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Résumé

L’immunité contre les interblocages est une propriété par laquelle les programmes, après

être affectés par un interblocage une première fois, développent une résistance contre les

interblocages futurs. Nous donnons la possibilité aux programmes d’être immunisés con-

tre les interblocages impliquant des exclusions mutuelles, des sémaphores, des verrous de

lecture-écriture, des initialisations de classes, et des synchronisations externes, le tout sans

aucune intervention de la part de l’utilisateur et sans modifier la sémantique du programme.

En d’autres termes, nous proposons une immunisation transparente et non-intrusive contre

les interblocages.

Notre système d’immunisation, appelé Dimmunix, est disponible pour les applications

Java, les applications C/C++ qui utilisent des threads POSIX, et le système d’exploitation

Android. Dimmunix pour Java offre une immunité au niveau de l’application. Dimmunix

pour les threads POSIX offre une immunité à toutes les applications C/C++ qui utilisent

la bibliothèque de threads POSIX. Enfin, Dimmunix pour Android offre une immunité à

toutes les applications fonctionnant sur le système Android. Nous avons aussi développé

Communix, une plateforme d’immunité distribuée grâce à laquelle les machines connectées

à Internet coopérent les unes avec les autres pour s’immuniser mutuellement contre les

interblocages.

Puisque les verrous d’exclusion mutuelle sont vraisemblablement les primitives de syn-

chronisation les plus utilisées, nous nous intéressons principalement aux interblocages im-

pliquant les exclusions mutuelles. Le prototype de Dimmunix pour Java est une implémen-

tation complète de Dimmunix. Les autres prototypes ne supportent que les interblocages

dus aux verrous d’exclusion mutuelle. Nous avons optimisé la gestion des exclusions

mutuelles dans Dimmunix pour Java afin de gérer efficacement les applications qui utilisent
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de manière intensive ces primitives de synchronisation.

Nos prototypes de Dimmunix sont efficaces contre les interblocages rapportés dans des

applications réelles, telles que Limewire, MySQL JDBC, ActiveMQ, MySQL Server, et

SQLite. Le prototype de Dimmunix pour Java fonctionne efficacement sur les applications

à synchronisation intensive, comme JBoss et Eclipse, qui sont constituées de millions de

lignes de code et de centaines de threads. Nous montrons aussi que les prototypes de

Dimmunix pour Java pour les autres types d’interblocages, Dimmunix pour les threads

POSIX, Dimmunix pour Android, et Communix sont efficaces. De plus, le prototype de

Communix arrive à contenir les attaques par déni de service qui essayent d’exploiter la

plateforme d’immunité collaborative.

Mots-clés: interblocages, détection, évitement, immunité, collaborative
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Preface

Deadlock immunity is a property by which programs, once afflicted by a deadlock, develop

resistance against future occurrences of that deadlock. We enable real applications to au-

tomatically achieve immunity against deadlock bugs involving mutex locks, semaphores,

read-write locks, class initialization, and external synchronization, with no user interven-

tion, and without changing the semantics of the applications. In other words, we provide

transparent, non-intrusive immunization against deadlocks.

Our deadlock immunity system, called Dimmunix, is available for Java applications,

C/C++ applications using POSIX Threads, and Android OS. Java Dimmunix provides

application-level immunity, i.e., deadlock immunity to individual Java applications. POSIX

Threads Dimmunix provides library-level immunity, i.e., deadlock immunity to all the

C/C++ applications using the POSIX Threads library. Android Dimmunix provides platform-

level immunity, i.e., deadlock immunity to all the applications running within the Android

OS. We also developed, on top of Java Dimmunix, a collaborative deadlock immunity

framework called Communix, in which machines connected to the Internet collaborate to

immunize each other against deadlocks.

Since mutex locks are likely the most widely used synchronization construct, we focus

on mutex deadlocks, i.e., deadlocks involving mutexes. The Java Dimmunix prototype is a

complete implementation of Dimmunix; the other prototypes handle only mutex deadlocks.

We heavily optimized the part of the Java Dimmunix prototype responsible for mutex dead-

locks, in order to efficiently handle synchronization-intensive applications.

Our prototype implementations are effective against deadlocks reported in real appli-

cations, like Limewire, MySQL JDBC, ActiveMQ, MySQL Server, and SQLite. The Java
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Dimmunix prototype for mutex deadlocks runs efficiently on synchronization-intensive ap-

plications, like JBoss and Eclipse, with millions of lines of code and hundreds of threads.

We also show that Java Dimmunix for non-mutex deadlocks, POSIX Threads Dimmunix,

Android Dimmunix, and Communix are efficient. Moreover, the Communix prototype

manages to contain denial of service attacks that attempt to exploit the collaborative immu-

nization framework.

Keywords: deadlocks, detection, avoidance, immunity, collaborative
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Chapter 1

Introduction

Writing concurrent software is one of the most challenging endeavors faced by software

engineers, because it requires careful reasoning about complex interactions between con-

currently running threads. Programmers consider concurrency bugs to be some of the most

insidious and, not surprisingly, a large number of bugs are related to concurrency [Lu et al.,

2008].

To ensure the consistency of the computations performed on the state shared by dif-

ferent threads, programmers use synchronization mechanisms like locks (mutexes), condi-

tion variables, semaphores, or busy waiting (i.e., loops that periodically inspect/update the

shared state). We describe these synchronization mechanisms in §3.1.

When threads do not coordinate correctly in their use of synchronization, a deadlock

can occur—a situation whereby a group of threads cannot make progress (i.e., hang), be-

cause each thread is waiting for other threads in the group to perform some action, i.e.,

release a lock/semaphore, finish some computation, or update some shared state. In other

words, a deadlock involves circular waits for resources or events. A deadlock can also

occur between separate processes (i.e., threads that do not implicitly share state), if the

synchronization is performed on resources (events) that are external to the running process,

e.g., file locks.

Surveys Lu et al. [2008], Fonseca et al. [2010], Song et al. [2010] show that an important

fraction of concurrency failures (i.e., failures caused by concurrency bugs) are deadlocks,

1



CHAPTER 1. INTRODUCTION 2

i.e., 38–55%. Lu et al. [2008] studied 105 concurrency bugs from four representative ap-

plications: the MySQL database server, the Apache web server, the Mozilla web browser,

and the OpenOffice office suite. Song et al. [2010] analyzed 233 hangs from the MySQL

and PostgreSQL database servers, the Apache web server, and the Firefox web browser.

Fonseca et al. [2010] analyzed 80 concurrency bugs from the MySQL database server. We

summarize in Table 1.1 the results of these surveys concerning deadlocks. According to the

surveys, most of the hangs are deadlocks, i.e., 55–84%. The surveys also show that dead-

lock hangs represent an important fraction of the concurrency failures, i.e., 38–55%. The

non-deadlock hangs are different: they cannot be represented as circular waits (§3.3.10).

For instance, scenarios where a client does not receive a reply for a request, or a thread

waits indefinitely for a message/event that it missed, are not deadlocks. The surveys also

study the impact of non-deadlock concurrency bugs. Lu et al. [2008] found 34 crashes

and 6 non-deadlock hangs caused by atomicity and order violations, as we show in Ta-

ble 1.1. Song et al. [2010] found 26 non-deadlock hangs, out of which 13 are caused by

data races, and 13 have other causes (e.g., missed messages/notifications). In the MySQL

database server, Fonseca et al. [2010] found 22 crashes, 6 hangs, 19 byzantine failures, and

5 performance degradations that are due to non-deadlock concurrency bugs.

Survey Deadlock
hangs

Non-deadlock
hangs

Other concurrency
failures

Deadlocks
(%)

Lu et al. [2008] 31 6 34 44%
Song et al. [2010] 32 26 55%
Fonseca et al. [2010] 32 6 46 38%

Table 1.1: Deadlocks are an important fraction of the concurrency failures in real-world
software.

Avoiding the introduction of deadlock bugs during development is challenging. Large

software systems are developed by multiple teams totaling hundreds to thousands of pro-

grammers, which makes it hard to maintain the coding discipline needed to avoid deadlock

bugs. Testing, although helpful, is not a panacea, because exercising all possible execution

paths and thread interleavings is still infeasible in practice for verifying large programs.
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More importantly, even deadlock-free code is not guaranteed to execute free of dead-

locks once deployed in the field. Dependencies on deadlock-prone third party libraries or

runtimes can deadlock programs that are otherwise correct. Furthermore, modern systems

are increasingly designed to accommodate extensions written by third parties, which can

introduce new deadlocks into the target systems (e.g., Web browser plugins, applications

based on enterprise Java beans).

Debugging deadlocks is hard—merely seeing a deadlock happen does not mean the bug

is easy to fix. Deadlocks often require complex sequences of low-probability events to man-

ifest (e.g., timing or workload dependencies, presence or absence of debug code, compiler

optimization options), making them hard to reproduce and diagnose. Sometimes deadlocks

are too costly to fix, because that would entail drastic redesign. Patches are error-prone:

many concurrency bug fixes either introduce new bugs or, instead of fixing the underlying

bug, merely decrease the probability of occurrence [Lu et al., 2008]. Although progress

has been made in testing and debugging concurrent programs [Zamfir and Candea, 2010,

Musuvathi et al., 2008], it may take months to properly fix concurrency bugs [Fonseca

et al., 2010].

We expect the deadlock challenge to persist and likely become worse over time. On

the one hand, software systems continue getting larger and more complex. On the other

hand, owing to the advent of multi-core architectures and other forms of parallel hardware,

new applications are written using more threads. At the same time, existing applications

achieve higher degrees of runtime concurrency. There exist proposals for making con-

current programming easier, such as transactional memory [Herlihy and Moss, 1993], but

issues surrounding I/O and long-running operations make it difficult to provide atomic-

ity transparently. The Scala programming language proposes actors [Sca], as the primary

concurrency construct. Actors are basically concurrent processes that communicate by ex-

changing messages. However, message passing systems are also subject to deadlocks, as

any concurrency construct that involves waiting for resources or events.

Our goal is to help applications defend themselves against deadlocks by providing them

with deadlock immunity—a property by which programs, once afflicted by a given dead-

lock, develop resistance against future occurrences of that deadlock, with no assistance

from programmers or users. In other words, deadlock immunity enables applications to
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avoid deadlocks that they previously encountered.

We address five types of deadlocks: mutex deadlocks involving synchronization on

mutex locks, semaphore deadlocks involving synchronization on semaphores, read-write

deadlocks involving synchronization using read-write locks, initialization deadlocks in-

volving mutexes together with class initialization code, and external deadlocks involving

synchronization on external objects (e.g., file locks). We define these deadlock patterns

in §3.3. There exist other types of deadlocks, such as self-deadlocks and wait-notify dead-

locks (§3.3), but they cannot be avoided without altering the semantics of the applications

(§6.1). There exist also starvation situations which may lead to deadlocks, like blocked

notifications, ad-hoc deadlocks, and join deadlocks (§3.3). These bugs are at the frontier

between starvation and deadlock; avoiding them automatically is hard (§6.2).

We propose a technique that provides deadlock immunity to applications without any

assistance from users or programmers. We implemented this technique in a system called

Dimmunix, which is available for Java applications, C/C++ applications using POSIX

Threads, and Android OS. Java Dimmunix provides application-level immunity, i.e., dead-

lock immunity to individual Java applications. POSIX Threads Dimmunix provides library-

level immunity, i.e., deadlock immunity to all the C/C++ applications using the POSIX

Threads library. Android Dimmunix provides platform-level immunity, i.e., deadlock im-

munity to all the applications running within the Android OS. Java Dimmunix provides

immunity against all the five deadlock types. The other two implementations provide im-

munity against mutex deadlocks. We also developed, on top of Java Dimmunix, a collab-

orative deadlock immunity framework called Communix, in which machines connected to

the Internet collaborate to immunize each other against deadlocks.

Dimmunix has two modules running simultaneously: a detection module dynamically

detects deadlocks and extracts their “fingerprints”; an avoidance module uses the finger-

prints as antibodies to avoid future occurrences of these deadlocks. The fingerprint is an

approximation of the execution flow that led to deadlock. To avoid a previously discovered

deadlock, Dimmunix temporarily suspends threads whenever their execution is about to

match the fingerprint of that deadlock.

Dimmunix is purely software-based (i.e., does not require any cooperation from the
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hardware) and does not require any changes to the application’s source code. Java Dimmu-

nix automatically instruments the synchronization statements; POSIX Threads Dimmunix

and Android Dimmunix intercept the synchronization operations within the synchroniza-

tion libraries (primitives).

Dimmunix is effective against deadlock bugs in real applications, like the JBoss ap-

plication server, the Limewire peer-to-peer file sharing system, and the MySQL database

server, while incurring a low performance overhead (§10). In the absence of deadlocks,

the performance overhead is negligible. In the presence of deadlocks, the performance

overhead is highly dependent on the location of the deadlock-prone code within the tar-

get application (e.g., if the synchronization statements involved in deadlocks are on the

critical path, they are executed often, and Dimmunix may incur a noticeable performance

overhead).

Dimmunix avoids deadlocks without altering the semantics of non-real-time applica-

tions, because the deadlock avoidance consists merely of altering the thread schedule.

However, there exist deadlock types that cannot be avoided without changing the semantics

of the application (§6.1); Dimmunix only detects such deadlocks, but does not avoid them.

Dimmunix does not handle distributed deadlocks. Dimmunix handles only deadlocks oc-

curring on one machine, among different threads of the same process or among different

processes.

For purposes of illustration, consider the use of Dimmunix in the following two realistic

scenarios. In the first scenario, the Firefox web browser deadlocks because of a plugin

(e.g., the Flash plugin) every time it renders a particular web page. With Dimmunix, the

browser will be able to render the page after the first time this happens and the user kills

the deadlocked Firefox process and restarts it. In the second scenario, the Eclipse IDE

deadlocks every time at startup due to a deadlock bug in a plugin. Without Dimmunix,

Eclipse is unusable, unless the plugin is manually removed. If Eclipse runs with Dimmunix,

it will deadlock only the first time it starts; after Dimmunix obtains the fingerprint of the

deadlock, Eclipse will not deadlock anymore due to that bug.

We recommend Dimmunix for general-purpose systems, such as desktop and enterprise

applications, or server software. For general-purpose applications, we consider deadlock

immunity to be almost as useful as preventing all deadlocks. However, Dimmunix can
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cause undue interference in real-time systems. Safety-critical systems, in which even the

very first occurrence of a deadlock cannot be tolerated, are not good targets for Dimmunix.

Such systems require more programmer-intensive approaches to run deadlock-free. Nor-

mally, Dimmunix does not affect functionality in general-purpose applications; however,

interference with wait-notify schemes or features that rely on code that executes concur-

rently in separate threads can impede functionality (§6).

Dimmunix can be used by both software vendors and end users alike. On the one hand,

vendors faced with the current impossibility of shipping large software that is bug-free

could instrument their ready-to-ship software with Dimmunix and get an extra safety net:

Dimmunix can keep users happy by allowing them to use the deadlock-prone system while

the developers try to fix the bugs. On the other hand, users frustrated with deadlock-prone

applications can use Dimmunix on their own to improve their user experience. We do

not advocate deadlock immunity as a replacement for correct concurrent programming—

ultimately, concurrency bugs need to be fixed in the design and the code—but it does offer

a low-cost “band-aid” with many practical benefits.

The thesis is structured as follows: In Chapter 2, we summarize the related work. In

Chapter 3, we provide the necessary background information. In Chapter 4, we explain

how Dimmunix detects deadlocks and extracts their fingerprints. In Chapter 5, we explain

how Dimmunix avoids deadlocks based on these fingerprints. In Chapter 6, we describe the

properties and limitations of Dimmunix. In Chapter 7, we present Communix, our collabo-

rative deadlock immunity framework. In Chapter 8, we describe optimizations that reduce

the performance overhead incurred by applications using Dimmunix. In Chapter 9, we

provide implementation details of Java Dimmunix, POSIX Threads Dimmunix, Android

Dimmunix, and Communix. In Chapter 10, we evaluate these prototype implementations,

and in Chapter 11 we conclude.



Chapter 2

Related Work

There is a spectrum of approaches for avoiding (preventing) deadlocks: language-level

deadlock prevention (§2.1), static deadlock detection (§2.2), hybrid techniques that stati-

cally detect potential deadlocks and avoid them dynamically (§2.3), approaches that dy-

namically detect potential deadlocks and avoid them, or transparently recover from dead-

locks (§2.4), and finally techniques that provide deadlock immunity (§2.5). We also present

techniques that target other bugs, like buffer overruns, data races, and atomicity violations

(§2.6). Dimmunix targets general-purpose systems, not real-time or safety-critical ones, so

we describe this spectrum of solutions keeping our target domain in mind.

2.1 Language-level Deadlock Prevention

Language-level approaches [Boyapati et al., 2002, Lampson and Redell, 1980] use power-

ful type systems to simplify the writing of lock-based concurrent programs and thus avoid

synchronization problems altogether. For instance, Boyapati et al. [2002] uses a variant

of ownership types to prevent data races and deadlocks; the programmers partition all the

locks into a fixed number of lock levels and specify a partial order among the lock lev-

els. The type checker statically verifies that whenever a thread holds more than one lock,

the thread acquires the locks in the decreasing order of their lock levels. Such approaches

avoid the runtime performance overhead and prevent deadlocks outright, but requires pro-

grammers to be disciplined, adopt new languages and constructs, or annotate their code.

7
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While this is the ideal way to avoid deadlocks, programmers’ human limits have motivated

a number of complementary approaches.

Transactional memory (TM) [Herlihy and Moss, 1993] holds promise for simplifying

the way program concurrency is expressed. TM converts the locking order problem into

a thread scheduling problem, thus moving the burden from programmers to the runtime,

which we consider a good tradeoff. TMs allow programmers to define atomic sections (i.e.,

code regions that execute atomically). The purpose of the TMs is to guarantee that there

are no data races among atomic sections. According to the TM semantics, the execution of

an atomic section is implicitly deadlock-free, because there is no explicit synchronization

among atomic sections. TM optimistically executes the atomic sections in isolation. If no

data races (conflicts) are found, the updates performed in the atomic sections are commit-

ted, i.e., made visible to the other threads; if there is a data race, the TM rolls back one

of the atomic sections involved in the data race and restarts it. There are still challenges

with TM semantics, such as what happens when programmers use large atomic blocks,

or when TM code calls into non-TM code or performs I/O. Performance is still an issue,

and Koskinen and Herlihy [2008] shows that many modern TM implementations use lock-

based techniques to improve performance and are thus subject to deadlock. So far, TM

implementations have not been proven to work out-of-the-box for real applications, i.e., by

enabling the replacing all critical sections with transactions. Thus, we believe that, while

TM is powerful, it cannot address all the concurrency problems in real systems.

2.2 Static Deadlock Detection

Static analysis tools look for deadlocks at compile time and help programmers remove

them. ESC [Flanagan et al., 2002] uses a theorem prover and relies on annotations to pro-

vide knowledge to the analysis; Houdini [Flanagan and Leino, 2001] helps generate some

of these annotations automatically. RacerX [Engler and Ashcraft, 2003] and Williams et al.

[2005] use flow-sensitive analyses to find deadlocks. In Java JDK 1.4, the tool described in

[Williams et al., 2005] reported 100,000 potential deadlocks and the authors used unsound

filtering to trim this result set down to 70, which were then manually reduced to 7 actual

deadlock bugs. Static analyses run fast, avoid runtime overheads, and can help prevent
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deadlocks, but when they generate false positives, it is ultimately the programmers who

have to winnow the results. Developers under pressure to ship production code fast are

often reticent to take on this burden.

Another approach to statically finding deadlocks is to use model checkers, which sys-

tematically explore all the possible executions of the program; in the case of concurrent

programs, this includes all thread interleavings. Model checkers achieve high coverage

and are sound, but suffer from poor scalability due to the “state-space explosion” problem.

Java PathFinder (JPF) [Java PathFinder], one of the most successful model checkers, of-

fers limited support for Java I/O libraries and no support for Java network and graphical

libraries. In [Java PathFinder], it was reported that JPF was able to find bugs in an internal

1 MLOC Fujitsu application. The application needed to be converted first into a fully ex-

ecutable stand-alone Java model, which was then checked by JPF; JPF explored 125,000

program states and millions of execution paths. However, it is not clear whether all the

possible execution paths were explored. Real-world applications are large (e.g., MySQL

has >1 MLOC) and use I/O, network, and/or graphical libraries; this restricts the use of

model checking in the development of general-purpose systems. To the best of our knowl-

edge, there are no model checkers that can explore all the possible execution paths in large

applications.

2.3 Static Detection and Dynamic Avoidance of Deadlocks

There exist hybrid approaches, like [Boronat and Cholvi, 2003] and Gadara [Wang et al.,

2008], which detect deadlock potentials (i.e., code that might be deadlock-prone) statically,

then avoid at runtime the potential deadlocks. Boronat and Cholvi [2003] avoids the po-

tential deadlocks by statically introducing new locks in the code. Gadara uses Petri nets

to build a mechanism that avoids deadlocks at runtime. These approaches make the ap-

plications avoid false deadlock potentials if the static analysis has false positives; since

Dimmunix avoids only deadlocks that it previously detected at runtime, Dimmunix does

not have this kind of false positives.

Moreover, the two approaches use the application’s source code to statically find the

deadlock potentials, while Dimmunix requires no source code. Gadara needs source code
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annotations from the developers to filter out false positives. Annotating deadlock potentials

as true/false positives requires deep understanding of the source code: the developer has to

conceptually analyze all the possible sequences of lock acquisitions for the code reported as

deadlock prone, as well as all the possible interleavings of these sequences. Since humans

make mistakes, these annotations may be wrong. Moreover, they may be rendered invalid

by plugins added later to the code base. Dimmunix requires no source code annotations

and can handle dynamically added code.

2.4 Dynamic Deadlock Avoidance (Recovery)

A notable dynamic deadlock avoidance technique is [Zeng and Martin, 2004]. This tech-

nique modifies the JVM to serialize threads’ accesses to sets of locks acquired in a nested

fashion. For instance, if the program acquires lock l2 while holding lock l1, the two locks

will belong to the same lock set; Zeng and Martin [2004] forces the acquisition of a new

lock l (called ghost lock) before the acquisition of any lock from this lock set, for the rest

of the execution. There are a couple of shortcomings of this approach: First, it relies on

the fact that deadlocks occur later in the execution, when the lock sets are already obtained.

Second, the lock acquired at a particular program location can change during the same ex-

ecution; if it changes often (e.g., it may correspond to an array element), then [Zeng and

Martin, 2004] is not effective. Every time new locks are used, [Zeng and Martin, 2004] has

to update the lock sets. Whenever the lock sets are not up to date, the program is vulnerable

to deadlocks. Third, the lock sets are not reusable in future runs: in each run, [Zeng and

Martin, 2004] will have to restart the learning process from scratch. Dimmunix eliminates

the three shortcomings by abstracting the locks involved in a deadlock to program locations

(or call stacks); based on these, Dimmunix constructs a fingerprint of the deadlock. Then,

Dimmunix uses the fingerprint to avoid any occurrence of that deadlock in future runs, at

any point in the execution. However, there is a compromise that Dimmunix has to make: to

provide protection against a deadlock bug, Dimmunix needs to first witness the deadlock.

Sammati [Pyla and Varadarajan, 2010], a framework that post-dates our work, dynam-

ically detects deadlocks and transparently recovers the applications from deadlocks using
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TM techniques. Sammati is a preloadable library that intercepts the POSIX Threads syn-

chronization operations to dynamically detect and recover from deadlocks. Sammati makes

the memory accesses performed by a thread during a critical section thread-local; this is

called “privatizing” the shared memory pages. When the critical section ends, the updates

are saved into the shared memory. If a deadlock happens during the execution of a criti-

cal section, the updates performed within the scope of that section up to the deadlock are

discarded, in effect rolling back the critical section. Sammati is intrusive and heavyweight;

its efficiency and correctness were not tested on real applications. Since Sammati is es-

sentially a TM customized for deadlock recovery, the TM challenges (e.g., large critical

sections, I/O) apply to Sammati as well. In contrast, Dimmunix is not intrusive: to avoid

deadlocks, it only alters the thread schedule underneath the application.

2.5 Deadlock Immunity

Other deadlock immunity approaches include [Nir-Buchbinder et al., 2008, Zeng, 2009].

These approaches dynamically detect deadlocks, then avoid future occurrences of the same

deadlocks. If a deadlock involving threads t1 and t2 and locks l1 and l2 occurs, the two

approaches save the program positions p1 and p2 (where l1 and l2 were acquired) into the

fingerprint of the deadlock; Zeng [2009] saves, in addition, the positions p′1 and p′2 where

t1 and t2 deadlocked. In future runs, Nir-Buchbinder et al. [2008], Zeng [2009] prevent the

deadlock from reoccurring by acquiring a “gate lock” every time the lock statement at p1

or p2 is about to execute. If the lock at p′1 (or p′2) can be soundly inferred at runtime from

p1 (respectively p2), Zeng [2009] swaps the lock acquisitions at p1 and p′1 (respectively p2

and p′2), instead of acquiring a gate lock. The latter avoidance mechanism is difficult in the

general case, because predicting which lock objects will be used is undecidable. Therefore,

speculatively acquiring the lock at p′1 (or p′2) does not guarantee that the deadlock will be

avoided.

Dimmunix shares ideas with [Nir-Buchbinder et al., 2008, Zeng, 2009], but uses a more

accurate avoidance mechanism (§5). Like in these approaches (and any other deadlock

avoidance technique), Dimmunix’s deadlock avoidance mechanism relies on temporarily

suspending threads, i.e., serializing concurrent code. Dimmunix has fewer false positives,
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compared to these techniques (§10.1.2), i.e., concurrent code is less often serialized, thus

alleviating the problem of lost parallelism. The efficiency of Dimmunix’s critical-path

computations is comparable to acquiring a gate lock. Therefore, the overall performance

overhead incurred by Dimmunix is smaller (§10.1.2). Dimmunix handles five types of

deadlock bugs, while Nir-Buchbinder et al. [2008], Zeng [2009] handle only mutex dead-

locks.

2.6 Protection Against Other Bugs

There exist techniques that protect applications against data races and atomicity violations.

Kivati [Chew and Lie, 2010] uses static analysis to detect accesses to shared memory that

may be involved in atomicity violations; pairs of such accesses that should execute atom-

ically delimit atomic regions. Each time a thread t executes an atomic region, Kivati uses

a debug register to monitor the memory address x accessed by the delimiting instructions.

Hence, Kivati is able to intercept accesses to x that would break the atomicity. When a

thread t ′ is executing such an access, t ′ is suspended until t exits the atomic region. Thanks

to using the hardware, Kivati incurs low performance overhead, but sacrifices complete-

ness. However, there exist some important challenges for Kivati: (1) the same atomic

region may be executed by different threads simultaneously, with different shared mem-

ory addresses, and (2) different atomic regions may execute in parallel. Kivati can handle

few such simultaneous executions, since the number of debug registers is small (e.g., 4).

Therefore, Kivati does not guarantee that the atomicity violations are always avoided.

Techniques like AtomRace [Letko et al., 2008] and [Krena et al., 2007] provide im-

munity against data races and atomicity violations. These approaches are purely software

based; they dynamically detect races and atomicity violations, then prevent them from

reoccurring by introducing additional synchronization. These techniques incur high per-

formance overhead while detecting the data races and atomicity violations.

There exist also immunity techniques that protect applications against buffer overruns.

Bouncer [Costa et al., 2007] provides immunity against buffer overruns; it automatically

detects buffer overruns, then automatically infers filters that prevent malicious inputs from

exploiting the same vulnerability. There is also a framework, Vigilante [Costa et al., 2005],
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that distributes these filters to other nodes, to protect them against Internet worms. Sim-

ilarly, our collaborative deadlock immunity framework, Communix, distributes deadlock

signatures to other nodes to protect them against deadlocks they have not experienced yet.

Vigilante relies on collaborative worm detection at end hosts and does not require hosts

to trust each other. Communix differs from Vigilante in the validation of the received bug

signatures: Vigilante uses replay to validate a new signature, while Communix efficiently

checks deadlock signatures statically.

LOOM [Wu et al., 2010] bypasses data races at runtime using execution filters. It

provides a language for developers to write execution filters that explicitly synchronize

code. LOOM requires the developers to manually patch the code with execution filters. In

contrast, Dimmunix performs automatic patching.

Similar to Dimmunix, ClearView [Perkins et al., 2010] performs automatic patching of

errors in deployed software. ClearView monitors programs to detect buffer overruns and

illegal control flow transfers, and generates repair patches that avoid the previously detected

bugs by changing the state or the control flow of the program. Therefore, ClearView needs

to be more intrusive than Dimmunix, because it targets memory and control flow errors.

In order to avoid previously encountered deadlocks, Dimmunix only needs to alter the

thread schedule. The runtime overhead incurred by the monitors in Firefox is 47–200%.

In contrast, the runtime overhead incurred by Dimmunix’s deadlock detection is negligible

(§10).



Chapter 3

Background

In this chapter, we present the synchronization primitives that can lead to deadlocks (§3.1),

and the terminology that we use to describe the deadlock immunity techniques (§3.2).

Then, we define the deadlocks that are fundamentally different from each other, or re-

quire fundamentally different deadlock immunity techniques (§3.3). Finally, we give an

overview of Dimmunix’s design (§3.4).

3.1 Synchronization Primitives

In this thesis, we consider only thread synchronization mechanisms which involve explicit

waits for resources or events. More precisely, a thread waits for a resource to become

available (e.g., waits to acquire a lock) or waits for an event (e.g., waits for a message to

arrive). A deadlock is a circular chain of such waits.

The waits can be synchronous or asynchronous. In a synchronous wait, a thread is

suspended until the resource is available or the event happens. In an asynchronous wait,

a thread periodically checks if the resource became available or the event occurred; in

the meanwhile, the thread can perform some computation, rather than just polling the re-

source/event in a busy loop.

TM is a form of synchronization which does not involve explicit waits for resources

or events. TMs optimistically execute atomic sections; if data races are detected among

atomic sections, some of these sections are rolled back and restarted. However, there is an

14
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implicit wait: a transaction (atomic section) terminates and the updates performed within

it are committed only when the TM detects no conflicts involving that transaction.

A synchronization mechanism can be explicit, i.e., specified by the program, or implicit,

i.e., hidden in the runtime. An example of an implicit (hidden) synchronization is the class

initialization in Java—a class’ static initializer is called by the JVM when the class is used

for the first time. The JVM needs to perform some synchronization to make sure that the

initializer executes only once.

A synchronization mechanism can use well-defined synchronization primitives or ad-

hoc synchronization. Ad-hoc synchronization does not use well-defined synchronization

primitives. Ad-hoc synchronization usually involves loops that periodically inspect some

shared state, and terminate when a particular condition on the shared state holds [Xiong

et al., 2010].

The deadlock-prone synchronization primitives handled by Dimmunix are: mutex lock

acquisitions, read-write lock acquisitions, semaphore acquisitions, external lock acquisi-

tions, and waits on condition variables. Other deadlock-prone synchronization mechanisms

are: ad-hoc synchronization, thread joins, barriers, and synchronous waits for messages.

Mutex locks, read-write locks, semaphores, condition variables, thread joins, and barriers

are well known. An external lock is a lock associated with an object external to the running

process, e.g., a file lock. Message passing is not a synchronization mechanism by itself.

However, waiting to receive a message from another process (host) is a form of synchro-

nization. An example of a message passing framework is the Java Messaging Service [jms,

2004].

In Table 3.1, we report the number of times the synchronization primitives handled by

Dimmunix appear in the source code of real Java and C/C++ applications. Most of the

synchronization operations are mutex lock acquisitions. SyncFinder [Xiong et al., 2010]

counted the ad-hoc synchronizations in C/C++ applications; there are 6–33 ad-hoc synchro-

nizations in the studied C/C++ applications. We did not find any ad-hoc synchronization in

the Java programs we studied.

