
Verifying Software Network Functions
with No Verification Expertise

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa
Katerina Argyraki, George Candea

School of Computer & Communication Sciences
EPFL, Switzerland

Abstract
We present the design and implementation of Vigor, a soft-
ware stack and toolchain for building and running software
network middleboxes that are guaranteed to be correct, while
preserving competitive performance and developer productiv-
ity. Developers write the core of the middlebox—the network
function (NF)—in C, on top of a standard packet-processing
framework, putting persistent state in data structures from
Vigor’s library; the Vigor toolchain then automatically veri-
fies that the resulting software stack correctly implements a
specification, which is written in Python.

Vigor has three key features: network function developers
need no verification expertise, and the verification process
does not require their assistance (push-button verification);
the entire software stack is verified, down to the hardware
(full-stack verification); and verification can be done in a pay-
as-you-go manner, i.e., instead of investing upfront a lot of
time in writing and verifying a complete specification, one
can specify one-off properties in a few lines of Python and
verify them without concern for the rest.

We developed five representative NFs—a NAT, a Maglev
load balancer, a MAC-learning bridge, a firewall, and a traffic
policer—and verified with Vigor that they satisfy standards-
derived specifications, are memory-safe, and do not crash or
hang. We show that they provide competitive performance.

The Vigor framework is available at http://vigor.epfl.ch.

1 Introduction
Over the past decade, there has been a migration from ASIC-
based to software-based implementations of middleboxes, and
this brings both benefits and drawbacks. The main benefits

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00
https://doi.org/10.1145/3341301.3359647

are shorter development cycles and the flexibility to deploy
network functionality on demand, which is an enabler of
network function virtualization [19]. The main drawback is
the lack of reliability that is characteristic of today’s software:
bugs, unpredictable behavior, and security vulnerabilities.

This work focuses on the data plane of software mid-
dleboxes, i.e., the code that implements the core packet-
processing functionality of the middlebox and is performance-
critical; we refer to such a piece of code as a “network func-
tion” (NF). A middlebox typically comprises other compo-
nents too, such as a control plane or a web interface, which
have a different reliability/performance trade-off from NF
code.

The goal of this work is to enable the development of soft-
ware network functions that are guaranteed to be semantically
correct while offering competitive performance and preserv-
ing developer productivity. This is different from what is
typically called “network verification,” which guarantees that
a certain network behaves correctly given its topology, con-
figuration, and NF models [16, 17, 22–24, 28, 29, 42, 46, 48].
Instead, this work is about “NF verification,” which guaran-
tees that a certain NF implementation behaves correctly [12].
Since we want to offer competitive performance and preserve
developer productivity, we target NFs implemented in C on
top of a standard I/O framework like the Data Plane Develop-
ment Kit (DPDK) [13], because this is how high-performance
NFs are developed today.

Recent work presented VigNAT, a Network Address Trans-
lator (NAT) that is guaranteed to be semantically correct and
memory-safe [49]. VigNAT is split into a stateful and a
stateless part. The former consists of carefully written data
structures that hold all the NF’s state that persists across pack-
ets; these data structures can be thought of as “components.”
The latter encodes the NAT logic itself, in essence “wiring”
together the components to achieve the desired functional-
ity: parsing the packets, looking up and manipulating NF
state, modifying the packets, etc. The stateless and stateful
parts pose different challenges to verification, so the two parts
are verified using different verification techniques. The Vi-
gNAT “validator” tool then stitches the two proofs—after
cross-checking their assumptions—into a final proof of the
NAT’s correctness with respect to the NAT RFC 3022 [44].

https://sysartifacts.github.io/results.html
http://vigor.epfl.ch
https://doi.org/10.1145/3341301.3359647

VigNAT left three questions open:
(1) How to generalize to other NFs beyond a NAT? Apply-

ing the original approach to other NFs still requires experience
with verification techniques, in order to encode the semantics
of the state into a validator specific to that NF that can stitch
together the two sides of the proof. Our interactions with
industry suggest that requiring NF developers to understand
how the underlying verification works is a show-stopper for
the adoption of NF verification.

(2) What to do about the software layers underneath the
NF? All NF verification work we are aware of (see §8)
assumes that the I/O framework, the operating system, and
the network device drivers are correct. This means that the
resulting proofs are just as correct as the thousands or millions
of lines of code running underneath the NF. Furthermore, a
single misunderstanding about how a particular system call
works could render the entire NF proof false.

(3) How to lower the cost of verifying NF correctness in
the real world? Practitioners at major Internet companies
tell us that the upfront cost of verifying NFs is prohibitive.
Learning a new language to write specifications, investing
multiple days in writing a full specification before being able
to verify even the first line of code, writing lemmas that a
theorem prover can understand, figuring out whether a proof
is failing because of an error in the spec or an error in the
code, and so on are all reasons why verification is perceived
by modern-day developers as an undue burden.

To address these three challenges, we developed Vigor, a
framework for building and running NFs. Vigor takes as input
an NF implementation and a specification that the implemen-
tation must satisfy, and it automatically produces either a
proof that the implementation satisfies the spec, or a counter
example. We do not reinvent the wheel: we start from the
VigNAT approach and toolchain, and we change them in
three ways: (1) We generalize to arbitrary NFs and remove
the need for developers to “know verification.” A key ele-
ment that enables this is the level of abstraction of the NF
spec and a technique to bridge the spec to the implementa-
tion. (2) We verify the entire software stack, reducing the
trusted computing base (TCB) to the hardware, the Clang and
GCC compilers, a small piece of OS startup code, and our
verification toolchain. A key element that enables this is a
domain-specific operating system we built and a mechanism
that verifies just those parts of the stack that are required by
the NF in question. Since we expect NFs to run on dedicated
machines, either physical or virtual, using a custom OS is
reasonable. (3) We provide “pay-as-you-go” verification, a
mode that reduces the cost of using verification in practice,
both when developing and deploying NFs.

We present five NFs that we verified with Vigor—a NAT,
a Maglev load balancer, a MAC-learning bridge, a traffic
policer, and a stateful firewall. We show that each performs on
par with standard, functionally equivalent, non-verified NFs
that use the same high-performance packet I/O framework.

In the rest of the paper, we give an overview of Vigor (§2),
then describe our three contributions: push-button NF verifi-
cation (§3), full-stack NF verification (§4), and pay-as-you-go
NF verification (§5). We evaluate our Vigor prototype (§6),
discuss the limitations of our approach (§7), and close with
related work (§8) and conclusions (§9).

2 Overview
We now provide an overview of Vigor: its intended audience
and use, what kind of specifications it verifies, and a brief
summary of how it works.

Audience and Use
We designed Vigor with four categories of audience in mind:
(1) NF operators are network operators who deploy NFs in
their networks. (2) NF developers write NF code in C on
top of standard I/O frameworks like DPDK [13]. They are
competent in popular programming languages, like C and
Python, but are not (and do not wish to become) verification
experts. For instance, they would not have the time or expe-
rience to productively use an interactive theorem prover like
Coq or Isabelle, or to write specifications in first-order logic.
(3) Standardization bodies are the entities that define what
NFs ought to do. For example, they write the RFCs that define
IP forwarding or Network Address Translation. They are not
verification experts either, but they may be willing to write a
specification for the NF they are standardizing, as long as it
can be done in an accessible language. (4) Vigor contributors
are the maintainers of the Vigor stack and toolchain. They
have plenty of verification expertise and enjoy using it.

The Vigor contributors develop and maintain a library of
formally verified data structures (libVig in Fig. 1), a small
domain-specific operating system, the Vigor toolchain, and
models of newly supported NICs (i.e., specifications of NIC
behavior to be used for verification). They also provide a
standard packet I/O framework (in our prototype, DPDK [13])
and NIC drivers, all of which are off-the-shelf but slightly
patched. These patches are minor (∼100 LOC added/removed)
and include fixes for bugs that prevent correctness proofs
from succeeding (see §6.2) plus adjustments to make DPDK
verifiable. They do not change the public API.

Standardization bodies write full specifications of NF func-
tionality and publish them together with the corresponding
RFCs, IEEE standards, etc. Their goal is to reduce the con-
fusion inherent to natural language and enable testing and
mechanical verification of the standard’s implementations.

NF developers write NF implementations in C, using lib-
Vig to store all state that persists across packets, and the I/O
framework to send/receive packets. For each release of an
NF, developers use Vigor in a push-button manner (§3) to ver-
ify the implementation against an RFC-derived specification.
While developing the code, they use Vigor in a pay-as-you-go
manner (§5) to check one-off properties (see “Specification vs.

2

libVig

NF logic

Packet I/O framework

Driver NF-specific OS

NIC Mem Clock

mem() time()

send() recv() drop()

send() recv() drop() cfg() mem()

send() recv() cfg()

Verified
software

Modeled
hardware

mem() time()

Figure 1. The Vigor stack for running NFs.

Implementation” below) and thereby better understand their
code, debug it, and converge onto a correct implementation
more quickly. Neither mode requires verification expertise,
but it does require NF developers to keep Vigor’s limitations
(§7) in mind. Fig. 2 illustrates this workflow.

