
UPA: An Automated, Accurate and Efficient
Differentially Private Big-data Mining System

Tsz On Li∗, Jianyu Jiang∗, Ji Qi∗, Chi Chiu So∗, Jiacheng Ma∗, Xusheng Chen∗, Tianxiang Shen∗,
Heming Cui∗, Yuexuan Wang†∗, and Peng Wang‡

∗Department of Computer Science, The University of Hong Kong
†College of Computer Science and Technology, Zhejiang University, China

‡Theory Lab, 2012 Labs, Huawei Technologies, Co. Ltd., Hong Kong

Email: {toli2, jyjiang, jqi}@cs.hku.hk, {kelccso, u3533156,chenxus,stx635}@connect.hku.hk,

{heming, amywang}@cs.hku.hk, wang.peng6@huawei.com

Abstract—In the era of big-data, individuals and institutions
store their sensitive data on clouds, and these data are often
analyzed and computed by MapReduce frameworks (e.g., Spark).
However, releasing the computation result on these data may
leak privacy. Differential Privacy (DP) is a powerful method
to preserve the privacy of an individual data record from a
computation result. Given an input dataset and a query, DP
typically perturbs an output value with noise proportional to
sensitivity, the greatest change on an output value when a record
is added to or removed from the input dataset. Unfortunately,
directly computing the sensitivity value for a query and an
input dataset is computationally infeasible, because it requires
adding or removing every record from the dataset and repeatedly
running the same query on the dataset: a dataset of one million
input records requires running the same query for more than
one million times.

This paper presents UPA, the first automated, accurate,
and efficient sensitivity inferring approach for big-data mining
applications. Our key observation is that MapReduce operators
often have commutative and associative properties in order
to enable parallelism and fault tolerance among computers.
Therefore, UPA can greatly reduce the repeated computations at
runtime while computing a precise sensitivity value automatically
for general big-data queries. We compared UPA with FLEX,
the most relevant work that does static analysis on queries to
infer sensitivity values. Based on an extensive evaluation on
nine diverse Spark queries, UPA supports all the nine evaluated
queries, while FLEX supports only five of the nine queries.
For the five queries which both UPA and FLEX can support,
UPA enforces DP with five orders of magnitude more accurate
sensitivity values than FLEX. UPA has reasonable performance
overhead compared to native Spark. UPA’s source code is
available on https://github.com/hku-systems/UPA.

I. INTRODUCTION

In the era of big-data, voluminous data records are stored on

clouds and analyzed by third-parties for diverse data-mining

tasks, such as product recommendations. However, the output

values of these analytical tasks often contain user sensitive

information and hence require protection [1, 2]. For instance,

researchers successfully extracted user sensitive information

by analyzing the user data of Facebook and Netflix [3, 4].

Differential Privacy [5–13] (DP) is a powerful theoretical

framework to preserve the privacy of individual records in a

dataset. Essentially, DP perturbs a query’s output values with

noise to hide the existence of an individual record. The noise

is proportional to sensitivity, the greatest change on an output

value when an individual record is added to or removed from

an input dataset. This ensures that an attacker cannot guess

whether a specific individual record is in the dataset.

Given a query and an input dataset, a sensitivity value must

be precisely computed. If it is too large (inaccurate), excessive

noise will be added to an output value and enormously degrade

the accuracy of the output; if it is too small, the noise will be

insufficient to preserve the privacy of all individual records in

the dataset (DP fails to be enforced).

Unfortunately, computing a precise sensitivity value is

challenging because a sensitivity value varies greatly among

different queries and input datasets. Brute-force approach

(i.e., repeatedly running the same query with a data record

being added to or removed from the same dataset each time)

is currently the only method that can compute the exact

sensitivity value for arbitrary queries and input datasets, yet

it incurs prohibitive performance overhead [14, 15]: if a

dataset has one million records, then brute-force approach

has to run the same query more than one million times for

computing the sensitivity. Since no existing approach can

efficiently compute a sensitivity value for diverse queries,

existing data-mining systems that enforce DP either support

only a limited set of mining operators whose sensitivity can

be theoretically analyzed (e.g., count whose sensitivity is one

for any input dataset) [16, 17], or require the sensitivity values

to be manually estimated by experts [18–27], which is tedious

and error-prone [18].

To reduce manual effort in inferring sensitivity, a latest

approach FLEX [14] does static analysis to estimate a sen-

sitivity value for SQL queries by analyzing the types of SQL

operators (e.g., Join) in an SQL query and an input dataset’s

metadata (e.g., number of data records in each input column).

However, FLEX is inaccurate because it considers only the

composing set of operators in a query, and ignores the actual

query logic (e.g., data and control flow of a query). Moreover,

FLEX only supports a limited set of SQL operators (i.e.,

Select,Join,Filter and Count), and thus does not support

diverse data mining queries. Overall, despite much effort,

an automated, accurate and efficient sensitivity estimation

approach for big-data queries is still missing.

515

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00064

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Our key observation is that big-data operators (e.g., MapRe-

duce operators) are often written in a commutative and asso-

ciative manner to enable parallelism and fault tolerance among

computers. Commutativity means that input data records can

be computed by union operations (e.g., Map) regardless of their

order in a dataset. Associativity means that data can be com-

puted in partitions and then being aggregated (e.g., Reduce),

as if the data are computed as a whole. Since computing

sensitivity of a query requires repeatedly running the same

query on mostly overlapped input data records (in the brute-

force approach, a query repeatedly runs on the same dataset

with only one data record being added or removed from the

input dataset each time), Commutativity and Associativity of

big-data operators allow reusing intermediate results computed

from the overlapped inputs. Moreover, unlike FLEX, we can

estimate a sensitivity value accurately from a query’s concrete

logic. Therefore, the efficiency and accuracy of computing

sensitivity can be greatly enhanced.

We propose Union Preserving Aggregation (UPA), the first

automated, accurate and efficient system to enforce DP in

big-data mining tasks. Given a query and an input dataset,

UPA first randomly samples a small fraction of records from

an entire input dataset as the differing records (the records

that are to be added to or removed from the input dataset).

Commutativity allows the differing records (the sampled data

records) and overlapped records (the un-sampled data records)

to be computed disjointly regardless of their order in the input

dataset. Associativity allows the computation results of the

overlapped records and the differing records to be aggregated,

as if they are computed together without being partitioned.

These two properties allow UPA to resue the intermediate

result of the computation on the overlapped records, to effi-

ciently and concurrently compute the output value of the query

on the entire input dataset, as well as the output values of the

query with a differing record being added or removed from

the input dataset. UPA then infers a sensitivity value based on

these output values.

However, same as existing DP systems [18–21] that manu-

ally infer a sensitivity value, UPA faces a challenge to provide

DP guarantee. Specifically, the inferred sensitivity may be

smaller than the true sensitivity, which implies that the added

noise may not cover the change (influence) on an output value

for some input data records (i.e., DP is not guaranteed for the

entire dataset). To solve this challenge, we propose RANGE

ENFORCER, an algorithm to constrain the output range of a

query, such that the sensitivity value inferred by UPA is always

sufficiently large (i.e., always provides DP guarantee to the

entire dataset). Since the same constrained output range has to

be applied to the same query (queries that have the same input-

output mapping) to enforce DP, RANGE ENFORCER leverages

the Commutativity and Associativity properties to efficiently

identify the similarity between queries and apply the same

constrained output ranges to the same queries. We carry a

proof for UPA’s DP guarantee in §IV-C.

We implemented UPA and integrated it with Spark [28].

UPA eliminates the modification of Spark queries by de-

veloping a set of DP-enabled, Spark-compatible MapReduce

operators. We evaluated UPA on nine diverse mining queries,

including two Spark user-defined queries (e.g., KMeans [18]

and Linear Regression [18]) and seven SparkSQL queries.

These queries included all five open-source queries evaluated

in FLEX [14]. We compared UPA with vanilla Spark and

FLEX [14] in efficiency and accuracy. Evaluation shows that:

• UPA computes the sensitivity values for all evaluated

queries automatically (neither modification on a query

nor expert knowledge on an input dataset is required).

• UPA supports all the nine big-data queries, while

FLEX supports only five queries composed of

Select,Join,Filter and Count operators in SparkSQL.

• UPA is accurate: UPA’s inferred sensitivity values, com-

pared to the sensitivity values computed by brute-force

approach, merely had 3.81% Root Mean Square Error

(RMSE) on average for all queries. For all the five queries

that both UPA and FLEX support, UPA’s RMSE was one

to five orders of magnitude smaller than FLEX.

