
Paths to OpenMP in the Kernel

Jiacheng Ma
Northwestern University

United States

Wenyi Wang
Northwestern University

United States

Aaron Nelson
Northwestern University

United States

Michael Cuevas
Northwestern University

United States

Brian Homerding
Northwestern University

Argonne National

Laboratory

United States

Conghao Liu
Illinois Institute of

Technology

United States

Zhen Huang
Northwestern University

United States

Simone Campanoni
Northwestern University

United States

Kyle Hale
Illinois Institute of

Technology

United States

Peter Dinda
Northwestern University

United States

Abstract

OpenMP implementations make increasing demands on the kernel.

We take the next step and consider bringing OpenMP into the

kernel. Our vision is that the entire OpenMP application, run-time

system, and a kernel framework is interwoven to become the kernel,

allowing the OpenMP implementation to take full advantage of

the hardware in a custom manner. We compare and contrast three

approaches to achieving this goal. The first, runtime in kernel (RTK),

ports the OpenMP runtime to the kernel, allowing any kernel code

to use OpenMP pragmas. The second, process in kernel (PIK) adds

a specialized process abstraction for running user-level OpenMP

code within the kernel. The third, custom compilation for kernel

(CCK), compiles OpenMP into a form that leverages the kernel

framework without any intermediaries. We describe the design and

implementation of these approaches, and evaluate them using NAS

and other benchmarks.

CCS Concepts

• Software and its engineering → Operating systems, com-

pilers; Runtime environments; • Computing methodologies

→ Parallel computing methodologies; • Blended systems;

Keywords

parallelism, OpenMP, operating systems

ACM Reference Format:

Jiacheng Ma, Wenyi Wang, Aaron Nelson, Michael Cuevas, Brian Homerd-

ing, Conghao Liu, Zhen Huang, Simone Campanoni, Kyle Hale, and Peter

This project was supported by the United States National Science Foundation via
grants 1763743, 1718252, 1763612, 1730689, 1908488, 2028851, and 2028958.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476183

Dinda. 2021. Paths to OpenMP in the Kernel. In The International Confer-

ence for High Performance Computing,Networking, Storage and Analysis (SC

’21), November 14–19, 2021, St. Louis,MO, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3458817.3476183

1 Introduction

OpenMP [2, 16, 62] is arguably the most widely-employed approach

for the linguistic expression and realization of shared memory

parallelism, in part because it extends existing sequential languages

like C, C++, and Fortran with parallel features. As a consequence,

it can be incrementally adopted. While OpenMP’s origins are in

compact expression of loop-level data parallelism on SMPs, it has

grown to include support for heterogeneous parallelism (including

memory and devices), and task parallelism (including fine-grained

and recursive tasks).

AnOpenMP implementation is split between the compiler, which

understands its language directives (#pragma omp ...) in the con-

text of the sequential host language and lowers them to sequential

code, and a run-time system that the lowered code invokes to dy-

namically create and manage parallelism. Underneath both lies the

kernel, which implements primitives for memory, thread, task, and

synchronization management that the run-time system uses, and

the hardware itself, which the compiler, run-time system, and kernel

ultimately try to leverage in the most performant way possible.

In a typical implementation, the OpenMP compiler and run-time

system target the user-mode process model of a general-purpose

kernel. This means that neither the generated code nor the run-time

system have access to the full feature set of the hardware, which

is only visible in kernel mode. Additionally, both are limited to

the features and execution model of the user-level process abstrac-

tion the kernel exposes via system calls and other mechanisms.

In today’s implementations, the OpenMP application becomes a

multithreaded Linux process.

There is reason to believe that by removing these limitations,

performance and efficiency gains are possible [28, 32, 49]. Con-

sider a parallel program that, instead of being a process, is itself

a special-purpose kernel. Such an implementation of the program

can directly leverage all hardware capabilities, including those that

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3458817.3476183&domain=pdf&date_stamp=2021-11-13

match well to parallel language features but are typically unavail-

able in user mode [31]. Furthermore, the kernel abstractions used

by the program can be accelerated [29], or even specialized [25, 75].

While such a “parallel application is a kernel” approach has

demonstrated promise with other parallelism models, there is cur-

rently limited support of it for OpenMP. The goal of this paper is

to show how to change this—to bring OpenMP into the kernel.

The design space for achieving this goal is large, and we re-

port on three distinct points within it that represent particularly

interesting trade-offs. The first of these, runtime in kernel (RTK)

involves no changes to the compiler. In RTK, the OpenMP runtime

and its immediate dependencies are ported to (or reimplemented

within) the kernel. The application is then compiled as normal and

linked directly with the kernel codebase, to create a custom kernel.

This represents the tightest kernel/application coupling possible

without changes to the compiler, but it requires considerable effort,

particularly if the application has other dependencies.

In process in kernel (PIK), the kernel codebase is modified to

create a special process abstraction that behaves like the user-level

process abstraction, but, in fact, all code runs in kernel mode. In our

implementation, the usual user-level compilation and linking steps

are slightly modified, and the unmodified OpenMP run-time system

is simply linked in. This allows a normally user-level program

to be compiled and linked into a form that can be dynamically

loaded into a running kernel, somewhat similar to a Linux kernel

module. The environment it sees, however, emulates the user-level

process environment of Linux. This allows kernel mode features

to be leveraged incrementally. The PIK approach requires minimal

effort of the user and can seamlessly handle additional dependencies.

However, it is also the loosest coupling of the kernel and application.

The custom compilation for kernel (CCK) point of the design space

allows the modification of the compiler itself. In our implementa-

tion, specialized LLVM analysis and compilation passes handle

OpenMP directives (and add automatic parallelization where pos-

sible), lowering them down to a form that uses a tiny task-based

run-time instead of the OpenMP run-time system. This run-time

system is then directly implemented within the kernel. The CCK

approach promises the tightest possible coupling of the OpenMP

application, the kernel, and the hardware.

Our contributions are as follows.

• We make a case for kernel-level OpenMP support.

• We describe the design and implementation of the runtime

in kernel (RTK) approach.

• We describe the design and implementation of the process in

kernel (PIK) approach.

• We describe the design and implementation of the custom

compilation for kernel (CCK) approach.

• We provide a performance evaluation of the approaches

using NAS and other benchmarks.

• We compare and contrast these approaches in detail.

While it is not our goal here, we also note that enabling OpenMP

within the kernel, specifically the RTK design point, also presents

the opportunity towrite traditional kernel-level code usingOpenMP.

This may become useful as general purpose kernels need to deal

with increasingly larger scale machines. Our code can be found via

http://interweaving.org.

2 Software, testbed, and benchmarks

Our work is built on the LLVM implementation of OpenMP, and the

Nautilus kernel framework. We compare with the same OpenMP

implementation on Linux using two well-known benchmark suites

on node hardware with up to 192 cores and 8 sockets.

2.1 Software

Clang/LLVM: LLVM [50] is a widely-used compilation framework

in academia and industry that enables sophisticated code analyses

and transformations. In this work, we use the framework in two

respects. First, we use the Clang/LLVM 9 implementation of the

OpenMP directives in C/C++. Clang/LLVM lowers OpenMP code

to the sequential LLVM intermediate representation (LLVM-IR),

within the “middle-end” of LLVM.1 For RTK and PIK our goal is

to use Clang/LLVM without modification, meaning that identical

object code is created for a user-level and kernel-level program.

libomp: libomp is the OpenMP run-time system that the code

generated by Clang/LLVM invokes. libomp comprises about 75K

lines of C++ and C, and 2K lines of assembly (all measured by

sloccount). It targets the user-level process model of Linux and

has several dependencies beyond this. For RTK we port libomp

and its dependencies into the Nautilus kernel with minimum possi-

ble changes. For PIK we employ the unchanged user-level binary

libomp directly.

NOELLE: For the CCK approach an alternative compilation path,

implemented within the Clang/LLVM framework, is used both to

handle OpenMP directives and to do automatic parallelization from

sequential code. This builds on a powerful new analysis framework,

NOELLE [55], 46,750 lines of C++. The same lowered sequential

code is produced for the user-level and kernel-level target.

VIRGIL: The sequential code generated by CCK uses a custom,

task-based run-time system, named VIRGIL, instead of libomp.

Two versions of VIRGIL exist: a user-level version that uses C++ 17

abstractions to build on top of C++ threads (e.g. clone()) and C++

synchronization (including futex()) on Linux, and a kernel-level

version that directly uses the kernel’s internal task system, which

operates similarly to the SoftIRQ mechanism in the Linux kernel.

Nautilus kernel framework: Nautilus [29] is a publicly available

open-source OS kernel that currently runs directly on x64 NUMA

hardware, including Xeon Phi. It is independent of the Linux code-

base. Nautilus comprises over 331K lines of code as measured by

sloccount. Nautilus was designed with the goal of supporting

hybrid run-times (HRTs). An HRT is a mash-up of an extremely

lightweight OS kernel framework, such as Nautilus, and a paral-

lel run-time system [27, 28]. Nautilus can help a parallel run-time

ported to an HRT achieve very high performance by providing

streamlined kernel primitives such as synchronization and thread-

ing facilities. It provides the minimal set of features needed to

support a tailored parallel run-time environment, avoiding features

of general purpose kernels that inhibit scalability.