NF logic

libVig

System stack
(I/O fwk, driver, OS)

Vigor toolchain

RFC-derived
specification

Proof of NF
correctness

Debug info

written by Vigor contributors

written by NF developers

written by NF developers / operators

written by standardization bodies

One-off
properties

Figure 2. Vigor workflow: who writes what.

Similarly, NF operators can use Vigor to verify the NF
implementations they deploy in their networks, either against
full specs or in a pay-as-you-go manner (e.g., to check whether
the NF fulfills custom, “in-house” expectations). They can
also combine Vigor with network verification tools to reason
about their network without relying on unverified NF models.

Specification vs. Implementation
Vigor verifies low-level properties (e.g., memory safety, crash
freedom, hang freedom, absence of undefined behavior) and
semantic properties, and it supports two types of semantic
specifications: (1) Full NF specs define the entire seman-
tics of an NF. They are written by standardization bodies.
(2) One-off properties specify particular aspects of an NF
implementation’s behavior that perhaps are not even part of
the RFC, such as “Could this load balancer ever send connec-
tions to those high-per-connection-cost nodes when any of
the cheap ones over here are under-utilized?” NF developers

and operators have little interest in formulating an entire spec
just to verify that such a one-off property holds in all possible
circumstances. This ad-hoc way of verifying properties is
particularly suitable when one is trying to learn things about
the NF implementation in the context of its deployment rather
than prove that it is correct in an absolute sense.

Specs are written in a dialect of Python, specified in [47].
Fig. 3 shows an example. We believe that using Python makes
writing specs easier and friendlier for all three categories of
Vigor users. Our dialect uses a small subset of Python syntax.

When choosing a spec language, a key decision is the level
of abstraction; in Vigor, specs are written in terms of the
abstractions exposed by the libVig API. For example, libVig
exposes the abstraction of a map with automatic entry expi-
ration. The spec in Fig. 3 uses this abstraction (macTable)
to define the functionality of a MAC-learning bridge, which
uses the map to associate MAC addresses with NIC IDs. An
NF developer implementing this spec must also use the map
abstraction in their implementation.

1 from state import macTable

2

3 macTable.expireOlder(now - EXP_TIME)

4 macTable[pkt.src_mac] = (port, now)

5

6 if pkt.dst_mac in macTable:

7 out_port = macTable[pkt.dst_mac]

8 if out_port == port:

9 return DROP

10 else:

11 return out_port, pkt

12 else:

13 return BROADCAST, pkt

Figure 3. Part of a spec for a MAC-learning bridge.

Currently, libVig provides a small number of data struc-
tures that we consider sufficient for writing most NFs: a map,
a consistent hashtable, a vector (all three having the ability
to automatically expire entries), a longest-prefix-match table,
a number range manager (e.g., used for port allocation), and
a packet queue. libVig also provides primitives for reading
system time and parsing packet headers. With some further en-
gineering, verified crypto primitives [51] and verified regexp
parsing primitives [2] can be added to complete the library. As
shown in §6.4, it is reasonable to expect that such an expanded
version of libVig would be sufficient for building most NFs.
Compared to VigNAT’s data-structure library, libVig required
some reorganization, reimplementation, and the addition of
new primitives.

Under the Covers
The Vigor verification process has two components: (1) libVig
verification – For each libVig function, the Vigor contribu-
tors write a contract (i.e., pre- and post-conditions) and prove

3

using a theorem prover that the function implementation satis-
fies this contract (i.e., given the pre-conditions, an invocation
of the function leads to the post-conditions). More details ap-
pear in §3. (2) NF stack verification – Vigor takes as input the
code of the entire software stack, the contracts of the libVig
functions called by the NF, and a spec to verify. It then uses a
combination of exhaustive symbolic execution and theorem
proving to prove that the NF, running on the given stack, does
or does not satisfy the spec for all possible execution scenar-
ios. If the proof fails, Vigor provides debug information to
help pinpoint the cause.

The next three sections describe the contributions of this
paper in more detail: how Vigor achieves push-button veri-
fication (§3), how it verifies the full NF stack (§4), and how
it provides pay-as-you-go verification to developers and op-
erators (§5). Our approach leverages aspects specific to the
domain of NFs and thus does not extend to general-purpose
software; however, we conjecture (§7) that it can generalize
to other domains of systems software beyond NFs.

3 Push-button Verification
In push-button verification, the developers write their code
(and potentially also a specification), then “push a button,” and
out comes the proof. NF developers neither write proofs nor
guide the theorem prover with lemmas or code annotations
written in a special proof language.

Vigor inherits from VigNAT the split NF architecture and
builds on that approach to verification. There are four key
steps, illustrated in Fig. 4: (1) Use exhaustive symbolic execu-
tion of the stateless NF code to obtain all live paths through
the code. (2) Convert the resulting symbolic execution traces
to C programs, each one representing one path through the
stateless code. (3) Annotate each trace with lemmas corre-
sponding to the NF specification. (4) Validate each annotated
trace, using the pre- and post-conditions from the libVig API
contracts, i.e., verify (using a theorem prover) that the state-
less code uses the libVig API correctly and that the resulting
post-conditions imply the desired specification. Once this pro-
cess completes, the theorem prover has formally verified that
the NF is a correct implementation of the specification. libVig
is already verified and provides formal contracts for its API.

Stateless logic

libVig API

libVig

NF implementation

NF specification

Sy
m

bo
lic

ex

ec
ut

io
n

Le
m

m
a

in
se

rt
io

n

C
on

ve
rs

io
n

Th
eo

re
m

pr
ov

in
g

1 2 3 4

Proof of NF
correctness

Debug info
Vigor toolchain

Validator

Figure 4. The Vigor verification process.

For step (1), we reuse the machinery developed for VigNAT.
The main challenge is path explosion [6], in particular given
that an NF is almost always structured as an event loop, which
gives rise to an infinite number of paths. To tackle this and
other loop-related challenges, VigNAT employs techniques
like havoc-ing [49]. Another problem is that the data-structure
implementations use features that make symbolic execution
impractical (e.g., raw pointers), so VigNAT uses models for
step (1). These models must then be validated a posteriori,
using lazy proofs [49], essentially verifying their correctness
for the specific context of the target NF.

It is the Validator—steps (2), (3), and (4)—that we mod-
ified to enable push-button verification. The Validator pri-
marily stitches together proofs of data structure code with
symbolic traces of stateless NF code into a single proof. The
VigNAT Validator was only able to fill in the proof steps for
the particular sequences of calls to the data structures that
are present in VigNAT. Furthermore, it assumes that the NF’s
state is keyed on a 5-tuple network-flow structure. This makes
the Validator in the VigNAT approach NF-specific: a devel-
oper writing, say, an L2 bridge would have to manually adapt
the Validator, and that requires verification expertise.

The challenge in making the Validator generic across NFs,
even when libVig is shared by all NFs, is that each NF uses
the libVig data structures differently. Our first approach to
generalizing the Validator was to design heuristics that infer
how each NF uses libVig and then generate corresponding
support lemmas automatically. But, for each attempt, we al-
ways found a scenario in which our heuristics didn’t work.
This pushed us to think differently about the problem, i.e.,
find a way to side-step automatic lemma generation.

The key is to identify a “language” that enables efficient
communication between spec writers/operators, developers,
and verification tools. On the one hand, standardization bod-
ies and NF operators use a certain vocabulary when they
discuss NF functionality, and we should expect them to use
the same vocabulary to write NF specifications. On the other
hand, NF developers use the primitives provided by libVig
to write NF implementations. So, to verify that an NF imple-
mentation honors an NF specification, the Vigor toolchain
must correctly translate between (a) libVig primitives and (b)
specification vocabulary. This can be hard, and we found that
current verification tools cannot close non-trivial conceptual
gaps between (a) and (b) without assistance from a human
verification expert. Hence, if we want to achieve push-button
verification today, the primitives used by NF specs ought to be
at the same level of abstraction as those provided by libVig.

After reading RFCs, IEEE standards, and papers that spec-
ify NF functionality, we found that such a common language
does exist, and it consists of a handful of popular data struc-
tures. For example, RFC 3022 [44] expresses NAT behavior
in terms of a “translation table,” and describes “mapping of
tuples of type (local IP address, local port number) to tuples of

4

type (registered IP address, assigned port number).” Accord-
ing to [14], the Maglev load-balancer’s “connection tracking
table uses a fixed-size hash table mapping 5-tuple hash val-
ues of packets to backends.” NF specs in general talk about
network addresses, ports, flows, etc. and data structures that
map these to relevant state—essentially the same primitives
that developers use to write NF implementations.

We therefore designed libVig to provide primitives at a
level of abstraction that enables not only NF developers to
write NF implementations but also spec writers to naturally
express NF functionality. In theory, writing specs with such
primitives might seem inappropriate, because they seemingly
would end up dictating implementation details. In the specific
case of NFs, however, we find that specs anyway imply such
implementation details, e.g., RFC 3022 essentially defines
the NAT translation table as a map that translates between
local and external IP addresses/ports. In fact, trying to define
a NAT without using a map might even be confusing.

Using the same primitives in both the spec and the imple-
mentation reduces the conceptual gap between abstract state
and implementation state. This makes the proofs simpler,
since the theorem prover needs fewer lemmas to match libVig
call sequences in the symbolic traces with abstract-state ma-
nipulations in the specs. In other words, instead of automating
the human task of proving refinement from high-level abstract
state to low-level implementation state, in Vigor we remove
the need for doing it in the first place.

