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Abstract

Modern software is plagued by elusive corner-case bugs (e.g., security vulnerabilities). There
are no scalable, automated ways of finding them, therefore such bugs can remain hidden un-
til software is deployed in production. This thesis proposes approaches to solve this problem.

First, we present black-box and white-box fault injection mechanisms, which allow develop-
ers to test the behavior of their code in the face of failures in external components, e.g., in
libraries, in the kernel, or in remote nodes of a distributed system. We describe a feedback-guided
exploration algorithm that prioritizes black-box fault injection tests based on their estimated
impact, thus discovering more bugs than random injection. For white-box testing, we proposed
and implemented a technique to find Trojan messages in distributed systems, i.e., messages
that are accepted as valid by receiver nodes, yet cannot be sent by any correct sender node.
We show that Trojan messages can lead to subtle semantic bugs. Our fault injection tech-
niques found new bugs in systems such as the MySQL database, the Apache HTTP server,
the FSP file service protocol suite, and the PBFT Byzantine-fault-tolerant replication library.

Testing can find bugs and build confidence in the correctness of a system. However, exhaustive
testing is often infeasible, and therefore testing may not discover all bugs before a system is
deployed. In the second part of this thesis, we describe how to automatically harden production
systems, reducing the impact of any corner-case bugs missed by testing. We present a framework
that reduces the overhead imposed by instrumentation tools such as memory error detectors.
Lowering the overhead enables system developers to use such tools in production to harden
their systems, reducing the impact of any remaining corner-case bugs. We used our framework
to generate a version of the Linux kernel hardened with Address Sanitizer. Our hardened
kernel has most of the benefit of full instrumentation: it detects the same vulnerabilities as full
instrumentation (7 out of 11 privilege escalation exploits from 2013-2014 can be detected using
instrumentation tools). Yet, it obtains these benefits at only a quarter of the overhead.

Key words: Automated testing, fault injection, symbolic execution, instrumentation, corner-case
bugs






Résumé

Les logiciels modernes sont remplis de bugs difficiles a trouver (des bugs de sécurité par exemple).
Ces bugs peuvent rester cachés puis déployés en production, car il n’existe pas de moyens efficaces
et automatiques pour trouver ces bugs. Cette theése propose des approches afin de résoudre ce pro-
bleéme.

Nous présentons tout d’abord des mécanismes d’injection de fautes qui permettent aux dévelop-
peurs de tester le comportement de leur code en présence de défaillances de composants externes
(par exemple dans des librairies, dans le noyau, ou dans les noeuds distants d’un systeme distribué).
Nous explorons I’injection de fautes “boite noire” et I’injection de fautes “boite blanche”. Nous
décrivons comment injecter des fautes boite noire plus efficacement, en privilégiant des tests ayant
un impact estimé plus élevé. Pour les tests boite blanche, nous proposons et avons implémenté une
technique permettant de trouver des messages de Troie dans les systemes distribués, ¢’est-a-dire
des messages qui sont considérés comme valides par les noeuds récepteurs, mais qui en réalité ne
peuvent pas provenir d’un noeud émetteur correct. Nous montrons que les messages de Troie
peuvent mener a des bugs sémantiques subtils. Nous avons utilisé des techniques d’injection de
fautes pour révéler des nouveaux bugs dans des systemes comme la base de données MySQL, le
serveur HTTP Apache, la suite de protocoles de service de fichiers FSP, et la libraire de réplication
PBFT.

Les tests peuvent permettre de découvrir des bugs et renforcer la confiance dans la justesse
d’un systeme. Il est cependant souvent impossible d’effecuer des tests exhaustifs, et les bugs ne
sont ainsi souvent découverts qu’apres le déploiement du systeme. Dans la deuxieme partie de
cette these, nous décrivons comment renforcer automatiquement les systemes en production, en
réduisant I’impact des bugs restants qui auraient été manqués par les tests. Nous présentons un
framework qui réduit les cofits de performance engendrés par des outils d’instrumentation tels
que les détecteurs d’erreurs de mémoire. La réduction de ces cofits de performance permet aux
développeurs de systémes d’utiliser ces outils d’instrumentation sur des systémes en production.
Nous avons utilisé notre framework pour générer une version du noyau de Linux renforcée avec
I'instrument de sécurité de la mémoire. Ce noyau renforcé a la plupart des avantages d’une
instrumentation complete : il détecte les mémes vulnérabilités qu’une instrumentation compléte,
mais n’engendre qu’un quart des cofits de performance.

Mots clefs : Tests automatiques, injection de faute, exécution symbolique, outils d’instrumentation
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|§ Introduction

Computer systems are becoming more and more integrated in our life. This is enabled by the rapid
evolution of both hardware and software. Today’s software systems are the most intellectually
complex artifacts ever built by humankind !. A modern car can contain hundreds of millions
of lines of code. The avionics and support systems of a Boeing 787 plane—<critical systems—
have 6.5 million lines of code [30]. Even very simple tasks can be unexpectedly complex:
displaying the current date and time on a Debian Linux system requires executing 636,562 CPU
instructions?. Tt is difficult for developers to understand, build and test such large systems.

In order to be more understandable, most systems use modular designs. Modularity allows
developers to abstract away irrelevant details. In the previous date and time example, more than
two thirds of the instructions (429,426) are executed in kernel space. The developers of the
date application do not need to worry about the details of what those instructions do, only about
the interaction between their own application and the kernel via system calls. Of the remaining
instructions, another large chunk represents instructions in various libraries, which can also be
abstracted away by the developers. Due to modular design, the developers of date can focus
their attention on the code they wrote themselves—a few hundred lines of code—and on the API
calls they use to interact with other components.

However, modularity is not a panacea against complexity. Interfaces and communication protocols
can still have intricacies that lead to misunderstanding and bugs. Moreover, modern systems
often have external components are not completely under the developers’ control. By using third
party components, developers give up some control over what behaviors they can exercise in their
own program; this lack of control can lead to poor testing and thus lack of reliability.

For instance, consider the write function® in the LibC standard library, which writes data to a file.
The function can fail when a user’s quota of disk blocks is exhausted (indicated by the EDQUOT

'Grady Booch, The Promise, The Limits, The Beauty of Software, http://csta.acm.org/Resources/sub/ResourceFiles/
Booch_Lecture.ppt

Zobtained using the command perf stat —e instructions /bin/date

3http://linux.die.net/man/2/write
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error). An application that calls write should detect this failure and handle it gracefully, e.g., by
informing the user of the error. Otherwise, the data may be lost, as it is not written to disk. It is
important for the failure recovery code to be correct—the developers need to test the behavior of
this code. The problem with this is that the developers of the application calling write do not have
direct control over when the EDQUOT error is triggered—the failure depends on the state of the
entire system, not just the calling application. This makes it difficult for developers to exercise
failure recovery code in end-to-end testing. Due to this lack of testing, recovery code may hide
elusive corner-case bugs that do not appear during the testing phase, but may be triggered in
production.

Corner-case bugs in the recovery code of a system can have dire consequences. For example,
Ma.gnolia* was a social bookmarking service whose main database was corrupted after a failure.
The service had a backup and recovery scheme in place but, unfortunately, it was incorrectly set
up’ and therefore the entire database was lost. Ma.gnolia lost a large portion of its users after this
failure and was soon shut down.

In this thesis, we describe how we hardened systems against corner-case bugs in the interaction
between applications and libraries (chapter 3), between nodes in distributed systems (chapter 4),
and between the kernel and user-level applications (chapter 5).

1.1 Problem Definition

This thesis addresses the problem of corner-case bugs. By “corner-case” we mean execution paths
that are not part of the core functionality of a system. Users could benefit from all features of a
piece of software without ever encountering a corner-case execution. Corner-case execution paths
are triggered rarely, e.g., only in case of failures, and are difficult to systematically trigger during
end-to-end testing. However, they may execute in production, especially for systems deployed at
large scale. We aim to avoid catastrophic behaviors due to bugs in corner-case executions.

Existing solutions are either ineffective, or impractical for wide-spread use. We target our
techniques to general-purpose software. Thus, any solution needs to be practical in terms of time,
resources, and human effort required. We target techniques that:

* are practical to set up
* are practical to run

1.2 Proposed Solution

We explore a combination of techniques that complement each other in order to minimize the
impact of corner-case bugs. Our proposed approaches cover both the development phase and

“https://en.wikipedia.org/wiki/Gnolia
Shitp://www.datacenterknowledge.com/archives/2009/02/19/magnolia- data-is- gone-for- good/
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1.2. Proposed Solution

the production phase of a system’s life cycle. For the development phase, we propose testing
techniques that can discover bugs before software is released in production. We present both
black-box and white-box testing techniques that aim to discover bugs in corner-case executions.
For the production phase of software, we propose an approach to use instrumentation at low cost
in order to harden corner-case execution paths.

Black-box fault injection testing refers to techniques that simulate failures in the environment of
a system under test in order to search for bugs in failure recovery code. The term “black-box”
stems from the fact that the approaches do not require knowledge about the internals of the system
under test. Because of this, black-box fault injection tools are easy to set up, with little developer
effort. The downside, however, is that due to the lack of knowledge black-box injection tools
often resort to random testing, selecting failure scenarios arbitrarily. For large, complex systems
this can be ineffective, as there are many possible failure scenarios and the probability of finding
bugs is low. In order to make the exploration of failure scenarios more effective than random, we
developed a scalable, feedback-guided algorithm for scheduling fault injection scenarios. Despite
the lack of prior information about the internals of the system under test, our algorithm learns
from the sequence of tests it performs. Our approach can navigate through a large number of
possible fault injection scenarios, adapting to the particularities of the system under test and
prioritizing fault scenarios that are most likely to expose high-impact bugs.

White-box testing refers to techniques that exploit knowledge of the internals of the system under
test. This knowledge can come either from the developers, in the form of models of the system
under test, grammars that describe input structure or program annotations, or it can be obtained
without human involvement, by a tool that analyzes the code or binary of the system under test.
White-box testing requires more effort to set-up, but in return can be more effective at finding bugs.
There is significant related work on how to use this extra knowledge to guide testing so that it
finds bugs faster than black-box approaches. However, in this thesis, we take a different approach,
using white-box information in order to discover a new class of bugs in distributed systems, which
would otherwise be difficult to identify even if they were triggered during black-box testing. We
define Trojan messages as those that are accepted as valid by a receiver but cannot be generated
by any correct sender in a distributed system. Trojan messages enable failures to propagate
among nodes of a distributed system, potentially disrupting entire deployments. We show how
such messages lead to subtle errors in some real distributed system implementations. In this
thesis, we describe a technique to systematically discover Trojan messages in the implementation
of a distributed system.

Finally, instrumentation refers to additional instructions that are inserted in a target application in
order to improve non-functional properties, such as reliability. Instrumentation comes in different
forms: it can be manually added by developers, e.g., logging statements or asserts, or it can
be added automatically by third-party tools, e.g., stack canaries. Instrumentation can reduce
the impact of a bug in production. For instance, it reduces the time to fix a bug, by providing
developers with more information about its behavior, or can even reduce the severity of a bug
automatically (e.g., stack canaries can avoid certain types of exploits). However, this benefit
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comes at a cost, as instrumentation requires extra resources at runtime (CPU cycles, memory,
disk I/O). The overhead is often so high that developers opt to avoid instrumentation altogether in
production. However, this need not be the case for corner-case execution paths. Such paths are
triggered rarely, by definition, and, therefore, any overhead encountered during those executions
has little effect on the overall performance of the system. Based on this observation, we propose
enabling instrumentation selectively, only on some execution paths in the system under test.
We call this concept “Elastic Instrumentation”. The difficulty with Elastic Instrumentation is
that there are many execution paths, so developers cannot make the decision of which paths to
instrument manually. We developed a framework that helps automate this process. Our framework
automates the many small choices between cost and benefit and allows developers to easily apply
the Elastic Instrumentation principle to their systems.