Nautilus has a range of features that help make the execution of

an HRT faster and more predictable. Identity-mapped paging with

the largest possible page size is used. All addresses are mapped at

boot, and there is no swapping or page movement of any kind. As

1Fortran OpenMP programs could also be supported using the Flang front-end to
LLVM. The middle-end transformations and the run-time system are the same.

2

a consequence, TLB misses are extremely rare, and, indeed, if the

TLB entries can cover the physical address space of the machine, do

not occur at all after startup. There are no page faults. All memory

management, including for NUMA, is explicit and allocations are

done with buddy system allocators that are selected based on the

target zone. For threads that are bound to specific CPUs, essential

thread (e.g., context, stack) and scheduler state is guaranteed to

always be in the most desirable zone. The core set of I/O drivers

developed for Nautilus have interrupt handler logic with deter-

ministic path lengths. Finally, interrupts are fully steerable, and

thus can largely be avoided on most hardware threads. Application

benchmark speedups from 20–40% over user-level execution on

Linux have been demonstrated, while benchmarks show that prim-

itives such as thread management and event signaling are orders

of magnitude faster [29, 30].

In this paper, Nautilus is used only as a stand-alone OS kernel

that runs directly on bare metal with no virtualization. No Linux is

used in any way when running Nautilus. While we don’t use it here

it is also possible to run Nautilus on top of commodity virtualization

platforms. Of note for security and deployment concerns, Nautilus

can run side-by-side with Linux in a multi-kernel configuration

either using a hybrid virtual machine (HVM) [33, 34] or using the

Pisces co-kernel framework [64] for a multi-kernel setup on bare

metal. In a multi-kernel configuration, Nautilus and Linux can be

compartmentalized (mutually protected) by HVM or Pisces, and

rebooting the Nautilus part of the configuration can be done at

timescales similar to a process creation in Linux.

2.2 Testbed and benchmarks

Testing and performance measurement is done on PHI, a Colfax

Ninja Xeon Phi server, which is based on a Supermicro K1SPE

motherboard that includes a 1.3 GHz Intel Xeon Phi 7210 (64 cores,

256 hardware threads) mated to 16 GB of MCDRAM and 96 GB

of DRAM. We use this machine because it allows us to consider

relatively large scales on a machine where we also have the full

bare-metal access necessary for kernel testing.

PHI is used with hyperthreading off, and with the flat memory

model. In this model, the MCDRAM is given a distinct NUMA zone

with high distance to every CPU. As a consequence, the DRAM is

preferred by any NUMA-aware OS. The DRAM consists of 6 16 GB

DIMMs and is configured as 6-way interleaved. Both Nautilus and

Linux are booted directly on this platform. In both cases, for the

problem sizes used in our evaluation, only the DRAM is used. The

Linux kernel involved is version 5.8.0. It is a tickless kernel driven

by the LAPIC one-shot timer, as is Nautilus. The Linux distribution

is CentOS 7 and it was configured according to Intel requirements

by ColFax on delivery. Huge pages are enabled, transparent huge

pages is set to madvise, and compaction is set to always.

Additional performance measurement is done on 8XEON, a Su-

perMicro 7089P-TR4T server with eight 2.1 GHz Intel Xeon Plat-

inum 8160s (192 cores, 384 hardware threads total) mated to 768 GB

of DRAM spread evenly across eight NUMA zones. Hyperthreading

is off. Both Nautilus and Linux are booted directly on this platform.

The Linux kernel is 5.4.0 and is tickless, as is Nautilus. The distri-

bution is Ubuntu 20.04.2 LTS. Huge pages are enabled, transparent

huge pages is set to madvise, and compaction is set to madvise.

To evaluate ourwork, we use the EdinburghOpenMPMicrobench-

mark Suite [9–11] (EPCC) and the NAS 3.0 Application Benchmark

Suite [3, 38] as ported to C+OpenMP [61]. EPCC measures the

overhead of OpenMP directives. NAS is a well-known suite of

benchmarks geared towards aerospace applications.

3 Runtime in kernel (RTK)

The runtime in kernel (RTK) model adds the application code, run-

time system, and other dependencies directly into the kernel, mak-

ing building of these part of the kernel compilation process. Any

part of the kernel can then use OpenMP, not just the application.

3.1 Compilation

OpenMP provides the programmer with the ability to annotate

statements in the base language with directives (pragmas) that con-

trol how the statement is to be parallelized. In the Clang/LLVM

implementation of OpenMP, the compilation process produces ob-

ject code that invokes the libomp run-time system. The application

code may have other dependencies as well, for example on libc,

libstdc++, libm, and so on. Our compilation process assumes that

the necessary dependencies have been ported to the kernel. The

need to port arbitrary dependencies to the kernel is a key limitation

of the RTK approach. If an application has many such dependencies,

other approaches may be preferable.

In RTK, no source code changes relating to OpenMP are required.

However, the compilation and linking process needs to be adjusted

for incorporation into the kernel. For the most part, this requires

changes in compilation flags. However, since main() is now the

kernel, an alternative means of starting the application needs to be

added, which we do by converting the application’s main() into a

Nautilus shell command.

The x64 ABI provides for several features that do not exist within

kernel code. As a consequence, the compilation process must be

adjusted by changing or adding compilation flags. Two critical

elements are the memory model and red zone use. Because the appli-

cation is now a part of the kernel, the kernel’s memory model must

be specified. Red zone is a bit more challenging to understand. The

red zone part of the x64 ABI allows the compiler to use a limited

amount of stack space without allocating it. This can make leaf

functions faster. Unlike user-level code, however, kernel code must

be correct in the presence of interrupts. For performance reasons,

Nautilus handles interrupts on the current thread’s stack. Conse-

quently, an interrupt would clobber such unallocated stack state.

Therefore, the application and its dependencies must be compiled

without red zone support.

As a practical matter, there are essentially two ways to incor-

porate these changes into the application and its build process: (1)

porting the application’s build process to the kernel’s build pro-

cess as a subdirectory/submodule of the kernel, or (2) separately

building the application, respecting the necessary compilation flags,

into a static library that is linked into the kernel. In both cases, it

is the kernel’s link process that is ultimately used, and this targets

bootstrap in a physically addressed environment.

3.2 Runtime system

The Clang/LLVM OpenMP runtime system, libomp, must be linked

into the kernel in order for OpenMP-compiled code to work. The

3

Figure 1: Integration of libomp runtime system into Nautilus.

problem is that libomp is not a standalone library, but rather a user-

level library with many dependencies on the target platform (most

commonly Linux and Windows). We explored two approaches to

this problem: (1) elimination of these dependencies through in-

depth porting of libomp directly to Nautilus internal interfaces,

and (2) implementation of the required dependencies of the Linux

target within Nautilus. Recall from §2 that libomp is a large, com-

plex codebase (77K lines of C/C++/assembly). Approach (1) requires

substantial effort, and more importantly, a deep understanding of

libomp. It also makes it difficult to track changes to the mainline of

libomp. However, it can provide the maximum flexibility in adapt-

ing libomp to take advantage of being in the kernel. In contrast,

approach (2) has a lower effort, makes tracking of the mainline

much easier, and still leaves room for incrementally taking advan-

tage of the kernel context. It may seem surprising that (2) is lower

effort, but note that while libomp has many dependencies, it uses

these dependencies in very specific ways, and only these require

emulation. We describe approach (2) in this paper.

In our design, we retain libomp’s default autoconf/cmake-based

configuration and compilation process for its Linux target, but

adjust the configuration so that it produces a static library that is

suitable for incorporation into Nautilus. This means adding the

special compilation flags of §3.1, selecting the appropriate compiler,

and choosing an appropriate featureset. Essentially, we provide a

wrapper script on top of the existing compilation process.

Figure 1 illustrates how libomp is then integrated into Nautilus.

libomp assumes it is targeting Linux (albeit the dependencies are

minor), and is using POSIX threads (pthreads) for its own implemen-

tation. Nautilus has been extended with a compatibility layer that

includes a pthreads interface, a Linux compatibility layer just suffi-

cient for the needs of libomp, and support for hardware-enabled

thread-local storage (hwtls), which libomp (and the compiler via

__thread) assumes.

The Nautilus linking process and custom linker scripts have been

adjusted to add the libomp library, and other dependencies, as well

as to appropriately handle variables marked as being thread-local.

To avoid circular dependencies, the compatibility layer uses no

OpenMP features.

3.3 Pthreads in Nautilus

Unlike its other dependencies, libomp makes extensive and elabo-

rate use of the POSIX threads interface (pthreads). This interface

is absent in Nautilus because Nautilus’s thread, fiber, task, syn-

chronization, and interrupt models aim to grant a parallel runtime

(a) Port of embedded pthreads library to
Nautilus. (b) Customized embedded pthreads in Nau-

tilus.

Figure 2: Pthreads inNautilus: (a) Simple port of embedded pthreads

library; (b) customized embedded pthreads.

more subtle control of concurrency. Compared to the Nautilus

threads interface, pthreads is much more complex. The complexity

of pthreads comes from various attributes associated with primi-

tive objects and functionality significantly diverges for higher-level

objects that build on them. We built a compatible pthread interface

that, as expected, bases the primitive objects of pthreads on the

primitives available in Nautilus. However, our implementation’s

design decisions are specifically made for the libomp use-cases. In

other words, our pthread implementation is aware of the OpenMP

runtime and geared to it. Within the kernel, a pthread thread is a

variant of a kernel thread.