In the remainder of this section, we present the primitives used for synchronization:

acquisition and release of mutex locks (§3.1.1), read-write locks (§3.1.2), semaphores

(§3.1.3), and external locks (§3.1.4), wait, signal, and broadcast performed on condition
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Application LOC Mutex
lock acqs

R/W Lock
acqs

Cond var
waits

Semaphore
acqs

File lock
acqs

Eclipse 1,888,825 5,202 0 25 0 3
JBoss 636,895 869 56 77 12 0
Limewire 595,623 3,358 171 86 0 0
Vuze 476,702 1,429 13 4 5 0
ActiveMQ 96,172 330 0 21 5 0
Firefox 2,362,610 62 7 9 6 14
VLC 302,265 21 0 5 0 0

Table 3.1: The synchronization operations in several Java and C/C++ applications.

variables (§3.1.5), ad-hoc synchronization (§3.1.6), thread joins (§3.1.7), barriers (§3.1.8),

and message passing primitives (§3.1.9).

3.1.1 Mutex Locks

Mutex locks are perhaps the most well-known and widely used synchronization mecha-

nism. As we show in Table 3.1, one is entitled to expect mutex lock acquisitions to be the

most frequent among synchronization operations.

We abstract by lock(x)/unlock(x) the acquisition/release of mutex lock x. Since mutexes

are widely used in concurrent programs, we assume that the reader is familiar with the

semantics of a mutex acquisition/release. We explain only the reentrancy aspect of mutex

acquisitions.

A lock acquisition primitive can be reentrant or non-reentrant. If it is non-reentrant, a

lock(x) call hangs if lock x is already held by the caller thread. If it is reentrant, lock(x)

proceeds and increments a counter indicating the number of times lock x was (re)acquired;

each unlock(x) call decrements the counter; lock x is free when the counter gets back to 0.

For the remainder of the thesis, we assume in our explanations that lock acquisitions are

reentrant.

We present now the standard mutex lock implementations for Java and C/C++. For Java

programs, the standard lock implementations are the synchronized blocks (methods) [Jav,

h] and the java.util.concurrent.ReentrantLock class [Jav, e]. Synchronized methods can
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be trivially reduced to synchronized blocks; therefore we will only refer to synchronized

blocks for the remainder of the thesis. For C/C++ programs, the standard lock implemen-

tations are provided by the POSIX Threads library [Pth, c].

Java Synchronized Blocks

First, we remind the reader that any Java object can be used as a lock by synchronized

blocks.

A synchronized block has the syntax below:

synchronized (x) {

//critical section

}

The above synchronized block can be viewed as:

lock(x)

//critical section

unlock(x)

In a synchronized block, the lock acquisition/release operations are automatically gen-

erated by the Java compiler. The Java compiler compiles the above synchronized block

as follows: it inserts at the beginning of the block a monitorenter(x) statement which ac-

quires the lock on object x, and inserts before all the exit points of the synchronized block

a monitorexit(x) statement which releases the lock on x. Since the acquisition and re-

lease operations corresponding to a synchronized block are automatically generated by the

compiler, we distinguish them from explicit lock/unlock operations, like Java Reentrant-

Lock.lock/unlock and pthreads_mutex_lock/unlock.

Nested synchronized blocks acquire and release locks in a FIFO order: if a synchro-

nized block B1 contains another synchronized block B2, the lock acquired by B2 is always

released before the lock acquired by B1. Consider the nested synchronized blocks below:
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synchronized (x) {

synchronized (y) {

...

}

}

The Java compiler makes sure that object y is always released before object x. Thanks to

this property, the static analysis we perform in §8.1 is decidable. More precisely, Dimmunix

needs to find the program positions where the locks involved in a deadlock were acquired.

The synchronization pattern implemented by the synchronized blocks greatly simplifies

this analysis.

Synchronized methods are equivalent to synchronized blocks. Consider the synchro-

nized method below:

public synchronized void m() {

//body of m

}

Using the “synchronized” keyword is equivalent to wrapping the body of m in a synchro-

nized (this) { ... } block, where “this” is the reference to the caller object:

public void m() {

synchronized (this) {

//body of m

}

}

Java ReentrantLock

The ReentrantLock class provides explicit lock/unlock primitives. The programmer must

take care of using them in a safe manner: a ReentrantLock must be released on all the

execution paths that exit the critical section.

The safe pattern of using a ReentrantLock x is illustrated in the Java code below:
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try {

x.lock();

//critical section

}

finally {

x.unlock();

}

The above code is conceptually equivalent to a synchronized(x){...} block. The “finally”

block automatically releases x every time the execution exits the critical section. If pro-

grammers do not use this safe pattern, they have to take care of manually inserting x.unlock()

calls before all the exit points of the critical section.

POSIX Threads Locks

The lock/unlock primitives provided by the POSIX Threads library are pthread_mutex_lock

and pthread_mutex_unlock. Unfortunately, neither C nor C++ provide try-finally blocks;

therefore, the programmer must remember to release the lock on every execution path that

exits the critical section.

The POSIX Threads locks are non-reentrant by default. If a C/C++ programmer wants

to simulate Java-like synchronized methods, he/she must remember to make the lock for

the this object reentrant.

3.1.2 Read-Write Locks

A read-write lock is formed of a read lock and a write lock. The read lock can be held

simultaneously by any number of threads, while the write lock can be held by only one

thread at a time. While a thread holds the write lock, the read lock cannot be held by any

other thread, and vice versa. In other words, read locks are mutually exclusive with write

locks.

Given a read-write lock x, we denote by lockr(x)/lockw(x) the acquisition of x’s read/write

lock. For the sake of generality, in this thesis we assume that read-write lock acquisitions
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are reentrant. By unlockr(x)/unlockw(x), we denote the release of x’s read/write lock. By

acquiring x in read/write mode, we mean acquiring x’s read/write lock.

The standard Java implementation of read-write locks is the ReentrantReadWriteLock

class [Jav, f]. The POSIX Threads library provides the routines pthread_rwlock_rdlock,

pthread_rwlock_wrlock, and pthread_rwlock_unlock [PTh], for acquiring and releasing

read-write locks.

In this thesis, we use the semantics of Java ReentrantReadWriteLock [Jav, f] for the

read-write locks. The most important aspects of these semantics are:

• A thread holding only the read lock cannot acquire the write lock without releasing

the read lock first.

• A thread holding the write lock can also acquire the read lock. In this situation, an

unlockr (respectively unlockw) call releases the read (respectively write) lock, but

keeps the write (respectively read) lock.

We illustrate these semantics in the code in Figure 3.1. The code represents a singleton

pattern.

3.1.3 Semaphores

A semaphore is a lock that maintains a set of acquisition permits. A semaphore with more

than 1 permit can be acquired simultaneously by multiple threads. A semaphore has a

value associated with it, which stores the number of available permits; the value can be

incremented/decremented by any thread. Therefore, there is no notion of ownership for a

semaphore.

We denote by acquire(s, n) the acquisition of n permits for semaphore s; by release(s,

n), we denote the release of n permits for s. If the second parameter (i.e., n) is omitted, then

n = 1. By s.v, we denote the value of s, i.e., the number of available permits.

The standard implementation of a semaphore for Java is the Semaphore class [Jav, g].

The standard C/C++ implementation of semaphore acquisition and release operations is

provided by the POSIX sem_wait and sem_post routines [Pos, b].

The semantics we use for the two operations are consistent with the Java Semaphore

class [Jav, g]. In brief, the semantics of an acquire(s, n) operation are:
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//retrieve a unique object for each key value k

//x is a read-write lock that synchronizes the accesses

//to a cache stored in hash map M

lockr(x)

obj = M[k]

if obj == null {

//release the read lock, then upgrade to write lock

unlockr(x)

lockw(x)

lockr(x)

//the read and write locks are both held at this point

obj = M[k]

//recheck, M[k] might have been filled by another thread

if obj == null {

obj = new object

M[k] = obj

}

unlockw(x)

//downgraded to read lock; only the read lock is held here

}

unlockr(x)

return obj

Figure 3.1: Code illustrating the semantics of read-write locks.

• If s.v ≥ n, s.v is decremented by n, and the acquisition routine returns immediately.

• If s.v < n, the caller thread is suspended until s.v ≥ n; then, s.v is decremented by n,

and the acquisition routine returns.

A release(s, n) performs the following steps:

1. The value s.v is incremented by n.

2. While s.v > 0 and there is a thread waiting for k ≤ s.v permits, resume that thread. If

s.v = 0 or there is no thread waiting for k ≤ s.v permits, the release routine returns.

POSIX semaphores [Pos, b] do not accept the acquisition/release of more than 1 permit at

a time. For n = 1, the above semantics are consistent with the POSIX semaphores.

We illustrate the semantics of the acquire and release operations in the code below,

which implements a pattern where a thread waits for n notifications from other threads:
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//s is a semaphore; initially s.v = 0

Thread 1: Threads 2, ..., n+1:

acquire(s, n)//wait for n permits release(s) //give a permit

3.1.4 External Locks

External locks are shared among processes and synchronize accesses to resources that are

external to the running processes. For instance, a file lock synchronizes the accesses to a

file. The Dimmunix prototype handles only file locks; however, it can be easily extended

to handle other types of external locks.

A file lock functions like a mutex, i.e., it can be held by only one process at a time.

Therefore, for locking and unlocking a file f , we use the same abstractions as for mutex

locks, i.e., lock(f) and unlock(f). By locking (respectively unlocking) a file f , we mean

acquiring (respectively releasing) the file lock associated with f .

Java provides primitives for locking/unlocking files in the FileChannel class [Jav, c].

The standard C/C++ libraries provide the flock and funlock primitives for locking and un-

locking files [CFi].

3.1.5 Condition Variables

Condition variables implement a wait-notify synchronization pattern, where a thread waits

to be notified by another thread about a particular event (e.g., the update of a shared data

structure). To synchronize the accesses to the shared state, condition variables have a mutex

lock attached to them.

There are three types of operations performed on condition variables: wait, signal, and

broadcast. We denote by wait(c) a wait operation performed on condition variable c, and by

signal(c) (respectively broadcast(c)) a signal (respectively broadcast) operation performed

on c. By notification we mean either a signal or a broadcast. By “waiter thread” we mean

a thread blocked on a wait call; by “notifier thread” we mean a thread that is supposed

to notify a waiter thread. By lock(c) (respectively unlock(c)) we denote the acquisition

(respectively release) of c’s mutex lock. By acquiring (respectively releasing) c we mean

acquiring (respectively releasing) c’s mutex lock.
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There are two semantics for condition variables: Hoare semantics [Hoare, 1974] and

Mesa semantics [Lampson and Redell, 1980]. The latter are more relaxed than the former

and were developed as a way to improve the performance of the operations on condition

variables; Mesa semantics are used in the Java and POSIX Threads condition variable

implementations. Therefore, we use the Mesa semantics in this thesis. More precisely, we

use the Java variation of the Mesa semantics, in which a notifier thread has to hold c when

executing signal(c) or broadcast(c) on condition variable c.

The semantics of the wait, signal, and broadcast operations performed on a condition

variable c are:

• A wait(c) call atomically releases c and suspends the caller thread (which now be-

comes a waiter thread). The caller thread can be resumed by a signal(c) or broad-

cast(c) call executed by a notifier thread. Right before returning from the wait call,

the caller thread automatically reacquires c.

• A signal(c) call resumes a thread waiting on c.

• A broadcast(c) call resumes all the threads waiting on c.

• A notifier thread must hold c when calling signal(c) or broadcast(c).

• A signal(c) (or broadcast(c)) call does not resume a wait(c) call that executes later;

only currently waiting threads are resumed by signal (respectively broadcast) calls.

The difference between the Mesa and Hoare semantics is related to the notification

mechanism. Let tn be a notifier thread performing a notification on condition variable c,

which resumes a thread tw waiting on c. In the Hoare semantics, tn passes c’s ownership

to tw together with sending the notification, in order to guarantee that no change in the

shared state occurs before tw returns from the wait call. When releasing c, tw returns c’s

ownership back to tn. In Mesa semantics, the notification only resumes tw, without giving

up the ownership of c.

In Mesa semantics, the shared state may change between the moment of the notifica-

tion and the moment when the wait call returns. Therefore, the wait condition has to be

rechecked, as we illustrate in the pseudocode below:
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//c is a condition variable; x is a shared variable

Waiter thread: Notifier thread:

lock(c) lock(c)

while condition on x does not hold { update x

wait(c) signal(c)

} unlock(c)

//condition holds here

unlock(c)

Java provides condition variable primitives in the Object class [Jav, i] and the Condition

interface [Jav, b]. The POSIX Threads library implements the wait, signal, and broadcast

primitives in the pthread_cond_wait, pthread_cond_signal, and pthread_cond_broadcast

routines [Pth, a].

3.1.6 Ad-Hoc Synchronization

Ad-hoc synchronization is a form of synchronization that does not use well-defined syn-

chronization primitives. Ad-hoc synchronization usually involves loops that periodically

inspect some shared state, and terminate when a particular condition on the shared state

holds [Xiong et al., 2010]. We illustrate such a synchronization loop in the pseudocode

below:

//x is a shared variable

Waiter thread: Notifier thread:

while condition on x does not hold { update x

sleep or do some computation

}

//condition holds here

Ad-hoc synchronization is conceptually equivalent to wait-notify schemes that use con-

dition variables. For instance, the above code is equivalent to the code at the end of §3.1.5.

Because of this, ad-hoc synchronization does not introduce any new research challenges,

w.r.t. deadlock immunity. Therefore, the Dimmunix prototype does not specifically handle

deadlocks involving ad-hoc synchronization.



CHAPTER 3. BACKGROUND 25

We envision that tools like SyncFinder [Xiong et al., 2010] can be used to automatically

annotate ad-hoc synchronizations in programs, thus enabling the Dimmunix prototype to

handle deadlocks involving ad-hoc synchronization. For instance, SyncFinder associates an

id L to the above busy loop, then inserts the Sync_Loop_Begin(L) and Sync_Loop_End(L)

calls to stub routines at the beginning and the end of the loop; it also inserts Sync_Write(&x,

L) calls in the places where x is updated and Sync_Read(&x, L) calls wherever x is read in

the busy loop. Dimmunix can associate a condition variable c to id L, and handle a Sync_-

Loop_Begin(L) (respectively Sync_Loop_End(L)) call as a lock(c) (respectively unlock(c))

operation. Dimmunix can handle the Sync_Read(&x, L) (respectively Sync_Write(&x, L))

calls as wait(c) (respectively broadcast(c)) operations.

3.1.7 Thread Joins

A thread join is a synchronization mechanism where a thread waits for another thread to

finish its execution. We denote by join(t) the wait for a thread t to finish.

Just like ad-hoc synchronization, a thread join can be reduced to a wait-notify scheme

using condition variables. We can associate a fresh condition variable c[t] and a flag done[t]

with every thread t; a join(t) call can be viewed as:

//initially done[t] = false

Thread calling join(t): Thread t:

//code equivalent to join(t) //finish the execution

lock(c[t]) lock(c[t])

if !done[t] done[t] = true

wait(c[t]) broadcast(c[t])

unlock(c[t]) unlock(c[t])

Since thread joins can be reduced to wait-notify schemes using condition variables, Dim-

munix does not specifically handle deadlocks involving thread joins.

Java provides a thread join primitive in the Thread class [Jav, d]; the POSIX Threads

library implements it in the pthread_join routine [Pth, b].
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3.1.8 Barriers

A barrier implements a synchronization mechanism in which a group of n threads synchro-

nize to start performing some computation at the same time. In other words, the n threads

coordinate in order to “cross” the barrier at the same time.

A barrier b with n slots is implemented by suspending the first n− 1 threads until the

last thread arrives at the barrier. When the last thread arrives, the other threads are resumed,

and all the n threads proceed with their execution. This can be implemented using mutexes

and semaphores, as we illustrate in the code below:

//mutex b.mutex

//queue size b.q; initially b.q = 0

//semaphore b.sem; initially b.sem.v = 0

lock(b.mutex)

b.q++

cross = (b.q == n)? true: false

unlock(b.mutex)

//if it is the last thread to reach the barrier

if cross {

//wake up the other threads and proceed

release(b.sem, n-1)

}

else {

//wait until all the threads reach the barrier

acquire(b.sem)

}

Since a barrier can be implemented with mutexes and semaphores, it does not offer any

interesting research challenges, w.r.t. deadlock immunity. Therefore, the Dimmunix proto-

type does not specifically handle barriers.

Java implements barriers in the CyclicBarrier class [Jav, a]. The POSIX Threads library

implements the wait on a barrier in the pthread_barrier_wait routine [Pos, a].
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3.1.9 Message Passing

Message passing frameworks enable different processes on the same machine or different

machines to communicate by exchanging messages. An example of a message passing

framework is the Java Message Service (JMS) [jms, 2004]. JMS provides message queues

that implement the producer-consumer design pattern. A message can be added to a queue

by a producer process and extracted (consumed) from the queue by a consumer process.

By receive(q) we denote that the caller process is synchronously waiting for a message on

queue q; this routine returns the message consumed from q. By send(q, m) we denote that

the caller process sends a message m by appending it to queue q.

Message passing can be viewed a distributed wait-notify scheme. Synchronously re-

ceiving a message is similar to waiting on a condition variable. Sending a message is

similar to notifying a thread. Therefore, deadlocks involving message passing are similar

to deadlocks involving waits and notifications on condition variables; the only difference

is that the former can involve multiple processes (possibly running on multiple machines),

while the latter involve multiple threads of the same process. We describe these wait-notify

deadlocks in §3.3.8.

3.2 Terminology

In this section we explain the terminology we use to describe the concepts related to dead-

lock immunity.

We explain first the terminology related to the notion of deadlock. A deadlock is a

circular chain of waits for resources or events. The entities that are waiting for resources

or events are threads; the threads can belong to different processes, in the case of external

locks. For simplicity, we call a mutex lock, read-write lock, or external lock simply “lock”

when its type is not relevant. The resources are of two types: locks or semaphores. We

introduced previously the notion of acquiring (or holding) a condition variable; this is a

shorthand for saying that the mutex lock associated with the condition variable is acquired

(respectively held). By size of a deadlock, we mean the number of threads involved in the

deadlock.
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By lock inversion, we mean that a lock y is requested while holding a lock x by a

thread t1, and x is requested while holding y by another thread t2. A mutex deadlock always

involves a lock inversion. However, a lock inversion does not necessarily lead to a deadlock.

We explain now the notions of program position and call stack. By program position

(or program location), we refer to any information that identifies a statement in a program,

i.e., source code location or offset in the binary. Program locations have the same meaning

in every execution of the application, unless the code is changed and recompiled, or the

program binary is modified.

To represent the synchronization state of a program, one often uses a resource alloca-

tion graph (RAG). A RAG is a directed graph that connects thread and resource nodes; a

resource node represents a lock or a semaphore. The edges are of three types, as illustrated

in Table 3.2: request edges, hold edges, and wait edges. A request edge is from a thread

node t to a resource node x, i.e., t−→x; this means that thread t is waiting to acquire re-

source x. A hold edge is from a resource node x to a thread node t, i.e., x−→t; this means

that thread t is holding resource x. A wait edge is from a thread node t1 to another thread

node t2 and it is annotated with a condition variable, i.e., t1
c

−→t2; this means that thread t1

is waiting for a notification on condition variable c from thread t2. An edge representing

the request (or acquisition) of a read-write lock in read/write mode is annotated with the

mode, i.e., t
rd/wr
−→ l (l

rd/wr
−→ t); this means that thread t is waiting for (or is holding) the lock l

in read/write mode. To simplify the explanations, we assume that a read-write lock can be

held only in one mode at a time, i.e., either read or write mode; however, Dimmunix also

handles the case when the lock is held in both modes simultaneously.

The RAG edges can also be labeled with program positions or call stacks. For instance,

a request edge t
p

−→x (or t
CS
−→x) denotes that thread t is waiting for resource x at program

position p (respectively with call stack CS). A wait edge t1
c@p
−→t2 means that thread t1 is

waiting at program position p for a notification on condition variable c from thread t2. In

general, the presence of “@p” (or “@CS”) in an edge label means that the event captured

by the label occurred at program position p (respectively with call stack CS).

The semantics of request and hold edges for semaphores are: a request (hold) edge

connecting thread node t and semaphore node s means that thread t waits to acquire (holds)

one permit of semaphore s. To simplify the explanations, we assume that only one permit
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Edge Type Meaning
t−→x request thread t is waiting to acquire resource x

t
rd
−→l request thread t is waiting to acquire read-write lock l in read mode

t
wr
−→l request thread t is waiting to acquire read-write lock l in write mode

x−→t hold thread t is holding resource x

l
rd
−→t hold thread t is holding read-write lock l in read mode

l
wr
−→t hold thread t is holding read-write lock l in write mode

t1
c

−→t2 wait thread t1 is waiting for a notification on condition variable c
from thread t2

Table 3.2: The edges of a resource allocation graph (RAG).

is requested (or held) at a time by one thread; however, Dimmunix also handles the case

when multiple permits are requested (respectively held) simultaneously by one thread. The

semaphore nodes are annotated with the number of available permits, e.g., s(0) denotes a

semaphore s with no available permits.

By x ∈ RAG we denote that node x belongs to the RAG’s nodes; by x−→y ∈ RAG we

denote that the edge x−→y belongs to the RAG’s edges. When the type of nodes x and y is

not specified, x−→y represents an arbitrary edge.

For a RAG, we define the notion of multicycle. A multicycle is a set of nodes M in the

RAG with the property that for every node x ∈ M the set of nodes reachable from x is M.

We use the notation x!y to denote the fact that node y is reachable from node x, i.e., there

is a path from x to y; x!x only holds when x is part of a cycle involving at least two distinct

nodes. Given a subgraph G ⊆ RAG, x
G
!y denotes that there is a path from x to y whose

intermediate nodes all belong to G.

A call stack is an approximation of the running thread’s call flow. A call stack of

size n consists of n call frames (or simply frames) capturing the last n method/function

calls that the running thread is currently executing. The frames contain the program lo-

cations where the calls were initiated. The frames are nested: the method/function from

frame k +1 is executed within the method/function from frame k. In C/C++, the call stack

can be computed using the backtrace() routine; in Java, the call stack is returned by the

Thread.getStackTrace() method. The top frame returned by Thread.getStackTrace() is the
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program location of the instruction that the running thread is currently executing.

We explain now the notion of nested acquisitions of resources (e.g., lock, semaphore);

deadlocks involving only resource acquisitions can only happen when the acquisitions are

nested. Two acquisitions of resources r1 and r2 are nested if and only if one of them is

performed within the scope of the other, i.e., a thread acquires r2 (or r1) while holding r1

(or r2). For instance, the code below illustrates two nested lock acquisitions:

lock(x)

lock(y)

unlock(y)

unlock(x)

By nesting depth (or nesting level) we denote the number of resources held at a particular

program location. For instance, in the above code, the nesting depth is 2 right after lock(y)

executes, 1 right after unlock(y) executes, and 0 at the end. Given two nested resource

acquisitions, we call “inner” the one at the deeper nesting level, and “outer” the one at the

shallower nesting level. Similarly, we call “inner (outer) call stack” the call stack that the

running thread has when it executes the inner (outer) resource acquisition.

3.3 Deadlocks

In this chapter, we define the deadlocks that are fundamentally different from each other,

or at least require fundamentally different deadlock immunity techniques.

There are five types of deadlocks handled by Dimmunix. The first is the mutex dead-

lock (§3.3.1), which involves mutex locks. This type of deadlock is likely to be encountered

most often in real-world software [Lu et al., 2008, Fonseca et al., 2010, Song et al., 2010].

The second is the read-write deadlock (§3.3.2), which involves read-write locks. The third

is the semaphore deadlock (§3.3.3), which involves semaphores. There also exist hybrid

deadlocks, involving mutex locks, read-write locks, and/or semaphores (§3.3.4); Dimmu-

nix handles hybrid deadlocks, too. The fourth is the initialization deadlock (§3.3.5), which

involves class initialization and mutex locks. The fifth is the external deadlock (§3.3.6),

which involves external locks.
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There are also blocked notifications (§3.3.7), which involve condition variables and

mutex locks. A blocked notification is a starvation situation which may lead to deadlock.

Ad-hoc synchronization and thread joins can be reduced to wait-notify schemes using con-

dition variables (§3.1.6, §3.1.7). Therefore, the ad-hoc deadlocks and join deadlocks are

equivalent to blocked notifications, i.e., starvation that may lead to deadlock.

Since blocked notifications are at the frontier between starvation and deadlock, it is not

possible (in the general case) to offer a feasible immunization solution for them. However,

we provide a tentative immunization technique and present its limitations in §6.2.

We also describe the deadlocks that are not handled by the Dimmunix prototype: wait-

notify deadlocks (§3.3.8), self-deadlocks (§3.3.9), and non-deadlock hangs (§3.3.10). A

wait-notify deadlock involves only wait and signal/broadcast calls; this deadlock can be

detected, but it cannot be avoided without changing the semantics of the application (§6.1).

A self-deadlock is not a deadlock per se, because it involves only one thread; it is trivial to

detect, but is not avoidable without changing the semantics of the program (§6.1). A non-

deadlock hang does not involve circular waits for resources or events. Non-deadlock hangs

are hard to detect, and hard to avoid without changing the semantics of the application.

Therefore, the Dimmunix prototype does not handle wait-notify deadlocks, self-deadlocks,

and non-deadlock hangs.

3.3.1 Mutex Deadlocks

A mutex deadlock is a situation where every thread in a group of threads is waiting for

a mutex lock held by other threads in the group. A mutex deadlock is likely the most

frequently encountered type of deadlock, because mutexes are arguably the most widely

used synchronization constructs, as suggested in Table 3.1.

A mutex deadlock leads to a permanent hang of the threads involved if no hang recovery

mechanism is in place (e.g., microreboot [Candea et al., 2004], forced abort). This is

because only the owner of a mutex lock can release the lock.

We illustrate how a mutex deadlock may occur using the code below:
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Thread t1: Thread t2:

lock(l1)

lock(l2)

lock(l2) //blocked here lock(l1) //blocked here

unlock(l2) unlock(l1)

unlock(l1) unlock(l2)

The deadlock involves threads t1 and t2 and mutex locks l1 and l2; it is graphically illustrated

by the RAG in Figure 3.2. The circular wait chain is the following: t1 holds l1 and waits

for l2; t2 holds l2 and waits for l1.

Figure 3.2: A mutex deadlock involving threads t1, t2 and mutex locks l1, l2.

A deadlock involving threads t1, ..., tn and mutex locks l1, ..., ln can be represented as a

simple cycle in the RAG, formed of request and hold edges:

l1 −→ t1 −→ l2 −→ ... tn −→ l1

3.3.2 Read-Write Deadlocks

A read-write deadlock is a situation where every thread in a group of threads is waiting for

a read-write lock held by other threads in the group; if a thread in this group is waiting for

a lock in read mode, then that lock must be held in write mode by some other thread in the

group, in order to have a deadlock.
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A read-write deadlock leads to a permanent hang of the threads involved. This is be-

cause only the owner of a read-write lock can release the lock.

We illustrate two simultaneous read-write deadlocks in the code below:

Thread t1: Thread t2: Thread t3:

lockr(l1)

lockw(l2)

lockr(l1)

lockw(l2) //blocked lockw(l1) //blocked lockr(l2) //blocked

unlockw(l2) unlockw(l1) unlockr(l2)

unlockr(l1) unlockw(l2) unlockr(l1)

The deadlocks involve threads t1, t2, and t3 and read-write locks l1 and l2; they are graphi-

cally illustrated by the RAG in Figure 3.3. The circular waits are the following: In the first

deadlock, t1 holds l1 in read mode and waits to acquire l2 in write mode; t2 holds l2 in write

mode and waits to acquire l1 in write mode. In the second deadlock, t3 holds l1 in read

mode and waits to acquire l2 in read mode; t2 holds l2 in write mode and waits to acquire

l1 in write mode.

Figure 3.3: A multicycle representing two read-write deadlocks involving threads t1, t2, t3
and read-write locks l1, l2.
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A deadlock involving threads t1, ..., tn and read-write locks l1, ..., ln can be represented

as a simple cycle in the RAG, formed of request and hold edges

l1
rd/wr
−→ t1

rd/wr
−→ l2

rd/wr
−→ ... tn

rd/wr
−→ l1

with the property that, for each read mode request edge, the next edge must be a write mode

hold edge:

∀i ∈ 1,n : ti
rd
−→ l(i+1)%n ⇒ l(i+1)%n

wr
−→ t(i+1)%n

By “%” we denote the modulo operator.

3.3.3 Semaphore Deadlocks

A semaphore deadlock is a situation where every thread in a group of threads is waiting to

acquire permits of a semaphore s, and the semaphore does not have enough permits; all the

threads holding permits of s belong to this group.

Since any active thread can release permits for a semaphore s, the following invariant

must hold for s to be involved in a deadlock: a release operation on s is always performed

by threads holding permits of s. In other words, s has to be used as a lock. If the invariant

does not hold, there is no deadlock situation.

We illustrate a semaphore deadlock in the code in Figure 3.4. The deadlock involves

threads t1, t2, and t3 and semaphores s1 and s2; it is graphically illustrated by the RAG in

Figure 3.5. The circular wait chain is the following: t1 holds a permit of s1 and waits for a

permit of s2; t2 holds the only permit of s2 and waits for a permit of s1; t3 holds the other

permit of s1 and waits for a permit of s2.

A deadlock involving threads t1, ..., tn and semaphores s1, ...,sm appears as a multicycle

in a RAG, formed of request and hold edges:

∀x ∈ M = {t1, ..., tn,s1, ...,sm} : ({y ∈ RAG | x!y} = M)

The above property states what it means for M to be a multicycle: every node y reachable

from a node x ∈M belongs to M. For the semaphore nodes, we omitted the labels indicating

the number of available permits; all these labels are 0, i.e., semaphore si appears as s
(0)
i in
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//semaphore s1 has 2 permits; semaphore s2 has 1 permit

Thread t1: Thread t2: Thread t3:

acquire(s1)

acquire(s2)

acquire(s1)

acquire(s2)//blocked acquire(s1)//blocked acquire(s2)//blocked

release(s2) release(s1) release(s2)

release(s1) release(s2) release(s1)

Figure 3.4: Code illustrating a semaphore deadlock.

Figure 3.5: A semaphore deadlock involving threads t1, t2, t3 and semaphores s1, s2.

the RAG.

3.3.4 Hybrid Deadlocks

A hybrid deadlock is a deadlock involving mutex locks, read-write locks, and/or sema-

phores. In other words, it generalizes mutex deadlocks, read-write deadlocks, and sema-

phore deadlocks.

In the RAG, a hybrid deadlock is represented as a “relaxed” form of a multicycle, where

escape paths (i.e., paths that do not belong to the multicycle) are allowed for read-write lock

nodes. For semaphore nodes, no escape paths are allowed. We illustrate a hybrid deadlock

in the RAG in Figure 3.6, having one escape path (i.e., l2
rd
−→t4).
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More precisely, a hybrid deadlock is a subgraph M ⊆ RAG having the following prop-

erties:

1. M is a cycle.

2. Within M, read mode request edges must be followed by write mode hold edges.

3. No escape paths are allowed for semaphore nodes.

Formally, the three properties can be expressed as:

1. ∀t ∈ M : t
M
!t

2. ∀t
rd
−→lrw ∈ M : (∃lrw

wr
−→t ′ ∈ M)

3. ∀t−→s(k) ∈ M : k = 0∧ (∀s−→t ′ ∈ RAG : t ′ ∈ M)

where t and t ′ are thread nodes, lrw is a read-write lock node, and s(k) is a semaphore node

with k available permits. For a semaphore node, we omit the number of available permits

when it is not relevant.

Additionally, for a semaphore s to be involved in a hybrid deadlock, the invariant men-

tioned in §3.3.3 must hold, i.e., s is always released by threads holding permits of s.

3.3.5 Initialization Deadlocks

Initialization deadlocks involve class initialization and mutex locks. They can occur only in

languages like Java and C#, that allow programmers to define static initializers for classes.

A static initializer of a class A is a piece of code that executes right after A is loaded,

and before an object of type A is created (or a static field/method of A is used) for the

first time. Dimmunix does not handle initialization deadlocks involving read-write locks

or semaphores, because such deadlocks do not offer any new insights, w.r.t. deadlock

immunity.