Design & Implement
System

<I

All bugs

Use End-to-end Testing

J

Bugs that end-to-end
— v testing can find

Use Automated Black-
Box Fault Exploration

]

Bugs in error
y recovery code

< Use White-Box Search
for Trojan Messages

4

Bugs due to
Trojan messages

A 4

Use Elastic
Instrumentation

Techniques introduced in this thesis

al_

~ Bugs covered by instrumentation
have their impact reduced

N

Deploy System

Figure 1.1 — Workflow for applying the techniques described in this thesis, and the effect on each
technique on the number of bugs in a system.



1.2. Proposed Solution

Figure 1.1 presents a workflow for using the approaches described in this thesis. The techniques
we propose help developers discover and fix bugs that they could not find with regular testing
techniques. The first step is to use black-box fault injection testing. Our approach is designed to
be easy to use, requiring little involvement from the human users, and thus has a low barrier to
entry. Black-box testing can find buggy error recovery code that causes the program to crash,
hang, or break assertions. However, there are other, subtler behaviors of bugs that are not as easily
detectable, such as Trojan messages. To discover these, the second step in the workflow is to
use our white-box fault injection. Testing can discover many bugs, but usually it is unfeasible to
explore all possible testing scenarios before deploying a system in production. Therefore, some
bugs still lurk in production-ready code. The third step in our workflow is to use instrumentation
to reduce the impact of these remaining bugs. Our Elastic Instrumentation framework lowers the
cost of instrumentation and allows previously inaccessible tools to fit in the overhead budget that
developers can afford.

1.2.1 Automated Black-box Fault Exploration

Fault injection is a form of testing that consists of introducing faults in a system under test,
with the goal of exercising the system’s error-handling code paths. Fault injection is crucial to
system testing, especially as increasingly more general-purpose systems (e.g., databases, backup
software, Web servers) are used in business-critical settings. Recent tools, like LFI [74], offer the
ability to simulate a wide variety of fine-grained faults that occur in a program’s environment and
become visible to applications through the application-library interface.

However, with fine-grain control comes the necessity to make hard choices, because these tools
offer developers a vast universe of possible fault scenarios. There exist three degrees of freedom:
what fault to inject (e.g., read () call fails with EINTR), where to inject it (e.g., in the logging
subsystem), and when to do so (e.g., while the DBMS is flushing the log to disk) [75]. Poor
choices can cause test suites to miss important aspects of the tested system’s behavior.

One way to avoid making hard choices is to perform brute-force exhaustive testing, such as using
large clusters to try out all combinations of faults that the available injectors can simulate—this
approach will certainly find the faults that cause most damage. Alas, the universe of possible
faults is typically overwhelming: even in our small scale evaluation on MySQL, the fault space
consisted of more than 2 million possibilities for injecting a single fault. Exploring such fault
spaces exhaustively requires many CPU-years, followed by substantial amounts of human labor
to sift through the results. A commonly employed alternative is to not inject all faults, but only a
randomly selected subset: the fault space can be uniformly sampled, and tests can be stopped
whenever time runs out. However, random injection achieves poor coverage, and the chances of
finding the high impact faults is low.

In the first part of the thesis (chapter 3), we propose an approach in which still a subset of the fault
space is sampled, but this sampling is guided. We observe that the universe of faults often has an
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inherent structure, which both random and exhaustive testing are oblivious to, and that exploiting
this structure can improve the efficiency of finding high-impact faults. Since this structure is hard
to identify and specify a priori, it needs to be inferred.

We propose a technique that uses a fitness-guided feedback-based algorithm to search for high-
impact faults in spaces with unknown structure. It uses the effect of previously injected faults to
dynamically learn the space’s structure and choose new faults for subsequent tests. The search
process continues until a specific target is reached, such as a given level of code coverage, a
threshold on the faults’ impact level (e.g., “find 3 disk faults that hang the DBMS”), or a time
limit. We implemented a prototype of our technique in AFEX, a cluster-based parallel fault
injection testing system. Besides prioritizing fault injection scenarios, AFEX also analyzes the
injected faults for redundancy, clusters and categorizes them, and then ranks them by severity to
make it easier for developers to analyze. Despite being developed primarily as a low-set-up-cost
black-box tool, AFEX is also capable of leveraging domain-specific knowledge to improve its
search efficiency, whenever humans have such knowledge and can suitably encode it.

Our approach advances the state of the art by introducing an adaptive algorithm for finding high
value faults. We implemented our algorithm in an extensible system that can automatically test
real-world software with fault injection scenarios of arbitrary complexity.

1.2.2 White-box Search for Trojan Messages

In the second part of this thesis (chapter 4), we study what we call Trojan messages. These are
messages that are intelligible to correct receiver nodes of a distributed system but cannot be
generated by any correct sender nodes in that system. Trojan messages result from absence of
defensive programming and constitute a source of vulnerabilities, similar to divisions by zero or
buffer overflows. We know of no prior work that automatically discovers this type of messages,
yet discovering them is crucial.

Trojan messages are particularly dangerous because, by definition, they are a means of failure
propagation across nodes in a distributed system. This makes Trojan messages the Achilles’
heel of distributed systems. Most reliability techniques in distributed systems are based on the
assumption that failures are independent: if a node fails in some way, the impact on other nodes
should be minimal, i.e., the failure should not propagate. But even if nodes are programmed
independently and placed on geographically remote sites, nodes need to communicate, typically
by exchanging messages. If a Trojan message exists in a system, it means that a correct node
accepts as valid a message from a failed node, and can potentially become corrupted itself.

Trojan messages can have a major impact on the behavior of distributed systems. For example,
the Amazon S3 storage system suffered several hours of downtime in 2008 [1]. The problem was
caused by “a handful of messages [...] that had a single bit corrupted”. Unfortunately for the
system, “the message was still intelligible, but the system state information was incorrect”. This
allowed the initial corruption to propagate to other, correct nodes of the system, until most of the
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collective information in the system was corrupt. Such corner cases are difficult to identify. In
order to prevent such downtime in the future, Amazon engineers added checks to “log any such
messages and then reject them”.

The core problem that caused the Amazon S3 downtime was the fact that nodes accepted the
corrupt messages despite the fact that no correct node could have generated such messages in
the respective context. We say that S3 nodes accepted Trojan messages. We argue that, if such
messages exist in a system implementation, they unnecessarily increase its attack surface—servers
should do what correct clients require them to do and nothing more. Since, by definition, correct
nodes cannot generate Trojan messages, the likelihood that such messages will be encountered
during regular testing is low. Trojan messages are likely to exercise untested code paths and
surface hidden, potentially undesired, behavior. These paths can be triggered voluntarily by
malicious users of the system, or involuntarily by failed nodes.

We propose Achilles, a system whose purpose is to identify Trojan messages automatically.
Achilles uses symbolic execution in order to discover Trojan messages in the implementation of a
distributed system. Although this is a hard task, we argue for analysis at the implementation level,
rather than specification or model level, as bugs often creep in the implementation. Recognizing
the important distinction between specification and implementation, the most stringent operators
of distributed systems have started testing their live production systems with fault injection
(e.g., Google organizes regular “fire drills” in which engineers intentionally cause failures in
critical live systems [63]). Trojan messages are good candidates for such fault injection, if only
developers had a way to find and inject them.

Our work advances the state of the art by identifying Trojan messages as a source of weakness
in distributed systems and by proposing a technique to systematically discover such messages
in the implementation of distributed systems. We introduce a new use case for symbolic execu-
tion, aimed at discovering execution paths that accept Trojan messages, and describe a set of
optimizations that make the search for Trojan messages efficient.

1.2.3 Elastic Instrumentation

In the third part of the thesis (chapter 5), we focus on techniques for handling corner-case bugs
that still lurk in a system after it has been deployed in production. We show how instrumentation
can be selectively added only to certain execution paths of the system, keeping most of the
benefits of instrumentation, but at only a fraction of its cost.

Developers can choose from several powerful instrumentation methods to systematically enrich
their software. Logging and tracing can ease debugging by providing the developer with more
information about the behavior of the program. Assertions, code contracts, and memory safety
instrumentation can catch buggy behaviors early after a failure has occurred, preventing subtle
bug manifestations that are difficult to detect and debug.
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However, performance concerns often limit the use of such methods to the development phase
and force developers to abandon them for production software. Many instrumentation tools incur
high costs, e.g., >100% overhead for strong memory safety enforcement in C programs®. While
these costs may be acceptable during development, they could affect user experience or violate
service level agreements in production.

We argue that it is unnecessary to remove all instrumentation just because of the performance
requirements of a few execution paths. In fact, removing all instrumentation can be thought of
as overzealous optimization, which is discouraged in the systems building community. Butler
Lampson [69] advises to “make the common case fast”. Donald Knuth [62] argues for optimizing
only the 3% of a system where speed really matters.

We challenge the conventional wisdom that instrumentation is too expensive for production use
and propose a novel way to apply instrumentation selectively to a system. Our approach is based
on two main insights:

* The cost of instrumentation is often a continuum, rather than binary, because instrumenta-
tion is divisible into small, independent atoms.

* Instrumentation is cheap on corner-case executions paths, as these are by definition executed
rarely

We validate our insights with the help of a study of vulnerabilities in the Linux kernel (subsec-
tion 5.1.1). In this study, we found that approximately a third of Linux kernel vulnerabilities fall
within the scope of instrumentation tools. More surprisingly, the majority of these vulnerabilities
appear on rare execution paths in the kernel—they are triggered by system calls that few user-level
applications use. This means that the functionality that benefits from instrumentation the most
tends to be the cheapest to protect.

We advance the state of the art by recognizing and distilling the Elastic Instrumentation prin-
ciple and by introducing a framework to automate the trade-off between cost and benefit of
instrumentation.

Shttps://code.google.com/p/address-sanitizer/wiki/PerformanceNumbers
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4 Background and Related Work

We are not the first to address the problem of corner-case bugs. Researchers have tried to solve
the problem in various ways, which can be grouped broadly in testing, which tries to trigger bugs
and allow developers to fix them, and instrumentation, which tries to reduce the impact of bugs.
In this chapter we give an overview of some of the related work that addresses corner-case bugs.

We start with a short survey of fault injection techniques (section 2.1). Fault injection is a
mechanism through which failures can be generated or simulated in a component of a system.
Thus, fault injection tools allow developers to test failure scenarios and search for corner-case
bugs in their system’s recovery code.

However, writing failure scenarios by hand is an arduous task for developers; since large systems
can fail in a variety of ways, it is impractical to rely solely on manually written tests. To solve this
problem, researchers have proposed various testing frameworks that can automate the generation
of tests. In section 2.2 we present some of these approaches.

Testing frameworks can be either black-box or white-box. Black-box frameworks do not require
any information about the internals of the target system, while white-box frameworks do. Black-
box testing’s main appeal is the low barrier to entry. Many developers can run black-box testing,
including fault injection, without needing to invest significant resources. The low barrier to entry
also enables third-party testing services to assess the fault-tolerance of systems.