Vigor requires NF developers to explicitly link the persis-
tent state in the NF implementation (expressed in terms of
libVig primitives) with the corresponding abstract state in the
NF specification. Establishing this link is easy for the de-
velopers, since abstract state is expressed using semantically
similar primitives. For example, the spec in Fig. 3 references
on line 1 a MAC table macTable (abstract state), while the
corresponding implementation code in Fig. 5 references map
mac_table (implementation state). The developer makes the
correspondence between abstract and implementation state ex-
plicit via an NF_EXPORT_STATE macro, as on line 3 in Fig. 5.
This statement informs Vigor that the map mac_table im-
plements macTable, the MAC table in the spec.

To use libVig data structures, developers instantiate generic
type templates from libVig. As part of this instantiation,
they select parameters like key and value types, and convey
information on bounds (e.g., max number of elements in a
vector) and on forbidden values (e.g., disallowed values for an
external device id). For example, the first two lines in Fig. 5
declare mac_table as an emap of total capacity CAPACITY

with keys of type ether_addr and values of type 32-bit
integer in the range 0. . .DEV_COUNT. This is akin to type
instantiation in languages that are more strongly typed than
C—this does not require verification expertise and poses little
burden on modern developers. These declarations provide
hints to Vigor that help it reason about the code. For example,
it uses the bounds information to both verify that the bounds

1 NF_STATE(mac_table, emap, CAPACITY,

2 ether_addr, uint32_t, 0, DEV_COUNT);

3 NF_EXPORT_STATE(mac_table, macTable);

4

5 int main(int argc, char *argv[]) {

6 while (1) {

7 uint8_t in_port;

8 packet_t pkt;

9

10 if (receive_packet(&in_port, &pkt)) {

11 expire_entries(mac_table, now - EXP_T);

12

13 if (map_has_key(mac_table,

14 pkt.src_mac))

15 map_refresh(mac_table, pkt.src_mac, now);

16

17 map_put(mac_table, pkt.src_mac, in_port);

18

19 if (map_has(mac_table, pkt.dst_mac)) {

20 uint8_t out_port = map_get(mac_table,

21 pkt.dst_mac);

22 if (out_port == in_port)

23 drop_packet(pkt);

24 else

25 forward_packet(out_port, pkt);

26 } else {

27 broadcast_packet(pkt);

28 }

29 }

30 }

31 }

Figure 5. Simple implementation of a MAC learning bridge.

are observed and that values can be safely used as an index
into the array of NICs. Fig. 6 shows the API of the emap data
structure in libVig. The full libVig API appears in [47].

1 void expire_entries(struct EMap* map, time_t t);

2 void map_refresh(struct EMap* map, void* key,

3 time_t t);

4 void map_put(struct EMap* map, void* key,

5 value_t value);

6 bool map_has(struct EMap* map, void* key);

7 value_t map_get(struct EMap* map, void* key);

Figure 6. emap: libVig’s map with automatic expiration.

The information in these template instantiations enables
the Validator to automatically produce lemmas for annotat-
ing the symbolic traces, and to combine them into a proof—
something that had to be done by hand in VigNAT. For exam-
ple, the Validator uses the declarations in lines 1–3 of Fig. 5
to automatically compose a loop invariant that describes the
state that persists across the event loop’s iterations, and this
invariant includes the user-provided constraints on the table

5

values. The invariant may or may not verify in the end, de-
pending on the correctness of the implementation, but the
hard part of coming up with the invariant and ultimately the
proof can now be done automatically by Vigor.

In summary, the turning point for enabling push-button ver-
ification in Vigor was choosing a common level of abstraction
for state used by NF specifications and NF implementations.
This choice makes it easier for Vigor to reason about the cor-
respondence between abstract state and implementation state,
which enables it to automatically generate the supporting lem-
mas needed for verification. This automation, in turn, means
that NF developers no longer need to modify the toolchain
for each new NF, and so Vigor generalizes across NFs.

Our experience developing five NFs suggests that this level
of abstraction works well for both specifying and implement-
ing NFs. In §6.4, we attempt to partly quantify why.

4 Full-stack Verification
To make the vision of NF virtualization come true, we ar-
gue for formal guarantees of correctness that cover middle-
box software in its entirety. This work focuses on the data
plane software stack—the NF and its libraries, the underlying
packet-processing framework, the operating system, and the
device drivers—but our argument also applies to the control
plane as well as any compiler used to generate middlebox
code. When deploying hardware middleboxes, operators only
have to trust hardware, not software. For them to make the
switch to software NFs with peace of mind, they need strong
guarantees that hardware (and humans) will be the only source
of failures.

Merely verifying the NF code is not sufficient, especially
when using a kernel-bypass framework like DPDK, because
a bug or security vulnerability in the framework can compro-
mise the entire machine running the middlebox. We have
direct evidence that blindly trusting the layers underneath
the NF is unsafe: during verification, we found bugs in both
DPDK and an Intel NIC driver (see §6.2).

The following observation enables Vigor to verify the full
NF stack: even when an NF stack is too big to be verified
efficiently, the fraction of the stack used to accomplish a
specific purpose is likely small. In the case of the NFs we
wrote, only ∼3.5% of DPDK’s roughly 62 KLOC end up ever
running, respectively ∼18% of the Intel 82599ES NIC driver’s
24 KLOC. The rest of the code is dead as far as the execution
of that NF is concerned.

It therefore makes sense to use exhaustive symbolic execu-
tion of the NF and to not model all layers below the NF, as
done in VigNAT and most NF verification work, but rather
model only the hardware layer. The NF calls the NIC driver
directly and uses only simple DPDK utility functions that
can be symbolically executed. Most of DPDK’s functionality
is invoked only during initialization, which can be executed
concretely (i.e., not with symbolic input) during symbolic

execution. The NIC driver code is a sequence of reads and
writes to hardware, with little branching.

Unfortunately, even this observation does not allow the
straightforward exhaustive symbolic execution approach to
scale when running on a commodity operating system. Even
though packet processing frameworks like DPDK bypass the
kernel, so the operating system gets out of the way shortly
after setup, it is still the case that the OS could affect the NF
any time after setup (e.g., by preempting the NF, unmapping
its memory pages, reconfiguring the way the NF talks to hard-
ware). This is because a large part of the commodity operating
system remains live, even if it is not directly invoked by the
NF or the packet processing framework. So we would need
to prove isolation between the OS and the packet processing
framework, and doing this is hard. Using symbolic execution
would result in path explosion, and interactively verifying
Linux is not practical. For reference, tools like VeriFast [21]
require ∼10 lines of annotations for each line of code, and the
Linux kernel contains over 25 MLOC [18].

Our solution to this challenge is a small, custom operating
system that can be automatically verified. We think of this
as an NF-specific operating system, or NFOS. The NFOS
performs the necessary setup for the packet I/O framework to
take over: set up the CPU and memory, scan the PCI bus to
find all available NICs, configure the NICs, and start the NF.
Then it gets out of the way—and that we can prove formally.
Beyond regular setup, the NFOS also provides timing infor-
mation from the hardware to the NF (see Fig. 1). NFs use this
information, for example, to expire TCP flows, MAC address
entries, or to police IP traffic.

Being specifically meant to run NFs built with Vigor, there
are many things the NFOS simply does not need to do. Given
that Vigor formally verifies the NF, DPDK and the NIC driver
to be crash-free and memory-safe, the NFOS need not provide
any inter-process isolation. Kernel-bypass frameworks like
DPDK often come with their own NIC drivers that use polling
rather than interrupts. This means that the NFOS need not in-
clude device drivers or provide support for handling interrupts.
Finally, given that NFs in Vigor are currently single-threaded
(see §7 for a discussion), the NFOS does not need a scheduler.
This lean design ensures that the NFOS can be symbolically
executed in an exhaustive manner.

This makes it possible to achieve push-button verification
of not only the NF but also DPDK, the NIC driver, and the
operating system. In the case of the NFs we wrote, this
results in symbolically executing on average ∼6.5 KLOC
of DPDK, OS, and driver code for each NF, with absolute
certainty that the remainder of ∼82.5 KLOC is dead and thus
cannot influence correctness of this NF. Our use of exhaustive
symbolic execution formally proves the complete separation
between the part of the stack that is invoked by the specific NF
and the part that is not. Verification then focuses automatically,
for each NF, on the live code only. Of course, the part of the
code that is dead may differ from NF to NF.

6

The only part of the NFOS that we do not symbolically
execute is a piece of code that consists of 140 x86 assembly
instructions run during boot, 170 lines of C code to scan the
PCI bus, and 40 lines of C code for a trivial memory allocator.
Early startup code is typically excluded from OS verification
due to a simple trade-off: one would need to formally define
and/or model large amounts of hardware details in order to
prove correct tiny, straightforward code fragments. In our
case, we argue the code’s correctness with detailed code com-
ments that explain why each instruction and LOC has the
intended effects [47]. Our correctness argument was vetted
by several developers other than the NFOS author. However,
to be conservative, we include this code in Vigor’s TCB.