• UPA on average had only 77.6% performance overhead

compared to vanilla Spark. For larger dataset sizes,

UPA’s performance overhead even gradually decreased.

Our main contribution is UPA, the first automated, accurate,

and efficient DP big-data computation system. UPA supports

various big-data mining algorithms without modification of the

queries or expert knowledge in manually inferring a sensitivity

value. UPA can be applied to Spark as well as other big-

data platforms (e.g., Hadoop [29], DryadLINQ [30]), greatly

promoting the adoption of DP and improving privacy of user

data in real-world big-data analytics.

The rest of this paper is structured as follows. §II introduces

the background of Differential Privacy, FLEX and MapRe-

duce. §III gives an overview of the architecture of UPA. §IV
and §V describe the design and implementation of UPA. We

show UPA’s evaluation results in §VI. We introduce UPA’s

related work in §VII. We discuss and conclude in §VIII.

II. BACKGROUND

A. Differential Privacy

Differential privacy [5] (DP) is a privacy preserving tech-

nique that adds randomness (typically random noise) to an

output value of a query on an input dataset, in order to cover

up the potential change on the output value due to a data record

being added to or removed from the input dataset (any pair of

datasets that differ by only one record is called neighbouring
dataset). Since such change on the output value reveals the

presence of the data record and leaks privacy, to cover up such

change for all data records in the input dataset, DP adds noise

to an output value of a query proportional to sensitivity.

There are three different types of sensitivity in DP context,

namely global sensitivity, local sensitivity, and smooth sensi-

tivity. Global Sensitivity [5] refers to the greatest difference

in the output values of a query on any pair of neighbouring

datasets from all possible input datasets of the query [5].

However, global sensitivity often adds too much noise to an

516

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

output value because it provides protection to data records that

do not even exist in the actual input dataset.

In contrast to global sensitivity, local sensitivity [5] is the

greatest difference on an output value of a query on any pair

of neighbouring datasets exists in the actual input dataset [5].

Hence, local sensitivity provides higher utility [5] than global

sensitivity. Calibrating noise based on local sensitivity is

sufficient to provide DP guarantee to each individual record in

an input dataset, which satisfies Individual Differential Privacy
(iDP) [31]. UPA infers local sensitivity in order to enforce iDP.

The definition of local sensitivity and iDP is as follows:

Definition II.1. Local Sensitivity: given an input dataset x ∈
D and a query f : D → R, for any (neighbouring) dataset

y ∈ D that differs x by one data record (i.e., d(x, y) = 1), the

local sensitivity is

LSf (x) = max
y:d(x,y)=1

|f(x)− f(y)|

Definition II.2. Individual Differential Privacy (iDP): given

an input dataset x and a query f , a mechanism κ(·) that ran-

domizes the output value of f satisfies ε-individual differential

privacy if, for any x’s neighbouring dataset x′ and any output

value o returned by κ(·):

exp(−ε) ≤ P (κ(x) = o)

P (κ(x′) = o)
≤ exp(ε)

iDP offers much higher utility than DP while providing the

same privacy guarantee as standard DP [5] for any individual’s

data record, which satisfies the goal of UPA and other DP

systems [32–34]. This paper does not aim to provide DP

guarantee to a group of individuals, although UPA can be

extended to do so in future work (§VI-E).

B. FLEX

Smooth sensitivity [35] is proposed to provide DP guar-

antee to both individuals and a group of data records. It

calibrates noise based on the maximum local sensitivity when

any number of records is added to or removed from an input

dataset. FLEX [14] automatically infers the local sensitivity

and smooth sensitivity of count queries in SQL that have

Join operators. Although FLEX also describes how it can be

extended to queries with other SQL operators including SUM,

AVG, MIN and MAX, these extensions are informally discussed as

the “possible extensions” in FLEX’s paper [14], and FLEX’s

paper does not describe how are they realised. Thus, this paper

only compares to FLEX on queries with count operators.

For a query that counts the number of joined records after

joining two columns of a dataset, FLEX infers the sensitiv-

ity by multiplying the frequencies of the most frequently-

occurring item from each of the two columns, because remov-

ing a record from the dataset can at most affect such a number

of joined records. That is, FLEX assumes worst case happens

and infers the worst case sensitivity, which is the upper bound

of the true sensitivity.

Nonetheless, FLEX has three limitations. First, it only

supports count queries because its static analysis approach

can only be applied to frequency computation (i.e., count);

FLEX does not support non-count queries such as arithmetic

and machine learning queries. Second, FLEX only works on

SQL because it relies on relational algebra to compute the

sensitivity when a query has multiple Join operators.

Third, since FLEX considers only the composition sets of

SQL operators and ignores the actual query logic of these

operators (i.e., data and control flow in a query), FLEX is

inaccurate in two aspects. First, FLEX does not consider the

actual join keys of records in a dataset. If the most frequently-

occurring item from each of the two input columns do not

share the same join key, the items of these two columns

will not join, causing FLEX overestimates the sensitivity.

Second, FLEX does not consider the effect of join condition

(i.e., Filter) when inferring the worst case sensitivity, while

Filter often avoids the worst case sensitivity by filtering out

some, if not all, the most frequently-occurring items. FLEX’s

precision is even worse when a query has multiple Join and

Filter (e,g., TPCH16 and TPCH21 in the evaluation of this

paper and FLEX’s paper [14]), because FLEX multiplies the

worst case sensitivity of all Join, which causes error magnifies

in each Join when the worst case does not occur in some

Join.

To the best of our knowledge, FLEX is the only system

that automatically infers sensitivity values. Since the goal

of this paper is to provide DP guarantee to individual data

records, to make an apple-to-apple comparison, we compared

the accuracy of the local sensitivity inferred by FLEX with

the local sensitivity inferred by UPA in §VI-B.

C. MapReduce

MapReduce [28, 36] was proposed for massive-data pro-

cessing tasks such as machine learning. They are widely

deployed in e-business, finance, medical analysis, and

many other fields. These MapReduce-related platforms (e.g.,

Spark[28]) usually adopt functional operators such as Map
and Reduce. To enable parallelism and fault-tolerance among

Spark computing nodes, these operators are often written in a

commutative and associative manner [37]:

Commutativity An operation is commutative if the order of

input data records does not affect the output value [37]. Both

Map and Reduce are commutative. Commutativity is important

for parallelization because it allows the parallel scheduler to

assign map or reduce tasks to computing nodes in any order.

Associativity Suppose D1 and D2 are two disjoint datasets

and D = D1 ∪ D2, an operation O is associative iff

O(O(D1) ∪ O(D2)) = O(D1 ∪ D2) [37]. Map and Reduce

are associative because associativity allows input data to be

parallelly processed on individual computers before they are

aggregated.

Airavat [19] is a related DP system which avoids data leak-

age via OS channels (e.g., network/IO channel) by modifying

a JVM to restrict the expressiveness of a MapReduce query.

However, to enforce end-to-end DP, Airavat still requires

a sensitivity value to be manually inferred (i.e., Airavat is

not automatic in enforcing end-to-end DP). Since UPA and

517

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

(R)

(R)

(R)

R(M(S’))

R(M(S-s1))

R(M((S-sn))

R(M((x-s1))
...

R(M((x-sn))

...

(x)

RM((x1))

R(M(x2))

x2

x1

(S’)

(S)

(M)

M(S’)

M(S) R(M(S))

Fig. 1: Architecture of UPA. Union Preserving Aggregation components are shaded and in purple. M and R represent the map and reduce
function respectively. xi is the ith partition in x, and si is the ith data record in S.

Airavat are orthogonal (automatic vs manual) in inferring

sensitivity, this paper does not compare UPA with Airavat.

To the best of our knowledge, no existing DP system can

automatically infer sensitivity values for MapReduce queries,

so this paper aims to build the first one.

Although UPA is implemented on Spark, UPA can also

be extended to other big-data processing systems (e.g., Cam-

doop [38], DryadLINQ [30], Pregel [39] and Angel [40]),

because these systems also have commutative and associative

operators in order to enable parallelism and fault-tolerant for

big-data processing.

III. OVERVIEW

In UPA’s threat model, data providers and UPA are trusted,

and datasets are maintained in UPA. Data analysts are ad-

versaries who know the specific value of some attributes of

an individual’s data record, and keep conducting queries on

one dataset provided by the data providers. Specifically, the

analyst uses this specific value to filter out an individual’s

record from the dataset and submits the same query repeatedly

(any two queries are considered the same if they have the

same input-output mapping). Then, the data analyst may infer

the existence of an individual’s record in the dataset from

the queries’ outputs. UPA defends against such attacks by

enforcing iDP.

