taken—which ends
up encoding an execution as a bit-vector. The bit-vectors
can be augmented with summaries of system call return
values and thread schedules, as well as an indication of
whether the execution was correct or not. The outcome
of an execution is either determined by the pod explicitly
(e.g., for crashes or deadlocks), or can reflect feedback
provided by the end-user directly (e.g., via forceful pro-
gram termination) or indirectly (e.g., an erratically jerked
mouse suggests a program is being unusually slow).

The cost of capture can be reduced by focusing solely
on branches that depend on program-external events;
once they are fixed, the rest of the program execution is
deterministic [8]. Modern CPUs also offer useful branch-
counting facilities [14]. Sampling is effective too, espe-
cially if done in a coordinated fashion [18]: instead of

2

uniquely specifying a path, a recorded trace specifies a
family of paths, but subsequent aggregation of traces can
narrow down this family for the purpose of analysis.

An important question is how much and what types of
information are contained in a trace. For example, traces
might disclose private end-user information; even though
initial ideas on anonymization exist [6], more study is
needed. We are investigating ways to quantify this infor-
mation content and develop a principled framework for
reasoning about the balance between control flow details
and privacy, as well as between recording granularity and
runtime overhead—multicore CPUs offer ample oppor-
tunities for using parallelization to lower recording over-
head, but the trade-offs are not yet well understood.

3.2 From By-Products to Collective Execution Trees

A program P is an encoding of a decision tree (Fig-
ure 2). To reason about P, the SoftBorg hive decodes this
execution tree based on live executions. Each execution
of P materializes one path from the root to a leaf. For
large programs, the tree is overwhelmingly large: its size
is roughly exponential in the number of branches. Differ-
ent thread interleavings further compound this challenge,
because they weave different executions out of otherwise
identical thread-level execution paths.

void write(int p){

 if (p < MAX) {

 if (p > 0)

 ...

 else {

 ...

 }

 } else {

 if (p > 3)

 close(p);

 else {

 ...

 ...

p<MAX

p>3 p>0

TrueFalse

TrueFalse TrueFalse

False

False

False

True

True

Figure 2. Every program encodes an execution tree

Statically constructing the execution tree—as done in
classic symbolic execution [17, 5]—is prohibitively ex-
pensive for large programs. One reason is that, at each
branching point, one must decide which branch(es) is/are
feasible, in order to guarantee that there indeed exists a
combination of program inputs and thread schedule that
would produce that path in a live execution. Deciding
feasibility requires solving complex constraints on vari-
ables in P and its environment, amounting to deciding
propositional satisfiability—an NP-complete problem.

Instead, SoftBorg builds P’s execution tree dynami-

cally by aggregating execution paths that result from end-
users’ “natural” executions of P and transmitted to the
hive by the pods. Given that each path occurred during
an actual execution, it is guaranteed feasible, so runtime
constraint solving is not necessary. Execution traces are
encoded as bit-vectors indicating the direction of input-
dependent branches; merging a path into an existing (in-

natural executions

(from pods)

 incomplete

execution tree

hive

Figure 3. Naturally occurring execution paths are col-
lected and dynamically merged into an execution tree

complete) execution tree consists of reconstructing the
deterministic branches, identifying a lowest common an-
cestor, and pasting the path into the tree (Figure 3).

3.3 From Execution Trees to Proofs and Fixes

A complete exploration of all paths leads to a proof,
while a test is just a weaker proof that covers a smaller
subset of the paths. In SoftBorg, we unify tests and proofs
along a single spectrum: a cooperative prover combines
aggregations of individual test cases (i.e., naturally occur-
ring executions) with additional symbolic program anal-
ysis (performed by the hive) to synthesize proofs or syn-
thesize the bug fixes required to enable these proofs.