An alternative to our approach is to verify the packet pro-
cessing framework, NIC drivers, and OS in isolation. For the
OS and drivers, we could have used an approach similar to
seL4 [25] or Hyperkernel [34]; this would require translating
the OS interface contracts to stitch with our proofs, and would
likely impose a performance penalty on the resulting NF. For
DPDK, verifying the entire framework through exhaustive
symbolic execution is impractical due to path explosion. In-
teractively verifying it with a theorem prover is not practical
either, due to the human effort it entails, which would further-
more have to be repeated for every new release. Overall, we
believe that allowing the NF code to implicitly indicate which
parts of the stack it needs, and then let Vigor automatically
verify just those, is a more practical approach.

In conclusion, Vigor’s full-stack verification reduces the
TCB to a level we expect NF operators to be comfortable
with: the early startup code mentioned above, the hardware,
the clang and GCC compilers, and the Vigor toolchain. This
toolchain is composed of the KLEE symbolic executor [8],
the VeriFast theorem prover [21], and the Vigor Validator. The
Vigor stack currently uses the unverified GRUB boot loader,
but it could be replaced with a formally verified one [11].

5 Pay-as-you-go Verification
Any verification task has a fixed cost and a variable cost, and
pay-as-you-go verification is about lowering the fixed cost as
much as possible. The fixed cost is dominated by writing a
complete specification, which ends up including many things
that are not needed for verifying the first line of code. In
Vigor, developers need only write sufficient spec to cover the
property they wish to verify. So it becomes possible to specify
a single property, verify the NF against that property, fix any
bugs, write another property, and so on. This feature of Vigor
is inspired by [35], and our use of the term “pay as you go”
was suggested to us by the author.

Vigor enables pay-as-you-go verification by changing the
closed-world assumption present in VigNAT to an open-world
assumption [35]. In logic, under a closed-world assumption,
a true statement is always known to be true; as a result, a
spec must include or imply all true properties of the NF code;

any properties that are not part of, or implied by, the spec,
are deemed to not hold. This imposes the need to write the
entire spec before verifying any property of the system, and
complete specs are often long and tedious, which discour-
ages practitioners from writing them. Under an open-world
assumption, however, what is not known to be true is simply
unknown, not false. This removes the need for all knowledge
about the NF’s properties to be captured at once in a spec.

First, Vigor allows writing specs in a compositional way, by
using references. The open-world assumption is amenable to
an incremental build-up of knowledge about the NF’s proper-
ties, and this matches well the modern software development
process. For instance, a developer can write a spec saying
“The bridge always learns the association between source
MAC address and the port” (Fig. 7). Then, they can write an-
other spec saying “The bridge forwards the frame according
to the association in its MAC address table,” and reference
the previous specification (Fig. 8). Both Fig. 7 and Fig. 8 are
sound specs, in the sense that they specify a bridge behavior
that must hold for all possible executions. This compositional
approach dovetails with the monotonicity of first-order sep-
aration logic used in our toolchain: adding new information
cannot falsify a previous conclusion.

1 from state import macTable

2 macTable.expireOlder(now - EXP_TIME)

3 macTable[pkt.src_mac] = (port, now)

Figure 7. Example property spec: after expiring state entries,
the bridge learns the source MAC address of a frame.

1 import bridge_learn

2 if pkt.dst_mac in macTable:

3 out_port = macTable[pkt.dst_mac]

4 if out_port == port:

5 return DROP

6 else:

7 return out_port, pkt

8 else:

9 return BROADCAST, pkt

Figure 8. Composed specification: the bridge forwards a
frame according to the entry in the MAC address table.

Second, in Vigor, one-off properties can be described with
small specs that exclude, via the Python pass keyword, knowl-
edge about any number of NF properties that remain unspeci-
fied. For instance, if we wanted to focus only on the broadcast
case shown in Fig. 8, we would use pass for other behaviors,
as shown in Fig. 9. Here, Vigor only checks that, for unknown
MAC addresses, the frame will indeed be broadcast, ignoring
the I/O and state changes for known MAC addresses. This
property allows the developer to focus on one aspect of NF
behavior at a time, while still getting formal guarantees.

7

1 import bridge_learn

2 if pkt.dst_mac in macTable:

3 pass

4 else:

5 return BROADCAST, pkt

Figure 9. Broadcast case in the MAC-learning bridge spec.

One-off properties in Vigor can be independent of the im-
plementation, or specific to it. Independent properties are
the ones implied by the NF standard (such as the properties
in Fig. 7 and Fig. 8), or by a combination of the standard
and specific configuration or deployment details (such as “a
correct Maglev load balancer will never send connections to
my high-per-connection-cost nodes over here when any of
the cheap nodes over there are under-utilized").

Implementation-specific properties capture behaviors of
the NF implementation that are outside the standardized spec.
These may or may not appear in the NF’s own spec, but they
are absent from the official spec. For example, NAT middle-
boxes that correctly implement RFC 3022 are free to choose
what to do with a non-SYN TCP packet that arrives from the
internal network and does not correspond to an established
flow—forwarding or dropping it are both correct behaviors
according to the RFC. An operator may want to know whether
the NAT she is about to deploy would forward such spurious
TCP packets to the external network. Or perhaps she uses
network verification tools, and no NAT model captures the
detailed non-SYN behavior of this particular NAT implemen-
tation. She would formulate this property as in Fig. 10, then
ask Vigor to verify it against the NAT implementation.

1 from state import flowTable

2 if pkt.ip.next_proto_id == PROTOCOL_ID_TCP:

3 if SYN not in pkt.tcp.flags:

4 if pkt.flow not in flowTable:

5 return DROP

Figure 10. One-off property checking for non-SYN behavior.

In Vigor, it is possible not only to pick relevant parts of
the specification but also to select which layers of the stack
to verify. The NF developer can choose whether to verify
only their NF code, or to include additional parts of the stack.
Verifying more code provides more guarantees but takes more
time. To allow the developer to pick which parts of the stack
they want to verify, we wrote models for each layer in the
stack. As we show in Table 3, depending on how much of
the stack one wants to verify, the developer can speed up
verification significantly. It makes sense for NF developers to
use partial-stack verification during daily development, and
full-stack verification before each release of the software.

Pay-as-you-go verification makes it less daunting to write
standards as precise specifications. First, with pay-as-you-go,

one can write specs incrementally, during development of
a reference implementation for an NF by a standardization
body. Second, even in the absence of an initial formalization
of an RFC by a standardization body, development teams
building NF implementations could collaboratively formalize
the RFC as they write one-off properties to verify their code,
and these properties can then be curated into a unified spec
of the RFC. Third, since specifying properties requires only
Python knowledge, network operators could write specifica-
tions that correspond to their own datacenter or network setup,
which NF developers and vendors would likely find useful.

To complement pay-as-you-go verification, Vigor helps NF
developers pinpoint whether a proof failure is the result of an
erroneous spec or erroneous implementation (“Debug info”
edge in Fig. 2). When verification fails, Vigor presents a
counter-example for the proof, in the form of a piece of linear
C code representing the execution that led to the property
violation. For example, if Fig. 8 were missing the DROP case
on lines 4–5, Vigor would produce the trace leading to line
23 in Fig. 5 and flag a mismatch. The developer can then use
the counter-example to determine whether the spec is wrong
or the code is buggy, and in the latter case fix the code.

The three aspects described in this section—one-off proper-
ties and composable specifications, verification by layers, and
debugging by counter-example—enable an incremental form
of push-button, full-stack verification. They enable devel-
opers and operators to get the benefits of formal verification
quickly, with little upfront cost.

6 Evaluation
We now evaluate the main aspects of Vigor by answering four
questions: (1) Does Vigor generalize? We show in §6.1 that
the answer is yes: we developed five NFs covering a variety of
representative NF functionality, and we push-button verified
them with Vigor. (2) Does verification have tangible benefits?
We discuss in §6.2 how Vigor helped prevent 5 bugs in NF
code and discovered 9 bugs in DPDK and an Intel NIC dri-
ver. (3) Does verification come at the price of performance?
We show in §6.3 that it does not: NFs verified with Vigor
perform on-par with third-party alternatives. (4) Does verifi-
cation come at the price of reduced productivity? We show in
§6.4 that using Vigor is easy and can improve productivity by
helping write correct code faster.

Our code, specifications, and proofs are available at [47].
This work received a “Results Replicated” badge from the Re-
search Artifact Evaluation Committee based on tag SOSP19AE.

6.1 Does Vigor generalize?
We used Vigor to develop and verify the five NFs shown in
Table 1. These implement several types of typical NF func-
tionality (per-flow state, header rewriting, etc). Some notable
NF types, such as intrusion detection systems, are missing,

8

because our current libVig prototype does not yet provide
primitives for regular expression matching or cryptography
(see §7 for a discussion). For each NF, we wrote a full specifi-
cation of its behavior based on published standards and used
Vigor to prove that the NF correctly implements that spec.
§6.4 provides details on the effort involved and spec sizes.

Name Description Class of NFs

VigNAT Network address translator
Per-flow state
Header rewriting

VigBr Eth bridge with MAC learning Packet duplication

VigLB
Load balancer
(implements Maglev[14] algo)

Per-flow state
Consistent hashing

VigPol
Traffic policer
(rate-limits traffic by source IP)

Per-flow state
Fine-grained timing

VigFw Firewall (blocks ext. connections) Per-flow state

Table 1. The NFs we developed and verified with Vigor.