Figure 1 shows UPA’s architecture and workflow. A data

analyst submits a big-data query to UPA for computing a

dataset, and UPA automatically and concurrently infers a local

sensitivity value and computes the query’s output value. UPA

then returns a noisy output value to the data analyst, with noise

calibrated based on the local sensitivity value for enforcing

iDP.

We take Linear Regression (LR) as an example to illustrate

UPA’s architecture and workflow. LR is a typical big-data

mining query which uses Stochastic Gradient Descent (SGD)

to update the parameters of a linear model. LR computes an

SGD value for each data record in the input dataset (done in

Mapper M). Then, LR sums up all the SGD’s value, and the

sum is used to update the linear model’s parameters (done in

Reducer R). The output of LR is the updated linear model.

Our evaluation (§VI) shows that LR’s output is different

for neighbouring input datasets (§II-A). This indicates that

enforcing iDP is crucial to preserve data privacy for LR.

According to Figure 1, UPA’s workflow can be divided

into four phases: Partition and Sample, Parallel Map, Union
Preserving Reduce and iDP Enforcement. The first phase

is Partition and Sample, which partitions and samples the

data records of the input dataset. In this phase, UPA has a

parameter n: n is for inferring an accurate sensitivity local

value. After an LR query is submitted to UPA by a data

analyst, UPA’s partitioner first partitions the input dataset

x into two partitions (x1 and x2). UPA later computes the

output values for each of these two partitions (R(M(x1))
and R(M(x2))), and they are analyzed by UPA’s RANGE

ENFORCER for enforcing iDP before UPA returns the LR’s

output to the data analyst. UPA then uniformly samples totally

n data records from all records in all these partitions (n is

1000 by default in UPA). This default value is statistically

sufficient to infer an accurate sensitivity value [41, 42] (see

§IV-A). We denote the sampled data records as S and the

remaining (unsampled) data records as S′. The values of n
are evaluated in §VI-C and §VI-D, and the default values are

robust to general queries.

The second phase is Parallel Map. UPA applies the Mapper

M to both the sampled data records (S) and the remaining

data records (S′), in order to compute an SGD value for each

record in S and S′.
The third phase is Union Preserving Reduce, which applies

the Reducer R on M(S′) and M(S) to compute the LR’s

output on the entire input dataset (i.e., R(M(x))), LR’s

output on x’s partitions (R(M(x1)),R(M(x2))), and LR’s

output on the entire input dataset with each of the sampled

records being excluded (R(M(x− s1)),...,R(M(x− sn))). To

ease discussion, x − s1,...,x − sn is referred as the sampled
neighbouring datasets of x.

UPA first computes R(M(S′)), because it can be reused to

compute all these output values by leveraging MapReduce’s

Commutativity and Associativity. Then, UPA computes the

output values on the sampled neighbouring datasets of x
(R(M(x − s1)),...,R(M(x − sn))). UPA does so by itera-

tively removing each record in S and applies the Reducer

R to the rest of the records in S (i.e., UPA computes

R(M(S − si)), 1 ≤ i ≤ n); then, UPA applies the Reducer

R to both R(M(S− si)) and R(M(S′)), in order to compute

R(M(x− si)). R(M(x− s1)),...,R(M(x− sn)) is therefore

efficiently computed and are used to infer a sensitivity value

for x. In short, UPA greatly improves the efficiency of

518

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

inferring a sensitivity value by reusing R(M(S′)). Based on

the values of R(M(S′)) and all R(M(S−si)), LR’s output on

the entire input dataset and on x’s partitions are also obtained.

Details will be discussed in §IV.

The last phase is iDP Enforcement. UPA infers a local

sensitivity value based on R(M(x − s1)),...,R(M(x − sn)),
according to the definition of local sensitivity (Definition II.1).

Then, to enforce iDP with the inferred local sensitivity, UPA

needs to identify whether LR has been submitted before, and

if so, whether the current input dataset and the previous input

datasets are neighbouring (Details are in §IV-B).

To do so, UPA’s RANGE ENFORCER first compares the

output values of LR on x’s partitions (R(M(x1)) and

R(M(x2))), with the output values of any prior query q on

its input dataset’s partitions (let x′ denote q’s input dataset).

Intuitively, if all the output values of LR on x’s partitions are

different from the output values of q on x′’s partitions (i.e.,

LR(x1) �= q(x′1) and LR(x2) �= q(x′2)), LR is not the same

as q, or x and x′ differ by at least two records, which is trivial

to be handled in UPA. The malicious case is that at least one

partition has the same output value (i.e., LR(x1) = q(x′1))
or LR(x2) = q(x′2)), which means LR may be the same as

q, and x and x′ may differ by just one record. UPA avoids

this malicious case by removing at least two records from x
(let x′′ denote x with records removed by UPA), and return

LR(x′′) to the data analyst after adding noise (Algorithm 2 in

§IV-B). We carry a proof of UPA’s iDP guarantee in §IV-C.

IV. UPA’S THEORIES AND TOOLS

This section detailedly explains how UPA infers a local

sensitivity value and how UPA’s RANGE ENFORCER enforces

iDP. Then it proves UPA enforces (ε)-iDP.

A. Inferring Local Sensitivity

Given a query f (composed of a Mapper M and a Reducer
R) and an input dataset x ∈ D, where D is the possible value

range of any data record in the input dataset x, UPA infers a

local sensitivity value of f(x) (i.e., LSf (x) in Definition II.1).

However, computing LSf (x) in a brute-force manner incurs

prohibitive performance overhead (§I). To make inferring local

sensitivity and enforcing iDP feasible and efficient, UPA

samples the output values of f on x’s neighbouring dataset to

infer LSf (x), and constrains the output range of f on x and

its neighbouring dataset, such that the inferred local sensitivity

is an upperbound of the ground-truth local sensitivity of f(x)
(a prerequisite for proving UPA’s iDP guarantee, see §IV-C).

Algorithm 1 shows how UPA efficiently samples the out-

put values of f on x’s neighbouring dataset, including the

four phases in §III. The first phase is Partition and Sample
(line 1∼2). UPA splits x into two partitions ({xi}2i=1). UPA

later computes an output value of f on each of these two

partitions for UPA’s RANGE ENFORCER to enforce iDP

(Section IV-B). Then, UPA uniformly samples n data records

(with sample size n as 1000) from all these two partitions (let

{s(x)i }ni=1 denote the n sampled records from x), as well as n

data records from D but not in x (let {s(x)i }ni=1 denote the n
sampled records from D but not in x).

The sample size n is set as 1000 by default because local

sensitivity is often theoretically regarded as a random variable

that follows normal distribution [15, 34, 43] (i.e., most data

records of an input dataset have small influence on the output

value, only few outliers exist). Hence, to precisely identify

the local sensitivity (i.e., a normal distribution) of a query

and an input dataset, the 1000 sample size has been proven

statistically sufficient [41, 42]. Our evaluation also shows that

the 99th percentile of the normal distribution inferred by this

sample size covers most (more than 98.9% for eight out of nine

evaluated queries with input datasets of twenty thousand data

records) output values of all neighbouring datasets (Figure 3).

For an input dataset less than 1000 records, n has to be

set lower than 1000. In this case, n should be set as the total

number of data records in the dataset, so the output values

of f on all of x’s neighbouring datasets are obtained (i.e., the

exact local sensitivity value of f(x) is obtained). Nevertheless,

since UPA aims to provide iDP for big-data processing tasks

(whose input datasets often consist of more than millions data

records [28, 36, 38]), we assume input datasets always have

more than 1000 data records throughout this paper (i.e., n is

always set as 1000).

The second phrase is Parallel Map (line 4∼6), which

applies the Mapper M to the sampled data records {s(x)i }ni=1,

{s(x)i }ni=1 and the remaining records {s′i}|x|−n
i=1 (where s′i is a

data record in the remaining dataset S′, defined in §III). Given

these three sets of records, this phase passes the M ’s output

on these sets ({M (sx)
i }ni=1, {M (sx)

i }ni=1 and {M (s′)
i }|x|−n

i=1) to

the next phase.

The third phase is Union Preserving Reduce (line 7∼16).

UPA first computes the value of R on {M (s′)
i }|x|−n

i=1

(line 7∼8), because this value can be reused to compute f ’s

output value on x, f ’s output value on x1 and x2, and f ’s

output value on the “sampled neighbouring datasets” of x (i.e.,

x − s1 ,..., x − sn, define in §III). Then, UPA computes the

output values of f on these sampled neighbouring datasets.