The effectiveness of black-box testing can suffer due to the lack of information about the
system under test. In section 2.3 we describe white-box approaches that do use internal system
information in order to guide testing. This information can come in many forms. Developers can
write machine-readable models or specifications that are understandable by testing frameworks
(subsection 2.3.1). These models can be used in order to guide testing towards the most relevant
execution paths (e.g., by avoiding redundant tests).

To counteract the need for explicit models, symbolic execution has emerged as a technique that
uses the internal structure of a system under test in order to guide testing. Symbolic execution
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does not need separate models written by developers—it analyzes the code (or binary) of a target
system and generates tests that exercise different execution paths. We briefly explain symbolic
execution, its benefits and major drawback, as well as a few recent approaches that attempt to
alleviate the drawback in subsection 2.3.2. Then, we highlight a few different uses of symbolic
execution, from generic bug-finding to protocol interoperability testing in subsection 2.3.3.

Testing is useful for finding bugs during development. However, given limited resources, testing
is often incomplete and therefore some corner-case bugs can still lurk in production code. The
idea of instrumenting programs with additional code has long been used to improve program
reliability. The additional code can consist of asserts, which developers write to check the internal
state of their program and catch failures early, logging statements, which help developers debug
problems by providing them with more information about the behavior of a bug, memory safety
checks, which verify memory accesses to avoid bugs like buffer overflows, etc. In subsection 2.4.1
we enumerate a few instrumentation techniques that can harden programs against bugs. We then
describe some approaches that attempt to reduce the overhead of these techniques in order to
make them suitable for use in production (subsection 2.4.2).

2.1 Fault Injection Tools

Fault injection is an approach to test a system’s response to failures. The tests are produced by
fault injection tools, which either trigger or simulate failures in system components, in order
to assess the recovery of the rest of the system. Fault injection can be applied to all layers in a
system.

At the hardware design level, MEFISTO [54] allows fault injection to be performed on VHDL
models, to evaluate their fault tolerance. Even after hardware is built, failures can be introduced
precisely in a circuit using lasers [90]. Such techniques can be used to check if a piece of
hardware, such as memory using error-correcting codes (ECC), can properly tolerate faults
without propagating them to the software level.

At the interface between hardware and software, fault injection tools introduce failures in
hardware components, in order to test the resilience of software. FERRARI [58] uses a software-
based approach to inject faults in hardware (e.g., flipping bits in CPU registers or in memory).
FTAPE [99] uses similar techniques for fault injection, but also runs a workload that stresses the
system under test, in order to increase failure propagation and find more bugs.

At the software level, fault injection has been applied to the communication between different
software components. TestApi [98] allows injecting faults in the communication between .NET

components. JBoss Byteman'

can inject code in arbitrary parts of a Java program, and is often
used for fault injection. At a higher level, Ju et al. describe techniques to inject faults in between

services in OpenStack [57].

Thttp://www.jboss.org/byteman

10


http://www.jboss.org/byteman

2.2. Black-box Testing Frameworks

Our black-box exploration algorithm is oblivious to the fault injection tools; it navigates through
an abstract fault space, where the specifics of how a fault is injected are not important. In our
evaluation we used LFI [75, 73], a tool that can inject faults in the communication between an
application and shared libraries.

LFI analyzes shared libraries in order to discover the failures they can expose and then generates
a shim library that can simulate those failures on demand. It provides a mechanism for testers to
precisely control what faults are simulated, and where and when they are injected in the system
under test. We chose LFI because of its ability to inject faults accurately, and because it can inject
in standard C libraries, which are frequently used by systems. Moreover, LFI’s library analysis
tool fits our framework well, as we do not need to analyze the library interface manually.

2.2 Black-box Testing Frameworks

Fault injection tools give powerful capabilities to developers, who can use such tools to augment
their test suites with failure scenarios. Fault injection tools have low set-up costs; there are many
mature tools that can abstract away the details of fault injection, allowing developers to specify
the failure scenarios they want to inject in a high-level language (e.g., SETSUDO provides a
high-level language for describing perturbation sequences, while LFI allows developers to define
injection triggers in an XML format). However, many of the injection tools we described in
the previous section require human testers to design each injection scenario individually. This
is an arduous task, as there can be millions of different failure scenarios for a system. In this
section, we describe testing frameworks that automate the task of developing and running failure
scenarios.

The purpose of testing is to cover as many behaviors of the system under test as possible, in order
to find and eliminate bugs. Testing frameworks systematically explore points from a fault space
that encompasses all possible failure scenarios for a given system. Frameworks such as FATE [50]
and EDFI [44] take this approach. As black-box tools, neither of these frameworks requires a
separate definition of the space of failure scenarios that can be injected, but rather they compute
the space themselves. FATE runs the target system under a given workload and intercepts I/O
calls, computing an identifier for each I/O point. A separate failure service coordinates fault
injection, deciding which I/O calls to fail and when. EDFI inserts potential failure points into a
target program via static instrumentation, and uses a controller to activate the failures at runtime.
This strategy allows users of EDFI to precisely target parts of their program with fault injection.

However, exhaustive exploration of all possible failure scenarios is often infeasible, given the
limited resources allocated. The straightforward way to achieve coverage while only exploring
a subset of the possible failure scenarios is to randomly choose tests to execute. Random fault
injection is used in practice by several systems. Netflix assess the reliability of their systems using
a tool called Chaos Monkey 2, which randomly terminates virtual machines in Netflix services.

Zhttp://techblog.netflix.com/2012/07/
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Random injection is also the approach chosen by Hadoop’s Fault Injection framework [51]
and the Linux kernel [11], but also by research projects such as the SETSUDO fault injection
framework [56] (when in black-box mode).

We propose a search algorithm that prioritizes fault injection scenarios. Our black-box fault
injection framework uses a metaheuristic algorithm to learn from already executed test scenarios
and improve the efficiency of the search for bugs. The idea of using metaheuristic search
techniques in software testing is not new; McMinn compiled a survey of such techniques [79].
This survey covers various heuristics, such as Genetic Algorithms or Simulated Annealing,
applied to testing techniques that range from white-box to black-box. The survey relates to
exploring the control flow graph of a program, rather than fault injection in particular.

2.3 White-box Testing Frameworks

White-box testing techniques use information about the system under test in order to make testing
more efficient. This information can be models written by the developers, or it can be extracted
by the testing tool itself, by analyzing the system under test. In this section we describe both
approaches. We put particular emphasis on the latter category, focusing on symbolic execution, a
technique originally developed in the 1970s [61] that has recently received a lot of attention for
its capability of detecting corner-case bugs.

2.3.1 Model-based Testing

Researchers have attempted to automatically derive models from prior observations of system
behavior, and then develop heuristic methods for fault or test selection. As an interesting example,
Tahat et al. [97] present a novel approach to requirement-based test generation. Based on a set of
individual requirements expressed in plain text or Specification and Description Language (SDL),
a system model is automatically created with requirement information mapped to the model. The
system model is used to automatically generate test cases related to individual requirements.

For fault injection, SAMC [70] and Relyzer [52] use semantic information about the system
under test in order to perform state-space reduction policies and avoid redundant tests.

In order to reduce the developer effort required to write code and models separately, some tools
generate the code themselves based on models written by developers. For example, Mace [60]
provides a language in which developers can write distributed system specifications. Mace can
use the specifications for efficient model checking, discovering bugs early during development.
After the specification is validated, Mace can generate a C++ code skeleton, which developers
use to build their system.

12
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2.3. White-box Testing Frameworks

2.3.2 Symbolic Execution and Path Explosion

In our work, we use symbolic execution [61] for white-box testing. Symbolic execution is a
technique that can systematically enumerate execution paths in a given system, checking if any of
the execution paths lead to a bug. It does not require developers to write a model or specification
of the system under test; instead, the symbolic execution engine analyzes the code (or binary)
of the system in order to guide testing towards new execution paths. At a high level, symbolic
execution works by analyzing how inputs affect the conditional branches in a system under test.
The symbolic execution engine uses an SMT solver, such as STP [43] or Z3 [37] to find which
combinations of inputs are feasible, and furthermore which trigger different execution paths
through the program.

void foo(unsigned int x) {
if (x == 3) {
if (x == 2) {
printf("a");
} else {
printf ("b");
}
} else {
printf("c");
}

Figure 2.1 — A simple function to be analyzed by symbolic execution

Consider the example function in Figure 2.1. There are two feasible execution paths through this
function: one execution path prints ’b’, while the other prints c’. There is no execution path
that can print ’a’, as this would require both x == 3 and x == 2 to be true at the same time,
which is impossible (we do not consider multithreading in this example). In symbolic execution,
an engine interprets the program code and, for each conditional branch, evaluates the feasibility
of both possible outcomes using an SMT solver. For the first 1 £ statement, both outcomes are
possible: x can take value 3, or can take a value different from 3. Therefore, the engine will
continue interpreting the program, and keep track of the two possible execution paths, and the
conditions on x that make each path possible. For the next conditional statement, x == 2 cannot
be true, because this execution path already has the precondition that x == 3. Therefore, the
symbolic execution engine discards the branch x == 2. Eventually, symbolic execution finds
both feasible paths in the function in Figure 2.1. The power of symbolic execution is in the fact
that it systematically discovers all possible paths in the system, including elusive corner cases; in
the example in Figure 2.1, symbolic execution only needs to generate two tests to explore the two
feasible execution paths, while naive black-box testing would have to iterate through all possible
values of x to be sure that it discovered all feasible paths.

The big problem of symbolic execution is the so-called path explosion problem. Systems have
huge numbers of feasible execution paths—on the order of 2" different paths, where n is the
number of conditional branches in the system. While not directly related to corner-case bugs,

13
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path explosion is a problem that needs to be addressed in order to make symbolic execution
practical.

There have been several attempts to solve the path explosion problem. Patrice Godefroid proposed
Compositional Dynamic Test Generation [46]. The idea behind this work is that software systems
are made of different re-usable components, and the analysis of these components can be reused.
Thus, instead of exploring each component again and again for each piece of software, the
analysis can be built bottom-up, analyzing components in isolation and then combining the
summaries of each component analysis into the analysis of an entire software system.

Godefroid et al. also proposed SAGE [47], a system that combines symbolic execution and fuzz
testing (random input generation). The combination of these two techniques draws advantages
from both, allowing SAGE to be successfully used to find bugs in large software systems. There
are reports that SAGE found one-third of all the bugs discovered by file fuzzing during the
development of Microsoft’s Windows 7 [48].

Cloud9 [25] addresses the path explosion problem in two ways. On the one hand, it allows
system developers to “throw hardware at the problem”: Cloud?9 is a parallel symbolic execution
framework that can scale to thousands of nodes. On the other hand, Cloud9 comes with a complete
set of POSIX models, which are specifically written with symbolic execution in mind. This
allows the symbolic execution engine to avoid dealing with the complex semantics of different
POSIX-compliant implementations and focus the analysis on the software under test itself.

Like Cloud9, S2E [32] also addresses the interaction between a program and its environment,
giving developers control over what to test with symbolic execution. S2E is a symbolic execution
platform that runs an entire virtual machine. In order to focus the analysis on specific components
of the system under test, S2E provides different consistency models and a wide selection of
plugins that control the exploration of execution paths.

Kuznetsov et al. [66] propose a technique for merging symbolic execution states, reducing the
number of paths that need to be analyzed individually (but increasing the analysis time for each
path). The authors developed a way to decide when merging is beneficial to the overall analysis
time.