We illustrate an initialization deadlock in the Java code in Figure 4.4. Thread t1 holds

B.x and is waiting for class A to initialize right before creating an object of type A. Thread

t2 executes A’s static initializer right before creating an object of type A and is waiting to

acquire B.x inside the initializer.
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Figure 3.6: A hybrid deadlock involving threads t1, t2, t3, t4, mutex lock l1, read-write lock
l2, and semaphore s1.

class A {

static { //static initializer

synchronized (B.x) { //blocked here (t1 holds B.x)

}

}

}

Thread t1: Thread t2:

synchronized (B.x) {

A a2 = new A(); //initializing A

A a1 = new A(); //waiting for A to initialize

}

Figure 3.7: Code illustrating an initialization deadlock.

The invocation of the static initializer of a class A is conceptually equivalent to inserting

the code in Figure 3.8 before each statement that may trigger A’s initialization (e.g., a “new

A()” statement).
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//initially initializedA = false

synchronized (initLockA) {

if (!initializedA) {

Class.forName("A"); //load and initialize class A

initializedA = true;

}

}

A a = new A();

Figure 3.8: Code equivalent to initializing class A before A is used for the first time.

The above transformation shows that initialization deadlocks can be represented as mu-

tex deadlocks. Therefore, initialization deadlocks are equivalent to mutex deadlocks.

However, waiting for a class to initialize cannot be considered an explicit synchro-

nization mechanism, because class initialization is (usually) not explicitly invoked. Class

initialization is triggered automatically by the runtime (e.g., JVM, .NET CLR) when it

invokes a constructor/method or uses a field of a class that is not yet loaded. The syn-

chronization involved in class initialization is hidden in the runtime, i.e., not exposed to

the programmer. Since initialization deadlocks are caused by such hidden synchronization,

they require a different immunization technique from that used for mutex deadlocks.

Initialization deadlocks are representative of deadlocks involving synchronization hid-

den in the runtime. The challenge specific to these deadlocks is intercepting the hidden

synchronization performed by the runtime. Dimmunix intercepts the hidden synchroniza-

tion involved in class initialization without changing the runtime (§9.1). However, this may

not be possible for all types of “hidden” deadlocks.

3.3.6 External Deadlocks

External deadlocks involve synchronization on external locks, e.g., file locks. Therefore,

these deadlocks may occur among threads from different processes. The Dimmunix pro-

totype only handles file locks, but other types of external locks can be easily plugged into

Dimmunix.

Threads can deadlock when acquiring file locks, as shown in the code below:
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//f1 and f2 are files

Thread t1: Thread t2:

lock(f1) //acquire lock on f1

lock(f2) //acquire lock on f2

lock(f2) //blocked here lock(f1) //blocked here

unlock(f2) unlock(f1)

unlock(f1) unlock(f2)

External deadlocks are equivalent to mutex deadlocks, but the fact that external locks

are shared among processes calls for a fundamentally different immunization technique:

the synchronization state (i.e., the RAG) has to be shared among processes.

3.3.7 Blocked Notifications

A blocked notification is a situation where a notifier thread tn that is supposed to resume a

waiter thread tw cannot perform the notification, because it needs to acquire a mutex lock l

held by tw, before signaling tw. A deadlock situation occurs if thread tn is the only notifier

or all the notifier threads are waiting to acquire lock l; otherwise, the blocked notification

represents just a starvation situation, i.e., thread tw starves thread tn by holding lock l while

waiting on a condition variable.

In general, having a thread tw hold a lock l while waiting on a condition variable is a

bad design; tw may starve threads that need to acquire lock l, because waits for events (or

updates of a shared state) can last indefinitely. Therefore, a blocked notification is not a

deadlock per se; it is a starvation situation that may lead to deadlock. Determining whether

a blocked notification represents a deadlock is undecidable.

Blocked notifications involving a waiter thread tw, a notifier thread tn, a mutex lock l,

and a condition variable c can have 8 different patterns, corresponding to all the ways in

which the critical sections of l and c can be arranged to have a blocked notification. The

first pattern is:
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Thread Tw: Thread Tn:

lock(l)

lock(c)

wait(c) lock(l)

unlock(c) unlock(l)

unlock(l) lock(c)

signal/broadcast(c)

unlock(c)

We illustrate graphically the above pattern in the RAG in Figure 3.9. Thread tw executes

the wait(c) call while holding l, and thread tn needs to acquire l before executing sig-

nal/broadcast(c).

Figure 3.9: A blocked notification involving threads tw, tn, mutex lock l, and condition
variable c.

The second blocked notification pattern is:

Thread Tw: Thread Tn:

lock(l)

lock(c)

wait(c) lock(c)

unlock(c) lock(l)

unlock(l) unlock(l)

signal/broadcast(c)

unlock(c)

The third pattern is:
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Thread Tw: Thread Tn:

lock(l)

lock(c)

wait(c) lock(l)

unlock(c) lock(c)

unlock(l) signal/broadcast(c)

unlock(c)

unlock(l)

The fourth pattern is:

Thread Tw: Thread Tn:

lock(l)

lock(c)

wait(c) lock(c)

unlock(c) lock(l)

unlock(l) signal/broadcast(c)

unlock(l)

unlock(c)

The other 4 patterns are similar to the 4 above, with the difference that in thread tw the

critical section of c wraps the critical section of l, as in:

Thread Tw:

lock(c)

lock(l)

wait(c)

unlock(l)

unlock(c)

We propose a technique that can detect all the 8 patterns, but can avoid only the patterns

where the critical section of l appears before the critical section of c in thread tn (§6.2).

A blocked notification involving threads tw and tn, mutex lock l, and condition variable

c can be defined as a cycle in a RAG formed of request, hold, and wait edges:

l −→ tw
c

−→ tn −→ l
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Figure 3.9 graphically illustrates this cycle.

3.3.8 Wait-Notify Deadlocks

A wait-notify deadlock is a situation where a group of threads (or processes) wait to be no-

tified by (respectively receive messages from) one or more threads (respectively processes)

from the same group. A wait-notify deadlock involves condition variables or message pass-

ing.

We illustrate in Figure 3.10 a wait-notify deadlock involving condition variables: Threads

t1 and t2 wait on condition variables c1 and c2. If the only thread that can resume threads

waiting on c1 (respectively c2) is t2 (respectively t1), the two threads are deadlocked. We

graphically illustrate this deadlock in Figure 3.11.

//condition variables c1, c2

Thread t1: Thread t2:

lock(c1)

wait(c1) //deadlocked here

unlock(c1)

lock(c2)

wait(c2) //deadlocked here

unlock(c2)

lock(c2) lock(c1)

signal(c2) signal(c1)

unlock(c2) unlock(c1)

Figure 3.10: Code illustrating a wait-notify deadlock.

Figure 3.11: A wait-notify deadlock involving threads t1, t2 and condition variables c1, c2.

Processes exchanging messages can deadlock as illustrated in Figure 3.12. The pro-

cesses p1 and p2 wait for a message on the empty queues q1 and q2. If the only process
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that can add messages to q1 (respectively q2) is p2 (respectively p1), the two processes are

deadlocked.

//message queues q1, q2; both are empty

Process p1: Process p2:

m1 = receive(q1) m1 = receive(q2)

//new message m2 //new message m2

send(q2, m2) send(q1, m2)

Figure 3.12: Wait-notify deadlock involving message passing.

Dimmunix can detect wait-notify deadlocks, but cannot avoid them. Dimmunix avoids

deadlocks by only altering the thread schedule, without changing the program’s semantics.

Wait-notify deadlocks cannot be avoided by just altering the thread schedule, as we explain

in §6.1.

3.3.9 Self-Deadlocks

Self-deadlocks can occur when using non-reentrant synchronization constructs. If a re-

source acquisition is not reentrant, the caller thread can self-deadlock if it attempts to

re-acquire a resource that it already holds. For instance, a POSIX Threads mutex is non-

reentrant by default; therefore, the application will self-deadlock if a mutex is not set as

reentrant and is used in a reentrant way.

Dimmunix can detect self-deadlocks, but cannot avoid them. Avoiding self-deadlocks

requires altering the semantics of the application (§6.1).

3.3.10 Non-Deadlock Hangs

Non-deadlock hangs do not involve circular waits; they are caused by infinite loops or

missed notifications/events.

Notifications can be missed due to data races, as we show in the code below:
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Thread Tw: Thread Tn:

while running { //terminate application

running = false

lock(c)

signal(c)

unlock(c)

lock(c)

wait(c)

unlock(c)

//process event

}

Since the shared variable running is not protected by any lock, the following data race can

occur: thread tn sets running = false to stop the event processing thread tw; if the threads

interleave as shown above, thread tw still “believes” that running = true, and the notification

is missed, because it occurs prior to the wait call. Since the application was already shut

down, no events are going to happen. Therefore, tw will hang indefinitely.

Dimmunix does not handle non-deadlock hangs. To accurately detect these hangs, and

soundly avoid them, semantic knowledge about the application is needed.

3.4 Dimmunix Overview

Programs augmented with a deadlock immunity system develop “antibodies” matching

previously encountered deadlocks, and rely on the antibodies to avoid reoccurrences of

these deadlocks. With every new deadlock encountered by the program, its resistance to

deadlocks is improved, because there is one more deadlock.

The notion of deadlock signature is essential to Dimmunix. A deadlock signature is

what we called before a deadlock fingerprint—an abstraction of the execution flow that led

to deadlock. A deadlock signature must be formed of elements that have the same meaning

in any execution of the program. Such elements are the program positions and the call

stacks. By instantiation of a deadlock signature, we refer to an execution flow that matches

the signature.
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To avoid deadlocks, Dimmunix alters the thread schedule by temporarily suspending

threads, i.e., making them yield. The effect of yielding is code serialization, i.e., making

some code execute sequentially, rather than concurrently.

Dimmunix has two modules, one for deadlock detection and one for deadlock avoid-

ance, as illustrated in Figure 3.13. The detection module updates the RAG upon each

synchronization operation; the RAG captures the application’s synchronization state. We

call the RAG maintained by the detection module “detection RAG” (i.e., RAGdet). When a

deadlock occurs, we assume that the program is forcefully terminated, either manually by

the user or automatically by a watchdog process/thread. Right before the program termi-

nates, the detection module inspects the RAG for deadlocks, i.e., checks for cycles in the

RAG. If it finds a deadlock, the detection code extracts the signature of the deadlock and

stores it in a persistent deadlock history.

Figure 3.13: The architecture of Dimmunix.

The avoidance module prevents reoccurrences of previously encountered deadlocks,

using the signatures from the history. More precisely, Dimmunix avoids instantiations

of these signatures, i.e., it prevents execution flows that match these signatures. For a

deadlock to occur, its signature must be instantiated. Therefore, by avoiding instantiations

of a deadlock’s signature, Dimmunix avoids occurrences of that deadlock.

Deadlock avoidance is performed before a resource is acquired; whenever a thread
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would instantiate a deadlock signature if allowed to proceed with the resource acquisi-

tion, Dimmunix suspends the thread. For instance, the code that avoids mutex deadlocks

executes before mutex acquisition statements. If a mutex acquisition would lead to the in-

stantiation of a deadlock signature, Dimmunix delays the acquisition; otherwise, it allows

the program to proceed.

Dimmunix keeps the synchronization state relevant to deadlock avoidance in a separate

RAG; we call it “avoidance RAG” (i.e., RAGav). The avoidance RAG is decoupled from the

detection RAG, and enables Dimmunix to deterministically avoid previously encountered

deadlocks.

Dimmunix must update the avoidance RAG upon each synchronization operation (i.e.,

online), whereas the detection RAG can be updated offline (i.e., when the program termi-

nates) or periodically. The reason is that the deadlock detection can be performed offline

or periodically, while the avoidance must be done online.

The calls into Dimmunix can be directly instrumented into the target binary or can

reside in the synchronization library. We discuss various layers where Dimmunix can be

implemented in §6.5.

Dimmunix runs in the user space, within the address space of the target program, as we

illustrate in Figure 3.13. There is a different instance of Dimmunix running withing each

process. For all the synchronization constructs (except external locks), the synchroniza-

tion state is visible only within the currently running process. The synchronization state

corresponding to external locks is shared by all the processes.
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Observing and Learning Deadlock

Fingerprints

In this chapter, we describe one proposed technique for deadlock detection and for the

extraction of deadlock signatures. First, we describe the general technique used to detect

deadlocks and generate their signatures (§4.1). Then, we describe how Dimmunix detects

mutex, read-write, and semaphore deadlocks and extracts their signatures (§4.2). Finally,

we explain the deadlock detection and signature generation for initialization deadlocks

(§4.3) and external deadlocks (§4.4).

4.1 Overview

In order to detect deadlocks, Dimmunix needs to maintain the synchronization state in a

resource allocation graph (RAG). Dimmunix intercepts each synchronization operation and

updates the RAG based on that operation. There are some synchronization operations that

need multiple interception points; for instance, a resource acquisition operation needs to be

intercepted right before its execution and right after its completion.

The deadlock detection consists of finding (multi)cycles in the RAG. To be able to

generate the deadlock signatures, Dimmunix retrieves at runtime the program position (or

call stack up to a predefined depth, if more accuracy is needed) of each synchronization

operation.

47
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Right before the program is forcefully terminated, Dimmunix detects deadlocks, ex-

tracts their signatures, and saves them in the persistent history. Optionally, Dimmunix

could detect deadlocks periodically, and automatically terminate the program when it de-

tects a deadlock.

The deadlock recovery mechanisms is orthogonal to Dimmunix; therefore, we chose

the simple solution of detecting deadlocks upon program termination. This is good enough

for desktop applications, because the user terminates the application when he/she notices

that the application hangs. Automated deadlock recovery is needed only for self-managing

applications, like servers. Dimmunix could provide a hook in the deadlock detection code,

for such programs to define more sophisticated deadlock recovery methods; the hook can

be invoked right after the deadlock signature is saved. For instance, plugging Rx’s check-

point/rollback facility [Qin et al., 2007] into this application-specific deadlock resolution

hook could provide application-transparent deadlock recovery.

4.2 Detection of Mutex, Read-Write, and Semaphore Dead-

locks

In this section, we explain how Dimmunix detects mutex, read-write, and semaphore dead-

locks, and generates their signatures (§4.2.1); then, we illustrate the detection and signature

generation with an example (§4.2.2); finally, we discuss the correctness of our approach

(§4.2.3).

4.2.1 Deadlock Detection and Signature Generation

To be able to detect mutex, read-write, and semaphore deadlocks, Dimmunix intercepts the

resource acquisition/release operations and updates the RAG accordingly. The interception

is illustrated in Figure 4.1. Right before a mutex lock l, read-write lock lrw, or semaphore s

is requested by a thread t, with call stack CS, Dimmunix adds a request edge annotated with

CS to the RAG, i.e., t
CS
−→l, t

CS
−→lrw, or t

CS
−→s. Right after the lock/semaphore is acquired,

Dimmunix turns the request edge into a hold edge, i.e., l
CS
−→t, lrw

CS
−→t, or s

CS
−→t. Right

before a resource is released, the corresponding hold edge is removed from the RAG.
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Figure 4.1: Dimmunix intercepts resource acquisition/release operations and updates the
RAG.

Dimmunix detects deadlocks involving mutex locks, read-write locks, or semaphores

with a unified detection algorithm, that can detect also hybrid deadlocks. Hybrid deadlocks

are a generalization of mutex, read-write, and semaphore deadlocks.

We describe the deadlock detection in the getDeadlock routine from Algorithm 1. To

check if a thread node t is in a deadlock, Dimmunix calls getDeadlock(t, t); the routine

explores paths in the RAG recursively, starting from t. If a deadlock is found, the routine

returns a cycle. Essentially, the algorithm checks at each point if there exist paths in the

RAG that return to t; if they exist, it returns one of these paths (lines 1–12). The following

properties must hold along all the paths of a multicycle: (1) for read-write locks, a read-

mode request edge t
rd
−→lrw must be followed by a write-mode hold edge lrw

wr
−→t ′ (line 4);

(2) for a semaphore request edge t−→s, semaphore s must have no available permits, and

thread t must be reachable from all the threads holding permits of s (line 10). We omit the

edge labels, as they are not relevant for deadlock detection.

The signature of a deadlock consists of the outer and inner call stacks of the resource

acquisition operations involved in the deadlock, i.e., the edge labels along the cycle returned

by the getDeadlock routine. Assume getDeadlock returns the cycle {t1
CSin

1−→r2, ..., tn
CSin

n−→

r1,r1
CSout

1−→t1, ...,rn
CSout

n−→tn} representing a deadlock involving threads t1, ..., tn and resources

r1, ...,rn; CSin
1 , ...,CSin

n are the inner call stacks, i.e., the call stacks threads t1, ..., tn−1, tn had

at the time of the deadlock, when waiting for resources r2, ...,rn,r1; CSout
1 , ...,CSout

n are the

outer call stacks, i.e., the call stacks that threads t1, ..., tn had when they acquired resources
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Input: Current thread node t; Destination thread node td. Initially, t = td.
Data: The RAG; threads t ′, t ′′, mutex lock l, read-write lock lrw, semaphore s with k

permits (i.e., s(k)) are nodes in the RAG.
Output: A cycle containing td; if no cycle is found, return /0.
if ∃t−→l, l−→t ′ ∈ RAG s.t. t ′!td ∨ t ′ = td then1

return {t−→l, l−→t′}∪getDeadlock(t′, td)2

end3

if ∃t
rd
−→lrw, lrw

wr
−→t ′ ∈ RAG s.t. t ′!td ∨ t ′ = td then4

return {t
rd
−→lrw, lrw

wr
−→t′}∪getDeadlock(t′, td)5

end6

if ∃t
wr
−→lrw, lrw

rd/wr
−→ t ′ ∈ RAG s.t. t ′!td ∨ t ′ = td then7

return {t
wr
−→lrw, lrw

rd/wr
−→ t′}∪getDeadlock(t′, td)8

end9

if ∃t−→s(k),s(k)−→t ′ ∈ RAG s.t. k = 0∧ (∀s−→t ′′ ∈ RAG : t ′′!td ∨ t ′′ = td) then10

return {t−→s,s−→t′}∪getDeadlock(t′, td)11

end12

return /013

Algorithm 1: getDeadlock(t, td): finds a cycle in the RAG containing thread node td;
initially, t = td .

r1, ...,rn. The signature of the deadlock is:

{(CSout
1 ,CSin

1 ), ...,(CSout
n ,CSin

n )}

For mutex deadlocks, Dimmunix uses call stack suffixes in the signature; for non-mutex

deadlocks, it uses only program positions, i.e., call stack suffixes of depth 1. As we explain

in §6.3, call stacks of depth > 1 are needed only for mutex deadlocks, to have higher

accuracy in the deadlock avoidance.

The top frames of the outer and inner call stacks of a deadlock signature are the lock

statements involved in the deadlock. We assume that these statements uniquely delimit the

deadlock bug, i.e., if a deadlock involves different outer and/or inner lock statements, then

it represents a different deadlock bug. In other words, we assume that all the manifestations

of a deadlock bug involve the same outer and inner lock statements.

For a semaphore acquisition at program position p to be considered as part of a deadlock
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bug, Dimmunix checks if the following invariant holds: every semaphore s acquired at p

is released by a thread that owns permits of s. This invariant is stronger than the one

introduced in §3.3.3. The advantage of using this invariant is that it can be evaluated across

multiple program executions, because the meaning of a program position is the same in any

execution. If the program breaks the invariant, the deadlock signatures containing position

p are removed from the history.

4.2.2 An Example

We illustrate the deadlock detection and signature generation on a simple example. Con-

sider the code below:

Thread t1: Thread t2:

void run () { void run() {

lock(l1) //position p1

lock(l2) //position p2

f(l2) f(l1)

unlock(l1) unlock(l2)

} }

void f(arg) {

lock(arg) //position p3, both threads are deadlocked here

unlock(arg)

}

If thread t1 holds mutex l1 and thread t2 simultaneously holds mutex l2, the two threads

deadlock. The outer lock statements are at program positions p1 and p2; the inner lock

statements are at position p3. The outer call stacks are CSout
1 = [p1] and CSout

2 = [p2]. The

inner call stacks are CSin
1 = [p1, p3] and CSin

2 = [p2, p3], where p3 is the top frame.

The RAG is updated as follows. Right before thread t1 (or t2) executes lock(l1) (respec-

tively lock(l2)), Dimmunix adds the request edge t1
[p1]
−→l1 (respectively t2

[p2]
−→l2) to the RAG.

Right after t1 (or t2) acquires l1 (respectively l2), Dimmunix turns the request edge into the

hold edge l1
[p1]
−→t1 (respectively l2

[p2]
−→t2). Right before t1 (or t2) releases l1 (respectively
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l2), Dimmunix removes the hold edge from the RAG. The RAG updates triggered by the

lock/unlock statements within function f are similar.

The signature of this mutex deadlock is formed of the outer and inner call stacks:

{([p1], [p1, p3]),([p2], [p2, p3])}

4.2.3 Correctness Argument

The non-trivial aspects regarding the correctness of the deadlock detection are the ones

related to the consistency of the RAG. The RAG updates do not execute atomically with

the synchronization operations. Inconsistencies could happen if a hold edge l−→t would

be removed after mutex l is released. If l is acquired in the meanwhile by another thread t ′,

the new hold edge l−→t ′ may appear in the RAG together with the edge l−→t. This means

that mutex l may appear in the RAG with two owners, i.e., threads t and t ′.

The RAG updates have to be consistent with the partial order defined by the semantics

of mutex acquisition/release primitives. The release of a mutex always precedes a new

acquisition of the mutex; the same order has to be ensured by the RAG updates, i.e., a hold

edge l−→t has to be removed from the RAG before a new hold edge l−→t ′ is introduced

into the RAG. Dimmunix preserves this partial order by removing the hold edge l−→t

before mutex l is released.

The deadlock detection algorithm that we presented does not have false positives (FPs),

even if the user kills the application abruptly (e.g., by using “kill -9”). A FP means that a

deadlock is detected even if the program does not deadlock. If no lock inversion happens,

the detection algorithm cannot find any deadlock. Without loss of generality, consider the

lock inversion in Figure 4.2. No matter when the user kills the application, edges l1−→t1,

t1−→l2, l2−→t2, and t2−→l1 cannot exist simultaneously in the RAG, because the RAG

updates are synchronous (i.e., they are not executed in a separate thread).

However, there may be false negatives if the user kills the application when it is about

to deadlock. More precisely, this happens when the inner lock statements that would lead

to deadlock are not yet executed when the application is killed. We believe this is a minor

inconvenience, because it is unlikely that a user terminates an application exactly when a

deadlock is about to occur.
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Thread t1: Thread t2:

lock(l1)

lock(l2)

unlock(l2)

unlock(l1)

lock(l2)

lock(l1)

unlock(l1)

unlock(l2)

Figure 4.2: Code illustrating a lock inversion.

Remember that a hybrid deadlock is a multicycle. In order to avoid a multicycle, it

is enough to break only one cycle from the multicycle. Therefore, it is sufficient for the

deadlock detection routine to return one cycle.

4.3 Detection of Initialization Deadlocks

Initialization deadlocks involve class initialization and mutex locks; to detect such dead-

locks, Dimmunix needs to monitor class initialization and the acquisitions/releases of mu-

tex locks. The RAG updates performed upon acquisitions/releases of locks were already

explained in §4.2.

The RAG updates performed upon class initialization are illustrated in Figure 4.3. The

invocation of class C’s initializer is conceptually equivalent to synchronizing on a mutex

lC associated with C (§3.3.5). When class C is being loaded on behalf of a thread t, and

C’s initializer is about to start, Dimmunix adds the request edge t
C

−→lC to the RAG. The

edge is annotated with the name of the class. Right after C’s initializer starts, Dimmunix

turns the request edge into the hold edge lC
C

−→t. Right after C’s initializer returns, Dim-

munix removes the hold edge from the RAG. Even if the hold edge is removed after the

initialization, the RAG is in a consistent state, because the initializer is invoked only once.

Consider an initialization deadlock involving threads t1 and t2, mutex l, and class C’s

initializer, as illustrated in the code in Figure 4.4. Thread t1 acquired mutex l at program

position p, and is waiting for C to initialize. Thread t2 runs C’s initializer, and is waiting
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Figure 4.3: Updating the RAG to detect initialization deadlocks.

for l inside the initializer. The signature of this deadlock is:

(p,C)

The presence of class C’s name in the signature means that the deadlock involved class

C’s initialization. Conceptually, using class C’s name in the signature is similar to using

the program position corresponding to the first statement of C’s initializer. Dimmunix uses

program positions instead of call stacks for this type of deadlock, because it is not necessary

to have an accurate deadlock avoidance (§6.3).

class C {

static { //lock(lC)

lock(l) //t2 deadlocked here

unlock(l)

} //unlock(lC)

}

Thread t1: Thread t2:

lock(l) //position p

new C() //initializing C

new C() //deadlocked here, waiting for C to initialize

unlock(l)

Figure 4.4: Code illustrating an initialization deadlock.
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4.4 Detection of External Deadlocks

Conceptually, external deadlocks are a form of mutex deadlocks; however, there is a fun-

damental difference between the two: external deadlocks can happen between multiple

processes, because the external locks are shared by all the processes.

Therefore, the detection and avoidance mechanisms are fundamentally different, com-

pared to mutex deadlocks—a process-shared synchronization state is needed. To share the

synchronization state among processes, Dimmunix uses a database backed by a SQL server.

Dimmunix handles external deadlocks involving file locks; each time a file f is locked

(unlocked), Dimmunix updates a process-shared RAG, as depicted in Figure 4.5. Concep-

tually, the RAG updates, the deadlock detection, and the signature extraction are similar

to the ones described in §4.2 for mutex deadlocks. However, there is a fundamental dif-

ference: to update the RAG and detect deadlocks, Dimmunix needs to access the process-

shared synchronization state.

Figure 4.5: Updating the process-shared RAG to detect external deadlocks.

Dimmunix stores the synchronization state in a database backed by a SQL server, as

follows: There is a table Edges storing the RAG edges, with columns tid, pid, state, file,

and pos, encoding the attributes of an edge: thread id, process id, synchronization state

(i.e., request, hold), the name of the file whose lock is requested (held), and the program

position where the file is locked. The RAG updates are simple SQL queries that add,

modify, or delete records in the Edges table. Also the deadlock history is shared among

processes. The SQL server stores the shared history in the History table.

Dimmunix handles external deadlocks involving two threads, from possibly different

processes. Consider a deadlock involving threads t1, t2 and files f1, f2, i.e., f1 −→ t1 −→
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f2 −→ t2 −→ f1. To detect the deadlock and extract its signature, Dimmunix sends the

following query to the SQL server:

insert into History select e1.pos, e2.pos, e3.pos, e4.pos

from Edges e1, Edges e2, Edges e3, Edges e4 where

e1.state = ’hold’ and e2.state = ’request’ and

e3.state = ’hold’ and e4.state = ’request’ and

e1.tid = e2.tid and e1.pid = e2.pid and e2.file = e3.file and

e3.tid = e4.tid and e3.pid = e4.pid and e4.file = e1.file and

e1.file != e3.file and (e1.tid != e3.tid or e1.pid != e3.pid)

In the above SQL query, e1, ...,e4 denote the four edges of the cycle, i.e. f1
pout

1−→t1, t1
pin

1−→ f2,

f2
pout

2−→t2, and t2
pin

2−→ f1, where pin
1 and pin

2 are the positions of the inner lock statements, and

pout
1 and pout

2 are the positions of the outer lock statements. The signature of the deadlock

is:

{(pout
1 , pin

1 ),(pout
2 , pin

2 )}

For the signatures, program positions (rather than call stacks) are sufficient, since accuracy

is not necessary for the deadlock avoidance (§6.3). Detecting external deadlocks involving

a given number n > 2 of threads is similar. Since Lu et al. [2008] showed that a deadlock

usually involves 2 threads, the Dimmunix prototype handles only external deadlocks of

size 2 (i.e., involving 2 threads). For the same reason, handling external deadlocks of an

arbitrary size is not necessary.

The deadlock detection approach illustrated above works also for distributed dead-

locks, because the process-shared RAG is updated online, i.e., upon each file lock acquisi-

tion/release. The SQL server can reside on a dedicated machine; applications running with

Dimmunix on different machines can update the shared synchronization state and detect

deadlocks by querying the remote SQL server.

Updating the process-shared RAG online is expensive, as we show in §10.2. Therefore,

we use the offline detection mechanism described below:

• Dimmunix maintains locally (within a Java process) for each thread t two per-thread

queues storing the synchronization state relevant to t: (1) t.reqs stores the file locks

requested and not acquired yet by t, and (2) t.acqs stores the file locks held by t.
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An item of a queue is a tuple ( f , p), where f is the file whose lock is requested

(or held) and p is the program position where f was requested; the position of the

acquisition is the same as the request position. A release operation on file f ’s lock

cancels the corresponding acquisition of f ’s lock, i.e., removes the tuple (t, f.acqPos)

from t.acqs, where f.acqPos is the program position where f ’s lock was acquired.

• When the application terminates, Dimmunix uploads for each thread t the queues

t.reqs and t.acqs to the SQL server. More precisely, for each tuple ( f , p) from t.reqs

(or t.acqs) Dimmunix sends a query to the SQL server to add the request edge t
p

−→ f

(respectively the hold edge f
p

−→t) to the RAG. Then, Dimmunix sends the deadlock

detection query shown above to the SQL server.

The offline deadlock detection substantially improves Dimmunix’s performance (compared

to the online detection), because maintaining the two queues is cheap (§10.2).



Chapter 5

Avoiding Known Deadlocks at Runtime

In this chapter, we explain how Dimmunix modifies dynamically the thread schedule to

deterministically avoid previously encountered deadlocks. First, we give an overview of the

avoidance mechanism (§5.1). Then, we explain the avoidance of previously encountered

deadlocks that involve mutexes, read-write locks, and/or semaphores (§5.2). Finally, we

explain how Dimmunix avoids previously encountered initialization deadlocks (§5.3) and

external deadlocks (§5.4).

5.1 Overview

Remember from §4.1 that the signature of a deadlock approximates execution flows leading

to that deadlock. The signature of a mutex deadlock consists of call stacks. The signatures

of non-mutex deadlocks consist of program positions.

We define the notions of signature match and signature instantiation. A signature match

is an execution flow matching a signature from history. A signature instantiation is a sig-

nature match where all the threads hold (or are committed to wait for) the resources they

requested when matching the signature.

More precisely, a program instantiates a deadlock signature S if there is a group of

threads that simultaneously hold (or wait for) resources at program positions (or with call

stacks) that belong to S. If at least one thread is not yet committed to wait for the resource

it requested (i.e., it just called or is about to call the resource acquisition routine), S is only

58
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matched, but not instantiated. For some deadlock types (e.g., mutex deadlocks), not all the

elements of a signature are involved in signature matching. For instance, only the outer call

stacks of a mutex deadlock signature are matched against the program execution.

To avoid deadlocks that were previously encountered, Dimmunix avoids instantiations

of their signatures. To avoid instantiations of a signature S, Dimmunix prevents the execu-

tion flows matching S from turning into instantiations of S.

Dimmunix avoids deadlocks by delaying resource acquisitions. The avoidance code

executes right before the resource acquisition/release operations. When a thread t is about

to acquire a resource r at a program position (or with a call stack) that was previously

involved in a deadlock, i.e., it is part of a signature from the history, Dimmunix decides to

either allow t to proceed with the acquisition, or suspend t. If thread t would instantiate

a deadlock signature if allowed to proceed, Dimmunix suspends t. If thread t would not

instantiate any signature, Dimmunix allows t to proceed with the acquisition. When thread

t is about to release resource r, Dimmunix resumes the threads that are yielding (i.e., are

suspended by Dimmunix) due to signature instantiations involving t.

5.2 Avoidance of Deadlocks Involving Mutexes, Read-Write

Locks, and/or Semaphores

In this section, we describe the algorithm Dimmunix uses to avoid mutex, read-write, and

semaphore deadlocks (§5.2.1); then, we illustrate the avoidance on an example (§5.2.2);

finally, we discuss the correctness of the avoidance algorithm (§5.2.3).