Our implementation is based on the POSIX Threads for embed-

ded systems (PTE) library [39], which is itself based on pthreads-

win32 [40], a GPL-licensed pthreads library for Microsoft Windows.

PTE trades platform-dependent optimization for portability. To

port PTE to Nautilus, we needed to supply only a thin OS abstrac-

tion layer. Figure 2(a) illustrates this port. Although redundancies

are easy to spot, it is still reasonably efficient and pushes most

performance issues down to the platform-dependent layer we sup-

ply. Later, we revisited the pthread implementation, focusing on

customizing it to the Nautilus environment. This included directly

leveraging some higher-level constructs such as condition variables,

barriers, and thread management in Nautilus. Figure 2(b) illustrates

the structure of the customized pthread interface.

3.4 Other dependencies and issues

Although libomp has dependencies on libc, etc., the important

cases basically boil down to access to environment variables, and

use of the Linux sysconf() call to get access to hardware/software

configuration information. These are not performance critical, but

essential for correctness and to manipulate the application (for

example to choose the number of threads to use). We implemented

a general purpose environment variable mechanism for kernel code,

as well as a sysconf() that supports a limited number of keys.

libomp and the code generated by Clang/LLVM’s OpenMP im-

plementation makes extensive use of hardware support for thread-

local storage. On x64, hardware TLS is based on the use of the

%fs and %gs segment register overrides, where the corresponding

FSBASE and GSBASEMSRs point to the TLS block. In Nautilus, we

require the use of %gs to point to the per-CPU state in the kernel,

so we restrict the compiler to use %fs when it generates TLS code.

We added support for context-switching FSBASE as part of a thread

context switch, as well as support for arch_prctl() configuration

of FSBASE. Linking and loading of the kernel was modified so that

4

Figure 3: PIK compilation/linking compared to Linux.

TLS data and BSS segments are supported and handled correctly.

Thread launch clones TLS data and BSS to complete the support.

During testing, we encountered issues with SSE (and higher)

floating point state being corrupted. Because Nautilus integrates

kernel and application code, it cannot restrict the use of SSE regis-

ters like a general purpose kernel, and instead must manage them as

a part of kernel thread/fiber state. We found that Clang/LLVM was

aggressively using SSE registers to optimize interrupt handlers, for

which SSE state was not managed. To address this, we added a lazy

SSE save/restore model for interrupts, with the added feature that

it can point out interrupt code that is causing it to be invoked. We

then used this feature to give the kernel interrupt code it identified

the no-SSE attribute.

4 Process in kernel (PIK)

The process in kernel (PIK) implementation allows for separate

compilation and linking of the application and kernel, much like

the Linux user-level model. However, the separately compiled ap-

plication executable is dynamically loaded and run as part of the

kernel. Unlike a kernel module, however, it is not linked to the

kernel, but rather runs within a specialized kernel-mode process

abstraction. PIK completely avoids adding application and run-time

dependencies to the kernel itself, instead providing only a system

call interface. This greatly simplifies the porting of applications—

dependencies are handled exactly as they are at user-level—and

allows for incremental use of kernel-mode features. However, in

contrast to RTK, the barrier for using kernel-mode features is higher,

and OpenMP cannot be used elsewhere in the kernel.

4.1 Compilation

Figure 3 compares and contrasts the Linux user-level build process,

and the PIK build process. The PIK build process for an application

almost exactly reflects the application’s original user-level build

process. The implementation supplies a script, nld, which wraps

the linker for the common case. The same C compiler can be used

for both Linux and Nautilus.

Only one additional compiler flag is needed: position-independence

(-fPIE). Position independence is required becauseNautilus’s loader

is placing the executable into the physical address space, and the

ultimate location depends on the state of prior kernel memory al-

locations. Disabling red zone use is not necessary because, when

compiled for PIK, the kernel is configured to use a trampoline stack

on interrupt so as to avoid disturbing the application’s red zone

variables. On a syscall instruction, the syscall handler subtracts

from its stack pointer to avoid the redzone in a similar way.

After compilation, all objects, and dependencies (libraries) are

linked together using a custom linker script. Note that the entire,

unmodified libomp run-time system is simply linked in. The linker

script preserves the position-independence of the entire linked

executable (“static PIE”). The compiler, C, and C++ runtime startup

code (e.g., crt0) is integrated carefully, and with an assumption

that the kernel will be providing a “pre-start” environment for it.

The linker script also attaches a custom-designed 64-bit variant

of a multiboot2 header at the very beginning of the output file

and as the very first section. While multiboot2 headers are usually

used to simplify the loading of an ELF kernel by a boot loader, we

use one here to simplify the loading of an ELF executable by the

kernel. Because of the position independence, static linking, and

the multiboot2 header, the Nautilus loader can largely treat the

executable as a simple binary blob that can be placed anywhere in

physical memory that is convenient.

4.2 Process abstraction

PIK builds upon Nautilus’s kernel-level process abstraction. This

abstraction combines the notion of a kernel thread group (which

can be gang-scheduled) with optional support for an independent

address space (implemented using paging or other means [75]), and

optional support for a custom allocator that is layered on top of

the kernel-level memory management. The abstraction itself has

no concept of user-mode, however, nor system calls.

As might be expected, a process creation involves the creation

of an initial thread within the process. Otherwise, a newly created

kernel thread joins the process of its creator, if it exists. The initial

thread runs a wrapper function (the “pre-start” code) that completes

the setup of the process before invoking the user’s thread function.

This is configurable to support different compatibility models. Other

threads similarly start in wrappers that complete their setup with

respect to their process before running the user’s thread function.

In our implementation of PIK, the initial thread’s function in-

vokes Nautilus’s loader with a file name. The loader, leveraging the

multiboot2 information in the file, allocates memory, copies the

file content to it, initializes BSS/TBSS, and then jumps to the entry

point. This is quite similar to a Windows-style CreateProcess(),

but done entirely in kernel.

We added several features to Nautilus to facilitate such processes.

First, hardware TLS support and lazy floating point save/restore

in the presence of interrupts was included, as described in §3.4.

We also eased the red zone restriction by using the hardware’s

interrupt stack table (IST) feature. We do not handle interrupts on

a separate stack, but rather have the initial interrupt handler copy

the interrupt frame to the thread stack at an offset that avoids the

red zone, and then continue the interrupt on the thread stack.

4.3 Linux compatibility

Figure 4 illustrates the PIK run-time model and compares it with

that of Linux. The executable was compiled and linked assuming

a Linux-compatible process environment, which we emulate. To

achieve this, we provide a system call interface through which we

emulate a subset of the Linux syscall interface.

Since Nautilus has no concept of syscalls on its own, the Linux

compatible system call interface simply uses the same binary in-

terface as Linux (e.g., the syscall instruction or the int 0x80

5

Figure 4: PIK run-time compared to Linux.

instruction). The vDSO is not currently supported, and the “pre-

start” code ensures that it is not detected. Unlike in Linux, a system

call in Nautilus happens in the same address space, at the same

privilege level, and using the same stack as the calling thread (red

zone is avoided for both mechanisms).

After implementing these interfaces, we began to implement

Linux-compatible system calls. It is important to note that our goal

here is not to emulate the entire, gigantic Linux process interface,

but just enough to be able to support typical OpenMP programs.

Syscall stubs were added for each Linux syscall type so we can see

all activity, and respond, by default, with an error.

The most important system calls (i.e. those used by the C runtime

and libomp) were then implemented iteratively until several test

programs were able to execute in an expected manner, consistent

with their behavior on Linux. We then continued to expand the

implementation until we were able to support all of the bench-

marks described in this paper. Other mechanisms processes can

use to interact with Linux, especially virtual filesystems such as

/dev, /proc and /sys, are not implemented with the exception

of /proc/self, which is required by libomp. In principle, system

calls and accessible namespaces can be incrementally added to our

implementation as needed.

5 Custom compilation for kernel (CCK)

The OpenMP standard is constantly evolving as the needs of par-

allel programs and the underlying hardware evolve. This leads to

OpenMP runtimes (e.g. libomp) that also must constantly evolve.

The RTK (§3) and PIK (§4) approaches directly support libomp,

enabling OpenMP programs to be compiled with any libomp-using

compiler. The cost is that RTK requires maintaining an additional

large and evolving codebase (libomp is 77K lines of C/C++/assembly)

in the kernel. PIK avoids this, but requires maintaining the kernel-

level support needed to be compatible with libomp (currently about

2K lines of C and assembly).

The custom compilation for kernel (CCK) approach uses special-

ized LLVM analysis and compilation passes to lower all OpenMP

parallel structures to tasks. The compiler injects trampolines into

the code to dispatch independent tasks to a small task-based run-

time, VIRGIL, instead of to libomp. The implementation of VIRGIL

in Nautilus comprises only 550 lines of C and it builds on Nautilus’s

task system, a component that most other kernels also have (e.g.,

SoftIRQ in Linux). The user-level version of VIRGIL consists of 620

lines of C++. Not only is this much smaller than the alternatives, it

also does not have to evolve; it is the compiler that evolves.