Guerraoui and Yabandeh [49] address the problem of path explosion in the model checking of
distributed systems. In their work, the authors proposed model checking individual nodes in
isolation, separated from the complexity of network message interleaving. The entire system is
only model checked for any bugs discovered by the individual analyses, in order to validate if
there is any global execution that can exercise the bug.
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2.3.3 Uses of Symbolic Execution

In our work we do not attempt to address the path explosion problem, but describe a technique to
use symbolic execution for a precise purpose (finding Trojan messages in distributed systems).
We do not modify the symbolic execution mechanism, therefore any solution that addresses path
explosion for symbolic execution in general can also be applied to our work.

Finding Trojan messages can be seen as a form of fault injection. We are not the first to use
symbolic execution for this purpose. KLEE [27], a popular symbolic execution tool, also has an
optional fault injection operation mode. Unlike black-box fault injection, KLEE’s mechanism
can avoid exploring redundant failure scenarios (e.g., if two different failure codes are handled by
the same code in a system under test).

To detect corner-case bugs in distributed systems, SymNet [91] was developed as a symbolic
execution engine that supports systems deployed across multiple interconnected virtual machines.
In order to find higher-level protocol bugs, approaches such as SymbexNet [93] add support for
developers to write protocol specifications, and then use symbolic execution to check if these are
ever violated.

Caballero et al. [26] used symbolic execution to find bugs in malware. This type of “adversarial”
programs introduce the challenge of handling encryption and obfuscation techniques. To address
this, the authors developed a technique that only solves subsets of path constraints and then
restitches the individual solutions to obtain a complete input. As many distributed systems use
encryption and authentication, many of the techniques proposed by Caballero et al. to bypass
such code can also be used for analyzing distributed systems without developer support.

Another use-case of symbolic execution is equivalence testing. Maurer and Brumley [78] propose
using symbolic execution to compare different code versions of a program, in order to analyze
code patches. They use tandem symbolic execution of the pre- and post-patch versions of a
given program and check that the patch only affects the buggy executions it was meant to fix. A
similar approach is taken by Person et al. [88] to characterize code changes. In the same spirit,
SOFT [67] uses symbolic execution to compare multiple implementations of the same protocol,
checking for corner cases where the different versions behave inconsistently.

Closer to our work, PIC [87] uses symbolic execution to check for interoperability bugs in
distributed systems. However, they focus on discovering messages that can be generated by a
correct sender node, but are rejected by the receiver node (the exact opposite of what we call a
Trojan message). Thus, PIC complements our work on Trojan messages.

Corner cases in a distributed system can be triggered not only by the contents of messages,
but also by their timing. MODIST [104] is a technique that systematically explores different
reorderings of events.
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2.4 Instrumentation

After a program is released in a production environment, instrumentation can help reduce the
impact of remaining bugs. By inserting additional code in a program under test, developers can
check for undesired behaviors or can log state to ease debugging. In this section we describe how
instrumentation can help with reliability, and techniques to reduce the overhead of the additional
code in order to make it practical for use in production.

2.4.1 Instrumentation Tools

The idea of instrumenting programs with additional code to improve reliability and traceability
has a long history. Alan Turing is credited with proposing the idea of adding assertions to
programs to simplify their verification [100]. In the 1980’s, Eric Allman invented the syslog
logging standard, which provided a unified mechanism for programs to produce log messages.
From the early 1990’s, systems like RTCC [94] allowed to automatically add instrumentation to
programs (safety checks to find illegal memory accesses in this case).

Nowadays, automatic instrumentation tools are used for a wide variety of purposes such as
detecting memory access errors in languages such as C [94, 55, 85, 15, 14, 39, 84, 41], detect-
ing concurrency errors [24, 76, 92], catching undefined behavior like integer overflows [33],
diagnosing the cause of bugs [72, 20, 105, 106, 45], finding performance problems [38], etc.

2.4.2 Reducing Instrumentation Overhead

An instrumentation tool’s overhead is a crucial factor affecting its widespread use [96]. Therefore,
many techniques have been developed to reduce overhead. A frequently used method is to weaken
the instrumentation. For example, [15, 14] use memory safety checks that do allow some illegal
accesses to happen, but require only little metadata for book keeping and are fast to compute.
StackProtector [41] checks for stack-based buffer overflows only, a common type of error that
can be detected with <1% performance impact.

Another approach uses sampling to run only a small fraction of the inserted instrumentation code.
For bug diagnosis, sampling can produce enough evidence for statistical techniques to pinpoint
the bug [72]. In other cases, sampling does reduce a tool’s effectiveness, but is necessary because
overheads would otherwise be prohibitive [19, 24]

The LiteRace data race detector [76] uses sampling, but attempts to maximize the benefit of
instrumentation by biasing sampling towards cold code. The authors write that, because memory
accesses in cold code are more likely to participate in a data race, they can detect 70% of all data
races in a program by instrumenting only 2% of its memory accesses. Similarly, StackProtector
can optionally trade some protection for performance by focusing on functions with a high risk
of buffer overflows. In this case, it analyzes the function’s code and only instruments functions
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that store arrays on the stack or access stack variables through pointers.

We propose a generalization of these schemes. Like them, we recognize that 100% instrumenta-
tion is often not practical. Unlike them, we measure both cost and benefit of each independent
piece of instrumentation, and use an optimization algorithm to select the best subset that fits the
users’ constraints.

Our approach can be seen as minimizing the amount of code that is not covered by instrumen-
tation, subject to performance constraints. This is similar to techniques like AppArmor [13],
SubDomain [36] or Kernel Tailoring [64] which minimize attack surface by blocking access to
unused APIs. The difference is that in our approach, whether code is protected/unprotected or
used/unused is not a binary property, but a continuous range where the best trade-off can be
chosen.

The Split Kernel project [65] dynamically enables extra security checks in the Linux kernel when
running untrusted user-level applications. This is similar to our evaluation of Elastic Instrumen-
tation on the Linux kernel section 4.5. We consider Elastic Instrumentation as a generalization
of the Split Kernel proposal. Users of our framework can obtain selective instrumentation with
relatively little effort (our evaluation of the Linux kernel required less than 20 lines of code to be
manually added to the kernel).

ASAP [101] reduces the overhead of instrumentation approaches that add safety checks to
programs. It depends on profiling to measure the cost of these safety checks, and removes the
most expensive ones from the program. In contrast, we propose to measure the benefit as well as
the cost of instrumentation, and generalize this approach to instrumentation beyond safety checks.
Our framework also allows to enable and disable instrumentation at runtime, thus reducing the
need for a profiling workload.
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R1 Automated Black-Box Fault
Exploration

3.1 Intuition

In this chapter, we describe an algorithm that systematically executes fault injection scenarios in
a system under test. The algorithm navigates through a fault space that defines all possible failure
scenarios. Rather than choosing them randomly, our algorithm selects fault injection scenarios
based on their expected impact.

We observe empirically that, often, there are some patterns in the distribution of fault impact
over the fault space, as suggested by Fig. 3.1, which shows the impact of library-level faults on
the 1s utility in UNIX. The patterns that emerge in the fault space are caused by structure and
modularity in the underlying code of the system being tested. Engler et al. [40] made a similar
observation of bug patterns, which emerge due to implementation-based correlations between
bodies of code. When viewing the fault space as a search space, this structure can help make the
search more efficient than random sampling; when describing our algorithm (section 3.3), we
draw an analogy between fault space exploration and the Battleship game.

Test ID

M Error ©

[ No error Library function

Figure 3.1 — Part of the fault space created by LFI [74] for the 1s utility. The horizontal axis
represents functions in the C standard library that fail, and the vertical axis represents the tests
in the default test suite for this utility. A point (x,y) in the plot is black if failing the first call to
function x while running test y leads to a test failure, and is gray otherwise.
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3.2 Definitions

We start by defining three concepts that are central to this work: fault space, fault impact, and
fault space structure.

Fault Space A fault space is a concise description of the failures that a fault injector can
simulate in a target system’s environment. A fault injection tool T defines implicitly a fault space
by virtue of the possible values its parameters can take. For example, a library-level fault injector
can inject a variety of faults at the application—library interface—the library call in which to inject,
the error code to inject, and the call number at which to inject represent three axes describing
the universe of library-level faults injectable by 7. We think of a fault space as a hyperspace, in
which a point represents a fault defined by a combination of parameters that, when passed to tool
T, will cause that fault to be simulated in the target system’s environment. This hyperspace may
have holes, corresponding to invalid combinations of parameters to 7.

We define the attributes of a fault ¢ to be the parameters to tool T that cause ¢ to be injected. If
d is the space of possible faults, then fault ¢ € ® is a vector of attributes < ¢y, ..., 0ty > where
@; is the value of the fault’s i-th attribute. For example, in the universe of failed calls made by a
program to POSIX library functions, the return of error code -1 by the 5-th call to c1lose would
be represented as ¢ =< close,5,—1 >. The values of fault attributes are taken from the finite
sets Ay, ...,Ay, meaning that, for any fault ¢ =< «, ..., oy >€ P, the attribute value o; € A;.

In order to lay out the values contained in each A; along an axis, we assume the existence
of a total order <; on each set A;, so that we can refer to attribute values by their index in
the corresponding order. In the case of ¢ =< close,5,—1 >, we can assume A; is ordered as
(open, close, read, write, ...), Ay as (1,2,3,...), and A3 as (—1,0,...). If there is no intrinsic total
order, then we can pick a convenient one (e.g., group POSIX functions by functionality: file,
networking, memory, etc.), or simply choose an arbitrary one.

We now define a fault space ® to be spanned by axes X1, X», ... Xy, meaning ® = X; X Xp X .. X Xy,
where each axis X; is a totally ordered set with elements from A; and order <;. A fault space
represents all possible combinations of values from sets Ay, ...,Ay, along with the total order on
each such set. Using the example shown above, the space of failed calls to POSIX functions is
spanned by three axes, one for call types X) : (open < close < ...), one for the index of the call
made by the caller program to the failed function X; : (1 <2 < ...), and one for the return value of
the POSIX function X3 : (—1 < 0 < ...). This enables us to represent fault ¢ =< close,5,—1 >
as ¢ =< 2,5,1 >, because the index of close on axis X; under order < is 2, the index of 5
on X, under < is 5, and the index of —1 on X3 under <3 is 1. A fault space can have holes
corresponding to invalid faults, such as close returning 1.
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Impact Metric Our proposed approach uses the effect of past injected faults to guide the search
for new, higher impact faults. Therefore, we need an impact metric that quantifies the change
effected by an injected fault in the target system’s behavior (e.g., the change in number of requests
per second served by Apache when random TCP packets are dropped). Conceptually, an impact
metric is a function I : & — R that maps a fault ¢ in the fault space ® to a measure of the impact
that fault ¢ has on system S. Since ® is a hyperspace, Is defines a hypersurface. The (adversarial)
goal of a tester employing fault injection is to find peaks on this hypersurface, i.e., find those
faults that have the largest impact on the behavior of the system under test. Since testing is often
a race against time, the tester needs to find as many such peaks as possible in the allotted time
budget.