5.2.1 Deadlock Avoidance

In this section, we describe the avoidance mechanism for hybrid deadlocks (i.e., deadlocks

involving mutexes, read-write locks, and/or semaphores), because they are a generalization

of mutex, read-write, and semaphore deadlocks.

To avoid hybrid deadlocks, Dimmunix intercepts resource acquisition/release opera-

tions, as we illustrate in Figure 5.1. When a thread t requests a resource x, Dimmunix
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decides to allow t to proceed if the acquisition of x would not instantiate any deadlock sig-

nature from the history; otherwise, Dimmunix makes t yield until the acquisition of x no

longer risks instantiating any signature from the history. If the decision is “allow”, t can

proceed with the acquisition of x, and Dimmunix adds an allow edge t
A

−→x to the avoid-

ance RAG; the allow edge is labeled with the call stack CS that t currently has, i.e., t
A@CS
−→ x.

When thread t is about to release x, Dimmunix removes the allow edge from the avoidance

RAG; therefore, the meaning of the allow edge is that t was allowed to acquire or holds x. If

the decision is “yield”, it means that thread t would be involved in a signature instantiation

if allowed to proceed; therefore, t yields, and Dimmunix adds a yield edge t
Y

−→t ′ to the

avoidance RAG for each thread t ′ (̸= t) involved in the signature instantiation. The labeling

of yield edges is described later in this section.

Figure 5.1: Interception of resource acquisition and release operations enables the avoid-
ance of deadlocks.

The avoidance RAG is completely decoupled from the detection RAG. More precisely,

the avoidance code maintains the allow and yield edges independently from the detection

code, which maintains the request, hold, and wait edges. We denote by RAGav the avoid-

ance RAG.

Dimmunix avoids deadlocks that it previously detected by avoiding instantiations of

their signatures stored in the history. To find instantiations of a deadlock signature S, Dim-

munix matches the program execution against the outer call stacks of S, up to a predefined

matching depth (e.g., 10). A matching depth of 1 would imply that only the top frames

of S’s outer call stacks are compared; the top frames of S’s call stacks are the outer and

inner resource acquisition statements involved in the deadlock. Since a deadlock bug is
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uniquely delimited by the top frames of its signature (i.e., a signature with different top

frames represents a different deadlock), a matching depth of 1 enables Dimmunix to avoid

any manifestation of the deadlock that S represents, albeit with too much generality (i.e.,

even deadlock-free executions might appear as being matches). We discuss the matching

accuracy in more detail in §6.3.

We define now in detail what it means for a signature to be instantiated. The instan-

tiation I of a deadlock signature S = {(CSout
1 ,CSin

1 ), ...,(CSout
n ,CSin

n )} involving threads

t1, ..., tn and resources r1, ...,rn, is represented as

I = {(t1,r1,CSout
1 ), ...,(tn,rn,CSout

n )}

Signature S is instantiated if and only if threads ti are allowed to acquire (or already hold)

ri, and had call stacks CSout
i when they requested ri. This can be expressed as:

∀i ∈ 1,n : ti
A@CSout

i−→ ri ∈ RAGav

To check if a thread t would instantiate S if allowed to acquire resource r, Dimmunix

tentatively adds the allow edge t
A

−→r to RAGav, then checks if t and r can be part of

a group of threads t1, ..., tn and resources r1, ...,rn that satisfies the instantiation property

described above. If yes, allowing thread t to proceed would lead to the instantiation of S.

We explain now the construction of the yield edges. Consider a signature instantia-

tion {(t1,r1,CSout
1 ), ...,(tn,rn,CSout

n )}, and assume with no loss of generality that thread

t1 is the one that would cause the instantiation if allowed to acquire resource r1. Dim-

munix inserts into RAGav the yield edges t1
Y @CSout

2−→ t2, ..., t1
Y @CSout

n−→ tn, annotated with the call

stacks CSout
2 , ...,CSout

n that threads t2, ..., tn had when they were allowed to acquire resources

r2, ...,rn.

The avoidance mechanism is described in detail in Algorithm 2. Thread t acquires

resource r with call stack CS (line 14), then releases r (line 23). Right before the acquisition

operation, Dimmunix avoids deadlocks (lines 1–12) as follows: The allow edge t
A@CS
−→ r is

tentatively added to RAGav (line 1). If there is a signature match, i.e., the allow edge would

cause an instantiation I = {(t,r,CS),(t2,r2,CS2), ...,(tn,rn,CSn)} of a signature S from the
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history (line 2), Dimmunix then removes the tentative allow edge (line 3), adds I to the

set instances[S] storing the current instantiations of S (line 6), and adds the yield edges

t
Y@CS2−→ t2, ..., t

Y@CSn−→ tn to RAGav (line 7). Then, thread t yields by waiting until Dimmunix

removes I from instances[S], i.e., until t2 releases resource r2, ..., or tn releases resource

rn (line 8). When t resumes, Dimmunix removes the yield edges from RAGav (line 9),

reintroduces the allow edge into RAGav (line 11), and checks again for signature matches

(line 2). If there are no more signature matches involving thread t, Dimmunix allows thread

t to proceed with the acquisition of r (line 13). When t is about to release r, Dimmunix

performs the following steps: removes the allow edge t
A@CS
−→ r from RAGav (line 15); for

each avoided instantiation I of a signature S that contains the triple (t,r,CS), Dimmunix

resumes all the threads waiting for I to be removed from instances[S] (lines 16–21).

Just as in any deadlock avoidance technique based on altering the thread schedule,

Dimmunix’s avoidance mechanism may cause starvation: yield edges may introduce so

called yield cycles, i.e., deadlock situations caused by the threads’ yielding. Dimmunix

saves the signature of a yield cycle in the history, exactly as it does for a normal deadlock

signature.

Dimmunix avoids yield cycles the same way it avoids normal deadlocks. We illustrate

such a cycle in Figure 5.2 corresponding to the code in Figure 5.3. The yield cycle involves

thread t1 and t2, and mutexes l1, l2, and l3. Thread t1 is avoiding an instantiation of the

deadlock signature S = {(CSout
1 ,CSin

1 ),(CSout
2 ,CSin

2 )}. More precisely, thread t1 acquired

(and still holds) l1 with call stack CS′out
1 and requests l2 with call stack CSout

1 ; thread t2

acquired (and still holds) l3 with call stack CSout
2 and waits for l1 with call stack CS′in2 .

Thread t1 yields until t2 releases l3; allowing t1 to proceed would cause an instantiation of

S. At the same time, t2 waits for lock l1 held by t1. This is a deadlock situation caused

by Dimmunix’s avoidance mechanism. The signature of the avoidance-induced deadlock

is {(CS′out
1 ,CSout

1 ),(CSout
2 ,CS′in2 )}.

The yield cycle and the avoided deadlock are nested, as shown in Figure 5.3. The outer

(respectively inner) lock statements of the deadlock are the top frames of the call stacks

CSout
1 and CSout

2 (respectively CSin
1 and CSin

2 ). The outer (respectively inner) lock statements

of the yield cycle are the top frames of the call stacks CS′out
1 and CSout

2 (respectively CSin
1

and CS′in2 ). In thread t1’s code, the outer critical section of the yield cycle (i.e., the one
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Input: Thread t, resource r, call stack CS; t acquires r, then releases r.
Data: RAGav; Deadlock history Hist; The set instances[S] for each signature S in

history, storing the current instantiations of S.

RAGav := RAGav ∪{t
A@CS
−→ r}1

while Edge t
A@CS
−→ r causes an instantiation of a signature S ∈ Hist do2

RAGav := RAGav \{t
A@CS
−→ r}3

Let I = {(t,r,CS),(t2,r2,CS2), ...,(tn,rn,CSn)} be the instantiation of S4

lock(S.condVar) //S.condVar is the condition variable associated to S5

instances[S] := instances[S]∪{I}6

RAGav := RAGav ∪{t
Y@CS2−→ t2, ..., t

Y@CSn−→ tn}7

wait(S.condVar) //wait until I is removed from instances[S]8

RAGav := RAGav \{t
Y@CS2−→ t2, ..., t

Y@CSn−→ tn}9

unlock(S.condVar)10

RAGav := RAGav ∪{t
A@CS
−→ r}11

end12

acquire r13

//critical section14

RAGav := RAGav \{t
A@CS
−→ r}15

foreach S ∈ Hist, I ∈ instances[S] where (t,r,CS)∈ I do16

lock(S.condVar)17

instances[S] := instances[S]\{I}18

broadcast(S.condVar) //resume all threads waiting for I to be removed from19

instances[S]
unlock(S.condVar)20

end21

release r22

Algorithm 2: Avoidance of hybrid deadlocks.

delimited by the lock(l1) and unlock(l1) statements) wraps the outer critical section of the

deadlock (i.e., the one delimited by the lock(l2) and unlock(l2) statements).

For mutex deadlocks involving at least 3 threads, there exist at least 2 yield edges

emerging from a thread node. Therefore, the yield cycles caused by avoiding such dead-

locks are multicycles. However, since deadlocks involving more than two threads are not

common [Lu et al., 2008], we have chosen to illustrate a simple yield cycle, involving only

one yield edge.
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Figure 5.2: Yield cycle.

Thread t1: Thread t2:

lock(l1) //CS’out1

lock(l2) //CSout1, yield here

lock(l3) //CSout2

lock(l3) //CSin1, deadlock here lock(l2) //CSin2, deadlock here

unlock(l3) lock(l1) //CS’in2, starved here

unlock(l2) unlock(l1)

unlock(l1) unlock(l2)

unlock(l3)

Figure 5.3: Code illustrating an avoidance-induced deadlock.

Right after Dimmunix detects a yield cycle and saves its signature, Dimmunix breaks

the yield cycle by resuming one of the yielding threads. In other words, Dimmunix stops

the deadlock avoidance. Since a deadlock usually involves two threads, there is usually

one yielding thread. The starvation situation will not reoccur, because the signature of the

avoidance-induced deadlock is saved in the history.

Having the threads starved is as bad as reencountering the deadlock. However, since

deadlocks can be non-deterministic, resuming the yielding threads may not result in a reoc-

currence of the avoided deadlock. Therefore, the design choice of breaking the starvation

is the best one.

We also implemented the avoidance technique described in [Nir-Buchbinder et al.,

2008, Boronat and Cholvi, 2003], in order to compare its performance and accuracy to Dim-

munix’s deadlock avoidance. To avoid deadlocks, [Nir-Buchbinder et al., 2008, Boronat

and Cholvi, 2003] use a “gate lock” for each discovered deadlock bug; the gate lock is ac-

quired each time an outer lock statement involved in the deadlock is about to execute. We
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implemented in the Java Dimmunix prototype this avoidance technique; we call it simple

avoidance. We also implemented a variation of this technique, called hybrid avoidance,

which uses call stack information—the gate lock is acquired only when an outer call stack

of the deadlock signature is matched. We implemented the simple and hybrid avoidance

techniques only for mutex deadlocks. We compare the accuracy and efficiency of Dimmu-

nix’s avoidance mechanism to the simple and hybrid avoidance in §10.1.2.

More precisely, the simple and hybrid avoidance techniques work as follows: Dim-

munix associates to each signature S in history a semaphore S.sem; initially S.sem.v = 1.

Whenever a thread t requests a lock l with call stack CS, Dimmunix checks if CS matches

call stacks of signatures in the history. Consider that CS matches call stacks in the signa-

tures S1, ...,Sn. Before allowing thread t to proceed with the acquisition of l, Dimmunix

acquires S1.sem, ...,Sn.sem, in increasing order of the signature ids. Before allowing t to

release l, Dimmunix releases the semaphores S1.sem, ...,Sn.sem; the order in which the

semaphores are released is not important. The only difference between the simple and hy-

brid avoidance is that the simple avoidance uses a call stack matching depth of 1, while

the hybrid avoidance can use an arbitrary matching depth. Dimmunix uses semaphores to

be able to bypass avoidance-induced deadlocks. Bypassing a starvation situation caused by

deadlock avoidance consists of releasing the semaphores acquired in the avoidance process.

5.2.2 An Example

We illustrate the avoidance mechanism on a simple example of a mutex deadlock, depicted

in Figure 5.4. We reuse the code example from §4.2.2.

Assume that the program deadlocks; the deadlock signature is:

S = {([p1], [p1, p3]),([p2], [p2, p3])}

In the next program execution, Dimmunix avoids the deadlock as follows: Say thread t2

acquires mutex l2, then thread t1 requests mutex l1. Therefore, there are two allow edges

in RAGav: t2
A@[p2]
−→ l2 and t1

A@[p1]
−→ l1. Edge t1

A@[p1]
−→ l1 is only tentatively added, i.e., t1 is not
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Thread t1: Thread t2:

void run () { void run() {

lock(l1) //position p1

lock(l2) //position p2

f(l2) f(l1)

unlock(l1) unlock(l2)

} }

void f(arg) {

lock(arg) //position p3, both threads are deadlocked here

unlock(arg)

}

Figure 5.4: Code example to illustrate the deadlock avoidance.

allowed to proceed yet. Dimmunix detects the instantiation of signature S:

{(t1, l1, [p1]),(t2, l2, [p2])}

Thread t1 yields until the allow edge t2
A@[p2]
−→ l2 disappears from RAGav, i.e., until t2 releases

l2. Once this happens, there are no more instantiations possible for S, and Dimmunix allows

t1 to proceed. In this way, the deadlock is avoided, and will be avoided in every future

execution. Therefore, the deadlock has been eradicated without modifying the program.

5.2.3 Correctness Argument

Dimmunix guarantees that, as long as a thread t can cause an instantiation of a signature

from history, t yields, i.e., does not proceed with the resource acquisition. Hence, Dim-

munix prevents execution flows that instantiate signatures from history. For simplicity, we

assume that the matching depth is 1. For matching depths > 1, the reasoning is similar.

For a deadlock to occur, its signature must be instantiated. Since Dimmunix avoids

any instantiation of a signature from the history, and all deadlocks that Dimmunix previ-

ously detected have their signatures in the history, Dimmunix avoids any reoccurrence of a

deadlock that it previously encountered.
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Dimmunix’s avoidance mechanism is thread-safe, i.e., threads cannot instantiate signa-

tures. The most important property that ensures the thread-safety is: the tentative intro-

duction of allow edges works like a barrier; if two threads are simultaneously crossing the

barrier, one of them will “see” the other thread’s allow edge, after crossing the barrier. The

thread observing the other allow edge will yield. Therefore, no global lock is needed for

the avoidance mechanism. We also needed fine-grained synchronization to ensure thread-

safety; we chose not to include that synchronization in Algorithm 2, for a better readability.

The avoidance mechanism is eventually starvation-free. We know that a yield cycle

wraps the avoided deadlock (§5.2.1). Therefore, the sum of the nesting levels of the outer

lock statements is smaller for the yield cycle, compared to the deadlock. This sum is finite

for the original deadlock and it decreases with each yield cycle. If the sum is 0, there can

be no yield cycle (i.e., no starvation), because the nesting level of any lock statement is

≥ 0. Therefore, the maximum number of yield cycles is equal to the value of this sum for

the original deadlock.

In practice, we have not encountered any starvation situation caused by the deadlock

avoidance, for any real deadlock that Dimmunix avoided. Therefore, we believe that such

starvation situations are not common.

5.3 Avoidance of Initialization Deadlocks

Conceptually, the avoidance of initialization deadlocks (i.e., deadlocks involving mutex

locks and class initialization) can be implemented exactly as the avoidance of hybrid dead-

locks, because initialization deadlocks can be reduced to mutex deadlocks (§3.3.5). How-

ever, since a class initializer executes only once, and waiting for a class to initialize is not

a synchronization operation per se, we need a different avoidance technique.

The avoidance of initialization deadlocks is asymmetric, because a signature is asym-

metric: Consider the signature (p,C) from §4.3, where p is the program location of the

“offending” mutex acquisition, and C is the class whose initializer deadlocked. Right be-

fore a thread t requests mutex l at position p, Dimmunix avoids instantiating the signature

(p,C) as shown in Algorithm 3. First, Dimmunix adds the allow edge t
A@p
−→l to RAGav (line

1). Then, if class C is initializing, thread t waits until C initializes (lines 2–4). Finally,
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when thread t is about to release l, Dimmunix removes the allow edge from RAGav (line 7).

Right before class C’s initializer is about to start, Dimmunix avoids instantiations of (p,C)

as shown in Algorithm 4. First, Dimmunix sets the initializing[C] flag to true (line 1). The

thread loading class C waits until there are no threads allowed to acquire (or holding) a

mutex at position p, i.e., there are no allow edges labeled with p (lines 2–4). Finally, after

class C’s initializer returns, Dimmunix announces that class C is initialized (line 6).

Input: Thread t; Mutex l; Program position p.
Data: The deadlock history Hist.

RAGav := RAGav ∪{t
A@p
−→l}1

while ∃S = (p,C) ∈ Hist where initializing[C] do2

wait until class C is initialized3

end4

lock(x)5

//critical section6

RAGav := RAGav \{t
A@p
−→l}7

notify threads waiting for edge t
A@p
−→l to be removed from RAGav8

unlock(x)9

Algorithm 3: Avoiding initialization deadlocks before the offending mutex acquisition.

Input: Thread t, class C
Data: The deadlock history Hist
initializing[C] := true1

while ∃(p,C) ∈ Hist, t′
A@p
−→l ∈ RAGav do2

wait until the allow edge t ′
A@p
−→l is removed from RAGav3

end4

call C’s initializer5

initializing[C] := false6

notify threads waiting for class C to initialize7

Algorithm 4: Avoiding initialization deadlocks when a class initializer is about to start.

Dimmunix does not handle initialization deadlocks involving more than two threads, or

other types of resources (e.g., read-write locks, semaphores), and does not deal with yield

cycles for this type of deadlock. Since mutex deadlocks are likely the most frequent among

all deadlock types (§3.3.1), we chose to offer a complete immunity system only for mutex
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deadlocks.

5.4 Avoidance of External Deadlocks

To avoid external deadlocks (i.e., deadlocks involving synchronization on external locks,

like file locks), Dimmunix needs to maintain the allow edges in a process-shared avoidance

RAG. In order to avoid signature instantiations, Dimmunix inspects the process-shared

avoidance RAG upon each request of an external lock. Dimmunix avoids only external

deadlocks involving file locks and two threads from possibly different processes.

As we explained in §4.4, Dimmunix keeps the shared synchronization state in a SQL

database. Dimmunix stores the allow edges in the Edges table that we introduced in §4.4,

using the state attribute "allow". Dimmunix stores the deadlock history in the History table,

with attributes "Pout1", "Pin1", "Pout2", and "Pin2", denoting the outer and inner positions

of a deadlock signature.

Right before a thread with id tid from process with id pid attempts to lock file f at

program position p, Dimmunix first adds the allow edge to the shared RAGav, using the

SQL query below:

insert into Edges values (tid, pid, ’allow’, f, p)

Then, Dimmunix checks for instantiations of signatures from the deadlock history, i.e.,

two allow edges involving (1) two different threads, one of which being thread tid from

process pid, (2) two different files, one of which being f , and (3) both positions of a sig-

nature, one of them being p. The SQL query which checks for signature instantiations

is:

select * from Edges e1, Edges e2, History h where

e1.state = ’allow’ and e2.state = ’allow’ and

e1.tid = tid and e1.pid = pid and e1.file = f and e1.pos = p and

(e1.tid != e2.tid or e1.pid != e2.pid) and e1.file != e2.file and

e1.pos = h.Pout1 and e2.pos = h.Pout2

Right before file f is unlocked, Dimmunix removes the allow edge using the following

SQL query:
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delete from Edges e where

e.tid = tid and e.pid = pid and

e.state = ’allow’ and e.file = f and e.pos = p

The deadlock avoidance approach illustrated above works for distributed deadlocks as

well. The SQL server can reside on a dedicated machine; applications running with Dim-

munix on different machines can update/inspect the shared synchronization state and avoid

deadlocks by querying the remote SQL server.

Since it is expensive to update the shared avoidance RAG online (i.e., upon each acqui-

sition/release of a file lock), as we show in §10.2, we chose to implement in the Dimmunix

prototype the simplified avoidance mechanism described below:

• Dimmunix associates a file lock S.l with each signature S in the history of external

deadlocks.

• When a thread t attempts to lock a file f at a program position p, Dimmunix checks

if p belongs to signatures in the history. Let S1, ...,Sn be the signatures containing p,

in the increasing order of their ids (every signature has a unique id). Before allowing

t to proceed with the acquisition of f ’s lock, Dimmunix acquires S1.l, ...,Sn.l.

• When a thread t is about to unlock a file f , Dimmunix checks if f.acqPos (the program

position where f ’s lock was acquired) belongs to a signature in the history. Let

S1, ...,Sn be the signatures containing f.acqPos. Before allowing t to release f ’s lock,

Dimmunix releases S1.l, ...,Sn.l.

This avoidance technique is cheap, as we show in §10.2. However, it has a shortcom-

ing: it cannot be distributed, because the file locks associated with deadlock signatures are

visible only from processes running on the same machine. Therefore, this avoidance mech-

anism cannot be used to avoid deadlocks among processes running on different machines.

Dimmunix does not handle external deadlocks involving more than two threads or other

types of external locks, and does not handle yield cycles for this type of deadlock. Since

mutex deadlocks are likely the most frequent among all deadlock types (§3.3.1), we chose

to offer a complete immunity system only for mutex deadlocks.
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Discussion

In this chapter, we discuss various aspects related to Dimmunix. First, we describe the

unavoidable deadlock patterns (§6.1). We present a tentative immunization technique for

blocked notifications and describe its limitations in §6.2. Then, we discuss the false posi-

tives and false negatives in the context of Dimmunix (§6.3), and describe how Dimmunix

may disable functionality (§6.4). Finally, we compare the two layers where Dimmunix can

be implemented: platform-wide, i.e., within the synchronization library, and application-

level, i.e., attached to a specific application (§6.5).

6.1 Unavoidable Deadlocks

Remember that Dimmunix avoids deadlocks by only altering thread schedules. Any inter-

vention that changes the semantics of the running program is unacceptable. In this section,

we present the deadlock patterns that are unavoidable without changing the semantics of

the program.

The unavoidable deadlock patterns are the wait-notify deadlocks, self-deadlocks, and 6

patterns of blocked notifications. Dimmunix can only detect these deadlocks. We explain

the 6 unavoidable blocked notification patterns in §6.2.3.

A wait-notify deadlock involves circular waits for notifications, as we illustrate in the

code in Figure 6.1. Thread t1 waits for thread t2 to send a notification, while t2 waits for t1

to send a notification. Therefore, the two threads are deadlocked.

71
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//condition variables c1, c2

Thread t1: Thread t2:

lock(c1)

wait(c1) //deadlocked here

unlock(c1)

lock(c2)

wait(c2) //deadlocked here

unlock(c2)

lock(c2) lock(c1)

signal(c2) signal(c1)

unlock(c2) unlock(c1)

Figure 6.1: Code illustrating a wait-notify deadlock.

A wait-notify deadlock cannot be avoided by just altering the thread schedules. No

matter how threads t1 and t2 interleave, they are going to deadlock when they will execute

the wait calls.

A self-deadlock is a situation where a thread is executing a non-reentrant synchroniza-

tion operation on a resource that it already holds (§3.3.9). Consider the C code below:

Thread t:

//x is a mutex, not configured to be reentrant

pthread_mutex_lock(x);

pthread_mutex_lock(x); //blocked here

Mutex x is non-reentrant, therefore the caller thread t will self-deadlock at the second lock

statement, and hang indefinitely.

A self-deadlock cannot be avoided, unless the program semantics are changed. The

above self-deadlock can be avoided only if Dimmunix automatically turns x into a reen-

trant mutex, or simply ignores the second lock statement, which is conceptually the same

as making x reentrant. Both these interventions change the semantics of the application.

The programmer may rely on the fact that the mutex acquisitions are non-reentrant. For

instance, assume that a piece of code which is not supposed to execute reentrantly; making

mutex x reentrant would break this protection mechanism, and uncover another bug in the

code, which may be worse than the self-deadlock.
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6.2 Blocked Notifications: At the Frontier Between Star-

vation and Deadlock

In this section, we describe a tentative immunization approach for blocked notifications.

First, we propose a technique for detecting and extracting signatures of blocked notifica-

tions (§6.2.1). Then, we propose a technique for avoiding previously encountered blocked

notifications (§6.2.2). Finally, we describe the limitations of these techniques (§6.2.3). We

implemented these techniques in the Java Dimmunix prototype and evaluated their impact

on performance in §10.2.

6.2.1 Detection of Blocked Notifications

To detect blocked notifications (i.e., deadlocks involving condition variables and mutex

locks), Dimmunix needs to intercept operations on mutexes (i.e., lock, unlock) and condi-

tion variables (i.e., wait, signal, broadcast); Dimmunix updates the RAG each time such an

operation executes. The RAG updates triggered by mutex operations are the ones explained

in §4.2.

Dimmunix updates the RAG upon each wait, signal, or broadcast operation, as depicted

in Figure 6.2. Right before a wait(c) call performed on a condition variable c by a thread

t, at program position p, Dimmunix adds to the RAG a wait edge t
c@p
−→t ′ for each potential

notifier thread t ′, i.e., a thread that may later execute signal(c) or broadcast(c). The wait

edge is annotated with position p and condition variable c. Right after the wait call returns,

Dimmunix removes the wait edge from the RAG.

Figure 6.2: Updating the RAG to detect blocked notifications.
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A blocked notification occurs when a waiter thread tw holds a mutex l while waiting

on a condition variable c, and a notifier thread tn is waiting to acquire l and may later

execute signal(c) or broadcast(c) if it was not blocked by l. Predicting what thread tn

will do if it was not blocked by mutex l is undecidable; therefore, a blocked notification

does not necessarily represent a deadlock. If thread tn does not “intend” to later execute

signal/broadcast(c), there is no deadlock—we have only a starvation situation where thread

tw starves thread tn by holding lock l. Another reason for which a blocked notification is not

a definite deadlock is the fact that there may be other threads than tn that may notify thread

tw. Moreover, the set of potential notifier threads (i.e., that may notify tw) may dynamically

change, and predicting this set at runtime is undecidable.

To detect blocked notifications, Dimmunix needs to estimate the set PN[c] of potential

notifiers for each condition variable c. In the context of blocked notification detection,

a wait edge tw
c

−→tn means that thread tw is blocked on a wait(c) call and thread tn is a

potential notifier, i.e., tn ∈ PN[c]. There is a blocked notification involving a waiter thread

tw, a condition variable c, and a mutex lock l if and only if the formula below holds:

∃l−→tw, tw
c

−→tn, tn−→l ∈ RAG

The blocked notification can be formally represented as a RAG cycle l
pl

w−→ tw
c@pc

w−→ tn
pl

n−→ l.

The edges are labeled with the program position pl
w where thread tw acquired l, the position

pc
w where tw is waiting on c, and the position pl

n where thread tn is waiting for l. The

signature of the blocked notification is a triple formed of the three program positions:

(pl
w, pc

w, pl
n)

Dimmunix uses program positions in the signature, instead of call stacks, because accuracy

is not needed for the deadlock avoidance (§6.3).

To compute the set PN[c] for a condition variable c, Dimmunix uses the following

heuristic: a thread is a potential notifier if it previously executed signal(c) or broadcast(c)

in the current execution. This heuristic misses blocked notifications that occur at the first

signal/broadcast(c) call. In other words, if the set PN[c] is incomplete, our detection tech-

nique has false negatives (FNs). However, we believe that a blocked notification involving
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c usually does not occur at the first execution of a wait(c) call.

6.2.2 Avoidance of Blocked Notifications

Dimmunix avoids blocked notifications by delaying wait calls previously involved in blocked

notifications. Consider a blocked notification involving waiter thread tw, notifier thread tn,

mutex l, and condition variable c. We illustrate it in the code below:

Thread Tw: Thread Tn:

lock(l) //position Pwl

lock(c)

wait(c) //position Pwc lock(l) //position Pnl

unlock(c) unlock(l)

unlock(l) lock(c) //position Pnc

signal/broadcast(c)

unlock(c)

Thread tw holds mutex l, which it acquired at program position pl
w; tw is waiting on con-

dition variable c, at position pc
w. Thread tn requests mutex l at position pl

n, and “intends”

to notify tw (by calling signal(c) or broadcast(c)), after acquiring l. The signature of the

blocked notification is (pl
w, pc

w, pl
n).

To avoid reoccurrences of the same blocked notification, Dimmunix enforces the fol-

lowing thread interleaving:

Thread Tw: Thread Tn:

lock(l) //position Pnl

unlock(l)

lock(l) //position Pwl

lock(c)

wait(c) //position Pwc lock(c) //position Pnc

unlock(c) signal/broadcast(c)

unlock(l) unlock(c)

Right before thread tw executes lock(l), Dimmunix suspends tw until thread tn is about to

execute lock(c). Then, Dimmunix suspends tn until tw is about to wait on c. For the case
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where the critical section of l wraps the critical section of c in thread tw, Dimmunix uses the

same avoidance technique. The other 6 patterns of blocked notifications are not avoidable

(§6.2.3); Dimmunix can only detect and report them.

For avoiding blocked notifications, Dimmunix needs to compute for each wait call at

a program position pw the positions LN[pw] of the matching signal (broadcast) calls in

the program, i.e., the notifications performed on the same condition variable as the one

used at pw. More precisely, the set LN[pw] contains the positions of the lock statements

corresponding to these notifications. For instance, in the above code example, LN[pw] =

{pc
n}, where pc

n is the position of the lock(c) statement in thread tn’s code. The set LN[pw]

is computed dynamically, to avoid code inspection involving an expensive may-alias static

analysis.

We describe now in detail the steps of the avoidance mechanism. Assume thread tw is

about to execute a lock(l) statement on mutex l, at program position pl
w. Assume pl

w is part

of a blocked notification signature (pl
w, pc

w, pl
n). Dimmunix performs the following steps to

avoid reoccurrences of the same blocked notification:

1. Suspends tw until a lock statement at a position from LN[pc
w] is about to execute.

2. A thread tn is about to execute a lock statement at position pc
n; if pc

n ∈ LN[pc
w] or

pc
n was not encountered yet at runtime, Dimmunix resumes tw and suspends tn until

tw executes a wait call at position pc
w or releases l; afterwards, thread tn is resumed.

If the condition variable used at position pc
n is the same as the one used at pc

w and

pc
n /∈ LN[pc

w], Dimmunix adds pc
n to LN[pc

w].

The above avoidance technique usually does not suspend a waiter thread indefinitely. If

the set LN[pw] corresponding to a wait position pw is incomplete, Dimmunix conservatively

resumes the waiter thread tw, each time a new critical section corresponding to a notification

is encountered at runtime. Eventually, LN[pw] will be complete. However, the waiter thread

is suspended indefinitely if the condition variables used at positions from LN[pw] are no

longer used at pw. We believe that these remappings of notifications to other wait calls are

not likely to be encountered in real programs. If there exist such programs, this limitation

can be addressed by an accurate may-alias static analysis.
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If all the decisions to execute a wait (or signal/broadcast) call on a condition variable

c are taken within c’s critical section, Dimmunix preserves the partial order between the

wait(c) calls and the signal/broadcast(c) calls; the semantics of condition variables specify

that a notification has no effect on a wait call that executes later (§3.1.5). In other words,

Dimmunix does not cause inversions of wait and signal/broadcast calls. A wait(c) call

is delayed only until a notifier thread is about to acquire c and send a notification; then,

Dimmunix suspends the notifier thread until the wait(c) call is about to execute. Therefore,

the partial order between the waits and notifications is preserved.