For every row in Table 1, all software is verified except
for the Vigor toolchain, the GRUB boot loader and NFOS
initialization code, and compilers. Table 2 shows the size
in LOC of each layer of the Vigor stack that is verified. As
explained in §4, the entire stack is mechanically verified,
except for ∼350 LOC of assembly and C, whose correctness
is argued by hand [47]. We reiterate that we could replace
GRUB with a formally verified boot loader [11] and thus
eliminate it from the TCB.

Stack layer Lines of code
VigNAT VigBr VigLB
VigPol VigFw

969 815 850
725 754

libVig 1,674
KLEE-uClibc (libc) 60,556

DPDK 62,380
Ixgbe Driver 24,211

Operating system (NFOS) 1,958

Table 2. Size of each layer in the Vigor stack.

Table 3 shows the time it takes to verify the NFs. We
measured three scenarios: verifying just the NF code against
the full spec, verifying the NF together with DPDK, driver,
and libC, and finally adding NFOS to verify the entire soft-
ware stack. The difference between verifying with or without
NFOS is negligible (± 20 sec), so we report the first and
third scenarios only. Total verification time is the sum of the
time for exhaustive symbolic execution to obtain the symbolic
traces (columns 2+3) plus the time to validate all the traces
(columns 4+5 multiplied by column 6). We report validation
time as # of traces × per-trace validation time because valida-
tion is an “embarrassingly” parallel task, so total completion
time depends linearly on the number of thread contexts avail-
able. The reported number of symbolic traces corresponds
to code paths analyzed after the various optimizing analyses

done by Vigor (see §3), such as loop havoc-ing; without these
optimizations, the number of traces would be infinite.

Verification time is dominated by full-stack verification, in
particular the trace validation step. VigLB has significantly
higher per-trace validation time than the other NFs. This
is partly because VigLB traces make more calls to libVig—
unlike the other NFs, VigLB employs two different maps, one
for flows and one for backends. VigLB traces also trigger sev-
eral slow-path behaviors in VeriFast, as used by the Validator:
it struggles to check that each call made by VigLB honors
the pre-conditions in the corresponding contract. Still, trace
validation completes in ∼1.5 hours on our test machine.

NF
Symbolic execution time # of traces Per-trace

validation
time (avg)

NF
only

with rest
of stack

NF
only

with rest
of stack

VigNAT 7 sec +8 min 54 +434 × 88 sec
VigBr 7 sec +10 min 69 +542 × 80 sec
VigLB 23 sec +26 min 146 +1,190 × 219 sec
VigPol 14 sec +6 min 37 +272 × 82 sec
VigFw 6 sec +7 min 43 +326 × 88 sec

Table 3. Verification statistics.

For the verification measurements, we used a setup consist-
ing of Intel DPDK v.17.11 for the packet I/O, with the ixgbe
driver for the Intel 82599ES NIC. We ran the verification on
a dual-socket Intel Xeon Gold 6132 machine @ 2.6 GHz,
providing a total of 28 cores (56 thread contexts). Full-stack
verification consumed <700 GB of DRAM, and verifying
just the NF took < 2 GB; the machine had 1.48 TB available.
Each NF was configured with table sizes of 65,536 entries.

Verifying the NF code alone takes a few minutes on our
machine, so it could be done regularly as part of continuous
integration or in a post-commit hook. For most NFs, verify-
ing the full software stack takes <1 hour on our machine,
so doing it at least once per release cycle is reasonable. It
is, however, possible to drastically speed up the validation
phase through parallelization, since each trace can be vali-
dated independently from all others. Validating the traces on
a cluster with hundreds or thousands of cores would lower the
verification time of the full NF stack to minutes or seconds,
making it practical to do after every commit.

In summary, we developed and verified five varied and
representative NFs with Vigor, thus showing that the Vigor
approach generalizes to multiple kinds of NFs. Verification
time matches well the patterns of modern software develop-
ment. We therefore conclude that Vigor can provide practical
push-button, full-stack verification for NFs.

6.2 Does verification have tangible benefits?
One of formal verification’s greatest promises is that it pre-
vents all bugs from making it into released code. Since Vigor
verifies both semantic properties and low-level properties like
memory safety, it is able to identify both high-level bugs (e.g.,

9

Stack Layer Bug Description Vigor step

NF

Incorrect use of by-ref parameter VA
Missing checks for packet spoofing VA
Incorrect use of the IP header VA
Infinite loop in consistent hashing LV

DPDK
Out-of-bounds array access SE
Incorrect use of mmap() SE
Incorrect use of libnuma SE

ixgbe
NIC driver

Out-of-order register write SE
Use of potentially invalid NIC register SE
Incorrect timing of register write SE
Incorrect writes to reserved bits SE
Write to unknown NIC registers SE

Table 4. Bugs uncovered by Vigor, and the step in the Vigor
workflow that discovered each bug: libVig verification (LV),
symbolic execution (SE), or validation (VA).

packet-injection vulnerabilities) and low-level ones (e.g., in-
correct writes to reserved bits). Table 4 shows some of the
bugs Vigor found in our own as well as in third-party code.

We used Vigor during the development of our NFs, and it
caught bugs in our NF code ranging from crashes to packet-
injection vulnerabilities and packet corruption. The high-
level bugs (i.e., not crashes, hangs, etc.) were caught by the
validation step. These bugs are of two types: (1) violations of
the contracts that govern the libVig API, and (2) violations
of the NF specification. Type (1) bugs can only be caught
by the validation step: libVig verification checks that libVig
code behaves correctly when accessed correctly; symbolic
execution determines how NF code accesses libVig; it is the
validation step that puts the two together. Type (2) bugs can
also only be caught by the validation step, because that is
when the semantics implied by the NF spec get checked; the
symbolic-execution step is unaware of these semantics.

Full-stack NF verification uncovered bugs in the public
releases of DPDK and Intel ixgbe driver. For example, we
found that DPDK can crash during initialization if the first
128 CPU cores are disabled—an unlikely scenario today that
will be hard to debug if it arises in the future. Of the eight
bugs we found in DPDK and the driver, six were confirmed
by the DPDK maintainers and four have been fixed at the
time of writing. We first reported these bugs in [38].

In summary, our experience demonstrates the benefit of
using verification during development, as well as the added
value of full-stack verification: By intercepting bugs early,
Vigor saved us a substantial amount of debugging time. By
flagging bugs in third-party code we depended on, it further
saved us from debugging unknown code.

6.3 Does verification compromise performance?
Whenever verification is discussed for real-world use, one
“elephant in the room” is performance: in many cases, ver-
ified code tends to perform more poorly than its unverified
counterpart. In this section, we show that writing verified NFs

with Vigor does not have to compromise performance.
We compare each Vigor NF to a baseline that provides

similar functionality but was not developed with verification
in mind. All baselines are popular third-party NFs that of-
fer competitive performance. Ideally, each baseline would
provide functionality identical to the corresponding Vigor
NF, but we were unable to find popular third-party NFs that
satisfied this; we could have implemented our own baselines,
but then we could not have argued that they are representative
unverified NFs. Instead, for each Vigor NF, we picked the
baseline that, in the context of our experiments, provided as
much as possible (but always a subset of) the functionality
provided by the Vigor NF. Comparing to these baselines is a
good indicator of whether verification hurts performance.

For all NFs except VigPol, the baseline is a chain of stan-
dard Click [26] elements. Click is arguably one of the most
popular ways to implement high-performance NFs today. For
VigPol, we could not find appropriate Click elements, so the
baseline is the Moonpol open-source policer [32], which re-
lies on a DPDK-based framework [15]. All the baselines run
on a standard stack: DPDK v.17.11 and Ubuntu Linux with
kernel 4.15.0-55-generic. The Click baselines run on the latest
stable version of Click (v2.1).

We run the Click baselines with and without batching. Re-
ceiving and sending packets in batches can amortize the cost
of certain bookkeeping operations (e.g., updating memory-
mapped NIC registers), thus increasing throughput at the cost
of higher latency. Vigor does not yet support batching (see §7),
but the Click baselines do, so we run them both with batching
(throughput-optimized) and without (latency-optimized). For
batching, we use the default Click batching parameters.

To assess whether performance differences are due to the
NF code or to the layers underneath the NF, we also measure
a no-op NF, which receives packets at a fixed input port and
forwards them to a fixed output port without any processing.

In summary, for each NF type, we compare the Vigor NF
running on top of the Vigor stack to a baseline NF running on
top of the standard Linux stack, with and without batching.
We also ran Vigor NFs on the standard Linux stack, and their
performance is the same as on top of the Vigor stack.

MiddleboxTester

outbound

inbound

internal

external

Figure 11. Testbed topology for performance evaluation.

We use the testbed shown in Fig. 11, as per RFC 2544 [7].
The Tester and Middlebox machines are identical, with an
Intel Xeon E5-2667 v2 processor @ 3.30 GHz, 32 GB of
DRAM, and 82599ES 10 Gbps DPDK-compatible NICs. The
Tester machine runs MoonGen [15] to generate traffic and
measure packet loss, throughput, and latency; for the latency

10

measurements, we use hardware timestamps for better accu-
racy [40]. In each experiment, the Middlebox machine runs
either our NF or a baseline, always on a single core.