CCK’s runtime is significantly simpler than libomp (even if we

Custom
front-end

IR +
metadata

Trampoline to
kernel API

Extra code
for task

synchronization

Custom
back-end

ISO

Linker

Kernel source

OpenMP
source code

Custom Compilation for Kernel

Optimizations

Tasks creation

Transform code
to be amenable
for task creation

Figure 5: CCK compilation pipeline.

consider just the task components of libomp) for several reasons.

First, it only has to support tasks, rather than the panoply of parallel

forms of OpenMP (e.g., section, parallel for, ...). Second, it does not

need to support OpenMP attributes (e.g., reduction, nowait, ...).

Instead, the compiler uses attributes statically. Finally, the tasks

that the CCK runtime sees are independent from its perspective.

The compiler generates code such that all tasks that are handed to

the runtime are immediately ready.

5.1 Compilation pipeline and AutoMP

CCK compilation builds upon NOELLE [55], a novel compilation

framework that includes state-of-the-art code analyses and trans-

formations. We extended NOELLE’s memory analyses to leverage

OpenMP semantics, and its code transformations for task genera-

tion to implement the parallelism expressed in OpenMP directives.

OpenMP directives are translated into metadata that is attached

to the LLVM IR to explicitly express the absence of dependences

between code regions. The CCK transformations, named AutoMP,

use this metadata in addition to properties determined via code

analysis to automatically parallelize the program.

Figure 5 shows the compilation pipeline. Our front-end lowers

the source code to sequential LLVM IR combined with semantic

metadata derived from the OpenMP directives. Next, a sequence of

custom transformations leverage the semantic metadata to generate

tasks suitable for VIRGIL. Further metadata-informed optimizations

shave off unnecessary overhead related to task creations and joins.

Next, synchronization code is generated together with code that

ties to the runtime. Finally, a custom back-end produces an object

file that is compatible with the kernel. The object file is then linked

as a kernel component to create a bootable kernel image.

5.2 OpenMP to metadata conversion

OpenMP pragmas in the source code specify what code to paral-

lelize, how to parallelize it, and assert that it is correct to parallelize

it. These pragmas carry rich semantic information into the com-

piler; for example, that the iterations of a loop are independent or

that a section of code is atomic and requires some ordering. Rather

than following Clang’s conventional OpenMP compilation pipeline,

our custom front-end instead embeds this semantic information

within the IR without isolating the code specified within pragma.

We modified Clang to simply annotate the Abstract Syntax Tree

(AST) of the program being compiled with the OpenMP semantics.

This is quite different from Clang’s conventional processing, which

6

wraps OpenMP code regions in new functions (a process called out-

lining). Outlining partitions the code of a function across multiple

functions, which significantly reduces the accuracy of many code

analyses in the LLVM middle-end (e.g., memory analysis, data-flow

analysis). This accuracy loss is not a problem for a conventional

OpenMP implementation because it blindly implements the paral-

lelism specified by the pragmas. We cannot. CCK needs to reshape

the parallelism specified by the pragmas to reduce it to tasks. To do

so requires high accuracy code analyses and, therefore, outlining

code is not an effective option.

Using the annotated AST, for each compoundOpenMP statement,

CCK’s front-end generates unoptimized LLVM IR with the OpenMP

semantic information embedded as IR metadata, to wit, a sequential

version of the program permeated with OpenMP metadata.

5.3 Task generation

To generate tasks, CCK’s middle-end first deconstructs the paral-

lelism forms of the original program into code regions with annota-

tions (e.g., independence declaration between code regions enabled

by OpenMP pragmas). Then, it task-parallelizes the code.

The middle-end first computes the program dependence graph

(PDG) [20] using state-of-the-art memory analyses [1, 12, 76] that

we have enhanced to exploit the code-region annotations men-

tioned above. These code analysis extensions that exploit theOpenMP

semantic metadata is what enables CCK to go beyond the accu-

racy that a conventional dependence analysis could reach. This

extra accuracy allows CCK to find more available parallelism than

automatic parallelization techniques can.

The next step is to run a series of code transformations that make

the code more amenable for the creation of tasks, including function

inlining, loop distribution, and loop fusion. These transformations

generate code with single entry and exit points for each code region

that could become a task. This is followed by a parallelizer that

decides which of these code regions need to become tasks. The

selected code regions are then parallelized, generating tasks, using

techniques included in NOELLE (HELIX [13, 15] without the OS

support [14] and without thread speculation [57], DSWP [63], and

DOALL). Each selected code region becomes a function where

the region’s live-in variables become function parameters. The

region’s live-out variables are packed into an heterogeneous array

and passed as the first parameter to the generated function. These

functions are the tasks that the runtime executes.

CCK can often statically determine where in the code tasks will

become ready at run-time (e.g., at the beginning of a loop without

loop-carried dependences), in which case CCK simply adds a task

submission at the identified code point. When readiness of a task

cannot be determined statically, the compiler generates the code to

check and submit tasks at run-time. In this way, task dependence

checking is bespoke to the application instead of being part of the

runtime. This significantly simplifies the support that CCK needs

from the runtime and the OS.

The last step in CCK’s middle-end invokes important optimiza-

tions for the parallel execution of applications, such as object priva-

tization and variable reductions. Standard LLVM optimizations are

also employed on each task, including loop unrolling and code vec-

torization. We then add extra code to manage task synchronization

as required by the parallelization techniques used.

Approach
Aspect RTK PIK CCK

Effort
Runtime major none minor
Kernel minor major minor
Compiler none none major

Implementation Size (C LOC)
Runtime 1,600 0 550
Kernel 2,200 13,250 600
Compiler 0 0 6,550 (C++)

Benefits and Opportunities
Application development easier easiest easy
Leveraging kernel context easier difficult easiest
Decoupled from OpenMP runtime no no yes
Applies to all code in kernel yes no no
Automatic parallelization no no yes

Codes Sizes reflect new code or modifications.

Figure 6: Summary of design and software engineering tradeoffs.

5.4 Binary generation, linking, runtime

Each task is wrapped in a functionwith live-in and live-out variables

made explicit in its signature. We generate a landing task for each

set of tasks that are grouped together (e.g., all tasks corresponding

to iterations of a loop) to reduce their live-out variables. The landing

task is executed when all tasks of the group join (the runtime is

unaware of this join). Finally, our back-end generates a single object

file that encodes the whole program compiled including the code

for the generated tasks. The object file is generated with kernel-

compatible options, including avoiding exploiting the x64 red zone.

This enables the kernel to arbitrarily intertwine application code

and kernel code (e.g., interrupts) with little overhead. Tasks are

executed by either the user-level or kernel-level VIRGIL runtime,

which was described earlier.

6 Evaluation

It is important to understand that we are exploring the design space

of approaches to moving OpenMP into the kernel. We have de-

scribed the software engineering effort, benefits, and opportunities

of the particular points in that design space represented by RTK,

PIK, and CCK in their sections. Figure 6 summarizes this discussion.

We evaluated our implementations of RTK, PIK, and CCK for

performance, using the Edinburgh (EPCC) and NAS 3.0 benchmarks

on the machines described in §2.2. We ran our tests on the default

user-level Linux implementation as well. The same compiler and

identical compilation flags affecting back-end code-generation were

used for Linux, RTK, PIK, and CCK, and are described in more detail

in the respective sections. CCK uses custom middle-end analysis

and transformations in the context of the compiler. We address the

following questions:

• How are OpenMP primitives affected by RTK and PIK?

• How do RTK, PIK, and CCK affect application performance?

• How do the performance gains (and losses) of RTK, PIK, and

CCK relate to their tradeoffs in the design space?

• Are these viable paths to bringing OpenMP into the kernel?

We show our evaluation first on PHI, and then repeat it for 8XEON.

6.1 Impact on OpenMP primitive performance

Figures 7 and 8 show the EPCC microbenchmark performance for

RTK and PIK, respectively, comparing them to Linux user-level

performance on the PHI machine at full scale. There are no mi-

crobenchmark numbers for CCK. Recall from §5 that CCK does not

7

(a) ARRAY
(b) SCHEDULE

(c) SYNCH

(d) TASK

Figure 7: RTK performance compared to Linux: EPCC microbench-

marks on 64 cores of PHI.

directly implement OpenMP directives. Consequently, there are no

OpenMP directives that EPCC can measure in CCK.

The numbers represent the overhead of each of the OpenMP

directives. Note that we have not yet used any kernel-level features

to enhance either RTK or PIK. Hence we are hoping for a rough

parity in performance, which is indeed what we see. RTK shows

slightly higher overhead than the Linux implementation, while PIK

shows slightly lower overhead. In PIK, precisely the same OpenMP

runtime, pthread library, and libc/libm are used as with the Linux

version. In contrast, RTK uses a port of the runtime, a pthread

compatibility layer, and also experiences kernel memory allocation

directly. PIK experiences considerably lower variation in overhead

than either RTK or Linux—lower jitter is one benefit of bringing

code into the kernel, although it also depends on other factors.