6.2.3 Limitations

Among the 8 patterns of blocked notifications, 6 are unavoidable. One unavoidable pattern

is:

Thread Tw: Thread Tn:

lock(l)

lock(c)

wait(c) lock(c)

unlock(c) lock(l)

unlock(l) unlock(l)

signal/broadcast(c)

unlock(c)

Dimmunix’s avoidance mechanism described in §6.2.2 does not work on this pattern. Dim-

munix would delay thread tw right before it executes lock(l), until thread tn is about to exe-

cute lock(c). That does not prevent the statement lock(l) from tn’s code from blocking the

notification, because lock(l) is not yet reached by tn. Dimmunix would have to suspend tw

until after tn executes lock(l). At that point, thread tn already holds c. Therefore, thread

tw can reach the wait call only if thread tn executes the signal/broadcast call first. Hence,

the notification would always have to happen before the wait call. In that case, thread tw

always misses the notification; tw may even hang indefinitely, if there is no further notifica-

tion. This breaks the semantics of the program.
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Deterministically missing a notification breaks the partial order implied by the seman-

tics of condition variables. These semantics state that the wait call must precede the sig-

nal/broadcast call, for the notification to be effective (§3.1.5). Hence, a transformation

which renders a notification useless, after previously being effective, changes the seman-

tics of the application. The other 5 patterns are unavoidable for the same reasons, i.e.,

any avoidance mechanism would either lead to an indefinite hang, or break the partial oder

implied by the semantics of condition variables.

We say that a blocked notification reported by Dimmunix is a false positive (FP) if and

only if it does not represent a deadlock. More precisely, the presence of a thread tn in the

set PN[c] does not guarantee that tn always “intends” to execute signal(c) or broadcast(c)

after acquiring mutex l at position pl
n. We illustrate a FP in the code below:

Thread Tw: Thread Tn:

lock(l)

lock(c)

wait(c) if cond1 {

unlock(c) lock(l) //Pnl

unlock(l) unlock(l)

}

lock(c)

if cond2

signal(c)

unlock(c)

The two threads are deadlocked when cond1 and cond2 both hold. If only cond1 holds,

there is no deadlock, since thread tn does not “intend” to execute signal(c).

Avoiding FPs is not possible for the general case, because knowing exactly what branches

a thread is going to take is undecidable. For instance, in the above code, it is not possible

(in the general case) to know at program position pl
n whether thread tn is going to execute

signal(c) if it would be able to proceed with the acquisition of mutex l; predicting whether

cond2 will hold is undecidable.

Dimmunix can make a waiter thread yield indefinitely in the following wait-notify pat-

tern: (1) some shared state is updated by the waiter right before executing the wait call,
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(2) the notifier thread decides to resume the waiter based on the shared state, and (3) the

notification decision is taken outside c’s critical section. Consider the code in Figure 6.3,

where a notifier thread wakes up a waiter thread that registered to a wait queue q. Dim-

munix makes thread tw wait at position pl
w until thread tn reaches the lock(c) statement at

position pc
n. Assume that (1) queue q is initially empty, (2) tn is the only notifier thread, and

(3) tw is the only thread that adds elements to q. Since tw did not execute statement q.add(c)

yet, q.pop() returns null. This means thread tn is not going to send any notification, i.e.,

will not reach the lock(c) statement at pc
n. Therefore, thread tw waits indefinitely. Without

Dimmunix, the program hangs only when the condition cond holds; with Dimmunix, the

program always hangs. Dimmunix would need to statically analyze the program to iden-

tify such wait-notify patterns, and disable the avoidance of blocked notifications involving

these patterns.

Thread Tw: Thread Tn:

c = q.pop()

if (cond) {

lock(l) //position Pnl

unlock(l)

}

if (c != null) {

lock(l) //position Pwl

lock(c)

q.add(c) lock(c) //position Pnc

wait(c) //position Pwc signal/broadcast(c)

unlock(c) unlock(c)

unlock(l) }

Figure 6.3: Code illustrating a wait-notify pattern which makes the avoidance mechanism
introduce a hang.

Dimmunix does not guarantee that a blocked notification is always avoided, i.e., the

avoidance mechanism may have FNs. Consider the code below, involving 1 waiter thread

and 2 notifier threads:
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Thread Tw: Threads Tn, Tn’:

lock(l) //position Pnl

unlock(l)

lock(l) //position Pwl

lock(c)

wait(c) //position Pwc lock(c’) //position Pnc

unlock(c) signal/broadcast(c’)

unlock(l) unlock(c’)

To avoid the blocked notification, Dimmunix makes thread tw wait until thread tn (or t ′n)

executes lock(c’) at position pc
n. Assume tn executes lock(c’) first. If c′ ̸= c, the sig-

nal/broadcast(c’) call will not resume the wait(c) call. If later thread t ′n needs to acquire l

and c′ becomes equal to c, the program runs into the same blocked notification that Dim-

munix is attempting to avoid.

Dimmunix does not handle blocked notifications involving more than two threads, or

other types of resources (e.g., read-write locks, semaphores), and does not deal with yield

cycles caused by avoiding blocked notifications. Since mutex deadlocks are likely the most

frequent among all deadlock types (§3.3.1), we chose to offer a complete immunity system

only for mutex deadlocks.

6.3 False Positives and False Negatives

A false positive (FP) in the context of deadlock avoidance means avoiding a false deadlock

situation, i.e., the execution is conservatively serialized, even though a deadlock could not

have occurred. A false negative (FN) means missing to avoid a potential deadlock situation.

In the context of Dimmunix’s deadlock avoidance, a FP has the same meaning, i.e.,

serializing concurrent code more than necessary; a FN means that the deadlock signature

does not capture all the possible manifestations of the deadlock. In absolute terms, Dim-

munix has only FNs and no FPs, as long as no deadlock is encountered. If all the deadlock

bugs in a program have been experienced, and their signatures capture all the possible man-

ifestations of the deadlocks, Dimmunix has no FNs, but may have FPs; in other words, the

application is deadlock-free, but may be over-serialized.
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If the call stack matching depth is 1, a deadlock signature captures all the possible

manifestations of the deadlock bug it represents. In this case, Dimmunix has no FNs, w.r.t.,

avoiding the deadlock bug. However, there may be FPs, i.e., avoidances of execution flows

that are not deadlock prone. Remember that the matching depth is relevant only for the

outer call stacks of a signature; only the outer call stacks are matched in the deadlock

avoidance.

The higher the matching depth, the more likely is that Dimmunix will have FNs, i.e.,

miss manifestations of the deadlock bug captured by the signature; however, a high match-

ing depth implies fewer FPs, i.e., better accuracy for the avoidance mechanism. We il-

lustrate this principle in Figure 6.4, which illustrates 6 different call flow suffixes (i.e., call

stacks) of depth 3 ending in the same outer lock statement. The two outer call stacks in bold

are the ones that are deadlock prone; the one with the dotted arrow is not discovered yet by

Dimmunix, i.e., it did not manifest yet. Therefore, there are 4 outer call stacks which would

lead to FPs, if matched. If the matching depth is 1, all the 4 FP call stacks are matched, but

no true positive (TP) call stack is missed, i.e., there are no FNs. If the matching depth is 2,

both TP call stacks are matched, and no FP call stack is matched. If the matching depth is

3, only 1 TP call stack is matched, i.e., there is 1 FN, and no FP call stack is matched.

Figure 6.4: The matching depth influences the number of FPs and FNs.
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Having high accuracy (i.e., few FPs) for the deadlock avoidance is important for reduc-

ing the loss of parallelism (i.e., number of yields). The higher the accuracy of the signature

matching, the less frequent the program execution matches the outer call stacks of a signa-

ture; therefore the probability to instantiate the signature is lower, and the yields are fewer.

This is important for mutex deadlocks, because mutexes are heavily used, compared to

other synchronization primitives, as shown in Table 3.1. Moreover, the throughput of syn-

chronization operations performed on mutexes (§10.1) is much higher than the throughput

of non-mutex synchronization primitives (§10.2) in the Java applications that we studied.

Therefore, for non-mutex deadlocks it is not essential to have an accurate avoidance. For

these deadlocks we use program positions (instead of call stacks) in the signatures; program

positions are essentially call stacks of depth 1.

Using outer call stacks of depth 1 can be harmful, if a program uses mostly custom syn-

chronization implemented with explicit lock/unlock operations; Dimmunix would serialize

most of the critical sections, as soon as the first deadlock occurs. Consider a Java program

that uses the following wrapper of the RentrantLock class:

public class MyLock {

private ReentrantLock l;

public void lock() {

l.lock();

}

public void unlock() {

l.unlock();

}

}

If any deadlock happens in the program, the outer call stacks will indicate the position p of

the l.lock() statement within the MyLock class. Dimmunix would serialize all the critical

sections that use objects of type MyLock for synchronization, because the synchronizations

are all performed at position p.

For synchronized blocks, it is safe to use outer call stacks of depth 1, because the syn-

chronized blocks that appear in wrappers cannot be outer lock statements in a deadlock

signature. Synchronized methods are essentially synchronized blocks, therefore we only
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discuss about synchronized blocks. Synchronized blocks are intra-procedural, i.e., a moni-

torexit(l) statement has to execute in the same method as the corresponding monitorenter(l)

statement, like in the wrapper below:

public class MyLock {

private Object l;

public void lock() {

synchronized(l) { //monitorenter(l)

//update state

} //monitorexit(l)

}

public void unlock() {

synchronized(l) { //monitorenter(l)

//update state

} //monitorexit(l)

}

}

Typically, the synchronized blocks from synchronization wrappers are not nested; there-

fore, they cannot be the outer positions of a deadlock signature, because the program cannot

deadlock inside them. If somehow these synchronized blocks are nested, they are normally

deadlock-free, otherwise a program that heavily uses the wrapper is likely to deadlock of-

ten; if such a program exists, it “deserves” to be entirely serialized.

In fact, Dimmunix uses a separate matching depth for each outer call stack of a signa-

ture. So far, we used a global matching depth, to simplify the explanations.

Dimmunix attempts to achieve an optimal matching depth for each outer call stack of a

signature. An optimal matching depth is the maximum depth for which there are no FNs.

For instance, for the call stacks depicted in Figure 6.4, the optimal matching depth is 2,

because there are 0 FNs and 0 FPs for that depth. Dimmunix has a mechanism for learning

the optimal matching depths (§8). Communix uses a collaborative learning of the optimal

matching depths, by aggregating information about signatures discovered by different users

(§7).
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6.4 Impact on Functionality

In this section, we explain how Dimmunix may disable program functionality. Assume the

pseudocode below:

//two cars should move simultaneously on the screen

Thread t1: Thread t2:

lock(l1) //position Pout1 lock(l2) //position Pout2

move car 1 move car 2

if some condition holds { if some condition holds {

lock(l2) //position Pin1 lock(l1) //position Pin2

unlock(l2) unlock(l1)

} }

unlock(l1)

Assume the program deadlocks; the signature of the deadlock is {([pout
1 ], [pin

1 ]),([pout
2 ], [pin

2 ])}.

Dimmunix would not allow the two cars to move simultaneously on the screen, because it

needs to serialize the executions of the two threads at positions pout
1 and pout

2 .

To cope with loss of functionality, Dimmunix (optionally) offers the following simple

solution: it automatically disables a signature that is instantiated often (e.g., several times in

a second), and most of the instantiations (e.g., 99%) are FPs, for several minutes. Moreover,

as we mentioned in §6.3, having accurate signature matching helps to reduce the number

of yields, which will also reduce the loss of functionality.

Dimmunix may cause starvation if it interferes with wait-notify synchronization. Con-

sider the code below, involving a waiter thread tw and a notifier thread tn:

Thread Tw: Thread Tn:

lock(l) //position Pout1 lock(c) //position Pout2

lock(c) //position Pin1 if (cond) {

wait(c) //position Pw lock(l) //position Pin2

unlock(c) unlock(l)

unlock(l) }

signal/broadcast(c)

unlock(c)
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Two kinds of deadlocks can happen in the above code: a mutex deadlock and a blocked

notification. The mutex deadlock involves the lock statements at positions pout
1 , pout

2 , pin
1 ,

and pin
2 . The blocked notification involves the programs positions pout

1 , pw, and pin
2 . Assume

that the mutex deadlock happened first, thread tn is the only notifier thread, and condition

cond does not hold. Whenever thread tn executes lock(c) after thread tw executes lock(l),

Dimmunix suspends tn until tw releases lock l, in order to avoid the deadlock. Since tw

waits for tn to execute signal/broadcast(c) and holds l, we have a starvation situation. If

wait(c) does not execute in a loop, Dimmunix could safely resume tn right after the wait(c)

call releases c; however, it is often the case that the wait call executes in a loop. Since cond

does not hold, the program would not run into blocked notification and tn could resume tw

if allowed to proceed. Therefore, we can consider that this starvation situation is a loss of

functionality. To prevent such unfortunate interferences with wait-notify synchronization,

Dimmunix ignores the signatures of mutex (or initialization) deadlocks that involve critical

sections containing wait, signal, or broadcast calls.

Although it is possible for Dimmunix to disable functionality, we have not yet encoun-

tered loss of functionality due to Dimmunix in the applications we studied (§10). Even

with synthetic (i.e., fake) deadlock signatures, there was no loss of functionality.

6.5 Platform-wide vs. Application-level Immunity

We first explain the notions of platform-wide and application-level deadlock immunity,

from the user’s perspective. Platform-wide immunity means that all applications are im-

munized against deadlocks by default, without having to be launched in a special way.

Application-level immunity means that the applications are not immunized by default against

deadlocks, and have to be executed in a special way to run with Dimmunix.

We discuss three aspects concerning platform-wide deadlock immunity: First, we show

that it cannot be implemented in the kernel space; it has to be implemented in the user space,

i.e., in the synchronization library. Second, we compare application-level to platform-wide

deadlock immunity. Third, we explain what needs to be done to have an efficient platform-

wide Dimmunix.

Platform-wide deadlock immunity has to be implemented in the user space, i.e., in the
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synchronization library, as we illustrate in Figure 6.5. All the modern platforms/libraries

providing synchronization routines (e.g., JVM, POSIX threads) first attempt to acquire a

lock in the user space. Dimmunix must intercept all the lock acquisitions. Since a lock may

be acquired in the user space, the interception must be done in the user space.

Figure 6.5: Platform-wide Dimmunix.

Since platform-wide Dimmunix has to run in user-space, there is a different instance of

Dimmunix running within each process. Dimmunix’s avoidance and detection mechanisms

are application-local, i.e., deadlocks are detected and avoided locally in each application,

in isolation from the other applications.

We compare now application-level to platform-wide deadlock immunity systems. Ap-

plication-level Dimmunix can be instrumentation-based or interception-based, i.e., it can

instrument the synchronization statements in the program binary (e.g., by using AspectJ

bytecode instrumentation framework [asp]), or it can intercept the synchronization opera-

tions through a preloadable library (e.g., by using LD_PPRELOAD). An instrumentation-

based implementation has the possibility to instrument only the synchronization statements

previously involved in deadlocks (e.g., Java Dimmunix), in order to minimize the perfor-

mance overhead and the intrusiveness. An interception-based implementation (e.g., POSIX

Threads Dimmunix) does not have this possibility, because intercepting the synchroniza-

tion operations involves overriding the synchronization routines. There is also library-level

deadlock immunity, i.e., protection against deadlocks for all the applications using a partic-

ular synchronization library. For instance, changing the POSIX Threads library to provide

deadlock immunity would be a library-level implementation of Dimmunix; we provide

such an implementation for the FreeBSD POSIX Threads library. However, a preloadable
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Dimmunix library which can be attached to a C/C++ application using LD_PRELOAD is

an application-level implementation, because the POSIX Threads library would not pro-

vide deadlock immunity by default; the users have to use LD_PRELOAD to run a C/C++

application with Dimmunix.

For platform-wide deadlock immunity, an interception-based implementation is the

most natural choice; Android Dimmunix is interception-based. The only drawback of an

interception-based implementation is that it cannot selectively instrument synchronization

statements, while an instrumentation-based implementation can. However, an instrumen-

tation-based implementation is more complicated, because it would have to dynamically

modify the binary of every application, before executing it. Moreover, the binary instru-

mentation/analysis frameworks are not mature enough to allow a robust implementation.

In future however, such an implementation may be feasible.

An efficient platform-wide Dimmunix needs small CPU and memory consumptions,

because all the applications run with Dimmunix. It is important to satisfy these require-

ments, especially for mobile platforms, which are designed to optimize the CPU and mem-

ory consumptions. To achieve computational efficiency, the code on the critical path must

be optimized, i.e., the look-up of RAG nodes and the call stack retrieval. For memory effi-

ciency, we need to dynamically allocate and reuse memory. In §9.3, we give more details

about how we achieved an efficient implementation of Android Dimmunix, our platform-

wide deadlock immunity system for Android OS.



Chapter 7

Collaborative Immunity

Failure immunization techniques protect the programs against a specific bug or vulnerabil-

ity exploit by learning from its past manifestations. We use the term “failure” to denote

a manifestation of the bug. An immunization system detects the failure, extracts its fin-

gerprint, and uses it to avoid reoccurrences of the same bug. We call this fingerprint “bug

signature”. A bug signature is an approximation of the execution flow that led to the fail-

ure. An accurate signature captures only one or several manifestations of the bug. A general

signature captures all or most of the manifestations of the bug.

Failure immunization systems avoid only manifestations of previously encountered

bugs; a bug must manifest at least once for the application to be protected against it. There-

fore, the false positives rate is low, because only manifestations of real bugs are avoided.

A false positive is the situation where a failure is avoided with no reason, i.e., the failure

could not have occurred, even without any avoidance. However, there are false negatives

(i.e., bugs against which the application is unprotected) until all the bugs manifest.

One possible solution to address the aforementioned drawback is collaborative immu-

nization via distribution of bug signatures. More specifically, once a user encounters a bug,

the bug’s signature is automatically generated and distributed to other users through the

Internet. Therefore, each bug needs to be encountered once, by any user, then the other

users get protected against the bug, without having to experience it.

88
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We present Communix, a collaborative immunization framework that enables Java pro-

grams running on different machines to distribute deadlock signatures, in order to immu-

nize each other against deadlock bugs. The signatures of a deadlock can protect against

the deadlock any user connected to the Internet and running the same application, even

if he/she did not experience the deadlock yet. Besides signature distribution, Communix

provides signature validation and generalization. Signature validation ensures that the in-

coming signatures match the target applications, and protects the users against malicious

signatures. Signature generalization keeps the repository of deadlock signatures compact,

by merging multiple deadlock signatures into one signature.

To distribute deadlock signatures, Communix uses an immunity server; client machines

upload signatures discovered by Dimmunix to the server, and periodically retrieve the new

signatures from the server. Each time a Java application starts on a client machine, Commu-

nix selects from these signatures the ones that are valid for that application and, if possible,

it generalizes existing deadlock signatures.

Communix is efficient and scalable. In §10.5, we show that the server can process

efficiently 30,000 simultaneous requests, at a rate of 63,000 requests per second. The agent

can analyze 1,000 new deadlock signatures in 2–3 seconds (§10.5).

We present two scenarios that illustrate the benefit of frameworks like Communix. In

the first scenario, the user opens a web page, and the browser deadlocks while rendering

the content of the page, due to a Java applet. The user shuts down the browser, then restarts

it and opens the same page. If the browser is equipped with Dimmunix, it will successfully

open the page; if not, it might deadlock again. However, it may be undesirable to have the

browser deadlocking in the first place. Even the first occurrence of the deadlock may have

severe consequences: the browser might be in the middle of some important operation,

like purchasing an expensive product, or booking a flight. Therefore, a framework like

Communix that prevents other users from encountering the deadlock in the first place is

beneficial. In the second scenario, a deadlock-prone version of a plugin is released for the

Eclipse IDE, which makes Eclipse hang. If the plugin has multiple deadlock bugs, each

user has to encounter all these deadlocks for Dimmunix to be able to avoid them. Sharing

the signatures of the deadlocks with users who just installed the plugin is useful; these users

will not experience any deadlocks while using the plugin if all deadlocks have already been
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encountered by some users.

The rest of this chapter is organized as follows: We provide an overview of Communix

in §7.1. We describe the design of Communix in §7.2.

7.1 Concept and Design

In collaborative deadlock immunity, different machines connected to the Internet work

together to achieve immunity against deadlocks by sharing their deadlock signatures.

An important benefit of sharing the deadlock signatures is that any application can

use the collective knowledge of the other nodes to generalize deadlock signatures from its

history. The generalization consists of merging different signatures of the same deadlock

bug. The role of signature generalization is to keep few signatures per deadlock bug, in

order to have a small size of the deadlock history for each application. If all possible

manifestations of a deadlock bug D were experienced by some nodes in the Internet, the

current signatures of D are the most accurate signatures that enable Dimmunix to avoid all

the manifestations of D.

Upon receiving a signature from other nodes, Communix checks whether the signature

can be used by the running application. This first validation step assumes the node that sent

the signature is honest.

Attackers may send fake deadlock signatures that do not represent real deadlock bugs;

these signatures may cause denial of service (DoS) in applications instrumented with Dim-

munix. Such signatures may exploit Dimmunix to increase the runtime overhead of signa-

ture matching and reduce the parallelism due to suspending threads. The validation process

should prevent such signatures from harming the performance or the functionality of the

applications. Therefore, additional checks are performed (§7.2.3).

7.2 Design

In this section, we describe the architecture of the Communix framework (§7.2.1), explain

the signature distribution (§7.2.2), and describe in detail the signature validation (§7.2.3)

and signature generalization (§7.2.4).
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7.2.1 Communix Framework

Communix has five components, as we illustrate in Figure 7.1: Dimmunix (i.e., the dead-

lock immunization component of Communix), Communix plugin, Communix server, Com-

munix client, and Communix agent. Dimmunix is in charge of (1) detecting deadlocks, (2)

saving their corresponding signatures into the running application’s deadlock history, and

(3) preventing the application from encountering the same deadlocks again.

Figure 7.1: Communix architecture.

Communix uses a centralized signature distribution framework. The Communix plugin,

implemented on top of Dimmunix, sends the deadlock signatures to the Communix server,

right after Dimmunix produces the signatures. In order to obtain new deadlock signatures

from the server, a machine must have the Communix client installed; the client periodi-

cally downloads the new deadlock signatures from the server into a local repository. Any

Java application running with Dimmunix can use these signatures to improve its protection

against deadlocks.

A centralized signature distribution improves the protection against deadlocks for all

the machines connected to the Internet that are equipped with Communix. Each newly

discovered signature S becomes available to any machine connected to the Internet; as soon

as other nodes download S from the Communix server and validate it, they are protected
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against deadlock manifestations matching S, without having to encounter S.

The client-side signature validation and signature generalization are performed by the

Communix agent. The agent runs together with Dimmunix, in a Java application’s address

space. When the application starts, the agent selects from the local repository the new

signatures that are valid, i.e., that can be used by the application. If a new signature S

is found valid, the agent attempts to merge S with an existing signature from the running

application’s deadlock history. If S cannot be merged with any existing signature, then it

represents a new deadlock bug; the agent adds S to the history, in order to prevent future

occurrences of deadlocks matching S.

To validate a new deadlock signature, the Communix agent checks whether the signa-

ture matches the running application. In addition, Communix protects the users against

DoS attacks based on distributing malicious signatures. To generalize deadlock signatures,

Communix merges signatures representing the same deadlock bug into one signature.

Communix is application agnostic; no application specific information (like application

name, or version) is required in addition to the deadlock signatures. This makes Communix

a practical approach that works for any Java application.

7.2.2 Signature Distribution

Communix allows different users running the same application (or different applications

sharing some deadlock-prone library) to share signatures. The more users run some deadlock-

prone code, the more likely it is that all possible manifestations of the deadlock bug are ex-

perienced in a short period of time, and all users get fully immunized against the deadlock.

Once Dimmunix detects a deadlock, the Communix plugin sends the corresponding

signature to the Communix server. The Communix server collects in a database all the

deadlock signatures discovered by Java applications running with Dimmunix on arbitrary

machines connected to the Internet. To decide whether to add an incoming signature to the

database, the server performs a simple signature validation, described in §7.2.3.

The Communix client, running on an arbitrary machine in the Internet, periodically

downloads the new deadlock signatures from the server into a local repository. The local

repository is updated once a day; a high frequency (e.g., once a minute) would overload
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the Communix server. The updates are incremental, i.e., the client requests from the server

only the signatures that are not present in the local repository. When a Java application A

starts, the Communix agent inspects the new signatures from the local repository: the agent

checks the validity of each new signature S (§7.2.3); if S is valid, the agent adds S to A’s

deadlock history. The inspection of the local repository is incremental, i.e., every signature

is analyzed only once.

The Communix client runs as a background process, decoupled from the agent. Without

this decoupling, the Communix agent would have to connect to the server and retrieve

new deadlock signatures every time a Java application starts. This would introduce an

unnecessary overhead.

Note that Communix does not require users to provide any application specific infor-

mation (like name or version) with the signatures they share. Communix only needs hash

values of class bytecodes, in order to distinguish different versions of the same class or

different classes having the same name. The hash values are automatically computed by

the Communix plugin, when Dimmunix produces the signatures. This makes Communix

application agnostic.

7.2.3 Signature Validation

Before sending a signature to the server, the Communix plugin attaches to each call stack

frame of the signature the hash of the class bytecode containing that frame.

Each time a Java application running Dimmunix starts, the Communix agent selects

from the local repository the signatures that match the running application. The agent

checks whether the hashes of an incoming signature match the bytecode hashes of the

running application. If the hashes do not match for all the top frames, the signature is

rejected; otherwise, the agent keeps from the signature the longest call stack suffixes with

hashes matching the application.

If all nodes were honest, the above check would have been sufficient; unfortunately,

there are attackers that may try to exploit Dimmunix by sending fake signatures, therefore

additional checks are needed.
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Preventing (Containing) DoS Attacks

An attacker may attempt to perform a performance DoS attack based on signature flooding,

to put pressure on Dimmunix’s signature matching mechanism. Such an attack consists of

sending many fake signatures that manage to pass the validation and get accepted into the

deadlock history of an application. This would put pressure on Dimmunix, because all

these signatures have to be matched at runtime.

Communix manages to prevent such attacks by performing three additional checks.

The first two checks are performed by the server, and the third one is performed by the

Communix agent, on the client side. If any of these checks fails, the signature is rejected.

First, the server requires each incoming signature to be accompanied by an encrypted id

of the sender. The encrypted id is provided once by the Communix server. The server uses

the sender ids to bind each incoming signature to the user who sent the signature. Since an

attacker can fake many IP addresses, they cannot be used to identify the senders; it must be

hard for an attacker to obtain multiple ids.

Second, the server makes sure that every two distinct signatures sent by the same user

(i.e., having the same sender id) have no common top frames. This restriction should not

affect honest users, because it is not likely that a user would experience such “adjacent”

deadlocks. However, if he/she does experience such situations, the signatures wrongly

rejected due to this restriction can be provided by other users.

Third, the agent checks whether the outer call stacks of a new signature end in nested

synchronized blocks/methods. Checking whether a synchronized block/method is nested

is straightforward, due to the disciplined way the Java compiler nests these constructs. We

describe the algorithm in §7.2.3. Communix does not handle explicit lock/unlock opera-

tions (e.g., calls to ReentrantLock.lock/unlock()). However, this is a minor deficiency, since

Java programs use mostly synchronized blocks/methods (§10.5).

Thanks to the above three checks, the possibility to flood Dimmunix with fake signa-

tures is limited. If there are N nested synchronized blocks/methods in a Java application

A, an attacker cannot “provide” more than N signatures that get accepted into A’s dead-

lock history. Typically, in a Java application there are a few hundred nested synchronized
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blocks/methods (§10.5). Therefore, an attacker cannot force more than a few hundred sig-

natures into the deadlock history of an application.

Another type of performance DoS attack that an attacker may attempt is to send fake

signatures that slow down an application. These attacks force Dimmunix to avoid instan-

tiations of fake signatures or signatures that are too general. The more general a signature

is, the more often Dimmunix has to avoid instantiations of the signature. This means Dim-

munix suspends threads more often then needed, which may considerably slow down the

application. The attacker may exploit the generalization mechanism to retain only the top

frames of the outer call stacks, or send directly signatures with outer call stacks of depth 1.

The Communix agent prevents the attackers from sending signatures with outer call

stacks of depth < 5. For the applications we studied, the outer call stacks have large depths

(usually > 10); therefore, we believe that this restriction does not affect the honest users.

Signatures with outer call stacks of depth 5 incur an acceptable performance overhead; for

depth 1, the overhead is considerable (§10.5,§10.1.2). Therefore, the outer call stacks must

have the depth ≥ 5. To prevent an attacker from exploiting the signature generalization

mechanism to obtain outer call stacks of depth 1, the agent does not merge signatures below

depth 5, for the outer call stacks. Alternatively, one could compute the minimal depth d

that outer call stacks corresponding to a nested synchronized block/method can have; the

threshold would be min(d,5), rather than 5, in this case.

The third check ensures that the worst damage an attacker can do is to force into the

deadlock history of an application signatures with outer call stacks of depth 5, that cover

all the nested synchronized blocks/methods. We show in §10.5 and §10.1.2 that such a

scenario causes only 7–29% performance overhead in the Java applications we studied.

An attacker may also attempt a functionality DoS attack that disables features of an ap-

plication. If a certain feature needs some code to execute concurrently, that feature would

no longer be available, if Dimmunix makes the code execute sequentially. This unde-

sired effect can be caused also by real deadlock signatures; some concurrent code may be

deadlock-prone, and execute most of the time without deadlocking. To prevent such situa-

tions, we use Dimmunix’ false positive detection mechanism. If after 100 instantiations of

a signature S there was no true positive, and there was at least one interval of 1 second hav-

ing more than 10 instantiations of S, Dimmunix decides to warn the user about signature S;
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the user can decide to keep S, if he/she notices no change in the behavior of the application.

Attackers may attempt to put pressure on the Communix server by sending bursts of

fake signatures to the server. The server processes only up to 10 signatures per day from

one user; beyond this threshold, the signatures from that user are ignored by the server.

This restriction usually does not affect honest users, since it is unlikely that a user would

experience so many different deadlocks (or different manifestations of a deadlock) in 1 day.

However, the wrongly rejected signatures can be provided by other users.

In the remainder of this section, we describe in detail the server-side and client-side

signature validation.

Server-side Signature Validation

The Communix server requires each user to accompany the signatures he/she sends with

an encrypted user id that the server provides. The server provides a unique id to each

user; the id is encrypted, in order to prevent users from manufacturing their own ids. To

be able to share its signatures, each user has to previously obtain the encrypted id from

the Communix server. The server uses AES encryption, with a predefined 128-bit key, to

produce the encrypted user ids. We did not implement the service for issuing the encrypted

user ids; such a service exceeds the scope of this work. The problem of preventing attackers

from impersonating multiple users has been extensively studied.

Upon receiving a signature S accompanied by an encrypted id I, the Communix server

decrypts I to obtain the id of the user that sent the signature. After retrieving the sender

id, the server checks whether the same user already sent a signature S′ which is adjacent to

S, i.e., S and S′ have some (but not all) top frames in common. If the user already sent a

signature adjacent to S, the server refuses to add S to its database.

Rejecting adjacent signatures from the same user considerably reduces the capability of

an attacker to provide fake signatures. Assume there are N synchronized blocks/methods

in an application, and there are Nd possible call stack suffixes of depth d, for each syn-

chronized block/method. Without this restriction, the attacker can manufacture (N ·Nd)
4

signatures of two-thread deadlocks that pass the validation, for each depth d ≥ 5; this gives

a total of N4 ·
∞
∑

d=5
N4

d possible signatures. With this restriction, the attacker can provide only

N signatures.
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Client-side Signature Validation

For each new signature S, the Communix agent checks whether S matches the running Java

application, then it checks whether the outer call stacks of S end in nested synchronized

blocks/methods.

For each call stack of signature S, the Communix agent checks whether the hashes

it carries match the running application A. Each call stack of signature S is encoded as

a sequence of frames [c1.m1 : l1 : h1, ...,cn.mn : ln : hn], where ci are class names, mi are

method names, li are line numbers, and hi is the hash of class ci’s bytecode. The hashes

are attached by the Communix plugin when Dimmunix produces signature S. The hash

value hk matches application A if and only if class ck’s bytecode from application A has the

hash hk. The hash check starts from the top frame, i.e., frame n; if hn does not match A,

signature S is rejected. If hk (1 ≤ k < n) is the first hash value that does not match A, the

frames 1, ...,k are removed from the call stack; if all hashes match, the call stack remains

unchanged. For efficiency, the Communix agent computes the hash of a class first time the

class is loaded, then it reuses the computed hash value.