As the hive receives execution traces, it continuously
reasons about the program and attempts to prove useful
properties about P, thus incrementally assembling cumu-

lative proofs of correctness. If the tree (or part of it) is
found to be complete, the hive produces a proof that the
program (or part of it) is guaranteed to satisfy the desired
property. This proof is then published.

There are two hurdles to building such a proof:
(1) program bugs, i.e., counter-examples that invalidate
the attempted proof, and (2) execution subtrees that do
not get naturally explored in a reasonable amount of time.

The first hurdle—bugs—are program behaviors that
must be corrected in order to make the proof possible.
For instance, the tree may have a path for which dead-
lock can occur. In this case, SoftBorg uses a runtime-
based mechanism or minor instrumentation to modify P

such that its threads avoid the conditions under which
that deadlock occurs, helping P avert the deadlock in fu-
ture executions [16]. SoftBorg can also employ other ap-
proaches to synthesizing bug fixes [24]. By correcting
P’s behavior in this way, SoftBorg “smoothes over” the
hurdles that prevent the proof. We are studying general-
ized techniques for on-the-fly behavior fixes that can gen-
erate an enhanced version of P for which SoftBorg can
provide behavioral guarantees. Since it is not yet clear
how many types of bugs can be fixed automatically, we
also provision for a repair lab that suggests plausible fixes
to developers, who then manually choose the correct one.

3

The second hurdle—an incomplete tree—is encoun-
tered when, even after many executions, the aggregate
tree still has unexplored paths. Instead of waiting for
the tree to become complete, SoftBorg uses symbolic
analysis of the program to (1) reason about the incom-
plete tree, and (2) identify directions toward which to
guide the pods to “fill in” the gaps. For example, there
may be certain thread interleavings that are rare in prac-
tice, but might be hiding bugs—SoftBorg instructs some
of the pods to guide their program copies toward those
thread schedules. None of the execution guidance ever
modifies P’s semantics, because SoftBorg will only guide
P down feasible paths through its execution tree. Soft-
Borg can also produce specific test cases to guide execu-
tion, stated in terms of inputs or in terms of system call
faults to be injected (e.g., a short socket read()). Execu-
tion guidance enables accelerated learning: the SoftBorg
collective obtains the missing traces more rapidly than if
it waited for the executions to occur naturally, thus learn-
ing sooner about P’s behavior in rare corner cases.

Since SoftBorg must work for real-world software, it
must reason automatically about large execution trees: it
needs to decide which pieces are missing from its proof
puzzle, needs to determine what instrumentation will fix
program behavior, must reason about whether this instru-
mentation could affect P in undesired ways, and needs to
decide whether the instrumentation invalidates the hive’s
existing knowledge and proofs. Therefore, SoftBorg
must perform program analysis at an unprecedented scale
and overcome exponential path explosion.

4 Cooperative Symbolic Execution

For such large-scale analyses, we need to harness as
much of the unused end-user computing power as possi-
ble. We therefore parallelize symbolic execution using
the Cloud9 framework [4] and distribute the analysis of
the execution tree to the hive’s nodes (which could in-
clude as many as all machines running SoftBorg).

A key question is how to distribute subtrees of the ex-
ecution tree among the hive’s nodes, which are mostly
end-user machines communicating over a potentially un-
reliable network? One way to do this is to statically split
the execution tree and farm off subtrees to worker nodes.
Unfortunately, the contents and shape of the execution
tree remain unknown until the tree is actually explored,
and thus finding an appropriate partition is undecidable.

Instead, SoftBorg partitions the execution tree dynam-

ically, as it is being explored, and the hive nodes ex-
change information on what they have found thus far.