For each NF, we measure latency and throughput. In par-
ticular, for each NF, we generate: (a) “background traffic,”
which causes the NF’s main data structure to reach 90% oc-
cupancy; and (b) “probe packets,” which always correspond
to a new flow ID, and thus exercise the longest path in the NF.
For example, in the case of a NAT, the background traffic con-
sists of established, long-running TCP flows, while the probe
packets come from new, short-lived TCP flows. Vigor NFs
receive the same traffic as their baselines. We report the over-
all throughput achieved by each NF when it starts dropping
0.1% of the packets it receives. We also report the latency ex-
perienced by the probe packets, because these experience the
highest latency. This methodology measures performance un-
der stressful but still realistic conditions; under less stressful
conditions, the performance differences are less evident.

Table 5 shows the results. Each reported latency number is
the average latency experienced by all the 105 probe packets
in a single experiment. For Vigor NFs and their no-batching
baselines, the standard deviation of the latency across dif-
ferent packets in the same experiment is 100−200 nanosec.
Both average latency and standard deviation are stable across
different runs of the same experiment.

NF type Vigor Baseline (no batch) Baseline (batch)
Latency Thruput Latency Thruput Latency Thruput
(µsec) (Mpps) (µsec) (Mpps) (µsec) (Mpps)

NOP 3.90 8.27 4.62 4.07 15.51 14.7∗

NAT 4.07 4.86 5.59 1.63 16.30 2.80
Bridge 4.07 4.94 4.76 2.88 15.84 11.2

Load Balancer 4.12 4.02 7.24 1.63 16.26 2.79
Policer 4.03 5.21 5.28† 2.91† 5.20† 11.5†

Firewall 4.02 5.36 5.59 1.63 16.19 2.79

Table 5. Throughput and latency of Vigor NFs and the corre-
sponding baselines. *10 Gbps saturated † Moonpol

Vigor NFs have latency and throughput that is at least as
good as the latency-optimized (no batching) baselines. Un-
expectedly, the throughput of VigNAT, VigLB, and VigFw is
better even than the throughput-optimized (batching) base-
lines, but this has little to do with the Vigor approach. It is
mainly due to the fact that Click loads modules dynamically,
which disables a number of the link-time optimizations (LTO)
that do apply to the Vigor stack. We confirmed this explana-
tion by disabling the optimizations for our stack and finding
that the differences vanish. Not surprisingly, in the case of the
no-op NF, batching has ample room to compensate for this,
so the batching baseline saturates the network interface.

We conclude that developing and verifying NFs with Vigor
does not come at the cost of NF performance.

6.4 Does verification compromise productivity?
Whenever verification is discussed in a practical context, the
other elephant in the room (besides performance) is devel-
oper productivity. While it is generally true that introducing
formal verification can increase the burden on developers, we
designed Vigor specifically to lighten this burden: desired
properties can be specified in Python, there is no need to
write lemmas or understand formal methods, the high upfront
cost of verification can be avoided with pay-as-you-go verifi-
cation, and Vigor automatically provides debug information
that helps resolve proof failures. In our subjective assessment,
using verification actually improved our productivity when
developing our NFs. In this section we try to more objectively
evaluate the extent of the burden introduced by Vigor.

The first question is whether developers indeed can use
Vigor in a fully push-button mode? The answer is yes, as
long as the code they write manages all its persistent state
using libVig primitives. Then, is libVig sufficient to write all
(or at least most) NFs? The first NF we wrote using libVig was
VigNAT, and we added to libVig all the data structures and
primitives we thought would be useful. Writing the second
one (VigLB) required adding a consistent hashtable to libVig.
For the remaining three NFs, we did not need to add anything
new to libVig.

Related to the sufficiency of the libVig API, we also asked
ourselves whether the choice of abstraction level influences
the rate at which libVig’s API converges. In other words, had
we chosen a different level of abstraction, would libVig have
to be bigger or smaller to be sufficient, and how rapidly would
the API stabilize? We performed the following thought exper-
iment: we designed “on paper” the 18 NFs listed in [30] using
libVig’s API, and compared to building them in Click. Then
we looked at how many new data structures we needed to add
to libVig with each new NF vs. how many new elements had
to be added to Click according to Martins et al. [30]. Fig. 12
shows the result. The NFs are listed along the x-axis, sorted
in decreasing order of the number of Click elements they use.
The continuous lines show how the number of data structures
and elements evolve in libVig and Click, respectively, serving
as a metric for convergence of the API. We assume we start
with an empty libVig and Click.

We conclude (with no claim of statistical significance) that,
had we chosen a higher level of abstraction for libVig, such
as the Click API, we would have had to add many more
primitives to libVig. This is because, the less “primitive” a
primitive is, the more likely it is to require changes in order to
be useful to a new NF. Once we add verified crypto primitives
from HACL*[51] and regexp primitives from LMS [2], libVig
will have all the data structures needed to write all the 18 NFs.
At that point, NF developers should be able to write any
NF they wish in Vigor, push a button, and verify it all the
way down to the hardware. Note that this comparison has
no bearing on Click itself, because the purpose of the Click

11

framework is different from that of libVig’s.

0

2

4

6

8

10

12

14

16

18

20

22

24

NAT FW

Multic
ast

BRAS

Monito
rin

g
DPI

ID
S IPS

Congestio
n C

tl

Traffi
c Shaper

Tunnel

Stateless LB LB
Brid

ge

Policer

Stateless FW

DDoS Preve
ntio

n

IPv6/IP
v4 Proxy

#
 o

f
lib

V
ig

 d
a
ta

 s
tr

u
c
ts

 /
 C

lic
k
 e

le
m

e
n
ts Click elements used by NF

libVig data structs used by NF

Total unique Click elements

Total unique libVig data structs

Figure 12. Hypothetical evolution of libVig and Click, as
they get used to write new NFs. Click data based on [30].

The second question is how hard is it for developers and
standardization bodies to specify the properties they’re inter-
ested in? For each NF, Table 6 shows the lines of code in the
corresponding spec, the amount of time it took to generate
the spec from the corresponding RFC (or other standard), and
the number of bounds supplied by the developer to instanti-
ate the necessary libVig types (as described in §3). The full
RFC-derived specs are relatively short, because Python is
expressive. The number of user-supplied bounds is small. The
average full spec size across our NFs is 40 LOC, which is
10− 20× fewer LOC than the implementation. Generating
a spec from an RFC takes a non-trivial amount of time, but
this is done once per RFC. Plus, we envision that generating
a spec will become part of writing an RFC, which is already a
scientifically and socially complex process that can take from
weeks to years; we hope that generating a spec will not be the
bottleneck, but may actually help the process converge faster.

NF LOC in spec Time to write spec # of bounds
VigNAT 47 3 days 2
VigBr 29 2 days 2
VigLB 56 3 days 4
VigPol 41 3 hours 2
VigFw 32 1 hour 1

Table 6. Statistics on writing NF specifications in Vigor.

The third question is whether pay-as-you-go verification
really helps? Table 7 shows the number of modular properties
in each NF spec, and the fraction of the spec they account for.
Each NF possesses a handful of meaningful, well modularized
properties. To verify the one with the shortest spec in isolation
requires writing from 1 to 13 LOC of spec, representing
3− 40% of the full spec. To verify subsequent properties
takes, on average across each NF, 4.1−9.1 LOC of spec. This
suggests that a developer can express meaningful properties in

a few minutes, as opposed to taking multiple days to formalize
an RFC with all of its (possibly not of interest) corner cases.

NF # modular
properties

Cost of 1st prop.
(LOC, % of spec)

Avg. cost of each
further prop

(LOC,% of spec)
VigNAT 9 13 (27%) 4.1 (9%)
VigBr 7 1 (3%) 4.5 (15%)
VigLB 7 3 (5%) 8.9 (15%)
VigPol 4 13 (31%) 9.1 (22%)
VigFw 5 13 (40%) 5.3 (16%)
Table 7. Cost of writing one-off semantic properties.

Combining this evidence with that on verification time (§6.1),
we conclude that the impact on developer productivity would
at worst be negligible. Based on our experience described in
§6.2, we actually believe that productivity would be enhanced.
This is especially true when factoring in the use of traces for
diagnosing the root cause of a proof failure.

7 Discussion
We now discuss several aspects of the approach described in
this paper, including limitations and lessons learned.

Restrictions on NF Code
Writing NFs with Vigor doesn’t require verification expertise,
but it does impose constraints:

Event loop: Vigor assumes that the NF’s stateless code has
one top-level infinite loop that receives/sends packets, and all
its other loops are finite. More generally, any loop that can
be statically fully unrolled is supported. Loops inside NFs
are almost always bounded by maximum packet size, so this
imposes negligible restrictions in practice.

Handling persistent state: Any state that persists across
packet receives must reside in libVig data structures. This
eliminates the need for complex pointer structures in the NF
code that could render exhaustive symbolic execution imprac-
tical. However, this is a catch-all rule that is broader than nec-
essary: not all persistent state must go into libVig, rather only
the state that cannot be effectively havoc’d. If a developer ac-
cidentally keeps persistent state in the NF code itself, then ver-
ification time is likely to be long, due to path explosion. But it
could also happen that Vigor succeeds in havoc-ing that state,
and the developer never notices the “mistake.” In fact, there
does exist persistent state outside libVig, namely in DPDK,
the NIC driver, and NFOS, which is successfully havoc’d. To
ensure that NF developers are presented with a simple and
verification-agnostic model of state handling, we decided to
make this rule broad, even if it is over-constraining.