Fault Space Structure To characterize the structure of a fault space, we use a relative linear
density metric p as follows: given a fault ¢ =< Oc?, e a,?, e OC](\), >, the relative linear density
at ¢ along an axis X; is the average impact of faults ¢’ =< a?, N0/ SU 061(\), > with the same

attributes as ¢ except along axis X, scaled by the average impact of all faults in the space.

avg Is(<o,...,0,...,00>), oxEXy ]
avg[ Is(¢y), $P ]

encounter more high-impact faults than along a random direction. In practice, it is advantageous

Specifically, péj = I pé; > 1, walking from ¢ along the X} axis will
to compute py over only a small vicinity of ¢, instead of the entire fault space. This vicinity is a
subspace containing all faults within distance D of ¢, i.e., all faults ¢” s.t. 5(¢,¢”) < D. Distance
0 : ® x ® — N is a Manhattan (or city-block) distance [23], i.e., the shortest distance between
fault ¢ and ¢” when traveling along ®@’s coordinate axes. &(¢,¢"”) gives the smallest number of
increments/decrements of attribute indices that would turn ¢ into ¢”. Thus, the D-vicinity of ¢
consists of all faults that can be obtained from ¢ with no more than D increments/decrements of
¢’s attributes a;,1 < j < N.

To illustrate, consider fault ¢ =< fclose,7 > in Fig. 3.1, and its 4-vicinity (the faults within a
distance 6 < 4). If the impact corresponding to a black square is 1, and to a gray one is 0, then
the relative linear density at ¢ along the vertical axis is pq% = 2.27. This means that walking in
the vertical direction is more likely to encounter faults that cause test errors than walking in the
horizontal direction or diagonally. In other words, exploration along the vertical axis is expected
to be more rewarding than random exploration.

3.3 Design

Fault exploration “navigates” a fault space in search of faults that have high impact on the
system being tested. Visiting a point in the fault space incurs a certain cost corresponding to the
generation of a test, its execution, and the subsequent measurement of the impact. Thus, ideally,
one would aim to visit as few points as possible before finding a desired fault.

Exhaustive exploration (as used for instance by Gunawi et al. [50]) iterates through every point in
the fault space by generating all combinations of attribute values, and then evaluates the impact
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of the corresponding faults. This method is complete, but inefficient and, thus, prohibitively slow
for large fault spaces. Alternatively, random exploration [11] constructs random combinations
of attribute values and evaluates the corresponding points in the fault space. When the fault
space has no structure, random sampling of the space is no less efficient than any other form
of sampling. However, if structure is present (i.e., the relative linear density is non-uniformly
distributed over the fault space), then there exist more efficient search algorithms.

Fitness-guided Exploration We propose a fitness-guided algorithm for searching the fault
space. This algorithm uses the impact metric Is as a measure of a fault’s “fitness,” in essence
steering the search process toward finding “ridges” on the hypersurface defined by (P, Is) and
then following these ridges to the peaks representing high-impact faults. Exploring a structured
fault space like the one in Fig. 3.1 is analogous to playing Battleship, a board game involving two
players, each with a grid. Before play begins, each player arranges a number of ships secretly on
his/her own grid. After the ships have been positioned, one player announces a target square in
the opponent’s grid that is to be shot at; if a ship occupies that square, then it takes a hit. Players
take turns and, when all of a ship’s squares have been hit, the ship is sunk. A typical strategy is to
start by shooting randomly until a target is hit, and then fire in the neighborhood of that target to
guess the orientation of the ship and sink it.

Similarly, our algorithm exploits structure to avoid sampling faults that are unlikely to be
interesting, and instead focus on those that are near other faults with high impact. For example,
if a developer has a poor understanding of how some I/O library works, then there is perhaps a
higher likelihood for bugs to lurk in the code that calls that library than in code that does not.
Once the search algorithm finds a call to the I/O library whose failure causes, say, data corruption,
it will eventually focus on failing other calls to that same library, persisting for as long as it
improves the achieved fault impact. Note that the algorithm focuses on related but distinct bugs,
rather than on multiple instances of the same bug. If the fault space definition contains duplicates
(i.e., different points in the fault space expose the same bug), then the impact should reflect
this. We describe means to detect and avoid duplicates in subsection 3.5.4, and evaluate these
approaches in subsection 3.6.5.

Another perspective on the search algorithm is that impact-guided exploration merely generates a
priority in which tests should be executed—if each fault in & corresponds to a test, the question
is which tests to run first. The exploration algorithm both generates the tests and executes them;
to construct new tests, it mutates previous high-impact tests in ways that it believes will further
increase their impact. It also avoids re-executing any tests that have already been executed in the
past. Since it does not discard any tests, rather only prioritizes their execution, the algorithm’s
coverage of the fault space increases proportionally to the allocated time budget.

Our proposed exploration algorithm is similar to the Battleship strategy mentioned earlier, except
it is fully automated, so there are no human decisions or actions in the critical path. The search
algorithm consists of the following steps:
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1. Generate an initial batch of tests randomly, execute the tests, and evaluate their impact
2. Choose a previously executed high-impact test ¢

3. Modify one of ¢’s attributes (injection parameters) to obtain a new test ¢’

4. Execute ¢’ and evaluate its impact

5. Repeat step 2

In order to decide which test attribute to mutate, we could rely on the linear density metric to
suggest the highest-reward axis. However, given that the fault space is not known a priori, we
instead compute dynamically a sensitivity (described later) based on the historical benefit of
choosing one dimension vs. another. This sensitivity calculation steers the search to align with
the fault space structure observed thus far, in much the same way a Battleship player infers the
orientation of her opponent’s battleships.

When deciding by how much to mutate an attribute (i.e., the magnitude of the increment), we
choose a value according to a Gaussian distribution, rather than a static value, in order to keep the
algorithm robust. This distribution favors ¢’s closest neighbors without completely dismissing
points that are further away. By changing the standard deviation of the Gaussian distribution, we
can control the amount of bias the algorithm has in favor of nearby points.

Finally, we use an “aging” mechanism among the previously executed tests: the fitness of a
test is initially equal to its impact, but then decreases over time. Once the fitness of old tests
drops below a threshold, they are retired and can never have offspring. The purpose of this aging
mechanism is to encourage improvements in test coverage concomitantly with improvements in
impact—without aging, the exploration algorithm may get stuck in a high-impact vicinity, despite
not finding any new high-impact faults. In the extreme, discovering a massive-impact “outlier”
fault with no serious faults in its vicinity would cause an algorithm with no aging to waste time

exploring exhaustively that vicinity.

Algorithm 1 embodies steps 2-3 of the search algorithm. We now describe Algorithm 1 in more
detail.

Choosing Which Test to Mutate The algorithm uses three queues: a priority queue Qpioriry Of
already executed high-impact tests, a queue Qpenging Of test cases that have been generated but not
yet executed, and a set History containing all previously executed tests. Once a test in Qpending
is executed and its impact is evaluated, it gets moved t0 Qprioriry. Oprioriry has a limited size;
whenever the limit is reached, a test case is dropped from the queue, sampled with a probability
inversely proportional to its fitness (tests with low fitness have a higher probability of being
dropped). As a result, the average fitness of tests in Qpiyriry increases over time. When old test
cases are retired from Q,ioriry, they go into History. This history set allows the algorithm to avoid
redundant re-execution of already evaluated tests.
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Data: Qpioriry: priority queue of high-fitness fault
injection tests (already executed)
Opending: queue of tests awaiting execution
History: set of all previously executed tests
Sensitivity: vector of N sensitivity values, one for
each test attribute o, ...0y
foreach fault injection test ¢ € Qprioriry Ao
| testProbs[¢.] := assignProbability(¢ fitness)

end

¢ := sample(Qpyiority, testProbs)

attributeProbs := normalize(Sensitivity)

o; := sample({ay, ..., oy }, attribute Probs)

oldValue := ¢.q; // remember that oldValue € A;

0 := chooseStdDev(9,A;)

newValue := sample(A;, Gaussian(oldValue, o))

¢’ := clone(9)

¢'.a; := newValue

if ¢’ ¢ History A ¢’ ¢ Qprioriry then

Qpending = Qpending U ¢/
end

Algorithm 1: Fitness-guided generation of the next test. Execution of tests, computation of
fitness and sensitivity, and aging occur outside this algorithm.

On lines 14, the algorithm picks a parent test ¢ from Qp,ioriry, to mutate into offspring ¢'. Instead
of always picking the highest fitness test, it samples QO ioriry With a probability proportional to
fitness—highest fitness tests are favored, but others still have a non-zero chance to be picked.

Mutating the Test The new test ¢’ is obtained from parent test ¢ by modifying one of ¢’s
attributes.

On lines 5-6, we choose the fault/test attribute ¢o; with a probability proportional to axis X;’s
normalized sensitivity. We use sensitivity to capture the history of fitness gain: the sensitivity of
each axis X; of the fault space reflects the historical benefit of modifying attribute ¢; when gener-
ating a new test. This sensitivity is directly related to relative linear density (from section 3.2):
the inherent structure of the system under test makes mutations along one axis to be more likely
to produce high-impact faults than along others. In other words, if there is structure in the fault
space, the sensitivity biases future mutations to occur along high-density axes. Given a value
n, the sensitivity of X; is computed by summing the fitness value of the previous n test cases in
which attribute ¢; was mutated. This sum helps detect “impact ridges” present in the currently
sampled vicinity: if X;’s density is high, then we expect this sum of previous fitness values—the
sensitivity to mutations along X;—to be high as well, otherwise not. Our use of sensitivity is
similar to the fitness-gain computation in Fitnex [103], since it essentially corresponds to betting
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on choices that have proven to be good in the past.

Sensitivity guides the choice of which fault attribute to mutate; next we describe how to mutate
the chosen attribute in order to obtain a new fault injection test.

On lines 7-9, we use a discrete approximation of a Gaussian probability distribution to choose a
new value for the test attribute to be mutated. This distribution is centered at oldValue and has
standard deviation . The chosen standard deviation is proportional to the number of values the
a; attribute can take, i.e., to the cardinality of set A;. For our evaluation, we chose ¢ = % -|A;].
o can also be computed dynamically, based on the evolution of tests in the currently explored
vicinity within the fault space—we leave the pursuit of this alternative to future work.

Our use of a Gaussian distribution implicitly assumes that there is some similarity between
neighboring values of a test attribute. This similarity of course depends on the meaning of
attributes (i.e., parameters to a fault injector) and on the way the human tester describes them
in the fault space. In our experience, many parameters to fault injectors do have such similarity
and, by using the Gaussian distribution, we can make use of this particularity to further improve
on the naive method of randomly choosing a new attribute value. Revisiting the example from
section 3.2, it is not surprising that there is correlation between library functions (e.g., close is
related to open), call numbers (e.g., successive calls from a program to a given function are likely
to do similar things), or even tests from a suite (e.g., they are often grouped by functionality).
Profiling tools, like LibTrac [22], can be used to discover such correlation when defining the fault
space.

Finally, Algorithm 1 produces ¢’ by cloning ¢ and replacing attribute @; with the new value
(lines 10-11). If ¢’ has not been executed before, it goes on Opending (lines 12—14).

Alternative Algorithms The goal of our search algorithm was to have an automated general-
purpose fault exploration system that is not tied to any particular fault injection tool. We evaluate
it using a library-level fault injection tool and a bit corruption tool, but believe it to be equally
suitable to other kinds of fault injection, such as flipping bits in data structures [99] or injecting
human errors [59].

