DDB: Deadlock Debugger

)
-(I Cristian Zamfir, George Candea

ECOLE POLYTECHNIQUE Dependable Systems Lab, EPFL
FEDERALE DE LAUSANNE

{firstname.lastnamej@epfl.ch

Abstract

Deadlocks are challenging to debug because they may occur rarely, based on a particular thread interleaving and are often hard to reproduce in a
debugger. We introduce DDB, a debugging environment targeted at replaying deadlocks in large software systems that use the pthreads library. It
does this without the need to modify the production software and incurs a minimum overhead at runtime. DDB’s core ideas are to capture a light-
weight trace at runtime and to shift all the complexity to the offline debugging process. Moreover, DDB avoids capturing program inputs and at-
tempts to mutate the execution of the program in order to reproduce the deadlock.

"1 ) ,
wy Introduction Deadlock Replay

BreeilErke - The replay part occurs at the developer’s site. |
- The developer has access to the sourcecode and the replay can take longer if
necessary.

- Match the control flow graph (CFG) with the trace to identify a set of execu-
tion paths that replay the deadlock. We use runtime program steering to con-
Thread 1 Thread 2 Deadlock Scenario trol program execution using dynamic binary rewriting (inspired by Enhancing Server
Lossis) The deadlock only occurs in this particular thread interleaving. Availability and Security Through Failure-Oblivious Computing, OSDI’ 04).

- Complex and hard to reproduce bugs.
- Can occur very rarely in particular thread interleavings.
- Recovery from a deadlock usually implies a whole system restart.

Lock(Y) . . ;
Lock(X) - Alternative: backward propagate constraints on variables to manufacture the

Lock(Y) right set of inputs necessary to replay the trace.

Previous Work
- Static analysis yields too many false positives.

- Existing replay tools are based on recording and replaying the program in- =
puts. void work() } Offect race Replay Component Archi-

Application code at runtime

work;offset

— 7 tecture

Thereplay component first builds
the CFG of the application. Then,
Goals the matching module inspects the
- Target: server software (databases, web servers, application servers), GUIs. Offiline Analysis trace and obtains an execution

h 4

- Do not modify production software. Matching Module path made out of chains of ba-

« Small overhead at runtime sic blocks and the order in which

C . Apjpeeiiion [Elvel; they need to execute for an accu-
- Deterministic replay of observed deadlocks. ] y /
rate replay of the trace.

- Don’t need to reproduce the setup where the deadlock bug occurred. Dissasambler 5048970 call 8048878 <pihread,_mutex_lock@plt>

- Cross-Platform Debugging: Optionally could try to debug a deadlock in a "

- - The deadlock replay module en-
. . . Static and Dynamic pray
different OS if there is a port for both OSs. Analysis Module _ . forces the specified thread sched-
Chain of Basic Blocks

- Should not be able to infer sensitive information from the trace. I and Lock Ordering ule and steers the program exe-

Control Flog Graph cution on the desired path using
| ] L e
Deadlock Replay Module dynamic binary rewriting.

- High overhead for replaying long running programes. pthread_mutex_lock(&lock)

Challenges

. Tracing IS Intrusive. Program Steering

- Deadlocks may be triggered a long time after the program was started, there- Userspace scheduler
fore the trace should be small.

- Many code paths are dependent on program inputs.

- The replay should not only reproduce the deadlock but also provide meaning-
ful information to the debugger.

Implementation
- Tracing is done inside the libthr FreeBSD library.
& | Architecture - The trace is execution independent and might be replayed in a different OS.

- Initial results of replaying in Linux, traces obtained on FreeBSD.
There are two core ideas behind DDB.

- Capture a lightweight trace during runtime by only recording a small
amount of data and shift all the complexity to the debugging process which
occurs offline.

- Do not record program inputs. We don't need to do a deterministic replay
of the whole program, just to replay the observed deadlock bug.

- The replay environment is based on PIN
- Thread scheduling is based on futexes.

- Implemented a prototype of program steering based on instrumenting basic
blocks, branch instructions and thread start routines.

DDB is made up of two components. S ) Status and future work

- The capture component is active at runtime and records synchronization
operations inside the pthreads library.

- The replay component runs in a debugging environment and replays the = rand()%2:

events in the order they occurred in the trace. if(rz {

pthread_mutex_lock f&IOCkO;;

th tex_lock (&lock1);
Trace ca ptu re pthread_mutex_lock (&lock1) We can currently replay some deadlocks such

. . . o else | th d by this code usi
- Trace Lock and Unlock operations -> obtain a partial order by preserving in- }pthre{ad mutex lock §&|0Ck1;; ;’tseer;fn;”es caused Dy this code using progranm

terleaving constraints. pthread_mutex_lock (&lock0
- Tracing is done inside the pthreads library with a low overhead. Unmodified Yy
software only needs to be liked against our patched version of pthreads.

- Each thread keeps a queue of its own locking activity. The logs are merged
offline.

Open questions

. program steering may not always produce a possible execution.

Unmodified . . - backward propagate the constraints on variables and inputs to manufacture
applications Tracing Architecture a set of inputs that produce the desired execution.

Applications are not aware of the tracing - semantic compression of the trace: discard locking events and inputs that do

component. The log data structures are one . .
Pthreads ? g . not interfere with the deadlock.
Library Thread 1 Thread 2 Threadn | per thread to keep the overhead of tracing

Tow. Initial tests with a micro benchmark - static analysis and dynamic analysis on the source code can be used to elimi-
Log Log show less than 20% overhead and very like- nate many of the tracing points and further decrease the overhead at runtime.

\ l ly to be improved by future optimizations. - Infrequent fine-grained checkpointing for reducing the replay speed of long

running programs.

Merge thread