These output values are {oi}ni=1 and {oi}ni=1, where oi is

f ’s output value on x without the ith record in {s(x)i }ni=1

(line 10∼11), oi is f ’s output value on x with the ith record

in {s(x)i }ni=1 (line 13∼14). Finally, UPA computes the output

value of f on the two partitions of x ({xi}2i=1) (line 15∼16).

The last phase is iDP Enforcement (line 17∼22). UPA infers

a local sensitivity value based on {oi}ni=1 and {oi}ni=1. Specif-

ically, UPA uses Maximum Likelihood Estimation (MLE) to

identify the underlying normal distribution of {oi}ni=1 and

{oi}ni=1, and computes the difference between the 1th and 99th

percentile of the normal distribution as the local sensitivity

value of f(x) (the 1th and 99th percentile of a normal

distribution are often regarded as extreme values of the normal

distribution [44, 45]). UPA’s RANGE ENFORCER also uses the

1th and 99th percentile of the normal distribution to constrain

the output range of f on x and x’s neighbouring dataset in

order to enforce iDP. Detailed discussion is in Section IV-B.

519

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Inferring Sensitivity

Input: M : Mapper, R: Reducer, x: input dataset, n: sample
size,

1 {xi}2i=1 ← Partition(x)

2 {s(x)i }ni=1, {s(x)i }ni=1 ← Sample({xi}2i=1, n)

3 {s′i}|x|−n
i=1 ← {xi}2i=1/{s(x)i }ni=1

4 {M (sx)
i }ni=1 ←M({s(x)i }ni=1)

5 {M (sx)
i }ni=1 ←M({s(x)i }ni=1)

6 {M (s′)
i }|x|−n

i=1 ←M({s′i}|x|−n
i=1)

7 {R(s′)
i }2i=1 ← ReduceByPar(R, {M (s′)

i }|x|−n
i=1)

8 R(s′) ← R({R(s′)
i }2i=1)

9 Initialise an empty array {oi}ni=1
10 for p← 1 to n do
11 op ← R(R(s′), R({M (sx)

i }ni=1/M
(sx)
p))

12 Initialise an empty array {oi}ni=1
13 for p← 1 to n do
14 op,q ← R(Output,M

(sx)
p)

15 {R(s)
i }2i=1 ← ReduceByPar(R, {M (s)

i }ni=1)

16 {R(x)
i }2i=1 ← ReduceByPar(R, {{R(s′)

i }2i=1, {R(s)
i }2i=1})

17 sampNeigh← {{oi}ni=1, {oi}ni=1)}
18 normalSamp← MLE(sampNeigh)
19 (lowerPercentile, upperPercentile)←

percentile(normalSamp,1,99)
20 localSen← upperPercentile - lowerPercentile
21 outRange← (lowerPercentile,upperPercentile)
22 Output← RANGE ENFORCER

(R,{M (sx)
i }ni=1,R(s′),{R(x)

i }2i=1,outRange)
Output: Output + Lap(localSen)

B. Enforcing iDP with RANGE ENFORCER

We first give a high-level overview of RANGE ENFORCER,

an algorithm for UPA to enforce iDP with the inferred local

sensitivity value. As introduced in §III, RANGE ENFORCER’s

objective is to detect whether a query submitted to UPA has

also been submitted to UPA before, and if so, whether the

data analyst has maliciously added or removed one record (i.e.,

whether the analyst is conducting an attack).

RANGE ENFORCER does so by identifying whether the

output values of two queries on their input dataset’s partitions

are different. If the output values are all different, the two

queries’ input dataset must differ by at least two records (i.e.,

the analyst is not conducting an attack). Otherwise, the two

queries’ input dataset may differ by just one record (i.e., the

analyst is likely conducting an attack). In this case, RANGE

ENFORCER removes at least two records from a query’s input

dataset, so that the two queries’ input dataset differ by at least

two records (i.e., RANGE ENFORCER avoids the data analyst

conducting an attack). Hence. RANGE ENFORCER provides

iDP guarantee to the input dataset (Proof in §IV-C).

In detail, to enforce iDP, UPA needs to make sure the

inferred local sensitivity value is an upper bound of the actual

local sensitivity of f on x (LSf (x)). Although Algorithm 1

efficiently infers a local sensitivity value based on the out-

put values of f on the sampled neighbouring datasets of x
({oi}ni=1 and {oi}ni=1), there is no guarantee that the inferred

local sensitivity value is an upper bound of LSf (x) (i.e., there

is no guarantee that UPA can provide iDP guarantee to all data

records in x with the inferred local sensitivity value).

Algorithm 2: RANGE ENFORCER

Input: R: Reducer, {M (sx)
i }ni=1: Mapped value of the

sampled data records, R(s′): Reduced value of the

data records which are not sampled {R(x)
i }2i=1:

Reduced value on x’s partitions, outRange: the output
range inferred from the output values of sampled
neighbouring datasets, sampNeigh: the output
values of x’s sampled neighbouring datasets

Variables: p: number of queries submitted before,

{R(x′)
i,j }p,2i,j=1: the reduced value of qi on dataset

x′’s jth partition (x′ ∈ D)
1 q ← 0
2 if p > 0 then
3 for i← 1 to p do
4 diffNum ← 0
5 for j ← 1 to 2 do
6 if R(x′)

i,j �= R
(x)
j then

7 diffNum ← diffNum +1

8 while diffNum < 2 do
9 diffNum ← 0

10 M ′ ← remove two data records {M (s)
i }ni=1

11 {R(s)
i }2i=1 ← ReduceByPar(R,M ′)

12 {R(x)
i }2i=1 ←

ReduceByPar(R, {{R(s′)
i }2i=1, {R(s)

i }2i=1})
13 for j ← 1 to 2 do
14 if R(x′)

i,j �= R
(x)
j then

15 diffNum ← diffNum +1

16 Output← R({R(x)
i }2i=1)

17 if Output > outRange.max or Output < outRange.min then
18 Output←

randomBetween(min(outRange), max(outRange))

19 for i = 1 to 2 do
20 R

(x′)
p+1,i ← R

(x)
i

21 p = p+ 1
Output: Output

This problem is also encountered by existing DP sys-

tems [18–21] which require data analysts to manually infer

a global sensitivity value (§II-A). It is because there is also

no guarantee that the manually inferred global sensitivity is an

upper bound of the actual global sensitivity value (i.e., there

is no guarantee that these systems can provide DP guarantee

to all records in an input dataset with the inferred global

sensitivity).

To address this problem, these DP systems require data ana-

lysts to manually infer an output range of f (denote this output

range as Ôf). Ôf is a tuple of two values: the maximum output

value max(Ôf) and the minimum output value min(Ôf).
Then, all output values of f will be constrained within Ôf . By

doing so, the output value of f on any neighbouring datasets

must be within Ôf , which means the global sensitivity of f is

at most max(Ôf)−min(Ôf). Hence, an upper bound of f ’s

global sensitivity value is obtained as max(Ôf)−min(Ôf).
With this upper bound, these DP systems can provide DP

guarantee to all records in an input dataset.

RANGE ENFORCER is inspired by this method to provide

iDP to an input dataset with the inferred local sensitivity.

520

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

RANGE ENFORCER constrains the output range of f on x
and x’s neighbouring datasets within Ôf : Ôf consists of the

minimum and maximum output value of f on the sampled

neighbouring datasets of x (i.e., {oi}ni=1 and {oi}ni=1), so

the local sensitivity is inferred as the greatest difference

between {oi}ni=1 and {oi}ni=1. Whenever a query is submitted

to UPA, RANGE ENFORCER detects if the query is f and

if the input dataset is x or x’s neighbouring datasets. If so,

RANGE ENFORCER constraints the output value of the query

on the input dataset within Ôf , same as existing DP systems.

Otherwise, RANGE ENFORCER infers a new output constraint

for the query and the input dataset.

However, automatically and precisely identifying whether

two queries are the same and whether their input dataset

is neighbouring is challenging (i.e., identifying an attack is

challenging). It is because an attacker can submit queries that

have different syntax to UPA to conduct an attack. To address

this challenge, our observation is that big-data operators often

process each data record in a dataset independently (i.e., there

is no shared state between the processing of each data record),

because big-data operators are commutative and associative.