The hash checking covers also the inner call stacks, even though they are not used by

Dimmunix for deadlock avoidance. The signature may correspond to an earlier version of

the application, where the code between the outer and inner lock statements was deadlock-

prone. That code might have been fixed in a newer version of the application. If the

Communix agent would check only the hashes of the outer call stacks, these code changes

would be missed, and the false positive signature would pass the validation.

We describe now the algorithm for checking whether a synchronized block B is nested;

we also provide a detailed description in Algorithm 5. Given the control flow graph (CFG)

of an application binary, and the monitorenter statement corresponding to a synchronized

block, the Communix agent inspects the CFG, starting from the successor of s. As soon as

a monitorenter (respectively monitorexit) statement is encountered, the algorithm returns

that B is nested (respectively non-nested); see lines 1–2. If a method call statement scall is

met, the algorithm returns that B is nested, if any method that may be called (directly on

indirectly) by scall is either synchronized or contains a synchronized block (lines 3–8). The

exploration continues recursively with the unexplored successors of s
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Input: Current statement s, initially the successor of the monitorenter statement
corresponding to a synchronized block.

Data: Control flow graph.
Output: True/False
if s is monitorenter or monitorexit then1

return (s is monitorenter)? True: False2

if s is a method call then3

foreach method m that may be called by s do4

if m is synchronized then return True5

Let s0 be the first statement of m6

if isNested(s0) then return True7

end8

foreach unexplored successor s′ of s do9

if isNested(s′) then return True10

end11

return False12

Algorithm 5: isNested(s): recursively computes whether a synchronized block is nested.

Since a synchronized method is semantically equivalent to a synchronized(this) block

that wraps the method body, the algorithm for checking whether synchronized methods are

nested is similar. In fact, the AspectJ instrumentation framework [asp] that Dimmunix uses

transforms the synchronized methods into synchronized blocks.

For efficiency, the Communix agent precomputes the locations of all the nested syn-

chronized blocks/methods, when the application runs for the first time. Checking if the

outer call stacks of a signature end in nested synchronized blocks/methods consists of deter-

mining if the top frames belong to this precomputed set of locations. To inspect the applica-

tion bytecode, the Communix agent uses the Soot bytecode analysis framework [Vallée-Rai

et al., 1999].

Each time new classes are loaded, in addition to the ones loaded in the previous runs, the

Communix agent repeats the nesting check for all the signatures from the local repository

that passed the hash check and failed the nesting check. There is no need to recheck the

nesting for the rest of the signatures, because adding new classes to the CFG can only

uncover new nested synchronized blocks/methods.
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7.2.4 Signature Generalization

The signature generalization consists of merging different signatures corresponding to the

same deadlock bug, i.e., that end in the same inner and outer lock statements. The re-

sulting signature consists of the longest common suffixes of the call stacks forming these

signatures.

It is important to generalize signatures for the following reason. If the outer call stack

suffixes are long, the signature may not be able to always avoid the deadlock. In other

words, there may be false negatives, i.e., other signatures of the same deadlock ending in

different outer call stack suffixes. If there are multiple manifestations of the deadlock hav-

ing different outer call stack suffixes, it may take a long time until a single user experiences

all these manifestations.

A trivial solution to avoid all the possible manifestations of a deadlock would be to

match only the top frames of the signature’s outer call stacks. However, there is an im-

portant drawback to this solution: having the outer call stacks matched too shallowly in-

troduces false positives (§6.3) and therefore reduces the parallelism, which may have a

negative impact on performance (§10.1.2, §10.1.3).

The generalization process is the following: When a Java application starts, the Com-

munix agent checks if new signatures that passed the validation could be merged with

existing signatures from the deadlock history of the running application. The signatures

that cannot be merged are added to the history.

Two signatures S and S′ can be merged if and only if they represent the same deadlock

bug (i.e., the top frames of S have to be identical to the top frames of S′), and either (1)

S and S′ were produced on the local machine, or (2) S/S′ is a remote signature and the

resulting signature has the outer call stacks of depths ≥ 5.

Merging two signatures consists of finding the longest common call stack suffixes of the

two signatures. Given two signatures S = {(CS1,out,CS1,in), ...} and S′ = {(CS′1,out,CS′1,in), ...},

their generalization is the signature Sg = {(CSg
1,out,CSg

1,in), ...}, where CSg is the longest

common suffix of call stacks CS and CS′.



Chapter 8

Optimizations

In this chapter, we present the optimizations we performed in Java Dimmunix, to achieve

low performance overhead and high accuracy (i.e., few FPs). The optimizations related

to high accuracy are implemented only for mutex deadlocks. We do not attempt to obtain

high accuracy when avoiding non-mutex deadlocks, because they involve synchronization

primitives which are not often executed (§10.1).

To achieve efficient deadlock immunity for lock-intensive applications, two goals have

to be satisfied. First, the deadlock detection and avoidance mechanisms must have low

overhead. Second, the deadlock avoidance mechanism has to be accurate, i.e., have few

false positives (FPs).

Retrieving the call stack of a thread and matching it against the history plays a central

role in Dimmunix’s efficiency. If a thread’s call stack matches an outer call stack of a

signature from history (up to the matching depth), deadlock avoidance is performed and

the thread may yield, otherwise the thread is allowed to proceed. Whenever a thread t

acquires a lock l, t’s current call stack is used to label the hold edge l−→t in the RAG;

the deadlock signatures are formed of such labels. Therefore, to achieve low overhead, an

efficient call stack retrieval routine is needed (e.g., the backtrace() C routine).

If the call stack retrieval routine is expensive (e.g., Java’s Thread.getStackTrace() method),

Dimmunix has to be invoked as rarely as possible, in order to substantially reduce the

overhead. Therefore, intercepting all the lock operations is not suitable—a selective inter-

ception of lock operations is necessary. This is possible only through a selective program
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instrumentation. To achieve a minimal amount of program instrumentation, the following

steps have to be performed: First, the outer call stacks of a deadlock signature must be

inferred from the inner call stacks, without keeping track of the call stack of each lock

acquisition operation. Second, the avoidance code has to be instrumented only at program

sites where deadlocks were previously detected. We describe the selective instrumentation

of Java programs in §8.1.

If a signature is on the critical path (i.e., at least 1 outer call stack ends in a lock state-

ment that is executed often), the call stack matching has to be optimized, since it is per-

formed often by the avoidance code. If retrieving the call stacks is expensive, inlining the

call stack matching reduces the overhead of the deadlock avoidance. We describe the inline

call matching for Java programs in §8.2.

Achieving high accuracy for the deadlock avoidance is important for reducing the num-

ber of yields and the duration of each yield. Reducing the frequency and the duration of

the yields has a positive impact on the performance of the applications (§10.1). To reduce

the number of yields (§8.3), Java Dimmunix detects false positives (§8.3.1), then it cali-

brates the matching precision to reduce the number of FPs (§8.3.2), while preserving the

effectiveness of the avoidance mechanism. The goal is to have zero FNs, with as few FPs

as possible. To reduce the duration of a yield, Java Dimmunix exploits the branches that

escape the deadlock (i.e., the deadlock situation is not reachable if such a branch is taken):

when such a branch is taken, Dimmunix stops the avoidance process by canceling the ac-

tive yields and preventing the future ones, until the lock whose acquisition triggered the

avoidance is released (§8.4).

Even though non-mutex deadlocks involve synchronization primitives which are not

often executed in programs, we want to achieve an efficient immunity framework for these

operations. Since accuracy is not needed for these deadlocks, Dimmunix uses only program

positions in the deadlock signatures. The position retrieval is equivalent to retrieving a call

stack of depth 1, which is still expensive for Java programs. Therefore, we optimize the

retrieval of program positions in Java programs, by inserting right before a synchronization

instruction at a program position p code that stores p as the current execution point for the

running thread (§8.2).
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8.1 Selective Program Instrumentation

To minimize the amount of program instrumentation, the following steps have to be per-

formed. First, the outer call stacks of a deadlock signature must be inferred from the inner

call stacks, without intercepting the lock acquisition operations. Second, the avoidance

code has to be instrumented only at program locations where deadlocks were previously

detected.

Dimmunix infers the outer call stacks of a deadlock signature from the inner call stacks,

by traversing backward the control flow graph (CFG) of the application bytecode. The

outer call stacks can be easily inferred if the deadlock involves only synchronized blocks.

For synchronized blocks, Dimmunix only needs to keep at runtime the lock stack (i.e.,

nested lock acquisitions) of each thread and the RAG. Since the JVM already does these

operations, Dimmunix does not need to intercept the synchronized blocks.

Since yield cycles are avoidance-induced deadlocks, Dimmunix uses the same mecha-

nism to infer the outer call stacks for signatures of yield cycles. Dimmunix only needs to

augment the JVM’s RAG with yield edges, in order to detect yield cycles; this operation

is performed by the avoidance code, which is inserted only at program locations where

Dimmunix previously detected deadlocks.

The outer call stacks are inferred using the lock stacks maintained by the JVM and

the CFG of the program bytecode; we illustrate the inference procedure in detail in Algo-

rithms 6 and 7. Having the lock stack LSi, inner call stack CSi, and the currently requested

lock li of each deadlocked thread ti, Dimmunix infers the outer call stacks as follows: First,

for each thread ti requesting lock li, Dimmunix finds the index k j of lock li in the lock stack

LSj of the thread t j that holds li (lines 1–4 in Algorithm 6). For each call stack CSi, Dimmu-

nix explores the CFG of the application bytecode backward, starting from CSi’s top frame,

and following the call stack (lines 5–7 in Algorithm 6, lines 1,8,10,11 in Algorithm 7). Ev-

ery time a lock (or unlock) statement corresponding to a synchronized block is encountered,

the counter knesting keeping the nesting level is incremented (respectively decremented); the

counter is initially zero (lines 2–7 in Algorithm 7). Once knesting = ki, the algorithm stops

and returns the call stack CS′i that results from removing the explored frames from CSi and

adding the frame representing the current program position (lines 4–5 in Algorithm 7). The
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deadlock signature has the outer call stacks CS′i (line 8 in Algorithm 6).

Input: Deadlocked threads t1, ..., tn with call stacks CS1, ...,CSn, lock stacks
LS1, ...,LSn, and requested locks l1, ..., ln.

Data: Control flow graph (CFG).
Output: Signature S = {(CS′1,CS1), ...,(CS′n,CSn)}, where CS′i are the inferred outer

call stacks.
foreach i ∈ 1,n do1

Let t j be the thread holding li2

Find the last index k j of li in LS j, corresponding to li’s acquisition3

end4

foreach i ∈ 1,n do5

CS′i := getOuterCallStack(CSi,ki,CSi.top,0)6

end7

return {(CS′1,CS1), ...,(CS′n,CSn)}8

Algorithm 6: Building the signature of a deadlock.

Input: Inner call stack CS; Lock stack index k; Current statement s, initially the
statement corresponding to CS’s top frame; Current nesting level knesting,
initially 0.

Data: Control flow graph (CFG).
Output: Outer call stack CS′.
if there exists a predecessor s′ of s then1

if s′ is monitorenter then2

knesting ++3

if knesting = k then4

return CS.pop().push(s′) //replace the top frame of CS with s′5

if s′ is monitorexit then6

knesting −−7

return getOuterCallStack(CS,k,s′,knesting)8

else9

CS := CS.pop() //remove the top frame10

return getOuterCallStack(CS,k,CS.top,knesting)11

end12

Algorithm 7: getOuterCallStack(CS,k,s,knesting): recursively computes the outer call
stack corresponding to an inner call stack CS and a lock stack index k.

The above algorithm is sound for synchronized blocks, because nested synchronized

blocks work like stacks (§3.1.1). Thanks to this property, the algorithm deterministically
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stops at one program position. Therefore, it is enough to explore only one execution path

in the CFG, to find the outer call stack.

Dimmunix inserts the avoidance code only at program positions involved in previously

detected deadlocks. Deadlock avoidance needs to be done only at these positions, because

Dimmunix avoids only previously detected deadlocks. More precisely, Dimmunix instru-

ments the outer and inner lock statements, and the corresponding unlock statements. Since

the synchronized blocks are properly nested (§3.1.1), the unlock statements corresponding

to a lock statement sl are easily found by exploring the CFG forward and keeping track of

the nesting level. The unlock statements corresponding to sl are the ones having the same

nesting level as sl.

Selective program instrumentation is needed also when dealing with blocked notifi-

cations. To avoid blocked notifications, Java Dimmunix needs to intercept synchronized

blocks. Intercepting all the synchronized blocks would cancel the benefits of the selec-

tive instrumentation described above. For dealing with blocked notifications, Dimmunix

intercepts only the synchronized blocks containing notify(All) calls.

Java Dimmunix also needs to intercept the synchronized blocks involved in blocked

notifications, i.e., the synchronized block wrapping the wait call, and the one blocking

the notification. Consider a blocked notification with signature (pl
w, pc

w, pl
n), where pl

w is

the program position where the mutex l causing the deadlock was acquired by the waiter

thread tw, pc
w is the position where tw deadlocked (i.e., the location of the wait call), and pl

n

is the position where the notifier thread tn requested l and deadlocked. Positions pc
w and pl

n

are available immediately; they are the top frames of threads tw and tn’s call stacks, at the

moment of the deadlock. Position pl
w is not available at runtime; the synchronized block at

pl
w is not intercepted, therefore its position is not available when the deadlock happens. To

infer the position pl
w, Dimmunix employs the same mechanism (described above) used to

infer outer call stacks from inner call stacks.

Outer call stacks cannot be inferred deterministically if the deadlocks involve explicit

resource acquisition/release operations (e.g., explicit lock/unlock operations). The reason

is that the explicit synchronizations do not have a deterministic nesting, because the ac-

quisition and release operations are decoupled. Therefore, whenever Dimmunix needs to
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retrieve at runtime the call stacks (or program positions) of explicit synchronization opera-

tions, it has to intercept these operations and retrieve their call stacks (respectively program

positions).

To be able to construct the signatures of deadlocks involving explicit synchroniza-

tion operations, Java Dimmunix intercepts all the explicit synchronizations and keeps the

program position of each resource acquisition. Java programs heavily use synchronized

blocks/methods for synchronization. More than 90% of the synchronizations in the Java

programs we studied are synchronized blocks/methods, as shown in Table 3.1. Therefore,

since synchronized blocks/methods do not need to be instrumented (except the ones previ-

ously involved in deadlocks), the amount of instrumentation is drastically reduced for Java

programs.

8.2 Inlining Call Stack Matching and Position Retrieval

If the deadlock signatures are on the critical path, the call stack matching becomes a bottle-

neck. If retrieving the call stacks is expensive, inlining the call stack matching considerably

reduces the performance overhead (§10.1).

To match outer call stacks of deadlock signatures on-the-fly, Java Dimmunix inserts

code that keeps track of the number of matched frames for each thread; we present this

mechanism in detail in Algorithm 8. Before a thread t executes a method call (or lock

statement) that matches a frame in an outer call stack CS of a deadlock signature, the

counter matches[CS, t] is decremented (lines 3–7). The counter represents the number

of frames in CS that are yet unmatched by thread t, starting from CS’s matching depth,

i.e., CS.depth; the counter is initialized to CS.depth. The matching is successful only if

the depth d of the currently matched frame in CS is equal to matches[CS, t] (line 6). If

d = CS.depth, the matching restarts (lines 3–4). Thread t’s execution matches CS up to

CS.depth if and only if matches[CS, t] = 0 (line 9).

To efficiently obtain at runtime the program positions of explicit resource acquisition

statements, Java Dimmunix statically finds these statements in the program bytecode, and

instruments them as follows: right before each acquisition statement s, Dimmunix inserts

code that stores the position of s in a thread-local variable. Therefore, s’s program position
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Input: Outer call stack CS; Depth d. The call frame at depth d in CS is currently
matched by thread t’s execution.

Data: Counter matches[CS, t], initialized to CS.depth.
Output: True if CS is matched up to its matching depth CS.depth, False otherwise.
if d > CS.depth then1

return False2

if d = CS.depth then3

matches[CS, t] := d−14

else5

if d = matches[CS, t] then6

matches[CS, t]−−7

end8

return matches[CS, t] = 09

Algorithm 8: inlineMatch(CS, d, t): checks whether thread t’s execution, currently
matching the frame at depth d in call stack CS, matches CS up to its matching depth
CS.depth, i.e., matches the top CS.depth frames of CS.

can be retrieved (almost) instantly when s executes.

8.3 Reducing the Number of False Positives

Java Dimmunix for mutex deadlocks reduces the number of FPs as follows: Whenever a

deadlock signature S is avoided, Dimmunix checks if the avoidance of S’s instantiation was

a FP (§8.3.1). If it was a FP, Dimmunix calibrates the matching precision for S (§8.3.2).

8.3.1 Detecting False Positives

Dimmunix is able to determine whether forcing a thread to yield indeed avoided a mutex

deadlock or not. For each lock l, Dimmunix keeps the set locksAcq[l] of locks acquired

and still held since l was acquired last time. For each thread t, Dimmunix keeps the set

locksHeld[t] of locks held by thread t. For each thread t and lock l, Dimmunix keeps

the set instances[t, l] of signature instantiations involving t and l that Dimmunix avoided

since t acquired l last time. When thread t is about to release l, Dimmunix analyzes every

instantiation from the instances[t, l] set, to determine whether it was a false positive (FP).

Dimmunix classifies an instantiation I as a FP if and only if it finds no lock inversions in
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the locksAcq sets of I.

We illustrate the FP detection mechanism in detail in Algorithm 9. Whenever Dim-

munix avoids a signature instantiation I = {(t1, l1,CS1), ...,(tn, ln,CSn)}, it adds I to the

sets instances[t1, l1], ..., instances[tn, ln] (lines 1–6). When a lock l is about to be released

by a thread t, Dimmunix performs the following steps for each instantiation I from the

instances[t, l] set (lines 14–23):

1. Copies the locksAcq[l] set into I, at the position where l appears in I (line 15).

2. Checks if the other locks from I have been released, i.e., the locksAcq copies are

present at all the positions in I (line 17).

3. If yes, Dimmunix finally checks if there is a lock inversion in instantiation I (line 18);

if there is, I is classified as a TP, otherwise it is flagged as a FP (lines 19–21). There is

a lock inversion in a signature instantiation {(t1, l1,CS1),(t2, l2,CS2), ...,(tn, ln,CSn)}

if and only if l1 belongs to the locksAcq copy corresponding to l2, ..., and ln belongs

to the locksAcq copy corresponding to l1 (line 18).

If no lock inversion is found in a signature instantiation I, then I is definitely a FP, i.e.,

the FP detection algorithm is sound. If a lock inversion is found in I, then I is likely to be

a TP. However, some logic that prevents deadlocks even in the presence of lock inversions

might have been activated; therefore, the FP detection algorithm is not complete. The

explanation is simple: every mutex deadlock involves a lock inversion, but not all lock

inversions represent mutex deadlocks.

The above algorithm works also for determining whether the avoidance of a starvation

signature was a FP. As we showed in §5.2, yield cycles are in fact deadlocks.

8.3.2 Calibrating the Signature Matching Precision

Java Dimmunix calibrates the signature matching precision to reduce the number of FPs,

while preserving the effectiveness of the avoidance mechanism. The goal is to have zero

FNs, with as few FPs as possible.

A signature S captures all the possible manifestations of a deadlock bug if and only

if all the possible signatures of the same deadlock match S up to the matching depths of
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Input: Thread t acquiring lock l, then releasing l; Signature S being avoided by t.
Data: Set instances[t, l], initially empty; Set locksHeld[t], initially empty; Sets

locksAcq, initially empty.
Output: Number of FPs nFP[S] and number of TPs nT P[S] corresponding to

signature S.
while Dimmunix finds an instantiation I = {(t1, l1,CS1), ...,(tn, ln,CSn)} of S do1

foreach i ∈ 1,n do2

instances[ti, li] := instances[ti, li]∪{I}3

end4

yield to avoid I5

end6

lock(l)7

foreach l′ ∈ locksHeld[t] do8

locksAcq[l′] := locksAcq[l′]∪{l}9

end10

locksHeld[t] := locksHeld[t]∪{l}11

//critical section12

//before releasing l, check if the avoided instantiations were FPs13

foreach I = {(t1, l1,CS1), ...,(tn, ln,CSn)} ∈ instances[t, l] do14

I.locksAcq[l] := locksAcq[l] //initially, I.locksAcq[l] = null15

//if all the other locks involved in I were released16

if ∀i ∈ 1,n : I.locksAcq[li] ̸= null then17

if ∀i ∈ 1,n : li ∈ I.locksAcq[l(i+1)%n] then18

nTPs[S]++19

else20

nFPs[S]−−21

end22

end23

locksHeld[t] := locksHeld[t]\{l}24

instances[t, l] := /025

locksAcq[l] := /026

unlock(l)27

Algorithm 9: Extending the deadlock avoidance algorithm to detect false positives.

its outer call stacks. Choosing too large matching depths can cause Dimmunix to miss

manifestations of the deadlock (i.e., have FNs), while choosing too shallow ones can lead

to mispredicting a runtime call flow as being headed for deadlock (i.e., this is a FP).

We describe now how Dimmunix calibrates the matching depths at runtime. When a
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signature S is created, the matching depths of its outer call stacks are set to 1. Hence,

S initially captures all the possible manifestations of the deadlock bug. Every time a FP

is encountered when avoiding an instantiation of S, the matching depths of S’s outer call

stacks are incremented.

A scenario where dynamically increasing the matching precision helps is the one illus-

trated in §6.3. If an application uses synchronization wrappers, the lock acquisitions always

execute at the same program position. Keeping the matching depths at 1 would serialize all

the critical sections, which is not desirable. Increasing the matching depths dynamically

when FPs are encountered solves this problem.

When the matching depths become too large, a signature may not capture all the pos-

sible manifestations of the deadlock bug. More precisely, when the matching depths of a

signature S’s outer call stacks are > 1, there may be other signatures of the same deadlock

bug ending in call stack suffixes that do not match S any longer. Once the deadlock bug

manifests again, it means it has a signature that does not match S, otherwise Dimmunix

would have avoided manifestations matching that signature.

Dimmunix merges the signature S′ of a new manifestation of a deadlock bug with the

existing signature S of the same deadlock as follows: First, it finds the lengths of the

common suffixes of the outer call stacks of S and S′. Then, Dimmunix decrements the

matching depths for S’s outer call stacks to these lengths, and freezes them, i.e., they cannot

be incremented further. Since the matching depths are frozen, Dimmunix discards signature

S′, to keep the deadlock history at a minimal size; for each deadlock bug, only the first

encountered signature is kept in the history. If the deadlock reoccurs, S’s matching depths

are decremented again. This way, Dimmunix finds the highest matching depths for S’s

outer call stacks that preserve the ability to avoid all the possible manifestations of the

deadlock bug. This merging algorithm is similar to the signature generalization algorithm

used by Communix (§7.2.4).

From our experience, the number of signatures corresponding to a deadlock bug is low;

we encountered up to 2 signatures (with outer call stack suffixes of size 10) for the deadlock

bugs we reproduced §10.1.1. If a deadlock bug has few signatures, it takes few occurrences

of the deadlock to converge to an optimal matching precision.
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However, if a deadlock bug has many signatures, i.e., many manifestations with differ-

ent outer call stack suffixes, Dimmunix will most likely need to encounter only a couple of

them to fully protect the application against the deadlock bug. The reason is that, with each

newly discovered signature, the calibration algorithm decreases the matching depths of the

original signature’s outer call stacks, and does not allow them to increase again. In other

words, the avoidance becomes more conservative with each newly discovered signature of

a deadlock bug.

8.4 Exploiting Escape Branches to Reduce Yielding Time

To reduce the duration of a yield, Java Dimmunix exploits the branches that escape the

deadlock: when such a branch is taken, Dimmunix stops the avoidance process: it cancels

the active yields and prevents the future ones, until the lock whose acquisition triggered the

avoidance is released.

Input: Signature S, with outer lock statements sout
1 , ...,sout

n and inner lock statements
sin

1 , ...,sin
n .

Data: Control flow graph (CFG).
Output: The set of escape branches.
escape := /01

foreach i ∈ 1,n do2

foreach branch statement s ∈ CFG s.t. sout
i !s do3

Let B be the set of branches of s4

if ∃b ∈ B s.t. b!sin
i then5

escape := escape∪{b′ ∈ B | ¬b′!sin
i }6

end7

end8

return escape9

Algorithm 10: findEscapeBranches(S): finds the escape branches corresponding to a
signature S.

Given the outer and inner call stacks of a deadlock signature, Dimmunix statically de-

tects in the CFG of the application bytecode the “escape branches” that bypass the dead-

lock; we illustrate this mechanism in detail in Algorithm 10. To determine these branches,

Dimmunix first finds the “critical branches” that need to be taken in order to reach the inner
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lock statements from the outer lock statements (lines 3–5). If a conditional statement has

one or more critical branches (line 5), the remaining branches (if any) are escape branches

(line 6). We use the notation x!y to denote the fact that statement y is reachable from

statement x in the CFG.

Dimmunix inserts code to stop the avoidance process at the escape branches and right

after the inner lock statement, if that statement is not in a loop. Since the deadlock situation

cannot be reached from these positions, the yielding threads can be safely resumed.

If a deadlock occurs due to stopping the avoidance, that deadlock will have different in-

ner lock statements, and therefore it is a new deadlock bug. A new signature is constructed

for this deadlock.



Chapter 9

Prototype Implementations

In this chapter, we provide details about our Dimmunix implementations: Dimmunix for

Java 9.1, Dimmunix for POSIX Threads 9.2, Dimmunix for Android 9.3, and Communix

for Java 9.4. Java Dimmunix is an application-level implementation—it relies on auto-

matically instrumenting the application bytecode at class load-time. POSIX Threads Dim-

munix is a library-level implementation—it intercepts all the pthread_mutex_lock/unlock()

calls. Android Dimmunix is a platform-wide implementation—it intercepts all the moni-

torenter/monitorexit operations within the Android OS. Communix is a collaborative dead-

lock immunity framework (§7); we implemented Communix on top of Java Dimmunix.

9.1 Dimmunix for Java: Application-level Instrumenta-

tion

Java Dimmunix immunizes programs against the following types of deadlocks:

• mutex deadlocks involving synchronized blocks and ReentrantLock objects

• hybrid deadlocks involving ReentrantLock objects, semaphores (i.e., Semaphore ob-

jects), and/or read-write locks (i.e., ReentrantReadWriteLock objects)

• initialization deadlocks involving synchronized blocks and class initialization

• external deadlocks involving file locks (i.e., FileLock objects)

112
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• blocked notifications involving synchronized blocks, Object.wait, Object.notify, and

Object.notifyAll calls

Dimmunix is implemented as a Java agent. When it boots, Dimmunix creates a monitor

thread that is responsible for detecting yield cycles and non-mutex deadlocks. The agent

defines a shutdown hook, which executes when the application shuts down. The shutdown

hook invokes Dimmunix to perform the deadlock detection.

At class load-time, Dimmunix instruments the program bytecode with the avoidance

code, using the AspectJ instrumentation framework [asp]. To selectively instrument syn-

chronization instructions, we customized the implementation of AspectJ to instrument only

the synchronization positions (i.e., program locations where synchronization is performed)

indicated in a configuration file. To instrument (at class load-time) instructions situated at

arbitrary locations (i.e., the code that stops the avoidance and the code for the inline call

stack matching), we use the ASM bytecode instrumentation framework [Bruneton, 2007].

We chose a load-time instrumentation for two reasons. First, we wanted to ease the

instrumentation of an application. The instrumentation is performed by the Dimmunix

agent and AspectJ instrumentation agent; the only operation a user has to perform is to

specify these two agents in the command line arguments when running a Java application.

If we chose a static instrumentation, the user would have had to perform the tedious task of

using the AspectJ compiler to instrument all “.class” files with Dimmunix. Second, we do

not want to alter the persistent application bytecode. The user does not have to back up the

uninstrumented version of the application; he/she can just remove the two agents from the

command line arguments, if he/she wants to disable Dimmunix.

To detect mutex deadlocks, Dimmunix simply invokes the JVM’s deadlock detection

by calling ThreadMXBean.findDeadlockedThreads method. This method returns the list of

deadlocked threads. Dimmunix obtains all the information it needs about the deadlocked

threads (i.e., their call stacks, lock stacks and requested locks) from the ThreadInfo object

associated with each thread. Starting from this information, Dimmunix infers the dead-

lock signature by statically analyzing the bytecode, using the Soot static analysis frame-

work [Vallée-Rai et al., 1999].

To detect yield cycles, Dimmunix keeps the yield edges in its own RAG and periodically

augments it with the necessary request and hold edges from the JVM’s RAG, starting from
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the yield edges. Starting from a yield edge t1−→t2, Dimmunix retrieves the lock l2 that

thread t2 is waiting for, and the thread t3 that holds l2 from t2’s ThreadInfo object. Then,

Dimmunix adds the request edge t2−→t2 and the hold edge t3−→l2 to its RAG. The process

stops when the current thread does not wait for any lock or the current lock is not held by

any thread.

The JVM does not detect non-mutex deadlocks; therefore Dimmunix needs to imple-

ment the detection of these deadlocks. To detect initialization deadlocks, Dimmunix only

needs to instrument the static class initializers; the rest of the information is provided by the

JVM through the ThreadInfo class. To detect blocked notifications, Dimmunix intercepts

the wait and notify(All) calls and the synchronized blocks corresponding to notify(All)

calls; Dimmunix also uses information provided by the ThreadInfo class.

To avoid initialization deadlocks, the Dimmunix agent intercepts the class loading and

performs the avoidance, before the static class initializer is invoked. To avoid blocked

notifications, Dimmunix needs to precompute the positions of all synchronized blocks cor-

responding to notifications (i.e., wrapping notify(All) calls); to do this, Dimmunix uses the

Soot static analysis framework [Vallée-Rai et al., 1999].

To detect and avoid read-write (respectively semaphore) deadlocks, Dimmunix inter-

cepts all the synchronization operations executed on read-write locks (respectively se-

maphores). To efficiently retrieve the program positions of these operations, Dimmu-

nix inspects the application bytecode using Soot, to detect the positions of the acquisi-

tion and release statements performed on read-write locks or semaphores. Then, Dim-

munix uses ASM to instrument the program at these positions with code that retrieves

them (almost) instantly at runtime; we chose this technique to avoid expensive calls to

Thread.getStackTrace().

To detect and avoid external deadlocks, Dimmunix uses MySQL server for the database

storing the process-shared synchronization state. Dimmunix intercepts all the calls to

FileChannel.lock() and FileChannel.unlock() methods.
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9.2 Dimmunix for POSIX Threads: Library-level Inter-

ception

POSIX Threads Dimmunix offers immunity against mutex deadlocks. We have two POSIX

Threads Dimmunix implementations: one targets Linux distributions and uses LD_PRELOAD

to override the mutex synchronization routines, and the other one targets FreeBSD distribu-

tions and changes the POSIX Threads library to provide deadlock immunity. Both imple-

mentations intercept the calls to pthread_mutex_lock and pthread_mutex_unlock, in order

to invoke the Dimmunix core upon each mutex synchronization operation.

The most difficult challenge we faced was related to custom memory allocators that

were calling pthread_mutex_lock at link-time. In Firefox, for instance, such allocators are

invoked when libraries are loaded, i.e., before the address of the real pthread_mutex_lock

is available to Dimmunix. This causes a segmentation fault when Dimmunix attempts to

invoke the real pthread_mutex_lock routine, because its address is still null. We chose to

simply skip the calls to the real pthread_mutex_lock and pthread_mutex_unlock routines,

as long as they are not loaded, i.e., dlsym returns null. This fix did not cause any problems

(e.g., crashes), in any of the C/C++ applications that we ran with Dimmunix (e.g., Firefox,

VLC).

Since C/C++ applications are not compiled with source code information by default, we

had to use instruction offsets in the binary for the call frames in the deadlock signatures.