6.2 Impact on application performance

To see the impact of RTK, PIK, and CCK on application performance,

we ran the NAS benchmarks with C class, with a few exceptions,

for each model. The exceptions, where we run B class versions,

are due to large static variables (gigabyte-size globals). In RTK

and CCK, because these variables are linked into the kernel boot

image and are thus loaded into physical memory at boot time, the

kernel boot image can end up being large enough that it overlaps

an MMIO region. PIK does not have this issue. Where possible, we

have modified the benchmarks to use dynamic memory allocation

to create these variables when the benchmark is started (instead of

at boot time). This avoids the boot overlap problem, but it is not

always a fair change because statically allocated multidimensional

arrays can potentially be accessed faster. For benchmarks where

(a) ARRAY
(b) SCHEDULE

(c) SYNCH

(d) TASK

Figure 8: PIK performance compared to Linux: EPCC microbench-

marks on 64 cores of PHI.

this might be the case, we do not make this change, and instead use

B class. When changes are made, they are used in all four cases.

Figure 9 compares the performance of RTK compared to Linux on

PHI and shows the execution time of RTK benchmarks normalized

to Linux. At the smallest scale (1 CPU), RTK performs from 4.5%

(MG) to 90.5% (BT) better than the Linux user-level code. At the

largest scale (64 CPUs), RTK performance varies from slightly worse

(-1.2% in FT) to 36% (SP) faster than the Linux user-level code. The

average performance gain of RTK across scales and benchmarks is

on the order of 22% (geometric mean).

These results may seem surprising given that RTK exhibited

slightly higher overheads for the OpenMP primitives in §6.1. Note

that unlike the microbenchmarks, the NAS benchmarks do signif-

icant computation. This computation benefits from the friendlier

kernel environment described earlier. Of note, the Nautilus envi-

ronment is providing (a) no page faults, (b) extremely rare TLB

misses, (c) NUMA-cognizant memory allocations, (d) extremely

rare interrupts and otherwise greatly diminished OS noise, and

(e) precisely zero competitive threads/processes. When a thread

is executing outside of an OpenMP primitive, it does so for long

stretches of time, with no competition and with its partner threads

running simultaneously on the other CPUs. Gains of 20–40% over

user-level execution on Linux have been previously demonstrated

for an RTK-like implementation of the Legion run-time system [29],

which is in line with what we measure here.

Figure 10 compares the performance of PIK normalized to Linux

on PHI. We see that PIK performs generally similarly to RTK, with a

few exceptions. The average performance gain of PIK across scales

8

Figure 9: RTK performance relative to Linux as a function of CPUs used: NAS benchmarks on PHI; higher is better. Baseline (Linux OpenMP)

is horizontal red bar at 1.0. 𝑡 is the single threaded Linux absolute performance.

Figure 10: PIK performance relative to Linux as a function of CPUs used: NAS benchmarks on PHI; higher is better. Baseline (Linux OpenMP)

is horizontal red bar at 1.0. 𝑡 is the single threaded Linux absolute performance.

and benchmarks is on the order of 10% (geometric mean). PIK is also

a viable and performant path to including OpenMP in the kernel.

Understanding CCK performance is more complex since two

elements are at work, the AutoMP compilation process (versus the

OpenMP process) and whether Linux or Nautilus is being targeted.

Figure 11 shows the absolute performance for all three combina-

tions (the baseline of Linux+OpenMP, plus Linux+AutoMP, and

Nautilus+AutoMP.) Figure 12 then shows the relative performance

of both AutoMP versions compared to Linux+OpenMP.

The comparison between Linux+OpenMP and Linux+AutoMP

highlights the difference in parallelism exposed by CCK compared

to the other approaches. Recall from §5 that AutoMP translates the

parallelism expressed in OpenMP into declarations of independence

between code regions. This independence is then used to generate

independent tasks, which allows the runtime to be quite small,

simple, easier to maintain, and more stable over time than the

OpenMP runtime. However, the cost of AutoMP is the potential

performance lost due its normalization of the original OpenMP

parallelism, whatever its form, into independent tasks.

FT and EP show that the parallelism generated by AutoMP

reaches the same performance obtained by OpenMP—AutoMP’s

parallelism normalization did not lose any performance. Unfortu-

nately, LU, BT, SP, and IS show a performance loss. This is due

to AutoMP being currently unable to exploit OpenMP directives

related to object privatization. Consequently, some loops in these

benchmarks are left sequential because of the lack of thread-private

objects. IS, which we elide entirely, is an extreme case in which no

parallelism is extracted due to this limitation.

MG and CG show the benefits of having a compiler’s middle-end

being able understand the program’s parallelism and therefore be-

ing able to leverage parallelism-aware code analyses. Here, AutoMP

is able to produce more performance than OpenMP because the Au-

toMP chunks loop iterations differently. More specifically, it chunks

loop iterations depending on the estimated latency of an iteration

of the loop being parallelized (computed using a parallelism-aware

data-flow analysis). In contrast, OpenMP’s compiler just blindly

follows the OpenMP directives. This leads to the OpenMP com-

piler choosing a coarse-grained chunking. This is a poor choice.

AutoMP’s choice of finer-granularity chunking liberates more par-

allelism, resulting in the performance gains.

When targeting Nautilus (CCK), the compiler is identical. The

version of the lightweight VIRGIL runtime used here is simply a

9

Figure 11: CCK absolute performance on Linux and Nautilus compared to baseline of stock OpenMP on Linux as a function of CPUs: NAS

application benchmarks; lower is better.

Figure 12: CCK performance relative to Linux as a function of CPUs used: NAS benchmarks on PHI; higher is better. Baseline (Linux OpenMP)

is horizontal red bar at 1.0. 𝑡 is the single threaded Linux absolute performance.

thin veneer over the kernel’s task framework. As the figures show,

performance of Nautilus+AutoMP (CCK) is broadly similar to that

of Linux+AutoMP, with FT, LU, and BT being favorable, EP, SP, and

MG being unfavorable, and CG being a wash. CCK shows itself to

be a viable path to including OpenMP in the kernel.

6.3 Performance on 8XEON

We repeated all performance tests on the 8XEON, the modern 8

socket server described in §2.2. For 1-24 cores, the same codebase is

used as before. For 24+ cores, we have extended Nautilus to use first-

touch allocation at 2MB granularity instead of immediate allocation,

similar to Linux. The NAS benchmarks typically use large global

arrays. Immediate allocation results in such arrays being assigned

to a single NUMA zone, lowering performance when different slices

are assigned to CPUs in different zones.

Impact on OpenMP primitive performance: Figure 13 shows the

performance of the EPCC microbenchmarks on RTK and PIK, at the

largest scale (192 cores, 8 sockets). Except for scheduling, where

performance is comparable, RTK and PIK outperform Linux.

Impact on application performance: Figure 14 shows the perfor-

mance of RTK and PIK relative to Linux for all of the NAS bench-

marks. Figure 15 documents CCK and shows the performance of

Linux+AutoMP and Nautilus+AutoMP relative to Linux+OpenMP.

1–24 cores is a single socket, 48 cores is 2 sockets, 96 cores is 4

sockets, and 192 cores is 8 sockets. Similar to PHI, on 8XEON, RTK

and PIK show ∼20% gain (geomeans) compared to Linux.

7 Discussion

Bringing user code into the kernel is not a trivial feat, but the

performance benefits can be significant. We now discuss other

aspects of bringing OpenMP into the kernel.

Generalizability:While our prototypes are implemented in the

context of Nautilus, we expect that in many cases analogous im-

plementations are possible in other kernels, certainly in unikernels

and similar models. We think our experience with RTK and CCK

extrapolates to Linux as well. Here, we would port to or target the

Linux kernel module environment, similar to how early real-time

applications have worked in the past (§8). PIK may also be suitable,

especially as a PIK executable is already analogous to a kernel mod-

ule, but there are two issues. First, the footprint of a PIK executable

is very large compared to a typical kernel module because it pulls

in all necessary user-space libraries statically. Second, Linux might

not easily permit a fast kernel-to-kernel system call model.

10

(a) ARRAY
(b) SCHEDULE

(c) SYNCH

(d) TASK

Figure 13: RTK and PIK performance compared to Linux: EPCCmi-

crobenchmarks on 192 cores of 8XEON.

Security: Running untrusted user code in a privileged environ-

ment has obvious drawbacks from a security perspective. The main

issue arises from the removal of hardware isolation boundaries,

such as those enforced by paging. While a detailed threat model is

outside the scope of this paper, we do point out two techniques that

can minimize damage done by untrusted code. The first involves

space partitioning the machine between two OSes, dubbed the

multi-kernel approach [22]. In this model, the specialized system

(Nautilus in our case) runs on a subset of hardware resources, either

using space-partitioned virtual machines [33], or space-partitioned

hardware, as is done with co-Kernels [64]. IHK/McKernel [24] is

an example of such a multi-kernel system that currently runs on

the world’s top supercomputer. Isolation can also be enforced by

the language and the compiler. There is a rich history of shifting

the isolation burden from the OS to the programming language,

for example using domain-specific languages for device drivers in

Exokernel [19] and enforcing protection with type-safe languages

in Singularity [37] and Mirage [53]. In HPC, such managed lan-

guages can come with unacceptable performance overheads, and

Unikernel approaches that assume a virtualization layer may also

be untenable. In this case, the compiler can perform heavy lifting

(as in CCK) to enforce isolation [75].