Hence, if two queries are the same, and their input dataset

only differs by a few data records (i.e., their input dataset is

mostly overlapped), the output value of these two queries on

the overlapped partition of their input dataset is also the same.

Based on this observation, we propose RANGE ENFORCER, a

technique to identify and avoid an attack based on the output

values of two queries on their input dataset’s partitions.

Specifically, RANGE ENFORCER divides data provider’s

dataset D into two partitions (i.e., D1 and D2). When a data

analyst submits a query f for querying x ∈ D, RANGE EN-

FORCER computes the output value of f on the two partitions

of x (i.e., f(x1) and f(x2), where x1 ∈ D1 and x2 ∈ D2).

Then, RANGE ENFORCER compares these output values with

the output values of any previous query f ′ submitted to UPA

on the two partitions of their input dataset x′ ∈ D (f ′(x′1)
and f ′(x′2), where x′1 ∈ D1 and x′2 ∈ D2). The comparison

(Algorithm 2) includes the following two complete cases:

Case 1: f(x1) �= f ′(x′1) and f(x2) �= f ′(x′2), which means

x′ and x must differ by at least two data records. Since x
and x′ differ by more than one data record, x and x′ are

not neighbouring (i.e., f ′(x′) and f(x) is not an attack).

Hence, RANGE ENFORCER infers and enforces a new output

constraint for f(x), and returns f(x) to the data analyst after

adding noise.

Case 2: f(x1) = f ′(x′1) or f(x2) = f ′(x′2), which

means f(x) and f ′(x′) could be an attack. To avoid this

attack, RANGE ENFORCER iteratively removes two records

from x (let x′′ denote x with records removed by RANGE

ENFORCER), such that f(x′′1) �= f ′(x′1) and f(x′′2) �= f ′(x′2).
Since both partitions of f(x′′) and f ′(x′) have different output

values (i.e., f(x′′) and f ′(x′) is not an attack), RANGE

ENFORCER infers and enforces a new output constraint for

f(x′′), and returns f(x′′) to the data analyst after adding

noise.

Algorithm 2 shows the workflow of RANGE ENFORCER.

RANGE ENFORCER first compares the two partitions’ output

value of the current query ({R(x)
j }2j=1) with the two partitions’

output value of the ith query submitted to UPA before

({R(x′)
i,j }2j=1) (line 3∼15). Then, it counts the number of

different values (diffNum) between {R(x)
j }2j=1 and {R(x′)

i,j }2j=1

(line 5∼7). Finally, based on diffNum, RANGE ENFORCER

determines if the current query is the same as the ith query, and

if the current input dataset and the ith query’s input dataset are

neighbouring (i.e., diffNum < 2). If so, RANGE ENFORCER

iteratively removes two data records from {M (sx)
i }ni=1, and

recomputes the output values of the current query on the two

partitions of x ({R(x)
i }2i=1) , in order to force the current

input dataset and the ith query’s input dataset to be non-

neighbouring (line 8∼15). Finally, Algorithm 2 computes the

final output of the current query (line 16), and constrains the fi-

nal output value within the inferred output range (line 17∼18).

C. Proof of UPA’s iDP guarantee

We now prove that UPA satisfies ε-iDP by proving that

UPA infers an upper bound of f(x)’s local sensitivity. We first

briefly recap the workflow of UPA. UPA samples the output

values of f on x’s neighbouring datasets. (line 10∼14 of

Algorithm 1). Then, UPA infers an output range Ôf(x) based

on the output values of UPA’sampled neighbouring datasets,

and uses RANGE ENFORCER to constrain the output value of

f on x and its neighbouring datasets as Ôf(x) (line 17∼18 of

Algorithm 2).

Based on this recap, we first prove the local sensitivity value

inferred by UPA is an upper bound of f(x)’s local sensitivity

(let LSf (x) denote f(x)’s the local sensitivity). This is easy to

prove because RANGE ENFORCER constrains the output value

of f on x and x’s neighbouring datasets within min(Ôf(x))

to max(Ôf(x)) By doing so, in UPA, the greatest difference

between the output value of f on x and f on any neighbouring

dataset of x is at most max(Ôf(x))−min(Ôf(x)). Thus, by

Definition II.1,

LSf (x) = max
y:d(x,y)=1

|f(x)− f(y)|

≤ max(Ôf(x))−min(Ôf(x)))

Then, we prove that UPA enforces ε-iDP with the inferred

local sensitivity value. Given a privacy budget ε, for any x’s

neighbouring dataset x′ (differs by only one record with x),

and an output value o from Ôf(x), according to Definition II.2:

P (UPAf (x) = o)

P (UPAf (x′) = o)
=

exp(ε∗(o−f(x))

max(Ôf(x))−min(Ôf(x))
)

exp(ε∗(o−f(x′))
max(Ôf(x))−min(Ôf(x))

)

≤ exp(
ε ∗ (|f(x)− f(x′)|)

max(Ôf(x))−min(Ôf(x))
)

≤ exp(ε ∗ LSf (x)

max(Ôf(x))−min(Ôf(x))
)

≤ exp(ε)

521

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Functions Description
DP object constructors

dpread[T](RDD[T]) Partition dataset into S and S′.
dpobject[T](RDD[T], RDD[T]) Perform RDD operations on S and S′.
dpobjectKV[K,V]

(RDD[(K,V)], RDD[(K,V)])

Perform PairRDDFunctions operations
on Key-value S and S′.

dpobject’s member functions
mapDP(T=>U): dpobject[U] Map S and S’ and pass them into dpobject.

reduceDP((T, T) =>T)

:(RDD[T],T)

Reduce S and S′.
Return the output value of sampled
neigbouring datasets and query result.

dpobjectKV’s member functions
mapDPKV(T =>(K,V)) Map S and S’ and pass them
:dpobjectKV[K,V] into dpobjectKV

reduceByKeyDP((V,V) => V)

:dpobject[K,V]

Perform ReduceByKey on S and S′.
Return the output value of sampled
neigbouring datasets and query result.

joinDP(dpobjectKV[K,W])

:dpobject[K,(V,W)]

Perform Join on S and S′.
Return the output value of sampled
neigbouring datasets and query result.

TABLE I: API of UPA

Hence,
P (UPAf (x)=o)
P (UPAf (x′)=o) ≤ eε. Similarly,

P (UPAf (x)=o)
P (UPAf (x′)=o) ≥

e−ε. Therefore, UPA f (x) satisfies ε-iDP. �

V. IMPLEMENTATION

To automatically run Spark queries in UPA without modify-

ing them, UPA provides a complete set of DP-enabled, Spark-

compatible operators. The first operator is dpread, which

partitions and samples the input data loaded into Spark. It

returns both the sampled data S and remaining data S′ (§III),
which are passed to dpobject as inputs. dpobject is a

generic class that carries the map or reduce result of S and

S′. In UPA, mapDP and reduceDP are member functions

of dpobject, which are emulated to RDD class. Another

derivative is dpobjectKV, which stores Key-value S and S′.
It enables Key-value operations such as reduceBeyKeyDP and

joinDP, which is emulated to PairRDDFunctions class.

A. reduceDP

reduceDP operator first applies the reduce function f to S′,
let RS′ denote the corresponding output value. Then, for each

s in both S and the input dataset, reduceDP applies f to RS′

and S−s. This is the computation result of f on x except for

the s record (i.e., f(x − s)). ReduceDP then computes f(x)
by applying f on f(x − s) and s. Similarly, for each s in S
but not in the input dataset, ReduceDP applies f on f(x) and

s.

B. reduceBeyKeyDP

Similar to reduceDP, reduceBeyKeyDP first reduces S′

with function f . The reduced value and the sampled set S are

then separately transformed into a Map and then broadcasted,

let B(RS′) and B(S) denote the corresponding broadcasted

values. The reason to transform them into Map is that it allows

UPA’s looking up process to be more efficient. Then, for each

s ∈ S, f is applied to B(S) − s and B(RS′), which is the

computation result of f on the D except s.

Fig. 2: UPA’s and FLEX’s RMSE between computed sensitivities
(log-scale) and the ground truth (a), and UPA’s execution time
normalized to vanilla Spark (b). The last four queries are supported
by UPA only.

C. joinDP

Unlike reduceDP and reduceBeyKeyDP, joinDP takes two

input datasets, let D1 and D2 denote the two input datasets.