In an earlier version of our system, we employed a genetic algorithm [89], but abandoned it,
because we found it inefficient. The search algorithm aims to optimize for “ridges” on the fault-
impact hypersurface, and this makes global optimization algorithms (such as genetic algorithms)
difficult to apply. Moreover, the hypersurface can be dynamic: in some of our experiments
we consider code coverage as part of the impact metric, and, thus, exploring a point changes
the shape of the surface (the impact of other injection scenarios that execute the same recovery
code is reduced). The algorithm we present here is, in essence, a variation of stochastic beam
search [89]—parallel hill-climbing with a common pool of candidate states—enhanced with
sensitivity analysis and Gaussian value selection.
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3.4 Developer Trade-Offs in Defining the Fault Space

Leveraging Domain Knowledge By default, our algorithm is meant for purely black-box
mode exploration, in that it has no a priori knowledge of the specifics of the system under test or
its environment. This makes it a good fit for generic testing, such as that done in a certification
service [28].

However, developers often have significant amounts of domain knowledge about the system or
its environment, and this could enable them to reduce the size of the fault space, thus speeding
up exploration. For example, when using a library-level fault injector and an application known
to use only blocking I/O with no timeouts, it makes sense to exclude EAGAIN from the set of
possible values of the errno attribute of faults injected in read. In section 4.2 we describe how
developers can add domain knowledge about the system under test, the fault space, and/or the
tested system’s environment; we evaluate in subsection 3.6.6 the benefit of doing so.

The exploration algorithm can also benefit from static analysis tools, which provide a comple-
mentary method for detecting vulnerable injection points (LFI’s callsite analyzer [75] is such a
tool). For example, the results of the static analysis can help the initial generation phase of test
candidates. By starting with highly relevant tests from the beginning, the search algorithm can
quickly learn the structure of the fault space, which is likely to boost its efficiency. This increase
in efficiency can manifest as finding high impact faults sooner, as well as finding additional faults
that were not suggested by the static analysis.

Injection Point Precision An injection point is the location in the execution of a program
where a fault is to be injected. Even though the algorithm has no knowledge of how injection
points are defined, the definition does affect its accuracy and speed.

In our evaluation we use LFI [74], a library fault injection tool that allows the developer to
fine-tune the definition of an injection point according to their own needs. Since we aim to
maximize the accuracy of our evaluation, we define an injection point as the tuple ( testID,
functionName, callNumber ). testID identifies a test from the test suite of the target system (in
essence specifying one execution path, modulo non-determinism), functionName identifies the
called library function in which to inject an error, and callNumber identifies the cardinality of the
call to that library function that should fail. This level of precision ensures that injection points
are unique on each tested execution path, and all possible library-level faults can be explored.
However, this produces a large fault space, and introduces the possibility of test redundancy (we
will show how AFEX explores this space efficiently in subsection 3.6.2 and mitigates redundancy
in subsection 3.6.5).

A simple way to define an injection point is via the callsite, i.e., file and line number where the
program is to encounter a fault (e.g., failed call to a library or system call, memory operation).
Since the same callsite may be reached on different paths by the system under test, this definition
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is relatively broad. A more accurate definition is the “failure ID” described by Gunawi et al. [50],
which associates a stack trace and domain-specific data (e.g., function arguments or state of
system under test) to the definition of the injection point. This definition is more tightly related to
an individual execution path and offers more precision. However, unlike the 3-tuple definition we
use in our evaluation, failure IDs ignore loops and can lead to missed bugs.

The trade-off in choosing injection points is one between precision of testing and size of the
resulting fault space: on the one hand, a fine-grain definition requires many injection parameters
(fault attributes) and leads to a large fault space (many possible combinations of attributes), which
takes longer to explore. On the other hand, more general injection points reduce the fault space,
but may miss important fault scenarios (i.e., incur false negatives).

For example, the first MySQL bug we describe in subsection 3.6.2 is triggered when injecting
a fault in a call to LibC’s close from my_close, a low-level I/O function. my_close is called
from several different places in MySQL. However, the bug we discovered only manifests in
mi_create, one of the many functions that may call my_close. Thus, injecting in my_close in a
single test scenario may miss the bug if the injection is not performed on an execution path in
which mi_create is the caller.

3.5 A Prototype Implementation

We built AFEX, a prototype that embodies the techniques presented in this chapter. The user
provides AFEX with a description of the explorable fault space ®, dictated by the available fault
injectors, along with scripts that start/stop/measure the system under test S. AFEX automatically
generates tests that inject faults from @ and evaluates their quality. Our prototype is a parallel
system that runs on clusters of computers, thus taking advantage of the parallelism inherent in
AFEX.

The core of AFEX consists of an explorer and a set of node managers, as shown in Fig. 3.2. The
explorer receives as input a fault space description and an exploration target (e.g., find the top-10
highest impact faults), and produces a set of fault injection tests that satisfy this target. AFEX
synthesizes configuration files for each injection tool and instructs the various node managers to
proceed with the injection of the corresponding faults. The managers then report to the explorer
the results of the injections, and, based on this, the explorer decides which faults from & to inject
next.

Each of the managers is associated with several fault injectors and sensors. One manager is
in charge of all tests on one physical machine. When the manager receives a fault scenario
from the explorer (e.g., “inject an EINTR error in the third read socket call, and an ENOMEM
error in the seventh malloc call”), it breaks the scenario down into atomic faults and instructs
the corresponding injectors to perform the injection. The sensors are instructed to run the
developer-provided workload scripts (e.g., a benchmark) and perform measurements, which are
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then reported back to the manager. The manager aggregates these measurements into a single
impact value and returns it to the explorer.

The goal of a sequence of such injections—a fault exploration session—is to produce a set of
faults that satisfy a given criterion. For example, AFEX can be used to find combinations of
faults that cause a database system to lose or corrupt data. As another example, one could obtain
the top-50 worst faults performance-wise (i.e., faults that affect system performance the most).
Prior to AFEX, this kind of test generation involved significant amounts of human labor.

To further help developers, AFEX presents the faults it found as a map, clustered by the degree of
redundancy with respect to code these faults exercise in the target S. For each fault in the result set,
AFEX provides a generated script that can run the test and replay the injection. Representatives of
each redundancy cluster can thus be directly assembled into (or inserted into existing) regression
test suites.

3.5.1 Architecture

Since tests are independent of each other, AFEX enjoys “embarrassing parallelism.” Node
managers need not talk to each other, only the explorer communicates with node managers.
Given that the explorer’s workload (i.e., selecting the next test) is significantly less than that of
the managers (i.e., actually executing and evaluating the test), the system has no problematic
bottleneck for clusters of dozens of nodes, maybe even larger. In this section, we provide more
details on our prototype’s two main components, the explorer and the node manager.

Explorer The AFEX explorer is the main control point in the exploration process. It receives
the fault space description and the search target, and then searches the fault space for tests to put
in the result set. The explorer can navigate the fault space in three ways: using the fitness-guided
Algorithm 1, exhaustive search, or random search.

Node Manager The node manager coordinates all tasks on a physical machine. It contains a
set of plugins that convert fault descriptions from the AFEX-internal representation to concrete
configuration files and parameters for the injectors and sensors. Each plugin, in essence, adapts
a subspace of the fault space to the particulars of its associated injector. The actual execution
of tests on the system S is done via three user-provided scripts: A startup script prepares the
environment (setting up workload generators, necessary environment variables, etc.). A test script
starts up S and signals the injectors and sensors to proceed; they in turn will report results to the
manager. A cleanup script shuts S down after the test and removes all side effects of the test.
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Figure 3.2 — AFEX prototype architecture: an explorer coordinates multiple managers, which in
turn coordinate the injection of faults and measurement of the injections’ impact on the system
under test.

syntax = {space};

space = (subtype | parameter )+";";
subtype = identifier;

parameter = identifier ":"

( "{" identifier ( "," identifier )+ "}" |

"[" number "," number "]" |
"<" number "," number ">"
)
identifier letter ( letter | digit | "_" )x;
(digit) +;

number

Figure 3.3 — AFEX fault space description language.

3.5.2 Input

AFEX takes as input descriptions of the fault spaces to be explored, sensor plugins to measure
impact metrics (which AFEX then uses to guide fault exploration), and search targets describing
what the user wants to search for, in the form of thresholds on the impact metrics.

Fault Description Language The language for describing fault spaces must be expressive
enough to allow the definition of complex fault spaces, but succinct and easy to use and understand.
Fig. 3.3 shows the grammar of the fault space description language used in AFEX.
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function { malloc, calloc, realloc }
errno : { ENOMEM }

retval { 0 }

callNumber : [ 1 , 100 ] ;

function { read }

errno : { EINTR }

retvVal { -1}

callNumber : [ 1 , 50 1 ;

Figure 3.4 — Example of a fault space description.

function malloc errno ENOMEM retval 0
callNumber 23

Figure 3.5 — Example of a fault scenario description.

Fault spaces are described as a Cartesian product of sets, intervals, and unions of subspaces
(subtypes). Subspaces are separated by ;. Sets are defined with “{ }”. Intervals are defined
using “[ ] or “< >”. The difference between these two is that, during fault selection, intervals
marked with “[ ]” are sampled for a single number, while intervals marked with “< >” are sampled
for entire sub-intervals (we say < 5,10 > is a sub-interval of < 1, 50 >).

Fig. 3.4 shows an example representing the fault space for a library fault injection tool. This
fault space is a union of two hyperspaces, separated by ““;”. The injection can take place in any
of the first 100 calls to memory allocation, or in any of the first 50 calls to read. One possible
fault injection scenario the explorer may sample from this fault space is shown in Fig. 3.5. This
scenario would be sent by the explorer to a node manager for execution and evaluation.

3.5.3 Output

AFEX’s output consists of a set of faults that satisfy the search target, a characterization of the
quality of this fault set, and generated test cases that inject the faults of the result set into the system
under test S and measure their impact on S. In addition to these, AFEX also reports operational
aspects, such as a synopsis of the search algorithms used, injectors used, CPU/memory/network
resources used, exploration time, number of explored faults, etc.

Quality Characterization: The quality characterization provides developers with additional
information about the tests, in order to help guide their attention toward the most relevant
ones. The two main quality metrics are redundancy and repeatability/precision, described in
subsection 3.5.4. AFEX aims to provide a confidence characterization, similar to what a Web
search engine user would like to get with her search results: which of the returned pages have the
same (or similar) content. A practical relevance evaluation of the fault set is optionally available
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if the developer can provide the corresponding statistical model (subsection 3.5.4).

Test Suites: AFEX automatically generates test cases that can directly reproduce each fault
injection and the observed impact on the system. Each test case consists of a set of configuration
files for the system under test, configuration of the fault injector(s), a script that starts the system
and launches the fault injector(s), and finally a script that generates workload on the system and
measures the faults’ impact. We find these generated test scripts to save considerable human time
in constructing regression test suites.

3.5.4 Quantifying Result Quality

In addition to automatically finding high-impact faults, AFEX also quantifies the level of confi-
dence users can have in its results. We consider three aspects of interest to practitioners: cutting
through redundant tests (i.e., identifying equivalence classes of redundant faults within the
result set), assessing the precision of our impact assessment, and identifying which faults are
representative and practically relevant.

Redundancy Clusters One measure of result quality is whether the different faults generated
by AFEX exercise diverse system behaviors—if two faults exercise the same code path in the
target system, it is sufficient to test with only one of the faults. Being a black-box testing system,
AFEX cannot rely on source code to identify redundant faults.