Memory ownership: NF developers must respect the mem-
ory ownership model of libVig data structures, as documented
in the libVig interface. For instance, after inserting a value
into a map, the caller is not allowed to change that value by

12

reference; instead it must remove the entry from the map,
modify it, then re-insert it. Vigor does not currently enforce
the memory ownership model at compile time, rather only at
verification time, which could make debugging harder. We are
exploring the possibility of either piggybacking on a language
like Rust, which has compiler support for this ownership
model, or performing our own compile-time analysis.

Inherited constraints: Vigor also inherits restrictions im-
posed by the underlying tools. First, KLEE does not handle
symbolic-pointer arithmetic, even with tight constraints. For-
tunately, pointer arithmetic is infrequent in NF code. Second,
VeriFast does not support all of the C standard library. We
have not found this to be a problem, since most of the unsup-
ported functions would anyway impose undue performance
overheads on the NF, so a developer is unlikely to use them.

Limitations
The Vigor prototype is now publicly available as Vigor 1.0 [47].
It has several known limitations:

Missing data structures: libVig 1.0 does not provide primi-
tives for regular expression matching, cryptography, or variable-
length headers. As a result, we cannot verify NFs that need
such primitives, e.g., deep packet inspection or intrusion de-
tection systems. We can fix this by incorporating into libVig
verified open-source libraries like LMS [2] for regular expres-
sion matching and HACL*[51] for cryptographic primitives.

Parallelism: Vigor 1.0 can only verify single-threaded NFs.
Batching: Vigor 1.0 assumes no batching, i.e., that the NF

processes one packet per iteration through the event loop.
Batching enables trading off latency for throughput, so it is
an important feature to add to a subsequent version of Vigor.

Lessons and Open Questions
Our work on Vigor taught us several lessons and also raised a
few interesting questions:

Lower-level abstractions can reduce specification length.
We already described in §3 how lowering the level of ab-
straction for writing specifications facilitates push-button ver-
ification. At the same time, this lower level of abstraction
enables describing state in terms of basic, generic data struc-
tures (maps, vectors, queues, etc.) that have well understood
semantics. As a result, a spec expressed in terms of such data
structures need not define the data structures but merely ref-
erence them (via import in Vigor’s case). This makes the
spec shorter, as well as more comfortable to write. In contrast,
the initial spec for VigNAT [49] consisted of ∼150 lines of
Verifast (a subset of C extended with inductive data types
and some generics), and ∼150 lines defining the abstract state
independently of libVig definitions. Now, with Vigor 1.0, the
VigNAT spec has 47 lines of Python, and 19 lines that define
the abstract state in terms libVig data structures.

Impact of verification knowledge: We ran an experiment
to check if a basic level of verification expertise on the part
of NF developers could significantly impact verification time.

We made two minor modifications to the NFs, aiming for
a reduction in the number of code paths, while preserving
the exact same semantics. First, we replaced short-circuiting
Boolean operators && and || (which produce one code path
per term) with their non-short-circuiting counterparts & and
| whenever there were no side effects. Second, we replaced
if blocks that only assign Boolean values with equivalent
Boolean expressions (e.g. if(c) {b = true;} turned into
b = b|c;). As can be computed based on Table 8, these
minor changes netted an average reduction of 51% in overall
verification time on our 56-contexts machine: The number of
paths, and thus symbolic execution time, is roughly halved,
but per-trace validation time increases, due to the higher com-
plexity of path constraints. This effect is well understood [27]
by verification experts, but verification-agnostic developers
can also try these heuristics out with potentially big rewards.

NF
Symbolic execution time # of traces Per-trace

validation
time (avg)

NF
only

with rest
of stack

NF
only

with rest
of stack

VigNAT −29% −38% −52% −58% × −16%
VigBr −14% −40% −44% −50% × 0%
VigLB −52% −58% −60% −67% × +66%
VigPol −43% −17% −32% −40% × −4%
VigFw −17% −43% −42% −50% × −15%

Table 8. Verification statistics for NFs written with some ver-
ification expertise. We show decreases (−) and increases (+)
as a percentage of the numbers in Table 3.

Going from NF specs to C code: In Vigor, a developer
writes the NF implementation, which is then verified against
the NF specification written in Python. An alternative ap-
proach is to automatically translate the spec into an imple-
mentation. This is non-trivial, and we question whether, given
a spec, there exists a single efficient C implementation to
translate to, or is the decoupling between spec and imple-
mentation indeed essential to practicality? Future work on
this would need to find ways to translate one-off properties
(“partial specs”) to code, to translate negative properties (such
as “packet is never sent back on its source port”) to code, and
finally to check that libVig contracts are obeyed by the spec.

Generalizing beyond NFs: We conjecture that the Vigor
approach can be used for other types of systems code, such
as embedded systems (e.g., alarm systems, industrial con-
trollers). In essence, we expect Vigor-like approaches to
work for any system that (a) consists of an event handling
loop implementing function f , where

(
Output,NewState

)
=

f
(
Input,OldState

)
; (b) can be cleanly separated into stateful

code and stateless code implementing f , with the former us-
ing a handful of data structures common to systems in that
domain; and (c) whose functional specification can be written
naturally in terms of these commonly used data structures.
We believe such generalization to be feasible, but have no
proof.

13

8 Related Work
Gravel (developed in parallel with Vigor) also aims to verify
software NFs, focusing on NFs written in Click. According
to the latest tech report [50], it can automatically verify 47%
of Click elements as they are, and an additional 21% after
minor modifications. Both Gravel and Vigor use exhaustive
symbolic execution to verify part of the code. The funda-
mental difference is what happens with code that cannot be
symbolically executed (“non-SE code”). In Gravel, non-SE
code needs to be modeled using SMT (satisfiability modulo
theories) formulae. In Vigor, non-SE code resides in libVig,
and the Vigor contributors verify it using VeriFast; the Valida-
tor then combines the outcome of that verification with that of
symbolic execution to automatically produce a proof of the en-
tire NF. Our approach is more complicated—it involves more
steps and requires Vigor contributors to write proofs—but
verifies entire NFs down to the hardware, including non-SE
code. In fact, reasoning about non-SE code and its interaction
with the rest of the NF is precisely where our contributions
arise from. To use Gravel for verifying entire NFs, one needs
to model each piece of non-SE code and ideally prove that the
models are correct. Nevertheless, Gravel enables developers
to use an existing framework (Click), and this may turn out
to be a major advantage for real-world adoption.

Earlier work looked at providing low-level properties such
as crash freedom and memory safety for NFs. Dobrescu et
al. [12] uses exhaustive symbolic execution to prove these
properties in simplified or stateless NFs, while Panda et
al. [36] ensure these properties by using safe languages like
Rust [41]. Vigor can be viewed as generalizing some of this
prior work to make high-level semantic verification more
accessible, in addition to verifying the entire NF stack.

Work on verification of systems software, including ker-
nels [25, 34], drivers [3, 39], compilers [45], and filesys-
tems [1, 10, 43], served as inspiration for this work. For
example, Cogent separates out data structures for the sake of
verification [1]. These approaches, however, require verifica-
tion expertise and rely on languages (like Coq, Haskell, and
Cogent) that we cannot expect typical NF developers to mas-
ter. In contrast, we focused on how to verify NFs written in C
without requiring verification expertise from NF developers.

Many specific networked systems have posed interesting
challenges that drove the creation of specific tools. Musu-
vathi et al. [33] model-checked the Linux TCP implementa-
tion against a formal specification, Bishop et al. [5] rigorously
specified the sockets API and the TCP/UDP protocol stacks
for specification-driven testing, Canini et al. [9] combined
symbolic execution with model checking to automate testing
OpenFlow applications, Hawblitzel et al. [20] verified net-
work applications written in Dafny, a high-level language with
built-in verification support, and Beringer et al. [4] verified
an OpenSSL implementation, proving functional correctness
and cryptographic properties. Vigor doesn’t focus on specific

systems, but rather is to be used with a broad range of NFs.
Finally, as explained in §1, network verification is orthogo-

nal to our work. Individual nodes are modeled and assumed
to be correct, allowing the tools to reason about network-
wide properties, like reachability, absence of loops, and black
holes [17, 22–24, 28, 29, 37, 42, 48]. While most work simply
models routers and switches, some tools [16, 46] do go a step
further and test the models’ compliance. Recent work [31] at-
tempts to bridge the gap between network and NF verification
by automatically building models for data plane NFs; these
models are then used to prove network-wide properties. Such
work is complementary to ours, and can be strengthened by
Vigor-generated proofs of NF implementation correctness.

9 Conclusion
We presented Vigor, a software stack and toolchain for build-
ing and running formally verified software network func-
tions (NFs). Our goal was to build a verification toolchain that
can be used without any verification expertise. Vigor employs
symbolic execution—a good candidate, because it requires
little hand-holding—but designed our approach knowing that
there will always exist NF code that cannot be symbolically
executed without running into path explosion.