Also, let S1 and S2 denote the sampled sets of D1 and D2

respectively; and let S′1 and S′2 denote the remaining sets

of D1 and D2 respectively. For each Join operator, UPA

does two rounds of join and shuffle operations. First, UPA

computes the joined tuples of the remaining datasets (i.e.,

joining S′1 and S′2). Second, UPA computes the joined tuples

of differing tuples (i.e., joins S1 with S′2, S′1 and S2, and S1

with S2). Therefore, unlike vanilla SparkSQL which does only

one shuffle for Join, UPA triggers Join two times and results

in shuffling (exchanging tuples between computers) twice.

Removing one tuple in S1 or S2 can result in more than

one joined tuples to be removed in the outputs. (Join can be

either an one-to-one, or one-to-many function). To record the

actual influence of removing each tuple in S1 and S2 on the

number of joined records, the tuples in S1 and S2 are given

indices in UPA, so that UPA tracks the influence of a differing

tuple by finding which joined tuples have the same index as

the differing tuple. Overall, by doing so, UPA’s accuracy on

computing sensitivity values can be much better than FLEX

(static analysis), confirmed in our evaluation.

VI. EVALUATION

A. Experiment Setup

Our evaluation was done on five computers with Intel(R)

Xeon(R) CPU E3-1280 v6 with 24 cores, 64GB RAM and

1TB SSD. All computers form a cluster with 40Gbps NIC.

Table II shows our evaluated queries and datasets. We

compared UPA with FLEX [14] because UPA and FLEX are

the only DP systems that automatically infer a sensitivity value

(§II-B). We evaluated UPA on nine diverse mining queries that

were evaluated by relevant systems [14, 18, 19], including all

the five open-source benchmark queries that were evaluated

by FLEX [14]. We used real-world datasets with dataset size

of typical big-data applications [28].

To evaluate the accuracy of UPA and FLEX in inferring

local sensitivity values (FLEX infers both local sensitivity

values and smooth sensitivity values§II-B), we study the Root

Mean Square Error (RMSE) between the local sensitivity

values computed by UPA or FLEX, and the ground truth local

522

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Query Name Dataset Size (GB) Query Type Support By UPA Support By FLEX
TPCHQuery 1 lineitems 114 Count � �
TPCHQuery 4 lineitems,orders 121 Count � �
TPCHQuery 13 lineitems,orders 121 Count � �
TPCHQuery 16 part,supplier,partsupp 117 Count � �
TPCHQuery 21 supplier,lineitem,orders,nations 133 Count � �
KMeans ds1.10 Life Science Data 121 Machine Learning � x
Linear Regression ds1.10 Life Science Data 121 Machine Learning � x
TPCHQuery 6 lineitems 114 Arithmetic � x
TPCHQuery 11 suppliers,nation,partsupp 115 Arithmetic � x

TABLE II: Evaluation applications and datasets. All datasets are comparable with FLEX.

sensitivity values computed by the brute-force approach (§I)
according to Definition II.1.

Same as the evaluation setup of FLEX [14], for each query,

we set ε as 0.1. Unless specified, we by default sampled

1000 records (n, defined in §III) as the sampled data size

of S (defined in §III) because this size is robust in both

theory [41, 42] and our evaluation on general queries (§VI-C);

Our evaluation answers the following questions:
§VI-B: How accurate is UPA (in terms of RMSE) com-

pared with FLEX?

§VI-C: What is the source of UPA’s inaccuracy in estimat-

ing sensitivity?

§VI-D: What is UPA’s performance overhead?

§VI-E: What are UPA’s limitations?

B. UPA v.s. FLEX
We first compared the accuracy between UPA and FLEX.

Figure 2(a) shows the RMSE of the local sensitivity values

inferred by UPA compared with that of FLEX. UPA incurred

on average 3.81% RMSE for all queries, which was five orders

of magnitude lower than FLEX. Since the noise added to an

output of a DP system is proportional to a sensitivity value,

a small RMSE between UPA’s inferred sensitivity value and

the ground-truth sensitivity value (§II-A) indicates that UPA

enables high utility for its query outputs. Note that the local

sensitivity values inferred by UPA with its other components

(§IV) enforce end-to-end iDP for queries.
For TPCH21, UPA’s RMSE was six orders of magnitude

smaller than FLEX’s. UPA obtained much lower RMSE than

FLEX because UPA inferred the sensitivity values based

on a query’s actual logic (§V), while FLEX inferred the

sensitivity values statically based on the composition set of

a query’s operators, and ignored all control and data flow of a

query, such as Filter and Join operator (§II-B). Thus, UPA

inferred a more accurate sensitivity, while FLEX often tremen-

dously overestimated the sensitivity value of queries which

have multiple Filter operators and Join operators (such as

TPCH16 and TPCH21). FLEX’s paper [14] also confirmed

that FLEX incurred high RMSE for TPCH16 and TPCH21

because these queries contain multiple Filter operators and

Join operators.
Nonetheless, FLEX achieved zero error for TPCH1 because

TPCH1 simply counts the number of tuples in a table (it has no

Filter operator or Join operator), so FLEX directly returned

one as TPCH1’s local sensitivity value (i.e., a Count query’s

output at most changes by one when a data record is added

to or removed from an input dataset). Overall, UPA is more

general (supports all nine queries) and much more accurate

than FLEX.

C. Analysis of UPA’s accuracy

To understand why the sensitivity values inferred by UPA

had varied RMSE, we collected the output values of each of

the nine queries on all the neighbouring datasets of each input

dataset repetitively. Specifically, in this part of the evaluation,

each input dataset had 200k records, so each input dataset

had 200k neighbouring datasets and we collected 200k output

values for each query, shown in Figure 3 (the output values

of “KMeans” were not shown because their distribution was

almost identical to “Linear Regression”). The spots in the fig-

ures were the output values. The red lines show the maximum

and minimum output values of neighbouring dataset inferred

by UPA with the default 1000 sample sizes n, and the blue

lines show the ground truth greatest and smallest output values.

Lines of other colours show the maximum and minimum

output values of neighbouring datasets inferred by UPA with

different sample sizes. Thus, if the red lines are closer to

the blue lines, UPA infers a more accurate sensitivity value.

Overall, for different sample sizes (102-105), when n = 1000,

the red lines covered 98.9% ∼ 100.0% output values of all

the neighbouring datasets except for TPCH21, indicating that

n = 1000 is sufficient to infer an accurate sensitivity value.

This size is also suggested by statistics theories [41, 42].

Among all queries, the output range inferred by UPA (red

lines) for TPCH1 was the most accurate, because the actual

output range of neighbouring dataset (blue lines) is small and

the output values are uniformly distributed within the range.

It is because TPCH1 is a simple count query; adding or

removing one record from the dataset causes the output values

at most change by one. Actually, UPA’s sampling error of the

output values of TPCH1 on neighbouring datasets was zero

with sample size of 1000 (i.e., the output values sampled by

UPA covered all the distinct values of all the output values of

TPCH1’s neighbouring dataset). Nevertheless, UPA incurred

2.6 ∗ 10−09 RMSE (see Figure 2(a)) because UPA inferred

the output range (red lines) by fitting a normal distribution to

the sampled output values, while the output values of TPCH1

on neighbouring datasets may not perfectly follow a normal

distribution (§IV-A).

523

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Output values of queries with one record being added to or remove from the input dataset.

For all queries, the output range inferred by UPA for

TPCH21 was the least accurate, because the neighbouring

datasets’ output values of TPCH21 have a wider range and the

output values’ distribution is non-uniform (there are outliers).

It is because TPCH21 has 3 Filter operators and 5 Join

operators, so the input data records have uneven effects on

TPCH21’s output value. These outliers have a low probability

of being sampled by UPA, and are unlikely covered by the

normal distribution inferred by UPA based on sampled output

values (which are mostly not outliners). Nevertheless, RANGE

ENFORCER enforces the output range to the query’s output

(§IV-B), and therefore UPA enforces iDP even the inferred

sensitivity value is not close to ground truth. For the other eight

queries, UPA enforces iDP with accurate sensitivity values.

D. Performance Overhead of UPA

We study the performance overhead of UPA in enforcing

end-to-end DP. UPA’s end-to-end computation time contains

three parts: 1) computing a query’s vanilla output, 2) comput-

ing the output values of sampled neighbouring datasets (§III)
for adding noise, and 3) RANGE ENFORCER’s action.

To analyse UPA’s end-to-end performance overhead, we

ran UPA on each query for 100 times and measured the

execution time. For each execution, we randomly added or

removed one to two data records in the input dataset, such

that RANGE ENFORCER’s two cases have equal probability to

occur (§IV-B).