Deployment: The feasibility of deployment of OpenMP in the

kernel, in any form, depends on site-specific factors. As previously

described, multi-kernels have been deployed in HPC environments

(and unikernels have traction in data centers), suggesting a path.

Even using a single kernel, for a space-shared environment, a critical

issue is boot time. Boot times of a specialized kernel like Nautilus

in a multi-kernel environment are on the order of milliseconds.

There is no fundamental reason why the same boot times could not

be achieved in a single kernel environment, facilitated by better

firmware such as Coreboot [56] and specialized subsystems [69].

Multi-node (MPI): Although multi-node execution is not our fo-

cus, we note that a “pure” in-kernel MPI implementation would

proceed along the lines of RTK or PIK. MPI implementations al-

ready have layered designs in which NIC-specific code lies below a

HAL. An in-kernel implementation or port would implement the

HAL directly on top of kernel drivers. Nautilus already includes

drivers for common Ethernet and Mellanox Infiniband NICs. Al-

ternatively, in a multi-kernel model, the “control plane” aspects of

MPI and the drivers can be left in the Linux kernel, and only the

performance-critical “data plane” elements are in the specialized

kernel. Most of the multi-kernels mentioned earlier already provide

communication and storage in this split manner.

Programmer effort: The RTK, PIK, and CCK approaches present

different levels of a challenge to the application developer. A key

benefit of PIK is that the developer does not need to be aware of

the fact that their code is in the kernel. In contrast, while RTK

and CCK hide the different OpenMP implementation details from

the developer, the developer does need to port other aspects of the

application to the kernel environment. However, RTK and CCK

present many more opportunities for optimization than PIK. A

compiler could conceivably split the difference by helping with

porting, although that is not our focus with CCK.

Implications:Asmachines scale and becomemore heterogeneous,

an increasing diversity of approaches to performance and efficiency

is necessary. Scale also has a track record of making small perfor-

mance differences compound, as was observed with OS noise [21].

Fortunately, scale itself allows for different approaches to co-exist—

the hardware partitioning and multi-kernel techniques described

above make increasing sense with increasing scale, for example.

This is the case even within a single node.

There is a rapid expansion of the need for parallelism beyond

traditional HPC circles, as well as the drive to exascale within

those circles. The architecture renaissance is well underway. There

is a need and an opportunity to rethink the hardware/software

stack of parallel computing, in particular the layering that has now

existed for decades, and was never motivated by parallel computing

in the first place. Machines have been and can be different. Our

exploration of OpenMP in the kernel is in that vein.

8 Related work

Considerable effort has gone into improving the abstractions and

performance of parallel primitives user-level. Examples include

QThreads [79], MassiveThreads [58], Tiny Threads[17], Lithe [65],

Intel’s Thread Building Blocks [70], the Converse run-time under-

lying Charm++ [42]), MPC [67], the Realm event run-time system

underlying Legion [78], Light-Weight Contexts [51], and ARGOb-

ots [73]. We focus on kernel-level mechanisms.

While the high-performance computing community has been

reconsidering operating system design for tightly-coupled parallel

computing for decades now [5, 26, 43, 47], the strict separation be-

tween layers of the stack has remained largely stagnant, especially

at the user/kernel boundary.

Multi-kernels [4, 23, 24, 33, 64, 66, 81] attempt to strike a middle

ground between general-purpose system software and specialized

11

Figure 14: RTK and PIK performance relative to Linux as a function of CPUs used: NAS benchmarks on 8XEON; higher is better. Baseline

(Linux OpenMP) is horizontal red bar at 1.0. 𝑡 is the single threaded Linux absolute performance.

Figure 15: CCK performance relative to Linux as a function of CPUs used: NAS benchmarks on 8XEON; higher is better. Baseline (Linux

OpenMP) is horizontal red bar at 1.0. 𝑡 is the single threaded Linux absolute performance.

OSes by space-sharing OSes across a system, but leave opportunities

for co-design across layers on the table.

In the cloud landscape, Unikernels, aided by ubiquitous virtu-

alization, allow for high performance for a specific target set of

workloads [8, 45, 52, 60, 72, 80].

Some Unikernels are constructed from application code using a

high-level language [53], a natural progression from classic library

OSes [19]. This allows unnecessary kernel functionality to be elided

from the kernel image (as a library operating system, or libOS). As

more sophisticated systems languages like Rust come to promi-

nence, decade-old ideas on using language features to provide or

enhance kernel mechanisms like protection or isolation [6, 37, 68]

are resurfacing in the form of OSes and Unikernels like Theseus [7]

and RedLeaf [59]. However, the compiler uninvolved here; we argue

that there is significant opportunity for bringing compiler technol-

ogy and co-design across layers to bear for efficient parallelism.

Running user-level code within the Linux kernel has been most

commonly seen in early extensions to Linux such as RTLinux [82],

KURT [35], and RTAI [18] in which hard real-time application com-

ponents were ported as kernel modules, analogously to RTK. Kernel

Mode Linux is notable for providing a way of bringing general user

code into the kernel (as we do with Nautilus in PIK) and then

working to provide protection via type safety [54]. Software-based

protection for managed languages was implemented in Singular-

ity [36], and recent results show the promise of extending this idea

to unmanaged languages [75].

HermitCore is a notable related project where OpenMP is run in

an HPC-oriented, libOS kernel-context [48, 49]. In contrast, we pre-

sented three paths to running OpenMP code in the kernel, including

via compiler support.

Extending LLVM for HPC has spawned an entire workshop/BoF

series at the SC conference. CCK is in this vein. Efforts to integrate

parallelism into compilation include Tapir [71], OpenMPIR [74],

Vector Offload [77], PGAS via OpenSHMEM [44], INSPIRE [41], and

HPVM [46]. None of these target kernel-level execution, however.

9 Conclusions

We demonstrated three different, effective techniques in the design

space for bringing OpenMP into the kernel. The techniques allow

OpenMP programs to benefit from direct interaction with the fully

privileged machine, unimpeded by a traditional general purpose

kernel. Our techniques have demonstrated performance gains rel-

ative to Linux for the NAS benchmarks that average about 22%

and can be much larger. The OpenMP gains are similar to those

previously observed for other run-times.

12

References

[1] Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone Campanoni, and
David I. August. 2020. SCAF: a speculation-aware collaborative dependence anal-
ysis framework. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 638–654.
https://doi.org/10.1145/3385412.3386028

[2] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. 2009. The Design of OpenMP Tasks. IEEE
Transactions on Parallel and Distributed Systems 20, 3 (2009), 404–418.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinksi, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga. 1994. The NAS Parallel Benchmarks (NAS 1). Technical Report
RNR-94-007. NASA.

[4] Andrew Baumann, Paul Barham, Pierre Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In

Proceedings of the 22𝑛𝑑 ACM Symposium on Operating Systems Principles (SOSP
’09). 29–44.

[5] Pete Beckman. [n.d.]. Argo: An exascale operating system. http://www.mcs.anl.
gov/project/argo-exascale-operating-system.

[6] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. 1995. Extensibility,

Safety and Performance in the SPIN Operating System. In Proceedings of the 15𝑡ℎ

ACM Symposium on Operating Systems Principles (SOSP ’95). 267–283.
[7] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020. Theseus: an

Experiment in Operating System Structure and State Management. In Proceedings

of the 14𝑡ℎ USENIX Symposium on Operating Systems Design and Implementation‘
(OSDI ’20). USENIX Association, 1–19. https://www.usenix.org/conference/
osdi20/presentation/boos

[8] Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E. Engelstad, and
Kyrre Begnum. 2015. IncludeOS: A Minimal, Resource Efficient Unikernel for

Cloud Services. In Proceedings of the 7𝑡ℎ IEEE International Conference on Cloud
Computing Technology and Science (CloudCom ’15). 250–257. https://doi.org/10.
1109/CloudCom.2015.89

[9] J. M. Bull. 1999. Measuring Synchronisation and Scheduling Overheads in
OpenMP. In Proceedings of the First European Workshop on OpenMP.

[10] J. M. Bull and D. O’Neill. 2001. A Microbenchmark Suite for OpenMP 2.0.
SIGARCH Computer Architecture News 29, 5 (2001), 41–48.

[11] J. M. Bull, F. Reid, and N. McDonnell. 2012. A Microbenchmark Suite for OpenMP
Tasks. In Proceedings of the 8th International Conference on OpenMP in a Hetero-
geneous World (IWOMP 2012).