In order to cope with the unpredictability of the sub-
trees, we build upon modern portfolio theory [20]. When
investing in financial instruments, choosing the equities
with the highest return is “undecidable”, so one must in-
vest in parallel in several equities, in order to balance
the risk/reward mix. In SoftBorg, equities correspond to
roots of subtrees in the execution tree, and the capital in-

vested in each equity corresponds to the hive nodes allo-
cated to analyze them. Portfolio theory offers strategies
that appear promising for our problem, such as diversi-
fication, speculation, and efficient frontier. Preliminary
results suggest that the portfolio approach works for con-
straint solving: by replacing a single SAT solver with a
portfolio of three different SAT solvers running in par-
allel, we achieved a 10× speedup in constraint solving
time with only a 3× increase in computation resources.
We believe that each solver is fast in solving some path
constraints but slow on others and, for most constraints,
at least one solver completes much faster than the others.

A second, complementary way for the SoftBorg hive
to scale symbolic analysis is through controlled relax-
ation of analysis precision. The traditional assumption
about the execution of a system is that the state at any
point in time is consistent, i.e., there exists a feasible exe-
cution path from the start state to the current state. How-
ever, there are many analyses for which this assumption is
unnecessarily strong, and the cost of providing such con-
sistency during symbolic execution is often prohibitively
high. For example, when doing unit testing, one typi-
cally exercises the unit in ways that are consistent with
the unit’s interface, regardless of whether all those paths
are indeed feasible in an integrated system. This over-
approximates the paths through the unit, but reasoning
at the unit level (instead of system level) can be faster
despite the fact that overapproximation introduces more
paths to analyze. If the unit behaves correctly for a super-
set of the feasible paths, then it is guaranteed to behave
correctly for all feasible paths.

SoftBorg relies on S2E [7] for such analyses. Relaxed
execution consistency enables in-vivo program analysis,
a way to study a program’s behavior along all paths in-
side its real environment (libraries, kernel, drivers, etc.)
without the use of abstract models. This approach auto-
matically slices the exploration of paths in large software
into thorough exploration of the code of interest plus
quick single-path exploration of the rest. More specif-
ically, the code of interest lies inside a “symbolic do-
main”, where SoftBorg can reason symbolically about
the execution paths, whereas the rest of the system re-
mains outside the domain. As execution weaves its way
between the symbolic and non-symbolic domains, S2E
converts on-the-fly the representation of program state
between symbolic and normal (concrete) state. These
conversions are precise, and they are governed by the
rules of the chosen execution consistency level [7]. As an
added benefit, S2E can operate directly on binaries, thus
allowing SoftBorg to accommodate proprietary software.

SoftBorg is not yet a completely built and validated
system. In this position paper we glossed over many de-
tails and potential difficulties, but we recognize that many
hurdles do exist. It is our hypothesis that the combination
of techniques described here does have the potential to
reduce bug density by an order of magnitude or more.

4

5 Related Work

SoftBorg is a logical descendant of today’s generation
of error reporting mechanisms, such as WER [11]. Soft-
Borg proposes a few new steps: (1) a recognition of the
high information content of execution by-products and a
systematic way to collect and reason about them; (2) cu-
mulative proofs that use natural program executions to
incrementally construct proofs; (3) closure of the quality
feedback loop by automatically producing and distribut-
ing fixes, thus minimizing reliance on slow humans; and
(4) cooperative symbolic execution.

The construction of bigger and more concurrent pro-
grams offers bugs more opportunities to hide and makes
them ever more difficult to fix; gaining confidence in a
program’s correctness is getting harder. Many techniques
have been advocated for improving software reliability,
ranging from better software engineering and object ori-
ented programming to formal methods. The approach
proposed here complements these techniques, providing
an additional, orthogonal way to combat bugs. Further-
more, SoftBorg is a good match for the chaotic way in
which end-user software is being developed today.

The cooperative aspect of SoftBorg is inspired in part
by the cooperative bug isolation project [18], which uses
a sampling infrastructure for gathering information from
the executions experienced by a program’s user commu-
nity. That project transforms assertion-dense code into
code with fewer assertions distributed randomly among
the different copies of running programs; as these copies
run in the field, triggered assertions are reported centrally
and interpolated such that the location of bugs is inferred.
Cooperative bug isolation does not diagnose bugs nor
generate proofs or hints for fixing the bugs.