The challenge with the binary offsets is the fact the addresses returned by a backtrace call

change in each execution, even though the frames point to the same instructions. For-

tunately for Dimmunix, the offset of an instruction within its binary is the same in each

program execution. Therefore, we compute offsets relative to the beginning of the binary,

for each return address r provided by a backtrace call; for that, we first obtain the address

b of the beginning of the binary, then the offset we need is r−b.

If we would keep only binary offsets in the deadlock signatures, we would not be able

to reconstruct the address of frame in the next execution of the program, when loading the

signatures into the memory. Therefore, Dimmunix keeps in a signature the name of the

corresponding binary next to each offset. When Dimmunix loads a signature, the frame

addresses are reconstructed as follows: First, Dimmunix obtains the start address b of the
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binary using dlopen. Then, it uses from the signature the offset o within the binary, to

reconstruct the frame address; this address is simply b+o.

We also implemented an efficient Dimmunix prototype within the FreeBSD POSIX

Threads library. This implementation achieves zero overhead look-ups for thread and lock

nodes in the RAG, because pointers to these nodes are stored as fields in the POSIX thread

and mutex data structures. We evaluate this implementation in §10.3.

9.3 Dimmunix for Android OS: Platform-level Intercep-

tion

In this section, we explain the design choices we took in the implementation of Android

Dimmunix. First, we explain our choice of implementing Dimmunix within Android’s

Dalvik VM. Second, we explain our decision to store only the top frames in the outer call

stacks.

We implemented Dimmunix in Android OS 2.2, within the Dalvik VM. We modified

Dalvik VM, to call Dimmunix upon each monitor acquisition/release. More precisely, we

changed the code of Dalvik VM’s synchronization routines to call into Dimmunix, as we

illustrate in Figure 9.1. Dalvik VM is a customized JVM, in which Android OS runs all the

applications. Since platform-wide deadlock immunity cannot be implemented in the kernel

space (§6.5), an implementation within the Dalvik VM is the natural choice.

Figure 9.1: The Architecture of Android Dimmunix.
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Such an implementation allows Android Dimmunix to detect and avoid deadlocks caused

by lock inversions due to wait() calls. We show how such an inversion can lead to a dead-

lock, in the Java code below:

Thread t1: Thread t2:

synchronized(x) { synchronized(x) {

synchronized(y) { synchronized(y) {

x.wait();

} }

} }

If thread t1 is executing x.wait() and thread t2 just acquired monitor x, the two threads are

going to deadlock: when thread t1 finishes waiting on x, it will attempt to reacquire x,

while holding monitor y; thread t2 waits for y, while holding x. To detect and avoid such

deadlocks, we changed the code of the Object.wait() native method: for each x.wait() call,

Dimmunix is called before and after the reacquisition of x, at the end of the wait function.

An instrumentation-based Dimmunix for Java cannot handle such deadlocks caused by

wait() calls. For each x.wait() call, the reacquisition of x at the end of the wait call has to

be intercepted; therefore, the code of the Object.wait() native method has to be changed.

In order to obtain the outer call stacks, Android Dimmunix needs to retrieve, for each

lock acquisition, the call stack the owner thread had when it acquired the lock. For each

lock l, Dimmunix stores in l.acqPos the call stack corresponding to the last acquisition of

l. In the signature of a deadlock involving threads t1 and t2, and locks l1 and l2, the outer

call stacks are l1.acqPos and l2.acqPos.

Android Dimmunix uses outer call stacks of depth 1 in the signatures. Retrieving the

call stack of each lock acquisition is expensive; therefore, we decided to retrieve only 1

frame, at the cost of a higher false positives rate in the deadlock avoidance. As we showed

in §6.3, it is safe to use outer call stacks of depth 1 for synchronized blocks/methods.

Android Dimmunix handles only synchronized blocks/methods. However, this is not

a major shortcoming; there are 1,050 synchronized blocks/methods and only 15 explicit

lock/unlock operations in Android 2.2 essential applications.

Android Dimmunix has two components: the Dimmunix core, which implements the

deadlock immunity, and the integration code, which (1) obtains the information needed to
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call the Dimmunix core, (2) extends existing Dalvik VM data structures, to provide instant

access to per-thread/monitor Dimmunix-related information, and (3) calls the Dimmunix

core. The core has 661 lines of code (LOC), and the integration code has 155 LOC.

Android Dimmunix uses the following data structures: The struct Node stores a RAG

node corresponding to a thread/monitor object. The struct Position stores the program

location of a monitorenter operation and the set of threads that hold (or are allowed by

Dimmunix to acquire) locks at that location.

To achieve zero-overhead look-up of the RAG node corresponding to a thread/monitor

object, we added a “node” field in Dalvik’s Thread and Monitor structs. We also added a

“stackBuffer” field in struct Thread, where Dimmunix retrieves the call stack. We illustrate

these changes in the code below:

typedef struct Thread {

...

Node node; //RAG node

char* stackBuffer; //call stack buffer

} Thread;

struct Monitor {

...

Node node; //RAG node

};

We describe now how Dimmunix’s data structures are initialized. Whenever the Dalvik

VM forks a new process, the initDimmunix routine is called, to initialize Dimmunix’s

global data for that process, e.g., the deadlock history, and the positions global map that

associates a unique Position object to each program location. Remember that Android

Dimmunix runs in user-space, therefore this global data is per-process. We modified the

routines that fork Dalvik processes, i.e., Dalvik_dalvik_system_Zygote_fork and forkAnd-

SpecializeCommon, to initialize Dimmunix as soon as the child process starts, as we show

in Figure 9.2. Each time a thread (or monitor) object t (respectively mon) is created by

Dalvik’s allocThread (respectively dvmCreateMonitor(Object* obj)) function, the integra-

tion code initializes the RAG node corresponding to t (respectively mon). We illustrate
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these changes in Figure 9.3.

pid_t pid;

...

pid = fork();

if (pid == 0) {

//child process, initialize Dimmunix

initDimmunix();

...

}

return pid;

Figure 9.2: Initializing Dimmunix when a child process starts.

static Thread* allocThread(...) {

Thread* t;

...

initNode(&t->node, t, T_THREAD);

//initialize the stack buffer

t->stackBuffer = (char*)malloc(STACKSIZE);

return t;

}

Monitor* dvmCreateMonitor(Object* obj) {

Monitor* mon;

...

initNode(&mon->node, obj, T_MONITOR);

return mon;

}

Figure 9.3: Initializing the RAG nodes.

The Dimmunix core is called by three routines, upon each monitorenter/monitorexit

statement: The Request() routine executes before a monitorenter statement; it performs

deadlock detection and returns whether a deadlock signature would be instantiated if the

lock acquisition would be approved. The Acquired() routine runs immediately after a mon-

itorenter statement, and the Release() routine runs right before a monitorexit statement;

these two routines perform only RAG updates. For thread-safety, Dimmunix uses a global
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lock within these methods. As we show in §10.4, Dimmunix is efficient, even in the pres-

ence of this global lock, because the calls to the three methods are cheap.

The Dalvik VM implements the monitorenter, monitorexit, and Object.wait() state-

ments in the routines lockMonitor, unlockMonitor, and waitMonitor. We changed lock-

Monitor to invoke the Request and Acquired Dimmunix routines:

void lockMonitor(Thread* t, Monitor* mon) {

//monitorenter(mon), before acquiring mon

dvmGetCallStack(t);

Position* pos = getPosition(t->stackBuffer);

int sigId; //matched sig in history

do {

sigId = Request(&t->node, &mon->node, pos);

//if instantiation found, yield and retry

if (sigId >= 0)

wait(history[sigId]);

} while (sigId >= 0);

//t is allowed to acquire mon

...

//after acquiring mon

Acquired(&t->node, &mon->node);

}

We implemented the dvmGetCallStack routine that retrieves the top frame of a thread t’s

call stack into the t->stackBuffer buffer. As long as there is a signature S in history that

is instantiated, Dimmunix makes the caller thread wait on a condition variable associated

with S.

We changed the unlockMonitor and waitMonitor routines, to call Dimmunix’s Release

function, right before the monitor is released. If the released monitor was acquired with a

call stack in the history, Dimmunix resumes all the threads waiting on signatures containing

that call stack, as we illustrate in Figure 9.4.

Dimmunix turns the thin lock associated with an object x into a fat lock, i.e., a Monitor

object, as soon as a monitorenter(x) statement is called. The reason is that a RAG lock node
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//thread t, before releasing mon

Position* pos = mon->node.acqPos;

if (pos->inHistory) {

int sigId;

for (sigId=0; sigId < histSize; sigId++) {

if (history[sigId].contains(pos))

notifyAll(history[sigId]);

}

}

Release(&t->node, &mon->node);

//release mon

Figure 9.4: Changes in the unlockMonitor and waitMonitor routines.

is encapsulated in a Monitor object; the thin lock is a simple integer field, which cannot

accommodate a RAG node. To make sure that each monitorenter statement is executed on

a fat lock, we added the code below before calls to lockMonitor:

//if the lock is thin

if (LW_MONITOR(obj->lock) == NULL) {

pthread_mutex_lock(&globalLock);

//if still thin, fatten the lock

if (LW_MONITOR(obj->lock) == NULL) {

Monitor* mon = dvmCreateMonitor(obj);

obj->lock = (u4)mon | LW_SHAPE_FAT;

}

pthread_mutex_unlock(&globalLock);

}

Most of the CPU and memory consumptions are due to the computations related to

the call stacks. Dimmunix allocates a unique Position object for each call stack of a syn-

chronization operation. Using call stacks of depth 1 minimizes the number of Position

objects. The Thread.stackBuffer field makes the call stack retrieval more efficient; the field

is thread-local, and the dvmGetCallStack routine does not need to allocate memory for

storing the current call stack.
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To eliminate the overhead incurred by the call stack retrieval, the compiler could pro-

duce a unique id for each synchronization statement, based on the location of that statement.

The ids would be constant in all the executions of the application, because every id is bound

to a program location. Dimmunix can use the ids instead of the call stacks, to identify syn-

chronization statements. The compiler can pass the id as a parameter to the lockMonitor,

unlockMonitor, and waitMonitor routines; this way, retrieving the id would not incur any

performance penalty.

If the deadlock signatures are on the critical path, Dimmunix may incur significant

performance overhead, due to the computations performed in the avoidance code. More

precisely, the Request routine looks for signatures in the history that are instantiated. For

signature matching, Dimmunix maintains for each Position object p a queue that stores

the threads holding (or allowed to acquire) locks with position (call stack) p. To reduce

the number of memory allocations, Dimmunix uses a second queue, where the elements

deleted from the main queue are stored. Whenever a thread t needs to be added to the main

queue and the second queue is non-empty, Dimmunix pops an element from the second

queue, makes it point to t, and adds it to the main queue.

Android Dimmunix does not handle deadlocks involving native code (i.e., using An-

droid NDK). However, it is possible to handle such deadlocks, by intercepting the syn-

chronization operations within the POSIX Threads library. This must be done carefully,

because the Dalvik VM already uses this library to implement the synchronization opera-

tions in Java. Therefore, Android OS should allow Dimmunix to intercept the calls to the

POSIX Threads synchronization routines only when native code executes.

9.4 Communix for Java: Collaborative Immunity

Communix is implemented on top of Java Dimmunix, and has four components: Commu-

nix server, Communix client, Communix agent, and Communix plugin. The Communix

server and client use the java.net.Socket class for communication. The Communix client

is running as a separate Java process; it periodically (once a day) retrieves new deadlock

signatures from the server, into a local repository. The Communix plugin is implemented

within Dimmunix, in a separate package; Dimmunix invokes the plugin to upload newly
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discovered deadlock signatures to the server. At startup, Dimmunix instructs the Commu-

nix agent to scan the local repository for new signatures that match the running application;

then, the Communix agent validates each signature that matches the application.

Since deadlock signatures are never removed from a repository, checking for new sig-

natures becomes trivial. The Communix plugin keeps a per-application cursor indicating

to point until which the local signature repository was scanned last time.

For checking if the outer call stacks of a deadlock signature end in nested synchronized

blocks (methods), Communix agent uses the Soot bytecode analysis framework [Vallée-Rai

et al., 1999].



Chapter 10

Evaluation

In this chapter, we evaluate the prototype implementations. First, we evaluate the part of

Java Dimmunix responsible for mutex deadlocks (§10.1), then the part responsible for non-

mutex deadlocks (§10.2). We evaluate POSIX Threads Dimmunix in §10.3, and Android

Dimmunix in §10.4. Finally, we evaluate Communix in §10.5.

We explain first the formula we use to compute the performance overhead incurred by

Dimmunix. No matter whether we measure execution time or throughput (e.g., synchro-

nizations per second), we compute the performance overhead incurred by Dimmunix (in

%) using the formula |xDimmunix−xbase|
xbase

·100, where xDimmunix is the execution time (or through-

put) of the application running with Dimmunix, and xbase is the execution time (respectively

throughput) of the vanilla application. If we measure the execution time, an overhead of

90% means that the application is 90% slower; if we measure the throughput, it means a

10x throughput reduction.

10.1 Java Dimmunix—Mutex Deadlocks

In this section, we evaluate the most important part of Java Dimmunix, i.e., the one that

deals with mutex deadlocks. We answer the following practical questions: First and fore-

most, does Dimmunix work for real systems that do I/O, use system libraries, and interact

with users and other systems (§10.1.1)? What performance overhead does Dimmunix in-

troduce, and how does this overhead vary as parameters (e.g., number of threads, number of

124
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signatures) change (§10.1.2, §10.1.3)? What is the impact of false positives on performance

(§10.1.4)? How effective are the optimizations we performed (§10.1.5)?

To quantify Dimmunix’s impact on system performance, we used as metrics throughput

(e.g., requests per second, synchronizations per second) and execution time. We report

in §10.1.2 end-to-end measurements on real applications, and in §10.1.3 we use synthetic

microbenchmarks to drill deeper into the performance characteristics.

10.1.1 Effectiveness Against Real Deadlocks

In practice, deadlocks arise from two main sources: bugs in the logic of the program and

technically permissible (but yet inappropriate) uses of third party code; Dimmunix ad-

dresses both.

True Deadlock Bugs

System Bug # Deadlock Between ... TP
Yields

FP
Yields

Signatures

MySQL 5.0 JDBC 2147 PreparedStatement.getWarnings()
and Connection.close()

1 0 1

MySQL 5.0 JDBC 14972 Connection.prepareStatement() and
Statement.close()

1 0 1

MySQL 5.0 JDBC 31136 PreparedStatement.executeQuery()
and Connection.close()

1 0 1

MySQL 5.0 JDBC 17709 Statement.executeQuery() and
Connection.prepareStatement()

1 0 1

Limewire 4.17.9 1449 HsqlDB TaskQueue cancel() and
shutdown()

15 0 2

ActiveMQ 3.1 336 ActiveMQMessageConsumer pro-
cessMessage() and setMessageLis-
tener()

8–12 0–1 1

ActiveMQ 4.0 575 Queue.dropEvent() and Prefetch-
Subscription.add()

8–11 34–48 1

Table 10.1: Reported deadlock bugs avoided by Dimmunix in real Java applications.

To verify the effectiveness against real bugs, we reproduced deadlocks that were re-

ported against real systems. We used timing loops to generate “exploits,” i.e., test cases

that deterministically reproduced the deadlocks. It took, on average, two programmer-days

to successfully reproduce a bug; we abandoned many bugs, because we could not reproduce
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them reliably. We ran each test 100 times in three different configurations: First, we ran the

unmodified program, and the test always deadlocked prior to completion. Second, we ran

the program instrumented with full Dimmunix, but ignored all yield decisions, to verify that

timing changes introduced by the instrumentation did not affect the deadlock—again, each

test case deadlocked in every run. Finally, we ran the program with full Dimmunix, with

signatures of previously-encountered deadlocks in the history—in each case, Dimmunix

successfully avoided the deadlock and allowed the test to run to completion.

The results are centralized in Table 10.1. We include the number of yields recorded

during the trials with full Dimmunix as a measure of how often deadlock signatures were

encountered and avoided. For most cases, there is one yield, corresponding to the one

deadlock reproduced by the test case. In some cases, however, the number of yields was

much higher, because avoiding the initial deadlock enabled the test to continue and re-enter

the same deadlock-prone execution pattern later. For all but the ActiveMQ tests there were

no false positives. In the case of ActiveMQ 3.1 (respectively 4.0), Dimmunix found that

0–1 (respectively 34–48) yields were FPs and 8–12 (respectively 8–11) were TPs.

We configured the maximum length of the call stack suffixes and the matching depth

to 10; in 100 runs that deterministically reproduced the deadlocks, Dimmunix did not find

more than two signatures with different outer call stacks for a deadlock bug (in most of the

cases it found just one). Even if the matching precision was high, the signatures were as

effective as with a matching depth of 1, in most of the cases.

However, if a deadlock bug has many deadlock signatures with different outer call

stacks of depth 10, Dimmunix will most likely need to encounter only a couple of them

to fully protect the application against the deadlock bug. With each newly discovered

signature, the calibration algorithm decreases the matching depths of the original signature,

and does not allow them to increase again, i.e., the deadlock avoidance becomes more

conservative (§8.3.2).

Invitations to Deadlock

When using third party libraries, it is possible to use the offered APIs in ways that lead to

deadlock inside the library, despite there being no logic bug in the calling program. For

example, several synchronized base classes in Java can lead to deadlocks.
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Consider two vectors v1, v2 in a multithreaded program—since Vector is a synchronized

class, programmers allegedly need not be concerned by concurrent access to vectors. How-

ever, if one thread wants to add all elements of v2 to v1 via v1.addAll(v2), while another

thread concurrently does the reverse via v2.addAll(v1), the program can deadlock inside

the JDK, because under the covers the JDK locks v1 then v2 in one thread, and v2 then v1

in the other thread. This is a general problem for all synchronized Collection classes in the

JDK.

Table 10.2 shows deadlocks we reproduced in JDK 1.6.0; they were all successfully

avoided by Dimmunix. While not bugs per se, these are invitations to deadlock. Ideally,

APIs should be documented thoroughly, but there is always a tradeoff between productivity

and pedantry in documentation. Moreover, programmers cannot think of every possible

way in which their API will be used. Runtime tools like Dimmunix provide an inexpensive

alternative to this dilemma: avoid the deadlocks when and if they manifest. This requires

no programmer intervention and no JDK modifications.

PrintWriter class: With w a PrintWriter, concurrently call w.write() and CharArray-
Writer.writeTo(w)
Vector: Concurrently call v1.addAll(v2) and v2.addAll(v1)
Hashtable: With h1 a member of h2 and h2 a member of h1, concurrently call h1.equals(foo) and
h2.equals(bar)
StringBuffer: With StringBuffers s1 and s2, concurrently call s1.append(s2) and s2.append(s1)
BeanContextSupport: concurrent propertyChange() and remove()

Table 10.2: Java JDK 1.6 deadlocks avoided by Dimmunix.

10.1.2 Real Applications

We measured the end-to-end overhead in “immunized” JBoss, MySQL JDBC, Limewire,

Vuze, and Eclipse. For JBoss we used the RUBiS e-commerce benchmark [RUBiS], and

for MySQL JDBC we used the JDBCBench benchmark [JDBCBench]. We are unaware of

any benchmarks for Limewire, Vuze, and Eclipse. Therefore, we measured Dimmunix’s

impact on operations that are lock-intensive and have a constant execution time. For Eclipse

(respectively Vuze), we measured the time it takes to start it and immediately shut down.

For Limewire, we measured the execution time of an upload test included in Limewire’s

source code.
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We compare the performance of Dimmunix’s deadlock avoidance mechanism to the

performance of the simple (respectively hybrid) avoidance (§5.2.1). Our goal is to find

out which avoidance mechanism is the most efficient. Dimmunix’s avoidance mechanism

surpasses both the hybrid and simple avoidance techniques.

Table 10.3 presents the characteristics of the performance tests we ran on real applica-

tions, i.e., number of threads performing synchronization, number of synchronizations per

second, number of objects used as mutex locks during the execution, number of synchro-

nization positions (i.e., program positions where synchronization is performed), percentage

of nested synchronization operations covered by the 20 “busiest” nested synchronization

positions, the number of lock objects used at these program positions, number of call stacks

of depth 10 that appeared when performing nested synchronization, and percentage of

nested synchronization operations covered by the 20 “busiest” nested synchronization call

stacks. As shown in the table, JBoss and MySQL JDBC tests are the most lock-intensive

applications; they perform 100,000–180,000 synchronizations per second. We studied here

only the synchronizations on mutexes, i.e., synchronized blocks and calls to Reentrant-

Lock.lock(). We call a synchronization operation on lock l nested if and only if another

synchronization is performed inside l’s critical section. A nested synchronization position

is a program position where at least one nested synchronization operation was performed.

We measured the performance overhead incurred by Dimmunix with a history 20 syn-

thetic deadlock signatures ending in the top 20 “busiest” nested synchronization positions,

which according to Table 10.3 cover at least 99% of the nested synchronization operations.

In other words, we measure the performance overhead in a worst-case scenario where most

of the nested synchronization positions are part of deadlock signatures and therefore are

instrumented with Dimmunix’s avoidance code. Regarding the avoidance overhead, the

synthesized signatures have the same effect as real ones. We chose only positions of nested

synchronizations, because unnested synchronizations cannot be involved in mutex dead-

locks.

The matching depth is set to 5, which provides a good accuracy for Dimmunix’s avoid-

ance (i.e., the yields are few) and a good accuracy for the hybrid avoidance, for the appli-

cations we studied (see Table 10.4). In practice, Dimmunix initializes the matching depth
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Characteristics
System, Test Scenario

JBoss,
RUBiS

MySQL JDBC,
JDBCBench

Eclipse,
Startup +
Shutdown

Limewire,
Upload test

Vuze,
Startup +
Shutdown

number of threads 284 505 31 214 76
number of sync ops/sec 178,279 100,855 78,536 13,905 28,872
nested sync ops 25% 30% 47% 27% 7%
number of lock objects 12,022 100,009 153,541 41,746 1,958
number of sync positions 399 17 878 247 373
nested sync ops covered by the
20 “busiest” nested sync posi-
tions

99% 100% (6 nested
sync pos)

99% 99% 99%

number of lock objects used by
the 20 “busiest” sync positions

4,767 4,777 11,337 4,893 1,037

number of synchronization call
stacks of depth 10

23,254 99 95,875 2,230 12,051

nested sync ops covered by the
20 “busiest” nested sync call
stacks

93% 100% 67% 95% 85%

Table 10.3: Mutex synchronization in real Java applications.

to 1, and increases it as FPs are encountered in the deadlock avoidance; therefore, the max-

imum matching depth is the length of the call stack suffix. We set the maximum length of

the call stack suffixes to 10, to accommodate applications that may require higher match-

ing depths. We do not go beyond depth 10, because the call stack matching is an expensive

operation. Even if the hybrid avoidance cannot use the full suffixes (because it is unable

to detect FPs and increase the matching depth), we use the same suffix size; we want to

compare the hybrid avoidance to Dimmunix’s avoidance in the same conditions, because

the two techniques have identical call stack matching mechanisms. However, we set the

suffix sizes to 1 for the simple avoidance, because only the top frames are relevant.

Table 10.4 presents the results of our measurements. The “Vanilla” row shows the

performance (request/transaction throughput, or execution time) of the vanilla application.

The “0 (respectively 20) sigs Dimmunix” row shows the performance of the application

instrumented with Dimmunix, with 0 (respectively 20) signatures in the history. In the

“20 sigs simple (respectively hybrid)” rows, the simple (respectively hybrid) avoidance

algorithm is used to avoid deadlocks.

When the history is empty, there is only class loading overhead, due to invoking the
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System, Test scenario Performance Overhead #yields Yield cycles

JBoss, RUBiS

Vanilla 525 req/sec
0 sigs Dimmunix 523 req/sec
20 sigs Dimmunix 373 req/sec 28.7% 50 0
20 sigs hybrid 351 req/sec 32.9% 89,339 6
20 sigs simple 198 req/sec 62.1% 8,041,986 10

MySQL JDBC, JDBCBench

Vanilla 2309 txn/sec
0 sigs Dimmunix 2264 txn/sec
20 sigs Dimmunix 1635 txn/sec 27.8% 0 0
20 sigs hybrid 1691 txn/sec 25.3% 450,299 0
20 sigs simple 518 txn/sec 77.1% 800,301 142

Eclipse, Startup+Shutdown

Vanilla 13.77 sec
0 sigs Dimmunix 23.01 sec
20 sigs Dimmunix 27.50 sec 19.5% 0 0
20 sigs hybrid 34.72 sec 50.9% 10,786 6
20 sigs simple 72.70 sec 216% 160,714 15

Limewire, Upload test

Vanilla 20.7 sec
0 sigs Dimmunix 31.25 sec
20 sigs Dimmunix 33.41 sec 6.9% 0 0
20 sigs hybrid 33.77 sec 8% 10,781 0
20 sigs simple 31.92 sec 2.1% 42,970 0

Vuze, Startup+Shutdown

Vanilla 10.13 sec
0 sigs Dimmunix 15.67 sec
20 sigs Dimmunix 16.95 sec 8.2% 0 0
20 sigs hybrid 16.83 sec 7.4% 10 0
20 sigs simple 16.66 sec 6.3% 79 0

Table 10.4: Performance results on real applications.

AspectJ load-time weaver. This is a one-time overhead, that manifests only when a class is

used for the first time in the application. Most of this overhead occurs during the application

startup, since most of the classes are loaded at startup. As shown in Table 10.4, the load-

time overhead is the highest in the Eclipse, Limewire, and Vuze tests. Since the load-time

overhead is not due to Dimmunix’s computations, we use the “0 sigs” values as a baseline

for measuring the performance overhead incurred by Dimmunix.

Once the classes are loaded, the performance overhead is only due to Dimmunix; the

worst-case overhead is the highest in the JBoss, MySQL JDBC, and Eclipse tests. Note

that these measurements are for a worst-case scenario, i.e., most of the nested synchroniza-

tion statements are part of deadlock signatures and therefore are intercepted by Dimmu-

nix. Therefore, the worst-case performance overhead can be noticeable in applications like
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JBoss, MySQL JDBC, and Eclipse. If no signature has call stacks on the critical path, the

overhead due to Dimmunix is negligible (i.e., < 2%) for all the tests, as if the deadlock

history was empty. The reason is that only the synchronization statements belonging to

deadlock signatures are intercepted by Dimmunix.

In Table 10.4, we also compare the performance of Dimmunix’s avoidance to the per-

formance of the simple and hybrid avoidance techniques. Dimmunix’s avoidance is by far

the most accurate, causing the lowest number of yields and no yield cycles; the other two

avoidance techniques cause much more yields and also cause yield cycles. Since the dead-

lock signatures are synthetic, we can assume that most of the yields are FPs. Therefore, we

can deduce that Dimmunix’s avoidance mechanism is much more accurate than the simple

and hybrid avoidance mechanisms. Dimmunix’s avoidance caused no yield cycles, while

the other avoidance mechanisms caused yield cycles; this shows that a higher number of

yields increases the probability of incurring starvation. We do not claim that Dimmunix’s

avoidance mechanism cannot cause yield cycles in practice; we just show empirically that

Dimmunix’s avoidance causes fewer yield cycles than the other two techniques.

Thanks to the higher accuracy, Dimmunix’s avoidance incurs a substantially lower per-

formance overhead than the simple avoidance in JBoss, MySQL JDBC, and Eclipse, as

Table 10.4 shows. Compared to the hybrid avoidance, Dimmunix’s avoidance incurs prac-

tically the same performance overhead in 4 out of 5 applications; in Eclipse, Dimmunix’s

avoidance is significantly more efficient. Dimmunix’s avoidance is more robust than the hy-

brid avoidance, because it causes fewer yield cycles. Even if the simple avoidance causes

much more yields, its performance may be better than Dimmunix’s avoidance (as shown in

Table 10.4), for the following reasons: (1) the time spent in critical sections may be small

enough for the yields to not count, (2) the simple avoidance mechanism is cheaper (it only

consists of acquiring semaphores associated with signatures), and (3) the simple avoidance

needs to match only one call frame.

Even if there are few yields, Dimmunix may incur a noticeable performance overhead,

as Table 10.4 shows. If at least one call stack of a signature S is on the critical path, i.e., it

ends in a lock statement that is executed often, S can incur a noticeable overhead, although

it is instantiated rarely. The reason is that Dimmunix has to match the execution flow

against S, in order to avoid instantiating S.
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In 3 out of 5 applications the Dimmunix’s avoidance and the hybrid avoidance incur

a substantially lower performance overhead than the simple avoidance. This means that

matching the call stacks accurately greatly improves Dimmunix’s performance.

We profiled the JBoss, MySQL JDBC, and Eclipse tests—we found out that most of the

overhead is in the call stack matching. This is due to the fact that the deadlock signatures

share call frames. If two signatures share a call frame pointing to program position p,

the inline matching code is invoked for both signatures, each time the program execution

reaches p.

10.1.3 Microbenchmarks

To dissect Dimmunix’s performance behavior and understand how it varies with various pa-

rameters, we wrote a lock-intensive microbenchmark that creates Nt threads and has them

synchronize on locks from a total of Nl locks shared among the threads; a lock is held until

δin instructions are executed, before being released and a new lock is requested after δout

instructions. The delays are implemented as busy loops that simply execute incrementa-

tion instructions, thus simulating computation done inside and outside the critical sections.

The threads call multiple functions within the microbenchmark so as to build up different

call stacks; which function is called at each level is chosen randomly, thus generating a

uniformly distributed selection of call stacks.

We also wrote a tool that generates synthetic deadlock history files containing H signa-

tures, all of size 2, which is the usual number of threads involved in a deadlock. Generated

signatures consist of stack combinations for synchronization operations in the benchmark

program—not signatures of real deadlocks, but avoided as if they were. The benchmark has

a configurable number Np (typically grater than H) of synchronization positions. The H

signatures cover H synchronization positions (each signature has two identical call stacks);

only these positions are instrumented by Dimmunix. If H = Np, Dimmunix ends up inter-

cepting all the synchronization operations.

The typical benchmark configuration that we chose is the following: We configure Np

to 20 synchronization positions, and H to 10 signatures. We chose Np = 20 because most

of the nested synchronizations occurred in 20 program positions, in all the applications we
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studied, as shown in Table 10.3. Since H = 10, Dimmunix is invoked for 50% of the nested

synchronization operations. The delays δin and δout are typically configured to 1,000 and

respectively 50,000 instructions, which allows a throughput of up to 200,000 synchro-

nizations per second on our 8-core machines; this is similar to the highest throughput of

synchronization operations that we encountered in the real applications we tested. By de-

fault, we configure Nt to 500 threads, which is similar to the maximum number of threads

in the applications we tested. We configure Nl to 10,000 locks, which is similar to the

largest number of locks used in nested synchronizations that we encountered.

The default Dimmunix configuration that we used is the following: We fix the matching

depth to 5 and the length of the call stack suffixes to 10, as in the tests we performed on

real applications. We disable the avoidance, i.e., yielding is not performed, in order to

measure just the overhead due to Dimmunix’s computations. By default, the inline call

stack matching and the selective instrumentation are enabled, for efficiency. However, the

FP detection and the matching depth calibration are not enabled by default, because no

yields are performed.

Overhead as a function of the number of threads: Figure 10.1 shows how synchro-

nization throughput varies with the number of threads. We observe that Dimmunix scales

well: for up to 1,024 threads, Dimmunix incurs 4–5% overhead, in a lock-intensive scenario

with 200,000 synchronizations per second. Yield decisions are ignored, in order to measure

only the computational overhead; the overhead due to yielding is measured in §10.1.4.

According to Figure 10.1, Dimmunix’s avoidance and the hybrid avoidance have very

similar computational overheads. Therefore, we evaluate from now on only the efficiency

of Dimmunix’s avoidance. We decided not to evaluate the simple avoidance in the mi-

crobenchmark, because the tests we performed on real applications clearly showed that it

is less efficient than the other two techniques (§10.1.2).

The hybrid avoidance causes significantly more signature matches than Dimmunix’s

avoidance. The reason is that every time the execution of a thread t matches a call stack

belonging to a signature S, the hybrid avoidance regards S as matched and decides to make

thread t yield.