Figure 2(b) shows UPA’s computation time normalized to

vanilla Spark’s on the default dataset size (Table V). UPA

incurred 19.1% ∼ 130.9% performance overhead (on average

77.6%). In comparison, because FLEX is a static approach, it

reported a 0.03% performance overhead [14], but it supports

only five out of the nine evaluated queries and has orders of

magnitude higher RMSE than UPA on inferring sensitivity

values.

UPA incurred higher than 50% performance overhead for

LR, KM, TPCH1, TPCH4, TPCH6 and TPCH13. For LR, KM,

TPCH1 and TPCH6, all computations of these queries are lo-

cal computation (no data record shuffling in Spark is triggered

in these queries’ logic, see §V). Since RANGE ENFORCER

introduces additional data record shuffling in Spark: RANGE

ENFORCER needs to exchange the data records which belong

to the same partition between computers (§IV-B), the shuffling

incurs substantial performance overhead compared to local

computation. Hence, UPA’s performance overhead on LR,

KM, TPCH1 and TPCH6 was large. We observed for LR, KM,

TPCH1 and TPCH6, more than 42.8% of the execution time

spent in shuffling, which implies UPA’s performance overhead

on these queries mainly came from RANGE ENFORCER.

For TPCH4 and TPCH13, since they contain Join oper-

ators, they incurred more than 100% overhead. It is because

UPA triggers shuffling (exchanging tuples between computers)

twice (§V-C) for computing the joined results of sampled

neighbouring datasets; vanilla Spark requires just one shuffle

for one Join.

Surprisingly, TPCH16 and TPCH21, which are composed

of more Join operators than TPCH4 and TPCH13, had

lower performance overhead than TPCH4 and TPCH13. It

is because most records (more than 99%) were filtered by

consecutive Filter and Join operators (i.e., most immediate

computation values of the sampled neighbouring datasets were

filtered). Hence, UPA’s overhead was small in computing the

output values of sampled neighbouring datasets (line 10∼14

of Algorithm 1).

We then study UPA’s scalability to dataset sizes. Figure 4(a)

shows UPA’s performance overhead running on different

dataset sizes. UPA had smaller performance overhead when

dataset sizes were larger because the performance overhead of

inferring sensitivity is constant (n is 1000). Even with a larger

sample size, UPA’s performance overhead did not increase

significantly.

524

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: UPA’s performance scalability to dataset sizes (left) and
sample size n (right).

Figure 4(b) shows UPA’s performance remained constant

for most queries up to a sample size of 105. It is because

inferring sensitivity requires repeatedly computing the sampled

data records, which results in a high hit rate of Spark’s memory

cache (cache hit rate increased from 10.3% to 48.9% when

UPA entered line 10∼14 of Algorithm 1.

E. Limitations of UPA

Although UPA automatically and accurately infers a local

sensitivity value and enforce DP to big data queries, UPA has

two limitations.

First, UPA incurred moderate performance overhead. Al-

though UPA’s performance overhead was non-trivial, it is

worthwhile and is already near-optimal. UPA’s performance

overhead is worthwhile because UPA addressed two main

limitations of FLEX: UPA supports more general big data

queries (Table II), and UPA infers a much more accurate

sensitivity value (Figure 2a). It is because UPA is a dynamic

analysis approach while FLEX is a static analysis approach.

Since dynamic analysis inevitably requires substantial ad-

ditional computation [14, 15], UPA’s performance overhead

is also inevitable. However, UPA’s performance overhead is

already near-optimal. Specifically, occurring work [14, 15]

pointed out that the performance overhead of accurately in-

ferring a sensitivity value is at least linearly proportional

to input datasets’ size, and UPA leverages the associativity

and commutativity properties of big-data operators, as well

as sampling theories to reduce such performance overhead

from linear to constant (i.e., UPA’s performance overhead is

independent of input datasets’ size, as confirmed in Figure 4).

It is because regardless of input datasets’ size, UPA only

needs to infer a local sensitivity value from 1000 sampled

data records (§IV-A). Hence, UPA’s performance overhead

is considered near-optimal that UPA already reduces the

performance overhead from linear to constant.

Second, UPA focuses on enforcing DP for an individual’s

data record, rather than a group of data records. Actually,

other DP systems [32–34] also have the same focus. In future

work, UPA can be extended to enforce DP for a group of

individuals by reusing the results computed from the sampled

neighbouring datasets across repeated queries.

VII. RELATED WORK

Inferring sensitivity has been a challenge for DP since

DP was introduced. Existing systems usually require ex-

pert involements to infer a sensitivity value. Airavat [19],

GUPT [18], PINQ [46] enforce DP on data mining systems

(e.g., MapReduce [36]). These systems require a data analyst,

who submitted a query to these systems, to estimate an output

range for the query, so that the systems can derive a global

sensitivity value for the query (§IV-B).

Fuzz [47, 48] aims to ease manual effort in inferring a

query’s output range. It requires a data analyst to estimate the

output range of a query’s operators, so that Fuzz can derive

an output range for the query based on the composition of

the operators. However, this approach is not applicable to

one-to-many and many-to-many operators (e.g., Join) [14].

It is because the influence of an input record on these

operators’ output value is usually unbounded. Tensorflow-

Privacy [49, 50] enforces DP on stochastic gradient descent

algorithms, but also requires a sensitivity value to be manually

estimated. Compared to these approaches, UPA automatically

infers a sensitivity value and enforces end-to-end DP.

Other DP systems (SensitivitySampler [15] and FLEX [14])

aim to reduce manual effort in inferring a sensitivity

value. SensitivitySampler enforces Random Differential Pri-

vacy (RDP) [43] for general big-data queries. However, it has

two major shortcomings. First, SensitivitySampler requires ex-

pert knowledge in statistic to identify a proper distribution for

inferring a global sensitivity value. Second, SensitivitySampler

provides DP guarantee to an input dataset probabilistically

(i.e., enforces RDP). SensitivitySampler cannot practically be

extended to enforce standard DP [5] and iDP [31], because

RDP theoretically needs to add infinite noise to an output value

to provide the standard DP and iDP guarantee. FLEX infers

sensitivity values for a limited set of SQL queries (§II-B).

Different from these two systems, UPA automatically enforces

iDP for general big-data queries.

VIII. CONCLUSION

We have presented UPA, the first automated, accurate,

and efficient DP big-data computation system. Evaluation on

diverse big-data mining queries and comparison with relevant

systems showed that UPA is deployable and easy to use. UPA

has the potential to greatly promote the adoption of DP in real-

world big-data analytics, effectively protecting the privacy of

user data. All UPA’s source code and evaluation results are

available on https://github.com/hku-systems/UPA.

ACKNOWLEDGMENT

We thank anonymous reviewers for their helpful comments.

Heming Cui is the corresponding author of this paper. This

work is funded in part by one research grant from the Huawei

Innovation Research Program (HIRP) Flagship, HK RGC

ECS (27200916), HK RGC GRF (17207117 and 17202318),

Croucher Innovation Award, National Natural Science Founda-

tion of China (No. 61872318) and National Key R&D Program

of China (No.2018YFB1004003).

525

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Jianyu, Z. Shixiong, A. Danish, W. Yuexuan, C. Hem-

ing, L. Feng, and G. Zhaoquan, “Kakute: A precise,

unified information flow analysis system for big-data se-

curity,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC ’17), 2017.

[2] X. C. Jianyu Jiang, C. W. Tzs On Li, T. Shen, S. Zhao,

C.-L. W. Heming Cui, and F. Zhang, “Uranus: Simple,

efficient sgx programming and its applications,” in Pro-
ceedings of the 15th ACM ASIA Conference on Computer
and Communications Security (ASIACCS ’20), 2020.

[3] A. G. Martinez, Chaos monkeys: Obscene fortune and
random failure in Silicon Valley. HarperCollins Pub-

lishers, 2018.

[4] A. Narayanan and V. Shmatikov, “How to break

anonymity of the netflix prize dataset,” arXiv preprint
cs/0610105, 2006.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith,

“Calibrating noise to sensitivity in private data analysis,”

in Proceedings of the Third Conference on Theory
of Cryptography, ser. TCC’06. Berlin, Heidelberg:

Springer-Verlag, 2006, pp. 265–284. [Online]. Available:

http://dx.doi.org/10.1007/11681878 14

[6] R. Chen, Q. Xiao, Y. Zhang, and J. Xu, “Differentially

private high-dimensional data publication via sampling-

based inference,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM, 2015, pp. 129–138.