AFEX computes clusters (equivalence classes) of closely related faults as follows: While execut-
ing a test that injects fault ¢, AFEX captures the stack trace corresponding to ¢’s injection point.
Subsequently, it compares the stack traces of all injected faults by computing the edit distance
between every pair of stack traces (specifically, we use the Levenshtein distance [71]). Any two
faults for which the distance is below a threshold end up in the same cluster. In subsection 3.6.5
we evaluate the efficiency of this technique in avoiding test redundancy. In choosing this approach,
we were inspired by the work of Liblit and Aiken on identifying which parts of a program led to
a particular bug manifestation [72].

Besides helping developers to analyze fault exploration results, redundancy clusters are also used
online by AFEX itself, in a feedback loop, to steer fault exploration away from test scenarios that
trigger manifestations of the same underlying bug. This improves the efficiency of exploration.

Impact Precision Impact precision indicates, for a given fault ¢, how likely it is to consistently
have the same impact on the system under test S. To obtain it, AFEX runs the same test n times
(with n configured by the developer) and computes the variance Var(Is(¢)) of ¢’s impact across
m, and AFEX reports it with each fault in the result set.
The higher the precision, the more likely it is that re-injecting ¢ will result in the same impact

the n trials. The impact precision is
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that AFEX measured. In other words, a high value for impact precision suggest that the system’s
response to that fault in that environment is likely to be deterministic. Developers may find it
easier, for example, to focus on debugging high-precision (thus reproducible) failure scenarios.

Practical Relevance The final quality metric employed by AFEX is a measure of each fault’s
representativeness and, thus, practical relevance. Using published studies [95, 21] or proprietary
studies of the particular environments where a system will be deployed, developers can associate
with each class of faults a probability of it occurring in practice. Using such statistical models of
faults, AFEX can automatically associate with each generated fault a probability of it occurring
in the target environment. This enables developers to better choose which failure scenarios to
debug first.

3.5.5 Extensibility and Control

The AFEX system was designed to be flexible and extensible. It can be augmented with new
fault injectors, new sensors and impact metrics, custom search algorithms, and new result-quality
metrics.

We present below the steps needed to use AFEX on a new system under test S. In our evaluation,
adapting AFEX for use on a new target S took on the order of hours.

1. Write fault injection plugins. These are small Java code snippets required to wrap each
fault injector tool to be used (~150 lines of code).

2. Choose fault space. The developer must write a fault space descriptor file (using the
language specified in Fig. 3.3). We found that the simplest way to come up with this
description is to analyze the target system S with a tracer like /trace, or to use a static
analysis tool, such as the profiler that ships with LFI [75].

3. Design impact metric. The impact metric guides the exploration algorithm. The easiest
way to design the metric is to allocate scores to each event of interest, such as 1 point for
each newly covered basic block, 10 points for each hang bug found, 20 points for each
crash, etc.

4. Provide domain knowledge. Optionally, the developer can give AFEX domain knowledge
in various ways. For example, if the system under test is to be deployed in a production
environment with highly reliable storage, it may make sense to provide a fault relevance
model in which I/O faults are deemed less relevant (since they are less likely to occur in
practice), unless they have catastrophic impact on S. This will discourage AFEX from
exploring faults of little interest.

5. Write test scripts. Developers must provide three scripts: startup, test, and cleanup. These
are simple scripts and can be written in any scripting language supported on the worker
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nodes.

6. Select search target. The tester can choose to stop the tests after some specified amount of
time, after a number of tests executed, or after a given threshold is met in terms of code
coverage, bugs found, etc.

7. Run AFEX. AFEX is now ready to start. It provides progress metrics in a log, so that
developers can follow its execution, if they wish to do so.

8. Analyze results. AFEX produces tables with measurements for each test (fitness, quality
characterization, etc.), and it identifies a representative test for each redundancy cluster (as
described in subsection 3.5.4). AFEX also creates a folder for each test, containing logs,
core dumps, or any other output produced during the test.

3.6 Evaluation

In this section, we address the following questions about the AFEX prototype: Does it find
bugs in real-world systems (subsection 3.6.2)? How efficient is AFEX exploration compared
to random and exhaustive search (subsection 3.6.3)? To what extent does fault space structure
improve AFEX’s efficiency (subsection 3.6.4)? Can AFEX leverage result-quality metrics to
improve its search efficiency (subsection 3.6.5)? To what extent can system-specific knowledge
aid AFEX (subsection 3.6.6)? How does AFEX’s usefulness vary across different stages of system
development (subsection 3.6.7)? How well does the AFEX prototype scale (subsection 3.6.8)?

3.6.1 Setup

Evaluation Targets Most of our experiments focus on four real-world code bases: the MySQL
5.1.44 database management system, the Apache httpd 2.3.8 Web server, the coreutils 8.1 suite
of UNIX utilities, and PBFT (sfslite version). These systems range from large (> 10° lines
of code in MySQL) to small (~103 lines of code per UNIX utility). We used AFEX to find
new bugs in MySQL and Apache httpd, both mature systems considered to be highly reliable.
We reproduced one known bug, and found a bug that we did not know about ahead of time in
PBFT. The UNIX utilities, being small yet still real-world, allow us to closer examine various
details of AFEX and show how the various ideas described in the chapter come together into a
fitness-guided exploration framework that is significantly more efficient than random exploration,
while still requiring no source code access. We also report measurements on the MongoDB
NoSQL database, versions 0.8 and 2.0.

Fault Space Definition Methodology AFEX can explore both single-fault and multi-fault
scenarios, but we limit our evaluation to only single-fault scenarios, which offer sufficient
opportunity to examine all aspects of our system. Even this seemingly simple setup produces
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fault spaces with more than 2 million faults, which are infeasible to explore with brute-force
approaches.

Our fault space is defined by the fault injection tools we use, along with profiling tools and,
for some specific experiments, general knowledge of the system under test. We used the LFI
library-level fault injector [74] for the MySQL, Apache httpd and coreutils experiments. We
focused on injecting error returns into calls made to functions in the standard C library, libc.so.
This library is the principal way for UNIX programs to interact with their environment, so we can
use LFI to simulate a wide variety of faults in the file system, network, and memory. To define
the fault space, we first run the default test suites that ship with our test targets, and use the ltrace
library-call tracer to identify the calls that our target makes to libc and count how many times each
libc function is called. We then use LFI’s callsite analyzer, applied to the libc.so binary, to obtain
a fault profile for each libc function, indicating its possible error return values and associated
errno codes.

We use this methodology to define a fault space for the UNIX coreutils that is defined by
three axes: X5 corresponds to the tests in the coreutils test suite, with X, = (1,...,29). Xfune
corresponds to a subset of libc functions used during these tests, and their index values give us
Xfunc = (1,...,19). Finally, X, corresponds to the call number at which we want to inject a fault
(e.g., the n-th call to malloc). In order to keep the fault space small enough for exhaustive search
to be feasible (which allows us to obtain baseline measurements for comparison), we restrict
these values to X.,;; = (0, 1,2), where 0 means no injection, and 1 or 2 correspond to the first or
second call, respectively. The size of the resulting fault space Dyeusits is 29 X 19 x 3 = 1,653
faults. To measure the impact of an injected fault, we use a combination of code coverage and
exit code of the test suite. This encourages AFEX to both inject faults that cause the default test
suite to fail and to cover as much code as possible.

For the MySQL experiments, we use the same methodology to obtain a fault space with the same
axes, except that X, = (1,...,1147) and X.q; = (1,...,100), which gives us a fault space ®sys01.
with 2,179,300 faults. If we assume that, on average, a test takes 1 minute, exploring this fault
space exhaustively would take on the order of 4 CPU-years. MySQL therefore is a good example
of why leveraging fault space structure is important. We use a similar impact metric to that in
coreutils, but we also factor in crashes, which we consider to be worth emphasizing in the case of
MySQL.

For the Apache httpd experiments, we have the same fault space axes, but X;.;; = (1,...,58) and
Xean = (1,...,10), for a fault space P4pqcne of 11,020 possible faults.

For PBFT, we wrote a custom fault injector that corrupts Message Authentication Codes (MAC)
in the client nodes. Inspired by Aardvark [35], we set out to check if AFEX can find the Big
MAC attack described by Clement et al. [35]. We deployed PBFT on Emulab [102] and set up a
fault injector that corrupts the Message Authentication Code (MAC) in the client nodes. AFEX
controls three test parameters: which MACs to corrupt, how many correct clients to connect to

34



3.6. Evaluation

PBFT and how many malicious clients to connect to PBFT. Each parameter corresponds to a
dimension in the hyperspace explored by AFEX. The dimension corresponding to which MAC
to corrupt has 4,096 values (see below for explanation), the number of correct clients varies
between 10 and 250, with an increment of 10 (25 values), while the number of malicious clients
is 1 or 2. Thus, AFEX explores a hyperspace with 4,096 %25 x 2 = 204, 800 possible scenarios.

The parameter describing which MAC to corrupt is a 12-bit-wide bit mask, where bit n decides
whether to corrupt or not the (n mod 12)-th call to the generateMAC function in the malicious
client. In order to implement the murateDistance parameter, the 12-bit number is encoded in
Gray code. Thus, a small mutateDistance entails choosing a neighboring value (in Gray code,
consecutive numbers always differ in only one binary position).

Metrics To assess efficiency of exploration, we count the number of failing tests from the X,
axis and analyze the generated coredumps. While imperfect, this metric has the benefit of being
objective. Once fault injection becomes more widely adopted in test suites, we expect developers
to write fault injection-oriented assertions, such as “under no circumstances should a file transfer
be only partially completed when the system stops,” in which case one can count the number of
failed assertions.

For the PBFT experiments, we also measure the average throughput and latency observed by the
correct clients.

Experimental Platform The experiments reported in subsection 3.6.2 and subsection 3.6.4—
subsection 3.6.6 ran on an Intel quad-core 2.4GHz CPU with 4GB RAM and 7200rpm HDD. The
experiments in subsection 3.6.3 ran on 5 small Amazon EC2 instances [16], the ones reported in
subsection 3.6.7 on a quad-core Intel 2.3GHz CPU with 16GB RAM and Intel SSD, and the ones
reported in subsection 3.6.8 on a range of 1-14 small Amazon EC2 instances. The PBFT results
were obtained on Emulab [102].

3.6.2 Effectiveness of Exploration

In this section, we show that AFEX can be used to successfully test the recovery code of large,
production-grade software, such as MySQL and the Apache httpd server, with minimal human
effort and no access to source code. After running for 24 hours on a small desktop computer,
AFEX found 2 new bugs in MySQL, 1 new bug in Apache httpd and 1 new bug in PBFT (albeit
we later discovered that the bug was already reported in a different paper).

MySQL After exploring the ®yy50; fault space for 24 hours, AFEX found 464 fault injection
scenarios that cause MySQL to crash. By analyzing the generated core dumps, we found two
new bugs in MySQL. The results are summarized in Table 3.1. Comparison to exhaustive search
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is impractical, as it would take multiple CPU-years to explore all of ®yy50; .-

] [[MySQL test suite | Fitness-guided | Random |

Coverage 54.10% 52.15% 53.14%
# failed tests 0 1,681 575
# crashes 0 464 51

Table 3.1 — Comparison of the effectiveness of fitness-guided fault search vs. random search vs.
MySQL’s own test suite.

We find that AFEXs fitness-guided fault search is able to find almost 3 x as many failed tests as
random exploration, and cause more than 9x as many crashes. Of course, not all these crashes
are indicative of bugs—many of them result from MySQL aborting the current operation due
to the injected fault. The random approach produces slightly higher general code coverage, but
spot checks suggest that the recovery code coverage obtained by fitness-guided search is better.
Unfortunately, it is impractical to estimate recovery code coverage, because this entails manually
identifying each block of recovery code in MySQL. We now describe briefly the two bugs found
by AFEX.