As the microbenchmark approaches the behavior we see in real applications that per-

form I/O, we would expect the overhead to be further absorbed by the time spent between
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Figure 10.1: Dimmunix microbenchmark lock throughput as a function of number of
threads.

lock/unlock operations. To validate this hypothesis, we measured the variation of the syn-

chronization throughput with the values of δin and δout—Figure 10.2 shows the results.

The performance overhead introduced by Dimmunix is the highest (31%) when the

program does almost nothing but lock and unlock (i.e., δin=1000, δout =0). This is not

surprising, because Dimmunix intercepts the calls to lock/unlock and performs additional

computation in the critical path. However, as the interval between critical sections (δout )

or inside critical sections (δin) increases, the overhead decreases. For inter-critical-section

intervals of 10,000 instructions or more, the overhead is modest.

Note that a direct performance comparison between Dimmunix and the baseline is

somewhat unfair to Dimmunix, because non-immunized programs deadlock and stop run-

ning, whereas immunized ones continue running and do useful work.

Impact of history size and matching depth: The performance penalty incurred by match-

ing current executions against signatures from history should increase with the size of the

history (i.e., number of signatures) as well as the depth at which signatures are matched

with current stacks. Average length of a signature (i.e., average number of threads involved

in the captured deadlock) also influences matching time, but the vast majority of deadlocks



CHAPTER 10. EVALUATION 135

500 threads, 10,000 locks 
 10 sigs, match depth=5, suffix depth=10, 20 sync positions

 0

 50

 100

 150

 200

 250

 300

0 103 104 105 106 107

L
o

ck
 O

p
e

ra
tio

n
s 

/ 
M

ill
is

e
co

n
d

δin [Number of Instructions]

δout=50,000 instr

Baseline
Dimmunix

 0

 200

 400

 600

 800

 1000

 1200

0 103 104 105 106 107

L
o
ck

 O
p
e
ra

tio
n
s 

/ 
M

ill
is

e
co

n
d

δout [Number of Instructions]

δout=50,000 instr

δin=1,000 instr

Baseline
Dimmunix

Figure 10.2: Variation of lock throughput as a function of δin and δout .

in practice are limited to two threads [Lu et al., 2008], so variation with signature size is

not that interesting.

We show in Figure 10.3 the performance overhead introduced by varying history size

from 0 to 256 signatures, and the matching depth from 1 to 10. The overhead introduced

by the history size and matching depth is insignificant between 2 and 16 signatures, i.e., 1–

2.7%. The overhead between 32 and 256 signatures increases significantly (i.e., 2.7–35.8%

for matching depth > 1, and 7.2–41% for matching depth 1), because the percentage of syn-

chronization positions instrumented with avoidance code increases rapidly. The overhead

corresponding to the matching depth 1 is slightly higher compared to the matching depths 5

and 10 (the difference becomes noticeable for more than 16 signatures), because the num-

ber of call stack matches is higher for lower matching depths, and therefore Dimmunix has

to check more often whether signatures in history are instantiated.

Breakdown of overhead: Having seen the impact of the number of threads, the history
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Figure 10.3: Lock throughput as a function of history size and matching depth.

size, and the matching depth, we profiled the overhead to understand which parts of Dim-

munix contribute the most. For this, we selectively disabled parts of Dimmunix and mea-

sured the synchronization throughput. First, we measured the overhead introduced by the

instrumentation, which includes the inline call stack matching. Then, we added the data

structure lookups and updates performed in the avoidance code. Finally, we ran full Dim-

munix, with the signature matching code enabled. Yielding decisions are still ignored, in

order to measure only the computational overhead.
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Figure 10.4: Breakdown of overhead.
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The results are shown in Figure 10.4. For the most lock-intensive applications, the over-

head is almost equally shared between the avoidance code and the data structure updates/look-

ups. For less lock-intensive applications, most of the overhead is in the data structure

updates/look-ups. The avoidance overhead is higher for small δout values, because call

stacks are matched more often, and therefore signature matching code is invoked more

frequently. The inline call stack matching incurs a noticeable overhead for δout = 0.

The signatures do not share call frames; if they would, the overhead due to inline call

stack matching could be substantially higher, as it is for real applications (§10.1.2). We

chose to have no frame sharing between signatures, because we wanted to avoid making

the inline call stack matching a bottleneck, in order to measure also the overhead due to the

other computations, i.e., data structure look-ups/updates and signature matching.

10.1.4 False Positives

Any approach that tries to predict the future with the purpose of avoiding bad outcomes

suffers from false positives, i.e., wrongly predicting that the bad outcome will occur. Dim-

munix is no exception; FPs can arise when signatures are matched too shallowly, or when

the lock order depends on inputs, program state, etc. Our microbenchmark does not have

the latter type of dependencies.

In a false positive, Dimmunix reschedules threads in order to avoid an apparent im-

pending deadlock that would actually not have occurred; this can have negative or positive

effects on performance, the latter due to reduced contention. We concern ourselves here

with the negative effects, which result from a loss in parallelism: Dimmunix serializes

“needlessly” a portion of the program execution, which causes the program to run slower.

To measure the effect of false positives (FPs), we used the microbenchmark described

in §10.1.3. All deadlock signatures in the microbenchmark are synthetic, i.e., there are no

true positives. Therefore, the yielding overhead gives us exactly the overhead induced by

FPs. Although it is not realistic to have no true positives (TPs), the number of TPs is not

relevant when measuring the effect of FPs. The yielding overhead is the difference be-

tween Dimmunix’s overhead with the yielding enabled and the overhead with the yielding

disabled. Calibration of matching precision is turned off.
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Figure 10.5 shows the results—as the matching precision is increased, the overhead

induced by FPs decreases. For a matching depth of 1, the overhead due to FPs is 121%.

There are hardly any yields for depths greater than 8, because the probability of instantiat-

ing signatures is low; therefore, the overhead due to FPs is negligible. However, Dimmu-

nix’s overhead is higher for matching depths ≤ 5 (i.e., 13.7–32.3%) compared to matching

depths > 5 (i.e., 4.8–10.6%), because the call stacks are matched more often, and therefore

the signature matching code is invoked more frequently.
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Figure 10.5: Overhead due to false positives.

10.1.5 Optimizations

To evaluate the effectiveness of the optimizations described in §8, we used the microbench-

mark described in §10.1.3.

Figure 10.6 shows that the selective program instrumentation (§8.1) is very effective;

up to 64 signatures, Dimmunix with selective instrumentation performs much better than

with full instrumentation, i.e., 0–6.1% vs. 5.2–16.4%. According to our microbenchmark,

having n signatures in the history means instrumenting n synchronization positions out of

the total 256 positions. With an empty history, there is no overhead if Dimmunix uses

selective instrumentation; with full instrumentation, the overhead is already 5.2%, which

is comparable to selective instrumentation with 64 signatures. If Dimmunix uses selective
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instrumentation, the overhead is low up to 64 signatures (i.e., 0–6.1%); for more signatures,

it increases rapidly until it reaches the overhead of Dimmunix with full instrumentation

(i.e., 6.1–35.6%). The conclusion we can draw is that the overhead remains small as long

as there are few deadlock signatures on the critical path.
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Figure 10.6: Benefit of selective program instrumentation.

Figure 10.7 shows the benefit of increasing the matching precision as FPs are encoun-

tered. The experiment is similar to the one depicted in Figure 10.5, with the only differ-

ence that now Dimmunix is configured to dynamically calibrate the matching depths. If

we compare the two figures, the benefit of dynamically increasing the matching precision

is evident; the overhead becomes acceptable even for an initial matching depth of 1, i.e.,

5.7%. Without dynamic matching depth calibration, the overhead due to FPs is 121% for

matching depth 1.

Figure 10.8 shows the benefit of exploiting the escape branches to stop the avoidance

earlier. In this experiment Dimmunix runs with the yielding enabled, to show the benefit of

stopping the avoidance earlier. The benefit is substantial if (1) the number of instructions

on the escape paths that bypass the deadlock (i.e., δescape) is substantially larger than the

number of instructions in the critical section preceding the escape branches (i.e., δin), (2)

signatures are instantiated very often, i.e., the matching depth is low and δout is small, and

(3) there are no FPs, even for shallow matching depths. Therefore, in this experiment we

configure δin = δout = 1,000 and the matching depth to 1; we also disable the matching
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Figure 10.7: Benefit of dynamic matching depth calibration.

depth calibration, in order to simulate the scenario in which there are no FPs. For δescape =

0, there is no benefit in exploiting the escape branches. For δescape = 10,000 (respectively

50,000 and 100,000), the overhead is 77% (respectively 67% and 50%) without escaping,

compared to 63% (respectively 40% and 32%) with escaping.
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Figure 10.8: Benefit of exploiting the escape branches.

Figure 10.9 shows that inlining the call stack matching considerably reduces the perfor-

mance overhead. If Dimmunix uses the JVM’s call stack retrieval, the overhead is 26–27%.

If the call stack matching is inlined, the overhead goes down to 4–5%.
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10.2 Java Dimmunix—Non-Mutex Deadlocks

In this section, we evaluate the part of Java Dimmunix that deals with non-mutex dead-

locks, i.e., hybrid deadlocks, initialization deadlocks, external deadlocks, and blocked no-

tifications.

We profiled the non-mutex synchronization behavior of real Java applications. More

precisely, we measured the throughput of Object.wait(), Object.notify/notifyAll(), Reen-

trantReadWriteLock.lock(), Semaphore.acquire(), and FileChannel.lock() calls. We also

counted the number of threads executing these calls, the number of objects on which these

calls are performed, and the number of program positions where they execute. We did not

count the calls to custom synchronization routines; we focused on synchronization primi-

tives provided by the JDK.

We illustrate the profiling results in Table 10.5. We used the same tests as for Table 10.3,

to be able to compare the results. There were no calls to ReentrantReadWriteLock.lock(),

Semaphore.acquire(), or FileChannel.lock() in any of the tests, i.e., no read-write lock,

semaphore, or file lock synchronization primitives provided by the JDK were used. All the

tests except JDBCBench used the condition variables provided by the JDK. By comparing

the profiling results from Table 10.5 to the results from Table 10.3, we notice that the

throughput of Object.wait() and Object.notify/notifyAll() calls is much smaller than the
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throughput of mutex lock acquisitions. This empirically shows once more that the mutex

locks are the most encountered synchronization construct in real Java applications.

Characteristics
System, Test Scenario

JBoss,
RUBiS

MySQL JDBC,
JDBCBench

Eclipse,
Startup +
Shutdown

Limewire,
Upload test

Vuze,
Startup +
Shutdown

Object.wait()
number of calls/sec 0.1 0 5.3 9.6 57.7
number of threads 13 0 104 53 41
number of objects 12 0 96 152 98
number of call sites 9 0 12 4 4
Object.notify/notifyAll()
number of calls/sec 57.2 0 33.7 1,058 34.3
number of threads 4 0 68 2 41
number of objects 15 0 629 29,432 418
number of call sites 14 0 31 6 4

Table 10.5: Non-mutex synchronization in real Java applications.

We do not need to evaluate the efficiency of Dimmunix for initialization deadlocks. On

the critical path, Dimmunix only needs to check whether the current lock statement belongs

to a signature of an initialization deadlock; this is similar to the signature look-up involved

in avoiding hybrid deadlocks. The rest of the computations are cheaper than the ones done

for mutex deadlocks or hybrid deadlocks.

Dimmunix successfully detected and avoided an initialization deadlock equivalent to

a deadlock involving Java’s LogManager class; the bug id is 4994705 in the Oracle’s bug

database. More precisely, we ran the test case provided in the report, which simulates the

LogManager deadlock. Dimmunix successfully detected the deadlock and avoided it in the

subsequent runs of the test case.

Figure 10.10 shows that the Dimmunix prototype is efficient when handling hybrid

deadlocks, for up to 256 threads. The microbenchmark performs synchronizations on 1,000

ReentrantLock objects, 1,000 ReentrantReadWriteLock objects, and 1,000 Semaphore ob-

jects. The microbenchmark has 2–1,024 threads executing synchronizations (in a loop)

at 20 program positions. We use a history of 10 synthetic deadlock signatures covering

10 synchronization positions. In a loop iteration, a thread executes δin=1,000 incrementa-

tion instructions inside the critical section and δout=1,000,000 outside. As shown in Fig-

ure 10.10, the performance overhead incurred by Dimmunix stays within acceptable limits
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(i.e., 0–7.7%) for up to 128 threads. For 256–1,024 threads, the performance overhead

increases rapidly from 14.6% to 80%. The reason is that we use a global lock to ensure

the thread safety of Dimmunix’s computations, and the synchronization on the global lock

becomes a bottleneck. For instance, for 512–1,024 threads the overhead factor is 1.5–5x.

The part of Java Dimmunix handling hybrid deadlocks can be significantly improved if we

remove the global lock and use lock-free data structures, as we did for mutex deadlocks.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 2  4  8  16  32  64  128  256  512  1024

R
e
so

u
rc

e
 A

cq
u
is

iti
o
n
s 

/ 
S

e
co

n
d

Number of Threads

3,000 locks, δin=1,000 instr, δout=1,000,000 instr 
 10 sigs, 20 sync positions

Baseline
Dimmunix

Figure 10.10: Dimmunix’s performance for hybrid deadlocks.

Figure 10.11 shows that Dimmunix efficiently handles external deadlocks. The mi-

crobenchmark runs 2–1,024 threads, with 1 file lock per thread. Every thread executes

synchronizations (in a loop) at 20 program positions. In a loop iteration, a thread exe-

cutes δin=1,000 incrementation instructions inside the critical section and δout=1,000,000

outside. The deadlock history has 10 synthetic signatures covering 10 synchronization

positions. When it uses offline deadlock detection, Dimmunix incurs a low performance

overhead, i.e., 5.6–10%. When it uses online deadlock detection, the overhead factor is

16–453x, which makes an application unusable. This shows that making the deadlock

detection offline substantially improves Dimmunix’s performance.

Figure 10.12 shows that Dimmunix efficiently handles blocked notifications if the wait

condition always holds. Remember that Dimmunix conservatively makes the waiter thread

yield before it executes a critical section containing a wait call previously involved in a
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Figure 10.11: Dimmunix’s performance for external deadlocks.

blocked notification; the yield lasts until a notification is about to arrive. Therefore, when-

ever the waiter thread does not “intend” to wait, Dimmunix will needlessly delay the thread.

However, if there is no wait condition involved, Dimmunix only postpones the wait call un-

til a notification is about to arrive.
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Figure 10.12: Dimmunix’s performance for blocked notifications, when the wait condition
always holds.

The microbenchmark we used runs 2–1,024 threads, half waiters and half notifiers.

The threads execute wait calls (respectively notify calls) in a loop, at random program
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positions from 20 positions of wait calls (respectively 20 positions of notify calls). We

use a history with 10 synthetic blocked notification signatures covering 10 wait positions.

A waiter thread executes in each loop iteration a wait call on a random object from a

pool of 1,000 objects; right before waiting on an object x, the waiter thread adds x to

a wait queue. A notifier thread pops in each loop iteration an element y from the wait

queue and calls y.notify(). A waiter (respectively notifier) thread executes δwait = 1,000

(respectively δnoti f y = 1,000,000) incrementation instructions between consecutive loop

iterations. We measure the performance in terms of number of executions of synchronized

blocks containing wait calls. Figure 10.12 shows that the performance overhead incurred by

Dimmunix is acceptable, i.e., 9.7–16.4%. Most of the overhead is due to synchronization

mechanism used in the blocked notification avoidance.

When the wait condition does not always hold, Dimmunix can slow down the appli-

cation considerably, as we show in Figure 10.13. We fix the number of threads to 500,

and vary the probability for a wait condition to hold from 0.0001 to 1. The lower the wait

probability, the more substantial the slowdown is. If the wait probability is 0.0001–0.01,

the slowdown incurred by Dimmunix is 2.4–6.8x. If the wait probability is ≥ 0.1, the per-

formance overhead is acceptable, i.e., 9.6–18.4%. This shows that even for relatively low

wait probabilities (e.g., 0.1) the performance overhead is acceptable.
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Note that the overheads incurred by the five Java Dimmunix modules responsible for

mutex deadlocks, hybrid deadlocks, initialization deadlocks, external deadlocks, and blocked

notifications do not add up if the modules are used simultaneously. The five modules have

few interception points in common. The modules responsible for mutex deadlocks and hy-

brid deadlocks both intercept the calls to ReentrantLock.lock(). However, the mechanism

for retrieving the program position p where the call executes and searching for a signa-

ture containing p is similar in the two modules, and therefore can be shared. Besides, the

ReentrantLock mutexes are not as heavily used as the synchronized blocks. The module

responsible for external deadlocks does not share any interception points with other mod-

ules.

The modules handling mutex deadlocks, initialization deadlocks, and blocked notifica-

tions need to intercept synchronized blocks. For blocked notifications, Dimmunix needs to

intercept synchronized blocks wrapping wait or notify(All) calls and synchronized blocks

that were previously involved in blocked notifications. For mutex deadlocks and initial-

ization deadlocks, Dimmunix needs to intercept synchronized blocks previously involved

in deadlocks. However, the three modules usually need to intercept disjoint synchronized

blocks. Dimmunix does not handle mutex (or initialization) deadlocks that involve syn-

chronized blocks wrapping wait or notify(All) calls (§6.4); therefore, these synchronized

blocks are only intercepted by the module responsible for blocked notifications. These

modules would need to intercept the same synchronized block B only if B was involved

in multiple types of deadlocks. Since Dimmunix ignores signatures of mutex (or initial-

ization) deadlocks that involve synchronized blocks containing wait or notify(All) calls

(§6.4), a synchronized block involved in a mutex (respectively initialization) deadlock and

a blocked notification is only intercepted by the module handling blocked notifications.

Therefore, a synchronized block can be shared only by mutex deadlocks and initialization

deadlocks. Since initialization deadlocks are cheap to avoid, the overhead added due to

intercepting such synchronized blocks is negligible.
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10.3 POSIX Threads Dimmunix

POSIX Threads Dimmunix is effective against real deadlocks encountered in real appli-

cations, as we illustrate in Table 10.6. Dimmunix successfully detected and avoided the

deadlocks, in these applications. The meanings of the columns are the same as the ones in

Table 10.1.

System Bug # Deadlock Between ... Yields Signatures

MySQL 6.0.4 37080 INSERT and TRUNCATE in
two different threads

1 1

SQLite 3.3.0 1672 Deadlock in the custom recur-
sive lock implementation

1 1

HawkNL 1.6b3 n/a nlShutdown() called concur-
rently with nlClose()

10 1

Table 10.6: Reported deadlock bugs avoided by Dimmunix in real C/C++ applications.

We measured the performance of FreeBSD pthreads Dimmunix on a microbenchmark.

The microbenchmark simulates various throughputs of synchronization operations, number

of threads, number of locks, and number of signatures.

Figure 10.14 shows how synchronization throughput (in terms of lock operations) varies

with the number of threads. We chose the delays inside and outside the critical sections

δin=1 microsecond and δout=1 millisecond, to simulate a program that grabs a lock, updates

some in-memory shared data structures, releases the lock, and then performs computation

outside the critical section. The microbenchmark performs around 8,300 lock operations

per second, which is comparable to the highest synchronization throughput we encountered

in the C/C++ applications we studied.

We show in Figure 10.15 the performance overhead introduced by varying history size

from 2 to 256 signatures. The overhead introduced by history size and matching depth

is relatively constant across this range, which means that searching through history is a

negligible component of Dimmunix overhead.
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10.4 Android Dimmunix

We installed a Dimmunix-enabled Android 2.2 OS on a Nexus One phone, equipped with a

1-core 1GHz CPU, and 512 MB of RAM memory. While using the applications installed on

the phone, we noticed no slowdown, compared to the vanilla Android 2.2 OS installation.
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We reproduced a real deadlock involving Android’s NotificationManagerService and

StatusBarService classes (issue id: 7986), which froze the entire phone’s interface. We

made a small Android application in which one thread issues a notification, and a sec-

ond thread expands the status bar, in the same time. The two threads called concurrently

the methods NotificationManagerService.enqueueNotificationWithTag and StatusBarSer-

vice$H.handleMessage, which made the two services deadlock. This deadlock made the

whole phone’s interface hang. Dimmunix detected the deadlock and saved its signature

in the persistent history. After rebooting the phone, Dimmunix successfully avoided any

reoccurrence of the deadlock.

We profiled the synchronization behavior of 8 Android applications, with Dimmunix

disabled. The results are shown in Table 10.7. For each application, we profiled its syn-

chronization behavior during several minutes of intensive usage; then, we selected the 30

seconds interval with the highest average synchronization throughput. In these time in-

tervals, the 8 applications perform 309–1952 synchronizations per second, using 23–119

threads.

Table 10.7: Statistics about various Android applications.

Application Threads Syncs/sec
Memory consumption

Dimmunix: 52% Vanilla: 50%
Email 46 1,952 15.8 MB 15.0 MB
Browser 61 1,411 38.9 MB 37.9 MB
Maps 119 1,143 23.7 MB 22.9 MB
Market 78 891 17.9 MB 17.3 MB
Calendar 26 815 14.4 MB 14.0 MB
Talk 33 527 11.2 MB 10.7 MB
Angry Birds 23 325 29.7 MB 29.3 MB
Camera 26 309 11.8 MB 11.4 MB

To measure the performance overhead, we reproduced in a microbenchmark the most

intensive synchronization behavior that we observed in the 8 applications we studied. The

microbenchmark runs 2–512 threads, that execute synchronized blocks on random lock

objects, to avoid contention; lock contention has the undesired effect of hiding the per-

formance overhead. We do not use sleeps, because they hide the performance overhead;

we use busy waits instead, to simulate computation inside and outside the critical sections.
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We use a history of 64–256 synthetic signatures, to simulate the scenario in which many

synchronization statements are involved in deadlock bugs. The microbenchmark executes

1738–1756 synchronizations per second, with Dimmunix disabled; this is similar to the

synchronization throughput of the most lock-intensive applications that we studied (i.e.,

Email and Browser). On the Dimmunix-enabled Android OS, the microbenchmark runs

1657–1681 synchronizations per second. This means 4–5% performance overhead. Most

of the overhead is due to the call stack retrieval, i.e., the calls to dvmGetCallStack.

We also measured the power consumption after an intensive usage. With and without

Dimmunix, Android OS reported that the Android applications and the OS are responsible

for 14% of the power consumption. Therefore, Dimmunix does not increase the power

consumption.

We evaluated the memory overhead incurred by Android Dimmunix; the results are

shown in Table 10.7. Dimmunix incurs 1.3–5.3% memory overhead in the 8 applications

we studied. Overall, for all the running applications, the memory overhead is 4%; the

overall memory consumption is 52% for the Dimmunix-enabled Android OS, and 50% for

the vanilla Android OS.

10.5 Communix

In this section, we first evaluate the performance of Communix (§10.5.1), then we evaluate

the impact DoS attacks can have on Java applications running Dimmunix (§10.5.2). Finally,

we estimate the time it takes for an application to achieve full deadlock protection with

Communix, compared to using Dimmunix alone (§10.5.3).

The experiments were run on machines with two 4-core Intel Xeon 2GHz processors

each, 20 GB of memory, running Ubuntu Linux 10.04.

10.5.1 Performance

In this section, we first evaluate the performance of the Communix server, then the per-

formance of the whole signature distribution in an end-to-end setting. Then, we evaluate

the performance of the client-side signature validation plus the signature generalization.
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Figure 10.16: The performance of the Communix server.

Since the signature generalization and client-side signature validation are both performed

by the Communix agent at application startup, we decided to evaluate them together. Fi-

nally, we measure the time it takes for the Communix agent to find the nested synchronized

blocks/methods; the time it takes to compute the hashes of the loaded classes is negligible

compared to the time it takes to perform the nesting analysis.

The server processes two types of requests: an ADD(sig) request that means “add sig-

nature sig to the database”, and a GET(k) request that means “send me the signatures from

the database starting from index k”. Normally, a client having a local repository with n sig-

natures sends GET(n+1) requests to the server to retrieve the new signatures. We wanted to

evaluate worst-case scenarios, therefore we use only GET(0) requests in our measurements,

which means that the server is always asked to send all its signatures.

To evaluate the server’s performance, we invoke the request processing routines from

1,000–100,000 simultaneous threads. This test measures the efficiency of the server’s com-

putations, i.e., adding new random signatures to the database (including the server-side

signature validation) and iterating through the entire database. Figure 10.16 shows that the

server scales well up to 30,000 simultaneous “ADD(sig),GET(0)” sequences of requests.

At its peak, the server processes 63,000 requests per second.

We evaluate the performance of the signature distribution in an end-to-end setting. On

one machine we ran the Communix server, and on another machine we ran 10–200 client

threads that send 10 “ADD(sig),GET(0)” sequences of requests each. Figure 10.17 shows

that the signature distribution scales well up to 30 client threads, i.e., 300 simultaneous



CHAPTER 10. EVALUATION 152

 0

 20

 40

 60

 80

 100

 120

 10  20  30  40  50  75  100  200

R
e

q
u

e
st

s 
p

e
r 

se
co

n
d

Number of client threads

10 "ADD(sig),GET(0)" request sequences per client thread

Figure 10.17: The performance of the signature distribution.

“ADD(sig),GET(0)” sequences of requests. However, the throughput (i.e., requests served

per second) is up to two orders of magnitude lower compared to Figure 10.16. The explana-

tion is that the network communication between the server and the client threads becomes

a bottleneck. The size of a signature is 1.7 KB. If there are N client threads and each thread

sent on average k “ADD(sig),GET(0)” request sequences to the server, the server has to

send (k +1/2)×N2 ×1.7 KB of data to the N clients, on average, to serve the next round

of GET(0) requests. If N = 200, the server has to send in the 10th round approximately

630 MB of data to the 200 clients. To summarize, a server with one network card can-

not distribute signatures fast if multiple clients ask simultaneously for a large number of

signatures.

As shown in Figure 10.17, a client thread receives 20–110 replies per second to “ADD(sig),

GET(0)” request sequences, from the Communix server. Therefore, it takes 9–50 millisec-

onds to send the two requests to the server and get the replies. However, the latency of

the signature distribution is up to 1 day, because the Communix client downloads the new

signatures from the Communix server only once a day.

We evaluate the Communix agent on large Java applications, i.e., JBoss, Limewire, and

Vuze. JBoss is a well-known Java application server, while Limewire and Vuze are well-

known peer-to-peer file sharing applications. For each application, we measure the time it

takes to start and immediately shut down. In Figure 10.18, we show the performance of the

computations performed at startup by the agent, i.e., client-side signature validation and
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Figure 10.18: The performance of client-side computations, i.e., client-side signature vali-
dation and signature generalization.

signature generalization. For up to 1,000 new signatures in the local repository, the Com-

munix agent incurs a startup delay of up to 2–3 seconds, i.e., 11–16% startup slowdown.

Table 10.8: Statistics about various Java applications, and the performance of the nesting
analysis.

App Size (LOC) Sync bl/meths Explicit sync ops Nested (Analyzed) Nesting check (sec)

JBoss 636,895 1,898 104 249 (844) 114
Limewire 595,623 1,435 189 277 (781) 122
Vuze 476,702 3,653 14 120 (432) 50

In Table 10.8, we show the efficiency of the static detection of nested synchronized

blocks/methods and some statistics we collected about the three applications, i.e., size in

lines of code (LOC), number of synchronized blocks/methods, number of explicit lock/unlock

operations (i.e., calls to ReentrantLock.lock/unlock()), and the number of nested synchro-

nized blocks/methods that the nesting analysis reports. The Communix agent could ana-

lyze only 11–54% of the synchronized blocks/methods. For the rest of the synchronized

blocks/methods, the Soot static analysis framework could not retrieve enough informa-

tion for the nesting analysis (i.e., it could not retrieve the CFGs of some of the meth-

ods). Table 10.8 shows that it takes 50–122 seconds to analyze 432–844 synchronized

blocks/methods. The nesting analysis is performed at shutdown, first time the application

runs, and each time new classes (w.r.t. the previous run) are loaded. Therefore, the analysis

is performed only for the first couple of runs. Moreover, since the analysis is performed at

shutdown, the delay is not bothersome for the user, if the user does not intend to restart the

application soon.
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10.5.2 Impact of Denial of Service Attacks

The attackers have only one way to exploit Dimmunix, to slow down a Java application:

they can send signatures with outer call stacks of depth 5 which cover all the nested syn-

chronized blocks/methods that are on the critical path, in order to maximize the amount

of thread serialization in applications running Dimmunix. If there is already a signature S

in the deadlock history that can be merged with a malicious signature S′, signature S′ will

replace S in the history, by exploiting the generalization mechanism.

Table 10.9 shows that attackers providing malicious deadlock signatures can cause only

7–29% performance overhead in the studied real applications running with Dimmunix.

The tests run with 20 deadlock signatures in the history, with outer call stacks of depth 5.

These outer calls are on the critical path, i.e., more than 99% of the nested synchronized

blocks/methods are executed with these call stacks. In this worst-case scenario, the perfor-

mance overhead incurred by Dimmunix is 7–29%, which is acceptable for general-purpose

applications. If none of the signatures is on the critical path, the performance overhead

incurred by Dimmunix is negligible (i.e., < 2%). For outer call stacks of depth 1, the per-

formance overhead is considerable (i.e., > 100%), for some of the applications we studied.

However, this situation is avoided, because the Communix agent does not accept incoming

signatures with outer call stacks of depth < 5. Therefore, Communix successfully contains

DoS attacks.

Table 10.9: Worst-case overhead incurred while under a DoS attack.
Application Benchmark/Test Overhead

JBoss RUBiS 28.7%
MySQL JDBC JDBCBench 27.8%
Eclipse Startup + Shutdown 19.5%
Limewire Upload test 6.9%
Vuze Startup + Shutdown 8.2%

Making it hard for a user to obtain multiple encrypted ids from the Communix server,

together with restricting the server to process only up to 10 signatures per day for the same

user id, protects the server and the clients against flooding with fake signatures. Assuming

100 attackers manage to obtain 5 ids each from the server, and they keep sending fake

signatures to the server, the attackers could make the server process and add to its database
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only up to 100 ∗ 5 ∗ 10 = 5,000 signatures in 1 day. Assuming the worst case, i.e., the

5,000 signatures are sent simultaneously by the 100 attackers, the server can process the

signatures in 1 second, the Communix client can download them in a few minutes, and the

agent can process them in 10–15 seconds.

10.5.3 Time to Achieve Full Protection

As we mentioned in §7.2.4, it may take a long time for a single user to experience all the

deadlocks of an application and all the manifestations of these deadlocks. Therefore, it may

take a long time until Dimmunix alone can provide full protection against deadlocks.

If there are many users of an application A, Communix can considerably reduce the

time it takes for A to be deadlock-free. The time it takes for Communix to provide full

protection against deadlocks for application A is inversely proportional to the number Nu of

users that run A in different ways. If there are Nd possible deadlock manifestations in A and

it takes on average t days for a user to experience one manifestation, A will be deadlock-

free in roughly t ∗Nd days, if Dimmunix alone is used. If Communix is used, all the users

of A will have A deadlock-free in roughly t ∗Nd/Nu days. The larger Nu, the higher the gain

that Communix brings.

The estimate we made here is purely theoretical. A real evaluation is possible only if

Communix is deployed in the field and statistics are collected after a considerable period

of usage (e.g., months) from many (e.g., thousands) users.
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Conclusion

In this thesis, we presented Dimmunix, a system that enables applications to defend them-

selves against deadlocks. Dimmunix enables real applications to automatically achieve

immunity against deadlock bugs involving mutex locks, semaphores, read-write locks,

class initialization, and external synchronization, with no user intervention, and without

changing the semantics of the applications. Dimmunix is transparent and non-intrusive.

Our Dimmunix prototypes provide deadlock immunity to Java programs, C/C++ programs

using the POSIX Threads library, and the Android OS. We also implemented a frame-

work called Communix, which enables users connected to the Internet to share deadlock

signatures, in order to improve their protection against deadlocks. We evaluated these

implementations—they are effective against deadlocks reported in real applications and

run efficiently on synchronization-intensive applications with millions of lines of code and

hundreds of threads.
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