[12] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon
Wei, and David Brooks. 2014. HELIX-RC: An Architecture-compiler Co-design
for Automatic Parallelization of Irregular Programs (ISCA ’14). IEEE Press, Pis-
cataway, NJ, USA, 217–228. http://dl.acm.org/citation.cfm?id=2665671.2665705

[13] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-
Yeon Wei, and David Brooks. 2012. HELIX: Automatic Parallelization of Irregular
Programs for Chip Multiprocessing (CGO ’12). ACM, New York, NY, USA, 84–93.
https://doi.org/10.1145/2259016.2259028

[14] Simone Campanoni, Timothy Jones, Glenn Holloway, Gu. Y. Wei, and David
Brooks. 2012. The HELIX project: Overview and directions. In DAC Design
Automation Conference 2012. 277–282. https://doi.org/10.1145/2228360.2228412

[15] S. Campanoni, T. M. Jones, G. Holloway, G. Y. Wei, and D. Brooks. 2012. HELIX:
Making the Extraction of Thread-Level Parallelism Mainstream. IEEE Micro 32, 4
(July 2012), 8–18. https://doi.org/10.1109/MM.2012.50

[16] Barbara Chapman, Gabriel Jost, Ruud van der Pass, and David Kuck. 2007. Using
OpenMP: Portable Shared Memroy Parallel Programming. MIT Prerss.

[17] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. 2005. TiNy threads: a thread virtual
machine for the Cyclops64 cellular architecture. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[18] L. Dozio and P. Mantegazza. 2003. Real-time Distributed Control Systems Using
RTAI. In Proceedings of the Sixth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing.

[19] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr. 1995. Exokernel:
An Operating System Architecture for Application-level Resource Management.

In Proceedings of the 15𝑡ℎ ACM Symposium on Operating Systems Principles (SOSP
’95). 251–266.

[20] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[21] Kurt Ferreira, Patrick Bridges, and Ron Brightwell. 2008. Characterizing appli-
cation sensitivity to OS interference using kernel-level noise injection. In 2008
ACM/IEEE conference on Supercomputing (SC). 1–12.

[22] Balazs Gerofi, Yutaka Ishikawa, Rolf Riesen, Robert W. Wisniewski, Yoonho
Park, and Bryan Rosenburg. 2016. A Multi-Kernel Survey for High-Performance

Computing. In Proceedings of the 6𝑡ℎ International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS ’16).

[23] Balazs Gerofi, Rolf Riesen, Masamichi Takagi, Taisuke Boku, Kengo Nakajima,
Yutaka Ishikawa, and Robert W. Wisniewski. 2018. Performance and Scalability

of Lightweight Multi-kernel Based Operating Systems. In Proceedings of the 32𝑛𝑑

IEEE International Parallel and Distributed Processing Symposium (IPDPS ’18).
116–125.

[24] Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura, Tomoki Shira-
sawa, and Yutaka Ishikawa. 2016. On the Scalability, Performance Isolation and
Device Driver Transparency of the IHK/McKernel Hybrid Lightweight Kernel.

In Proceedings of the 30𝑡ℎ IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’16). 1041–1050.

[25] Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda. 2020.
Compiler-based Timing for Extremely Fine-grain Preemptive Parallelism. In
Proceedings of the ACM/IEEE Conference on High Performance Networking and
Computing (SC 2020).

[26] Mark Giampapa, Thomas Gooding, Todd Inglett, and Robert W. Wisniewski. 2010.
Experiences with a Lightweight Supercomputer Kernel: Lessons Learned from
Blue Gene’s CNK. In Proceedings of Supercomputing (SC ’10).

[27] Kyle Hale. 2016. Hybrid Runtime Systems. Ph.D. Dissertation. Northwestern
University. Available as Technical Report NWU-EECS-16-12, Department of
Electrical Engineering and Computer Science, Northwestern University.

[28] Kyle Hale and Peter Dinda. 2015. A Case for Transforming Parallel Runtimes
into Operating System Kernels. In Proceedings of the 24th ACM Symposium on
High-performance Parallel and Distributed Computing (HPDC 2015).

[29] Kyle Hale and Peter Dinda. 2016. Enabling Hybrid Parallel Runtimes Through Ker-
nel and Virtualization Support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2016).

[30] Kyle Hale and Peter Dinda. 2018. An Evaluation of Asynchronous Software Events
on Modern Hardware. In Proceedings of the 26th IEEE International Symposium
on the Modeling, Analysis, and Simulaton of Computer and Telecommunication
Systems (MASCOTS 2018).

[31] Kyle C. Hale and Peter Dinda. 2018. An Evaluation of Asynchronous Events

on Modern Hardware. In Proceedings of the 26𝑡ℎ IEEE International Symposium
on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS ’18).

[32] Kyle C. Hale and Peter A. Dinda. 2016. Enabling Hybrid Parallel Runtimes
Through Kernel and Virtualization Support. In Virtual Execution Environments
(VEE).

[33] Kyle C. Hale and Peter A. Dinda. 2016. Enabling Hybrid Parallel Runtimes

Through Kernel and Virtualization Support. In Proceedings of the 12𝑡ℎ ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’16). 161–175.

[34] Kyle C. Hale, Conor Hetland, and Peter A. Dinda. 2016. Automatic Hybridization

of Runtime Systems. In Proceedings of the 25𝑡ℎ ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’16). 137–140.

[35] Sean House and Douglas Niehaus. 2000. KURT-Linux Support for Synchronous
Fine-Grain Distributed Computations. In Proceedings of the Sixth IEEE Real Time
Technology and Applications Symposium (RTAS 2000).

[36] Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson,
James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber.
2007. Sealing OS Processes to Improve Dependability and Safety. 341–354.

[37] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the Software
Stack. SIGOPS Operating Systems Review 41, 2 (April 2007), 37–49.

[38] H. Jin, M. Frumkin, and J. Yan. 1999. The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance (NAS 3). Technical Report NAS-99-011. NASA.

[39] Ross Johnson. 2008. POSIX Threads for Embedded Systems (PTE). http://pthreads-
emb.sourceforge.net/.

[40] Ross Johnson. 2012. Pthreads Win32: Open Source POSIX Threads for Win32.
https://sourceware.org/pthreads-win32/.

[41] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer. 2013. INSPIRE:
The insieme parallel intermediate representation. In Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques.
7–17.

[42] Laxmikant V Kale, Josh Yelon, and Timothy Knauff. 1996. Threads for interopera-
ble parallel programming. In International Workshop on Languages and Compilers
for Parallel Computing (LCPC ’97). 534–552.

[43] Suzanne M. Kelly and Ron Brightwell. 2005. Software Architecture of the Light
Weight Kernel, Catamount. In Proceedings of the 2005 Cray User Group Meeting
(CUG’05).

[44] Dounia Khaldi, Pierre Jouvelot, François Irigoin, Corinne Ancourt, and Barbara
Chapman. 2015. LLVM Parallel Intermediate Representation: Design and Evalua-
tion Using OpenSHMEM Communications. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-HPC).

[45] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti,
and Vlad Zolotarov. 2014. OSv—Optimizing the Operating System for Virtual
Machines. In Proceedings of the 2014 USENIX Annual Technical Conference (USENIX

13

ATC ’14).
[46] Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sinclair, Rakesh Komuravelli,

Vikram Adve, and Sarita Adve. 2018. HPVM: Heterogeneous Parallel Virtual
Machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2018).

[47] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei
Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike Levenhagen, and Ron
Brightwell. 2010. Palacios and Kitten: New High Performance Operating Systems
for Scalable Virtualized and Native Supercomputing. In Proceedings of the 24th
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010).

[48] Stefan Lankes, Jens Breitbart, and Simon Pickartz. 2019. Exploring Rust for
Unikernel Development (PLOS ’19). Association for Computing Machinery, New
York, NY, USA, 8–15. https://doi.org/10.1145/3365137.3365395

[49] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: A Unikernel

for Extreme Scale Computing. In Proceedings of the 6𝑡ℎ International Workshop
on Runtime and Operating Systems for Supercomputers (ROSS’16).

[50] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[51] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstrac-
tion for Safety and Performance. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (OSDI 2016).

[52] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, Jon Crowcroft, and Ian Leslie. 2015. Jitsu: Just-In-Time Summoning of

Unikernels. In Proceedings of the 12𝑡ℎ USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’15). 559–573.

[53] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.

Unikernels: Library Operating Systems for the Cloud. In Proceedings of the 18𝑡ℎ

International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’13). 461–472.

[54] Toshiyuki Maeda and Akinori Yonezawa. 2003. Kernel Mode Linux: Toward an
Operating System Protected by a Type Theory. In Advances in Computing Science
- ASIAN 2003 Programming Languages and Distributed Computation, 8th Asian
Computing Science Conference, Mumbai, India, December 10-14, 2003, Proceedings
(Lecture Notes in Computer Science), Vijay A. Saraswat (Ed.), Vol. 2896. Springer,
3–17.

[55] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip Ghosh,
Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi, David I. August,
and Simone Campanoni. 2021. NOELLE Offers Empowering LLVM Extensions.
arXiv:cs.PL/2102.05081

[56] R. Minnich, J. Hendricks, and D. Webster. 2000. The Linux BIOS. In Annual Linux
Showcase and Conference.

[57] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni. 2016.
Performance Implications of Transient Loop-carried Data Dependences in Au-
tomatically Parallelized Loops (CC 2016). ACM, New York, NY, USA, 23–33.
https://doi.org/10.1145/2892208.2892214

[58] Jun Nakashima and Kenjiro Taura. 2014. MassiveThreads: A Thread Library for
High Productivity Languages. Springer Berlin Heidelberg, Berlin, Heidelberg,
222–238.

