
DDB: Deadlock Debugger
Cristian Zamfir, George Candea
Dependable Systems Lab, EPFL

{firstname.lastname}@epfl.ch

Abstract
Deadlocks are challenging to debug because they may occur rarely, based on a particular thread interleaving and are often hard to reproduce in a
debugger. We introduce DDB, a debugging environment targeted at replaying deadlocks in large software systems that use the pthreads library. It
does this without the need to modify the production software and incurs a minimum overhead at runtime. DDB’s core ideas are to capture a light-
weight trace at runtime and to shift all the complexity to the offline debugging process. Moreover, DDB avoids capturing program inputs and at-
tempts to mutate the execution of the program in order to reproduce the deadlock.

Status and future work3

Deadlock Scenario
The deadlock only occurs in this particular thread interleaving.

Deadlocks
• Complex and hard to reproduce bugs.
• Can occur very rarely in particular thread interleavings.
• Recovery from a deadlock usually implies a whole system restart.

Challenges
• Tracing is intrusive.
• Deadlocks may be triggered a long time after the program was started, there-
fore the trace should be small.
• Many code paths are dependent on program inputs.
• The replay should not only reproduce the deadlock but also provide meaning-
ful information to the debugger.

Introduction

Open questions
• program steering may not always produce a possible execution.
• backward propagate the constraints on variables and inputs to manufacture
a set of inputs that produce the desired execution.
• semantic compression of the trace: discard locking events and inputs that do
not interfere with the deadlock.
• static analysis and dynamic analysis on the source code can be used to elimi-
nate many of the tracing points and further decrease the overhead at runtime.
• Infrequent fine-grained checkpointing for reducing the replay speed of long
running programs.

Architecture2

1

There are two core ideas behind DDB.
	 • Capture a lightweight trace during runtime by only recording a small
amount of data and shift all the complexity to the debugging process which
occurs offline.
	 • Do not record program inputs. We don’t need to do a deterministic replay
of the whole program, just to replay the observed deadlock bug.

DDB is made up of two components.
	 • The capture component is active at runtime and records synchronization
operations inside the pthreads library.
	 • The replay component runs in a debugging environment and replays the
events in the order they occurred in the trace.

Trace capture
• Trace Lock and Unlock operations -> obtain a partial order by preserving in-
terleaving constraints.
• Tracing is done inside the pthreads library with a low overhead. Unmodified
software only needs to be liked against our patched version of pthreads.
• Each thread keeps a queue of its own locking activity. The logs are merged
offline.

Previous Work
• Static analysis yields too many false positives.
• Existing replay tools are based on recording and replaying the program in-
puts.
• High overhead for replaying long running programs.

Tracing Architecture
Applications are not aware of the tracing
component. The log data structures are one
per thread to keep the overhead of tracing
low. Initial tests with a micro benchmark
show less than 20% overhead and very like-
ly to be improved by future optimizations.

Deadlock Replay
• The replay part occurs at the developer’s site.
• The developer has access to the sourcecode and the replay can take longer if
necessary.
• Match the control flow graph (CFG) with the trace to identify a set of execu-
tion paths that replay the deadlock. We use runtime program steering to con-
trol program execution using dynamic binary rewriting (inspired by Enhancing Server
Availability and Security Through Failure-Oblivious Computing, OSDI’ 04).
• Alternative: backward propagate constraints on variables to manufacture the
right set of inputs necessary to replay the trace.

Replay Component Archi-
tecture
The replay component first builds
the CFG of the application. Then,
the matching module inspects the
trace and obtains an execution
path made out of chains of ba-
sic blocks and the order in which
they need to execute for an accu-
rate replay of the trace.

The deadlock replay module en-
forces the specified thread sched-
ule and steers the program exe-
cution on the desired path using
dynamic binary rewriting.

Goals
• Target: server software (databases, web servers, application servers), GUIs.
• Do not modify production software.
• Small overhead at runtime.
• Deterministic replay of observed deadlocks.
• Don’t need to reproduce the setup where the deadlock bug occurred.
• Cross-Platform Debugging: Optionally could try to debug a deadlock in a
different OS if there is a port for both OSs.
• Should not be able to infer sensitive information from the trace.

Implementation
• Tracing is done inside the libthr FreeBSD library.
• The trace is execution independent and might be replayed in a different OS.
• Initial results of replaying in Linux, traces obtained on FreeBSD.

• The replay environment is based on PIN
• Thread scheduling is based on futexes.
• Implemented a prototype of program steering based on instrumenting basic
blocks, branch instructions and thread start routines.

We can currently replay some deadlocks such
as the ones caused by this code using program
steering.