[7] H. Li, L. Xiong, and X. Jiang, “Differentially private

synthesization of multi-dimensional data using copula

functions,” in Advances in database technology: proceed-
ings. International Conference on Extending Database
Technology, vol. 2014. NIH Public Access, 2014, p.

475.

[8] W. Qardaji, W. Yang, and N. Li, “Priview: practical

differentially private release of marginal contingency

tables,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM,

2014, pp. 1435–1446.

[9] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivas-

tava, and X. Xiao, “Privbayes: Private data release via

bayesian networks,” ACM Transactions on Database
Systems (TODS), vol. 42, no. 4, p. 25, 2017.

[10] C. Xu, J. Ren, Y. Zhang, Z. Qin, and K. Ren, “Dppro:

Differentially private high-dimensional data release via

random projection,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 12, pp. 3081–3093,

2017.

[11] P. Dandekar, N. Fawaz, and S. Ioannidis, “Pri-

vacy auctions for inner product disclosures,” CoRR,
abs/1111.2885, 2011.

[12] R. Kumar, R. Gopal, and R. Garfinkel, “Freedom of pri-

vacy: anonymous data collection with respondent-defined

privacy protection,” INFORMS Journal on Computing,

vol. 22, no. 3, pp. 471–481, 2010.

[13] Z. Jorgensen, T. Yu, and G. Cormode, “Conservative

or liberal? personalized differential privacy,” in Data
Engineering (ICDE), 2015 IEEE 31st International Con-
ference on. IEEE, 2015, pp. 1023–1034.

[14] N. Johnson, J. P. Near, and D. Song, “Towards practical

differential privacy for sql queries,” Proceedings of the
VLDB Endowment, vol. 11, no. 5, pp. 526–539, 2018.

[15] B. I. Rubinstein and F. Alda, “Pain-free random differ-

ential privacy with sensitivity sampling,” arXiv preprint
arXiv:1706.02562, 2017.

[16] F. McSherry and I. Mironov, “Differentially private rec-

ommender systems: building privacy into the net,” in

Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining.

ACM, 2009, pp. 627–636.

[17] A. Yargic and A. Bilge, “Privacy risks for multi-criteria

collaborative filtering systems,” 2017 26th International
Conference on Computer Communication and Networks
(ICCCN), 2017.

[18] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler,

“Gupt: Privacy preserving data analysis made easy,” in

Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD

’12. New York, NY, USA: ACM, 2012, pp. 349–360.

[Online]. Available: http://doi.acm.org/10.1145/2213836.

2213876

[19] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov,

and E. Witchel, “Airavat: Security and privacy for

mapreduce,” in Proceedings of the 7th USENIX
Conference on Networked Systems Design and Imple-
mentation, ser. NSDI’10. Berkeley, CA, USA: USENIX

Association, 2010, pp. 20–20. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1855711.1855731

[20] J. Wang and Q. Tang, “Differentially private

neighborhood-based recommender systems,” ICT
Systems Security and Privacy Protection IFIP Advances
in Information and Communication Technology, p.

459–473, 2017.

[21] Y. Shen and H. Jin, “Epicrec: towards practical dif-

ferentially private framework for personalized recom-

mendation,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security.

ACM, 2016, pp. 180–191.

[22] C. Dwork and A. Roth, “The algorithmic foundations of

differential privacy,” Found. Trends Theor. Comput. Sci.,
vol. 9, no. 3–4, pp. 211–407, Aug. 2014. [Online].

Available: http://dx.doi.org/10.1561/0400000042

[23] A. Narayanan and V. Shmatikov, “Robust de-

anonymization of large sparse datasets,” in Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE,

2008, pp. 111–125.

[24] U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft,

“Blurme,” Proceedings of the sixth ACM conference on
Recommender systems - RecSys 12, 2012.

[25] H. Polat and W. Du, “Privacy-preserving collaborative fil-

tering using randomized perturbation techniques,” Third

526

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Data Mining.

[26] ——, “Privacy-preserving top-n recommendation on hor-

izontally partitioned data,” The 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI05).

[27] ——, “Achieving private recommendations using ran-

domized response techniques,” Advances in Knowledge
Discovery and Data Mining Lecture Notes in Computer
Science, p. 637–646, 2006.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,

“Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing,” in Proceedings
of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association,

2012, pp. 2–2.

[29] “Hadoop,” http://hadoop.apache.org/core/.

[30] Y. Y. M. I. D. Fetterly, M. Budiu, Ú. Erlingsson, and

P. K. G. J. Currey, “Dryadlinq: A system for general-

purpose distributed data-parallel computing using a high-

level language,” Proc. LSDS-IR, vol. 8, 2009.

[31] J. Soria-Comas, J. Domingo-Ferrer, D. Sánchez, and

D. Megı́as, “Individual differential privacy: A utility-

preserving formulation of differential privacy guaran-

tees,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 6, pp. 1418–1429, 2017.

[32] H. H. Nguyen, J. Kim, and Y. Kim, “Differential privacy

in practice,” Journal of Computing Science and Engi-
neering, vol. 7, no. 3, pp. 177–186, 2013.

[33] A. Machanavajjhala, X. He, and M. Hay, “Differential

privacy in the wild: A tutorial on current practices &

open challenges,” in Proceedings of the 2017 ACM In-
ternational Conference on Management of Data. ACM,

2017, pp. 1727–1730.

[34] C. Dwork and J. Lei, “Differential privacy and robust

statistics,” in Proceedings of the forty-first annual ACM
symposium on Theory of computing. ACM, 2009, pp.

371–380.

[35] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth

sensitivity and sampling in private data analysis,” in

Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing. ACM, 2007, pp. 75–84.

[36] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” in OSDI’04: Proceedings of
the 6th conference on Symposium on Opearting Systems
Design & Implementation, 2004, pp. 10–10.

[37] Z. Xu, M. Hirzel, and G. Rothermel, “Semantic charac-

terization of mapreduce workloads,” in Workload Char-
acterization (IISWC), 2013 IEEE International Sympo-
sium on. IEEE, 2013, pp. 87–97.

[38] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea,

“Camdoop: Exploiting in-network aggregation for big

data applications,” in Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12), 2012, pp. 29–42.

[39] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski, “Pregel: a system

for large-scale graph processing,” in Proceedings of the
2010 ACM SIGMOD International Conference on Man-
agement of data, 2010, pp. 135–146.

[40] J. Jiang, L. Yu, J. Jiang, Y. Liu, and B. Cui, “Angel: a new

large-scale machine learning system,” National Science
Review, vol. 5, no. 2, pp. 216–236, 2018.

[41] S. L. Braunstein, “How large a sample is needed for

the maximum likelihood estimator to be approximately

gaussian?” Journal of Physics A: Mathematical and
General, vol. 25, no. 13, p. 3813, 1992.

[42] R. A. Hart and D. H. Clark, “Does size matter? explor-

ing the small sample properties of maximum likelihood

estimation,” in Annual Meeting of the Midwest Political
Science Association. Citeseer, 1999, pp. 1–32.

[43] R. Hall, A. Rinaldo, and L. Wasserman, “Random differ-

ential privacy,” arXiv preprint arXiv:1112.2680, 2011.

[44] R. Newson, “Confidence intervals for rank statistics: Per-

centile slopes, differences, and ratios,” The Stata Journal,
vol. 6, no. 4, pp. 497–520, 2006.

[45] K. M. Robinette and J. T. McConville, “An alternative

to percentile models,” SAE Transactions, pp. 938–946,

1981.

[46] F. McSherry, “Privacy integrated queries,” in

Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data (SIGMOD).
Association for Computing Machinery, Inc., June 2009.

[Online]. Available: https://www.microsoft.com/en-us/

research/publication/privacy-integrated-queries/

[47] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential

privacy under fire,” in Proceedings of the 20th
USENIX Conference on Security, ser. SEC’11. Berkeley,

CA, USA: USENIX Association, 2011, pp. 33–33.

[Online]. Available: http://dl.acm.org/citation.cfm?id=

2028067.2028100

[48] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and

B. C. Pierce, “Linear dependent types for differential

privacy,” in Acm sigplan notices, vol. 48, no. 1. ACM,

2013, pp. 357–370.

[49] “Tensorflow Privacy,” https://github.com/tensorflow/privacy.

[50] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang, “Deep learning

with differential privacy,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York,

NY, USA: ACM, 2016, pp. 308–318. [Online]. Available:

http://doi.acm.org/10.1145/2976749.2978318

527

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 02,2023 at 18:52:54 UTC from IEEE Xplore. Restrictions apply.