[59] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li,
Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isolation and Communication

in a Safe Operating System. In Proceedings of the 14𝑡ℎ USENIX Symposium on
Operating SystemsDesign and Implementation (OSDI ’20). USENIXAssociation, 21–
39. https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram

[60] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-

dran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15𝑡ℎ ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE ’19). 59–73.

[61] Omni OpenMP Compiler Group, University of Versailles Saint Quentin en Yvlines.
2014. NAS Parallel Benchmarks 3.0—Unofficial OpenMP C Version. https://github.
com/benchmark-subsetting/NPB3.0-omp-C.

[62] OpenMP Architecture Review Board. 2008. OpenMP Application Program Interface
3.0. Technical Report. OpenMP Architecture Review Board.

[63] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I August. 2005. Au-
tomatic thread extraction with decoupled software pipelining. In 38th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’05). IEEE, 12–
pp.

[64] JiannanOuyang, Brian Kocoloski, John R. Lange, and Kevin Pedretti. 2015. Achiev-

ing Performance Isolationwith Lightweight Co-Kernels. In Proceedings of the 24𝑡ℎ

International Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’15). 149–160.

[65] Heidi Pan, Benjamin Hindman, and Krste Asanović. 2010. Composing Parallel
Software Efficiently with Lithe. In Proceedings of the 31st ACM Conference on
Programming Language Design and Implementation (PLDI).

[66] Yoonho Park, Eric Van Hensbergen, Marius Hillenbrand, Todd Inglett, Bryan
Rosenburg, Kyung Dong Ryu, and Robert W. Wisniewski. 2012. FusedOS: Fusing
LWK Performance with FWK Functionality in a Heterogeneous Environment. In

Proceedings of the 24𝑡ℎ IEEE International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD ’12). 211–218. https://doi.org/10.
1109/SBAC-PAD.2012.14

[67] Marc Pérache, Hervé Jourdren, and Raymond Namyst. 2008. MPC: A unified
parallel runtime for clusters of NUMA machines. In Proceedings of the 2008
European Conference on Parallel Processing (EuroPar). 78–88.

[68] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C.
Hunt. 2011. Rethinking the Library OS from the Top Down. In Proceedings

of the 16𝑡ℎ International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’11). 291–304.

[69] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drepper, Richard
Jones, Orran Krieger, Renato Mancuso, and Larry Woodman. 2019. Unikernels:

The Next Stage of Linux’s Dominance. In Proceedings of the 17𝑡ℎ Workshop on
Hot Topics in Operating Systems (HotOS XVII). 7–13.

[70] James Reinders. 2007. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. O’Reilly.

[71] Tao Schardl, WilliamMoses, and Charles Lieserson. 2017. Tapir: Embedding Fork-
Join Parallelism into LLVM’s Intermediate Representation. In Proceedings of the
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP 2017).

[72] Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo.
2016. EbbRT: A Framework for Building Per-Application Library Operating

Systems. In Proceedings of the 12𝑡ℎ USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16). 671–688.

[73] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castelló, D.
Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé, S. Krishnamoorthy, J. Lifflander,
H. Lu, E. Meneses, M. Snir, Y. Sun, K. Taura, and P. Beckman. 2018. Argobots: A
Lightweight Low-Level Threading and Tasking Framework. IEEE Transactions
on Parallel and Distributed Systems 29, 3 (2018), 512–526.

[74] George Stelle, William S. Moses, Stephen L. Olivier, and Patrick McCormick. 2017.
OpenMPIR: Implementing OpenMP Tasks with Tapir. In Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC.

[75] Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda. 2020.
CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based
Address Translation. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 329–345.

[76] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
265–266.

[77] Xinmin Tian, Hideki Saito, Ernesto Su, Jin Lin, Satish Guggilla, Diego Caballero,
Matt Masten, Andrew Savonichev, Michael Rice, Elena Demikhovsky, Ayal Zaks,
Gil Rapaport, Abhinav Gaba, Vasileios Porpodas, and Eric Garcia. 2017. LLVM
Compiler Implementation for Explicit Parallelization and SIMD Vectorization. In
Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure in HPC.

[78] Sean Treichler, Michael Bauer, and Alex Aiken. 2014. Realm: An Event-Based
Low-Level Runtime for Distributed Memory Architectures. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (PACT
2014). 263–276.

[79] K. B. Wheeler, R. C. Murphy, and D. Thain. 2008. Qthreads: An API for program-
ming with millions of lightweight threads. In Proceedings of the 2nd Workshop on
Multithreaded Architectures and Applications (MTAAP 2008, colocated with IPDPS
2008).

[80] Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash. 2018. Uniker-

nels as Processes. In Proceedings of the 9𝑡ℎ ACM Symposium on Cloud Computing
(SoCC ’18). 199–211.

[81] Robert W. Wisniewski, Todd Inglett, Pardo Keppel, Ravi Murty, and Rolf Riesen.
2014. mOS: An Architecture for Extreme-scale Operating Systems. In Proceed-

ings of the 4𝑡ℎ International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS ’14).

[82] V. Yodaiken and M. Barabanov. [n.d.]. A Real-Time Linux. Presented at USENIX
97; online at http://rtlinux.cs.nmt.edu/rtlinx/u.pdf.

14

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

The experiments of Section 6 were run on a Colfax Ninja Xeon

Phi server, which includes a 1.3 GHz Intel Xeon Phi 7210 (64

cores, 256 hardware threads) mated to 16 GB of MCDRAM

and 96 GB of DRAM. Both Nautilus and Linux are booted di-

rectly on this platform. The Linux kernel used for comparison

is Linux 5.8.0. The Nautilus kernel was used as described in the

author artifacts. Details of the machine via SC’s script are at

http://pdinda.org/Stuff/kernel_openmp_sc21.txt (also shown be-

low).

The experiments of Appendix A were run on a SuperMi-

cro 7089P-TR4T server with eight 2.1 GHz Intel Xeon Plat-

inum 8160s (192 cores, 384 hardware threads total) mated

to 768 GB of DRAM spread evenly across eight NUMA

zones. Both Nautilus and Linux are booted directly on this

platform. The Linux kernel used for comparison was 5.4.0.

http://pdinda.org/Stuff/kernel_openmp_sc21_8xeon.txt.

Compilation involved Clang+LLVM 9.0. The CCK variant in the

paper involved code analyses and transformations using NOELLE,

which is in the author artifacts. The RTK and PIK variants are

included as part of the Nautilus kernel author artifacts as described

below.

Benchmarks included the Edinburgh OpenMPMicrobenchmarks

3.1, and the NAS 3.0 Parallel Benchmarks, as ported to C+OpenMP

by the Omni OpenMP team. Citations of papers and URLs for the

code are given in the paper.

Our paper reports results on the following variants of anOpenMP

stack:

- Linux/OpenMP [the “out of box” OpenMP stack for

Clang/LLVM]

- Nautilus/RTK [A port of the LLVM OpenMP Runtime to the

Nautilus Kernel]

- Nautilus/PIK [A model of executing a Linux/OpenMP exe-

cutable in Nautilus]

- Linux/AutoMP [A custom compilation process (“AutoMP”) for

OpenMP that results in a Linux executable that is independent of

any OpenMP Runtime]

- Nautilus/CCK [AutoMP targeting the Nautilus kernel directly]

As a consequence, configuration and testing can be complex. A

detailed description of what is needed to checkout, configure, build,

and run the various experimental configurations has been added,

and is available at http://pdinda.org/Stuff/paths-openmp-kernel-

supplemental-ad.pdf. This document shows how to use the various

repositories described here. Each repository also has a detailed

readme.

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.5164666

Artifact name: Detailed Description For Replication,

Software for Nautilus/RTK, Nautilus/PIK,

Nautilus/CCK, Linux/AutoMP, and Comparable

Linux/OpenMP Results

↩→

↩→

↩→

Persistent ID: http://pdinda.org/Stuff/paths-openmp- �

kernel-supplemental-ad.pdf↩→

Artifact name: Detailed Description For Replication

Persistent ID: https://github.com/a-r-n/pik

Artifact name: Software for Nautilus/PIK and

Comparable Linux/OpenMP Results↩→

Persistent ID: https://github.com/scampanoni/cck

Artifact name: Software for Linux/AutoMP,

Nautilus/CCK, and Comparable Linux/OpenMP Results↩→

Persistent ID: https://github.com/MJChku/rtk

Artifact name: Software for Nautilus/RTK and

Comparable Linux/OpenMP Results↩→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Colfax Ninja Xeon Phi server, which

includes a 1.3 GHz Intel Xeon Phi 7210 (64 cores, 256 hardware

threads) mated to 16 GB of MCDRAM and 96 GB of DRAM; a Super-

Micro 7089P-TR4T server with eight 2.1 GHz Intel Xeon Platinum

8160s (192 cores, 384 hardware threads total) mated to 768 GB of

DRAM spread evenly across eight NUMA zones.

Operating systems and versions: Ubuntu 20 with Linux Kernel

5.8; Ubuntu 20 with Linux Kernel 5.6

Compilers and versions: Clang/LLVM 9.0 with custom extensions

Applications and versions: NAS 3.0, EPCC 3.1

Libraries and versions: LibOMP / LLVM 9.0 variant

URL to output from scripts that gathers execution environment

information.

http://pdinda.org/Stuff/kernel_openmp_sc21.txt