We based our work on two conjectures about the NF do-
main. First, the NF code that cannot be practically symboli-
cally executed tends to be common across NFs, hence can be
stored in a specialized library and verified by experts using
theorem proving, without any input from NF developers. Sec-
ond, the same primitives provided by this specialized library
to NF developers can be productively used to write useful
functional specifications. Our two conjectures make it pos-
sible to outsource the complex verification tasks to experts,
and integrate the outcome of their work automatically into
proofs of the entire NF. We tested Vigor on five representative
NFs, and it was able to verify them within minutes or hours,
depending on whether we verified only the NF or the entire
software stack.

Our experimental evaluation shows that the confidence that
formal verification offers need not come at the cost of per-
formance. When performing non-batched processing, our
formally verified NFs performed at least as well as their non-
verified counterparts. Once we extend Vigor to support batch-
ing, we hope to show that formal verification does not come
at any cost in performance.

10 Acknowledgments
We thank our shepherd, Leonid Ryzhyk, and the anonymous
reviewers for their constructive help in improving our paper.
We are grateful to the Artifact Evaluation reviewers for their
feedback that improved Vigor 1.0. We thank Peter O’Hearn
for discussions that put us on the path to pay-as-you-go veri-
fication. This work was partly supported by a Starting Grant
from the Swiss National Science Foundation.

14

References
[1] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter

Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,
Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance
File System Implementations. In Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems.

[2] Nada Amin and Tiark Rompf. 2017. LMS-Verify: Abstraction Without
Regret for Verified Systems Programming. In Symp. on Principles of
Programming Languages.

[3] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. 2010.
SLAM2: Static Driver Verification with Under 4% False Alarms. In
Intl. Conf. on Formal Methods in Computer-Aided Design.

[4] Lennart Beringer, Adam Petcher, Q Ye Katherine, and Andrew W
Appel. 2015. Verified Correctness and Security of OpenSSL HMAC.
In USENIX Security Symp.

[5] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell,
Michael Smith, and Keith Wansbrough. 2005. Rigorous Specifica-
tion and Conformance Testing Techniques for Network Protocols, as
applied to TCP, UDP, and Sockets. SIGCOMM Computer Communica-
tion Review 35, 4 (2005).

[6] Peter Boonstoppel, Cristian Cadar, and Dawson R. Engler. 2008. RWset:
Attacking Path Explosion in Constraint-Based Test Generation. In Intl.
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems.

[7] S. Bradner and J. McQuaid. 1999. Benchmarking Methodology for
Network Interconnect Devices. RFC 2544. RFC Editor. http://www.
rfc-editor.org/rfc/rfc2647.txt

[8] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs. In Symp. on Operating Sys. Design and Im-
plem.

[9] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and
Jennifer Rexford. 2012. A NICE Way to Test OpenFlow Applications.
In Symp. on Networked Systems Design and Implem.

[10] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic
for Certifying the FSCQ File System. In Symp. on Operating Systems
Principles.

[11] Elaine Chou. 2016. A Secure Bootloader for Demonstrating Formal
Verification of Hardware-Firmware Interactions on SoCs. Technical
Report. Princeton University. Senior Thesis.

[12] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane
Verification. In Symp. on Networked Systems Design and Implem.

[13] DPDK 2019. Data Plane Development Kit. http://dpdk.org.
[14] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Ro-

man Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,
Wentao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and
Reliable Software Network Load Balancer. In Symp. on Networked
Systems Design and Implem.

[15] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. 2015. MoonGen: A Scriptable High-Speed
Packet Generator. In Internet Measurement Conf.

[16] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas
Sekar. 2016. BUZZ: Testing Context-Dependent Policies in Stateful
Networks. In Symp. on Networked Systems Design and Implem.

[17] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In Symp. on Networked
Systems Design and Implem.

[18] GitStats 2018. GitStats - linux - Lines. https://phoronix.com/misc/
linux-20180915/lines.html.

[19] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. 2015.
Network function virtualization: Challenges and opportunities for inno-
vations. IEEE Communications Magazine 53, 2 (2015).

[20] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Symp. on Operating
Systems Principles.

[21] Bart Jacobs and Frank Piessens. 2008. The VeriFast program verifier.
https://lirias.kuleuven.be/retrieve/30786

[22] Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte. 2013. Real Time Network Pol-
icy Checking Using Header Space Analysis. In Symp. on Networked
Systems Design and Implem.

[23] Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header Space Analysis: Static Checking For Networks. In Symp. on
Networked Systems Design and Implem.

[24] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. 2013. VeriFlow: Verifying Network-Wide In-
variants in Real Time. In Symp. on Networked Systems Design and
Implem.

[25] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. seL4: Formal Verification of an OS Kernel. In Symp.
on Operating Systems Principles.

[26] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. 2000. The Click Modular Router. ACM Trans. on Computer
Systems 18, 3 (2000).

[27] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George
Candea. 2012. Efficient state merging in symbolic execution. In Intl.
Conf. on Programming Language Design and Implem.

[28] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman,
and George Varghese. 2015. Checking Beliefs in Dynamic Networks.
In Symp. on Networked Systems Design and Implem.

[29] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. 2011. Debugging the
Data Plane with Anteater. In ACM SIGCOMM Conf.

[30] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the Art of Network Function Virtualization. In Symp. on Networked
Systems Design and Implem.

[31] Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Sujata Banerjee,
Vyas Sekar, Wenfei Wu, Mihalis Yannakakis, and Ying Zhang. 2019.
Alembic: Automated Model Inference for Stateful Network Functions.
In Symp. on Networked Systems Design and Implem.

[32] Moonpol 2018. Moonpol. https://github.com/erkinkirdan/moonpol.
[33] Madanlal Musuvathi, Dawson R Engler, et al. 2004. Model Checking

Large Network Protocol Implementations. In Symp. on Networked
Systems Design and Implem.

[34] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-
Button Verification of an OS Kernel. In Symp. on Operating Systems
Principles.

[35] Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact of
formal methods. In Symposium on Logic in Computer Science.

[36] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of NFV.
In Symp. on Operating Sys. Design and Implem.

[37] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott
Shenker. 2017. Verifying Reachability in Networks with Mutable
Datapaths. In Symp. on Networked Systems Design and Implem.

[38] Solal Pirelli, Arseniy Zaostrovnykh, and George Candea. 2018. A
Formally Verified NAT Stack. In SIGCOMM Workshop on Kernel-
Bypass Networks.

15

http://www.rfc-editor.org/rfc/rfc2647.txt
http://www.rfc-editor.org/rfc/rfc2647.txt
http://dpdk.org
https://phoronix.com/misc/linux-20180915/lines.html
https://phoronix.com/misc/linux-20180915/lines.html
https://lirias.kuleuven.be/retrieve/30786
https://github.com/erkinkirdan/moonpol

[39] Hendrik Post and Wolfgang Küchlin. 2007. Integrated Static Analysis
for Linux Device Driver Verification. In Intl. Conf. on Integrated Formal
Methods.

[40] Mia Primorac, Katerina Argyraki, and Edouard Bugnion. 2017. How to
Measure the Killer Microsecond. In SIGCOMM Workshop on Kernel-
Bypass Networks.

[41] Rust 2019. Rust Language. https://www.rust-lang.org/.
[42] Leonid Ryzhyk, Nikolaj Bjørner, Marco Canini, Jean-Baptiste Jeannin,

Cole Schlesinger, Douglas B. Terry, and George Varghese. 2017. Cor-
rect by Construction Networks Using Stepwise Refinement. In Symp.
on Networked Systems Design and Implem.

[43] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
2016. Push-Button Verification of File Systems via Crash Refinement.
In Symp. on Operating Sys. Design and Implem.

[44] P. Srisuresh and K. Egevang. 2001. Traditional IP Network Address
Translator. RFC 3022. Internet Engineering Task Force.

[45] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W
Appel. 2015. Compositional CompCert. In Symp. on Principles of
Programming Languages.

[46] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu.
2016. SymNet: Scalable symbolic execution for modern networks. In
ACM SIGCOMM Conf.

[47] Vigor 2019. Source code repository. https://github.com/vigor-nf/
vigor.

[48] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert Green-
berg, Gisli Hjalmtysson, and Jennifer Rexford. 2005. On Static Reach-
ability Analysis of IP Networks. In Intl. Conf. on Computer Communi-
cations.

[49] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki,
and George Candea. 2017. A Formally Verified NAT. In ACM SIG-
COMM Conf.

[50] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Krishnamurthy,
and Wang Xi. 2018. Gravel: Automated Software Middlebox Verifica-
tion. Technical Report CSE-18-09-03. University of Washington.

[51] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified Mod-
ern Cryptographic Library. In Conf. on Computer and Communication
Security.

16

https://www.rust-lang.org/
https://github.com/vigor-nf/vigor
https://github.com/vigor-nf/vigor

	Abstract
	1 Introduction
	2 Overview
	3 Push-button Verification
	4 Full-stack Verification
	5 Pay-as-you-go Verification
	6 Evaluation
	6.1 Does Vigor generalize?
	6.2 Does verification have tangible benefits?
	6.3 Does verification compromise performance?
	6.4 Does verification compromise productivity?

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