Record-replay systems [9, 13] collect execution infor-
mation with the goal of replaying an execution. Systems
like R2 [13] reduce recording overhead by asking devel-
opers to specify the interfaces where to capture the pro-
gram’s interactions. Castro et al. [6] discuss the trade-
off between recording overhead and post-factum analy-
sis; they are also among the first to seriously analyze the
privacy implications of execution recording. SoftBorg’s
recording techniques build upon these previous systems.

6 Conclusion

In this paper, we proposed a solution to an acute
practical problem: the alarmingly poor quality of ev-
eryday end-user software. We advocated merging regu-

lar use of software with self-testing, self-fixing, and self-

verification. The SoftBorg platform combines runtime
recording with online, distributed construction of execu-
tion trees and with automated derivation of proofs and
fixes. To reason about large-scale programs, we pro-
pose cooperative symbolic execution, which harnesses
end-users’ machines to collectively solve analysis prob-
lems that are beyond the reach of any single organization.

We view SoftBorg as a new step toward the (potentially
Utopian) goal of zero-defect real-world software.

References

[1] AspectJ. http://www.eclipse.org/aspectj.
[2] B. Barrett. Google’s insane number of servers visual-

ized. http://gizmodo.com/#!5517041/googles-insane-number-of-
servers-visualized, 2010.

[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few
billion lines of code later: using static analysis to find bugs in the
real world. Communications of the ACM, 53(2), 2010.

[4] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In ACM Eu-
roSys European Conf. on Computer Systems, 2011.

[5] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Symp. on Operating Sys. Design and Implem., 2008.

[6] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with
better privacy. In Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, 2008.

[7] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In Intl. Conf. on
Architectural Support for Programming Languages and Operat-
ing Systems, 2011.

[8] O. Crameri, R. Bianchini, and W. Zwaenepoel. Striking a new
balance between program instrumentation and debugging time.
In ACM EuroSys European Conf. on Computer Systems, 2011.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine log-
ging and replay. In Symp. on Operating Sys. Design and Implem.,
2002.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In Conf. on
Programming Language Design and Implem., 2002.

[11] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in
the (very) large: Ten years of implementation and experience. In
Symp. on Operating Systems Principles, 2009.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed auto-
mated random testing. In Conf. on Programming Language De-
sign and Implem., 2005.

[13] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek,
and Z. Zhang. R2: An application-level kernel for record and
replay. In Symp. on Operating Sys. Design and Implem., 2008.

[14] Intel processor events. http://software.intel.com/sites/products/do-
cumentation/hpc/amplifierxe/en-us/lin/ug_docs/reference, 2011.

[15] Java PathFinder. http://javapathfinder.sourceforge.net, 2007.
[16] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock im-

munity: Enabling systems to defend against deadlocks. In Symp.
on Operating Sys. Design and Implem., 2008.

[17] J. C. King. A new approach to program testing. In Intl. Conf. on
Reliable Software, 1975.

[18] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scal-
able statistical bug isolation. In Conf. on Programming Language
Design and Implem., 2005.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. PIN: building cus-
tomized program analysis tools with dynamic instrumentation. In
Conf. on Programming Language Design and Implem., 2005.

[20] H. M. Markowitz. Portfolio Selection: Efficient Diversification of
Investments. John Wiley & Sons, Inc., New York, 1959.

[21] S. McConnell. Code Complete. Microsoft Press, 2004.
[22] Microsoft. Office 2010. http://www.microsoft.com/business/

smb/en-hk/office/office-2010.mspx, 2009.
[23] The operating system documentation project.

http://www.operating-system.org, 2010.
[24] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,

M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan,
W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically
patching errors in deployed software. In Symp. on Operating Sys-
tems Principles, 2009.

[25] M. Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In First IEEE Symp. on Logic in
Computer Science, 1986.

5