The first one [82] is an example of buggy error recovery code—the irony of recovery code is that
it is hard to test, yet, when it gets to run in production, it cannot afford to fail. Since MySQL
places great emphasis on data integrity, it has a significant amount of recovery code that provides
graceful handling of I/O faults. However, in the code snippet shown in Fig. 3.6, the recovery
code itself has a bug that leads to an abort. It occurs in a function that performs a series of file
operations, any of which could fail. There is a single block of error recovery code (starting at
line mi_create.c:836) to which all file operations in this function jump whenever they fail. The
recovery code performs some cleanup, including releasing the THR_LOCK_myisam lock (on line
837), and then returns an error return code up the stack. However, if it is the call to my_close
(on line 831) that fails, say due to an I/O error, then the recovery code will end up unlocking
THR_LOCK_myisam twice and crashing.

mi_create.c

830: pthread_mutex_unlock (&§THR_LOCK_myisam) ;
831l: if (my_close(file,MYF (0)))
goto err;

836: err:

837: pthread_mutex_unlock (§THR_LOCK_myisam) ;

Figure 3.6 — Buggy recovery code in MySQL.

The second MySQL bug is a crash that happens when a read from errmsg.sys fails. This bug
is a new manifestation of a previously discovered bug [81] that was supposedly fixed. MySQL
has recovery code that checks whether the read from errmsg.sys was successful or not, and it
correctly logs any encountered error if the read fails. However, after completing this recovery,
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regardless of whether the read succeeded or not, MySQL proceeds to use a data structure that
should have been initialized by that read. This leads to MySQL crashing.

It is worth noting that MySQL does use an (admittedly ad-hoc) method for fault injection testing.
The code has macros that override return values and errno codes after calls to libc, in order to
simulate faults. These macros are enabled by recompiling MySQL with debug options. Howeyver,
doing fault injection this way is laborious, because the macros need to be manually placed in each
location where a fault is to be injected, and the specifics of the injected fault need to be hardcoded.
This explains, in part, why MySQL developers appear to have lacked the human resources to
test the scenarios that AFEX uncovered. It also argues for why AFEX-style automated fault
exploration is useful, in addition to the fact that AFEX allows even testers unfamiliar with the
internal workings of MySQL—such as ourselves—to productively test the server in black-box
mode.

Apache httpd  We let AFEX explore the ® 440, fault space of 11,020 possible faults, and we
stopped exploration after having executed 1,000 tests. Using fitness-guided exploration, AFEX
found 246 scenarios that crash the server; upon closer inspection, we discovered one new bug.

Table 3.2 summarizes the results. When limited to 1,000 samplings of ®g;,4ch., AFEX finds 3 x
more faults that fail Apache tests and almost 12x more tests that crash Apache, compared to
random exploration. It finds 27 manifestations of the bug in Figure 3.7, while random exploration
finds none.

] || Fitness-guided | Random |

# failed tests 736 238
# crashes 246 21

Table 3.2 — Effectiveness of fitness-guided fault search vs. random search for 1,000 test iterations
(Apache httpd).

An industrial strength Web server is expected to run under high load, when it becomes more
susceptible to running out of memory, and so it aims to handle such errors gracefully. Thus, not
surprisingly, Apache httpd has extensive checking code for error conditions like NULL returns
from malloc throughout its code base. The recovery code for an out-of-memory error generally
logs the error and shuts down the server. Nevertheless, AFEX found a malloc failure scenario
that is incorrectly handled by Apache and causes it to crash with no information on why. Fig. 3.7
shows the code.

What the Apache developer missed is that strdup itself uses malloc, and can thus incur an out-of-
memory error that is propagated up to the Apache code. When this happens, the code on line
config.c:579 dereferences the NULL pointer, triggers a segmentation fault, and the server crashes
without invoking the recovery code that would log the cause of the error. As a result, operators
and technical support will have a hard time understanding what happened.

37



Chapter 3. Automated Black-Box Fault Exploration

config.c

578: ap_module_short_names[m->module_index]
= strdup (sym_name) ;
579: ap_module_short_names[m->module_index] [len]
— \OI ;

Figure 3.7 — Missing recovery code in Apache httpd.

This bug illustrates the need for black-box fault injection techniques: an error behavior in a
third-party library causes the calling code to fail, because it does not check the return value. Such
problems are hard to detect with source code analysis tools, since the fault occurs not in the test
system’s code but in the third-party library, and such libraries are often closed-source or even
obfuscated.

PBFT Our experiment confirmed the Big MAC attack. AFEX showed that by corrupting the
MAC in all messages sent by a malicious client, PBFT will perform a view change and crash.

AFEX has also helped us discover an unexpected bug in PBFT!. We noticed that despite a
malicious client altering the MAC:s for the replicas, the protocol did not always perform a View
Change (specifically, if every retransmission from the malicious client was correct). The PBFT
protocol specifies a timer associated to each request received by replicas directly from clients. If
a replica receives such a message, it forwards it to the primary and starts a view change timer. If
the respective message is not executed before the timer expires, the replica will initiate a view
change (this ensures that malicious primaries cannot ignore clients forever). However, in the
implementation of PBFT there is a single such timer, rather than one per request. If a message is
received by a replica directly from a client, the timer is set. If any such message is executed before
the timer expires, the timer is reset. Therefore, a malicious primary only has to execute one client
request per timer period (5 seconds by default), diminishing PBFT throughput to 0.2 requests /
second. If the respective client is also malicious, cooperating with the primary, the primary can
ignore all messages from correct clients decreasing the useful throughput of PBFT to 0. This
is a particular instance of “slow primaries”, which Clement et al. [35] also broadly described;
Aardvark avoids this bug by enforcing minimum throughput thresholds for each primary.

The MySQL and Apache experiments in this section show that automatic fault injection can
test real systems and find bugs, with minimal human intervention and minimal system-specific
knowledge. We now evaluate the efficiency of this automated process.

'We later discovered that this bug is similar to the pre-prepare delay attack described by Amir et al. [17]
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] || Fitness-guided | Random | Exhaustive |

Code coverage 36.14% 35.84% 36.17%
# tests executed 250 250 1,653
# failed tests 74 32 205

Table 3.3 — Coreutils: Efficiency of fitness-guided vs. random exploration for a fixed number
(250) of faults sampled from the fault space. For comparison, we also show the results for
exhaustive exploration (all 1,653 faults sampled).

3.6.3 Efficiency of Exploration

To evaluate efficiency, we compare fitness-based exploration not only to random search but
also to exhaustive search. In order for this to be feasible, we let AFEX test a couple UNIX
coreutils, i.e., explore the @15 fault space (1,653 faults). This is small enough to provide us
an exhaustive-search baseline, yet large enough to show meaningful results.

First, we evaluate how efficiently can AFEX find interesting fault injection scenarios. We let
AFEX run for 250 test iterations, in both fitness-guided and random mode, on the In and mv
coreutils. These are utilities that call a large number of library functions. We report in the first
two columns of Table 3.3 how many of the tests in the test suite failed due to fault injection.
These results show that, given a fixed time budget, AFEX is 2.3 more efficient at finding failed
tests (i.e., high-impact fault injections) than random exploration. Exhaustive exploration finds
2.77x more failed tests than fitness-guided search, but takes 6.61 x more time (each test takes
roughly the same amount of time, and ~90% of the time in each test iteration is taken up by our
coverage computation, which is independent of injected fault or workload).

Fitness-guided exploration is efficient at covering error recovery code. Consider the following:
running the entire coreutils test suite without fault injection obtains 35.53% code coverage, while
running additionally with exhaustive fault exploration (third column of Table 3.3) obtains 36.17%
coverage; this leads us to conclude that roughly 0.64% of the code performs recovery. Fitness-
guided exploration with 250 iterations (i.e., 15% of the fault space) covers 0.61% additional code,
meaning that it covers 95% of the recovery code while sampling only 15% of the fault space.

Code coverage clearly is not a good metric for measuring the quality of reliability testing: even
though all three searches achieve similar code coverage, the number of failed tests in the default
test suite differs by up to 6.

In Fig. 3.8 we show the number of failed tests induced by injecting faults found via fitness-guided
vs. random exploration. As the number of iterations increases, the difference between the rates of
finding high-impact faults increases as well: the fitness-guided algorithm becomes more efficient,
as it starts inferring (and taking advantage of) the structure of the fault space. We now analyze
this effect further.

Similar results can be seen in the PBFT experiment. Figure 3.9 shows the performance impact on
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Figure 3.8 — Number of test-failure-inducing fault injections in coreutils for fitness-guided vs.
random exploration.
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Figure 3.9 — Evolution of average latency of requests from correct clients of the PBFT system,
as induced by attacks generated by the fitness-guided exploration of AFEX, versus random
exploration, over 125 executed tests

3.6.4 The Impact of the Fault Space Structure

To assess how much AFEX leverages the structure of the fault space, we evaluate its efficiency
when one of the fault space dimensions is randomized, i.e., the values along that X; are shuffled,
thus eliminating any structure it had. If the efficiency of AFEX is hurt by such randomization,
then it means that the structure along that dimension had been suitably exploited by AFEX. We
perform this experiment on Apache httpd with ®4pacpe-

The results are summarized in Table 3.4: the randomization of each axis results in a reduction in
overall impact. For example, 25% of the faults injected by AFEX with the original structure of
D ppache led to crashes; randomizing X causes this number to drop to 22%, randomizing Xj.
makes it drop to 13%, and randomizing X_,; makes it drop to 17%. The last column, random
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search, is equivalent to randomizing all three dimensions. This is clear evidence that AFEX takes
substantial advantage of whatever fault space structure it can find in each dimension in order to
improve its efficiency.

Original ||Rand.|Rand. | Rand. || Random
structure || Xy | Xpme | Xean search
# failed tests 73% 59% | 43% | 48% 23%

# crashes 25% 22% | 13% | 17% 2%

Table 3.4 — Efficiency of AFEX in the face of structure loss, when shuffling the values of one
dimension of the fault space (Apache httpd). Percentages represent the fraction of injected faults
that cause a test in Apache’s test suite to fail, respectively crash (thus, 25% crashes means that
25% of all injections led to Apache crashing).

Additionally, in the MySQL experiments of subsection 3.6.2, we inspected the evolution of the
sensitivity parameter (described in section 3.3) and the choice of test scenarios, in order to see
what structure AFEX infers in the @50, fault space. The sensitivity of Xy, converges to 0.1,
while that of Xj.;; and X,y both converge to 0.4 for MySQL. Table 3.4 suggests that ®pucpe 18
different from ®yy507: randomizing X, which was the least sensitive dimension in the case of
MySQL, causes the largest drop in number of crashes, which means that for ®4,, it is actually
the most sensitive dimension.

3.6.5 The Impact of the Result Quality Feedback

Another source of improvement in efficiency is the use of immediate feedback on the quality
of a candidate fault relative to those obtained so far. AFEX aims to generate a result set that
corresponds as closely as possible to the search target, and it continuously monitors the quality of
this result set. One important dimension of this assessment is the degree of redundancy. In this
section, we show how AFEX automatically derives redundancy clusters and uses these online, in
a feedback loop, to increase its exploration efficiency.

As mentioned in subsection 3.5.4, AFEX uses the Levenshtein edit distance for redundancy
detection. In this experiment, we compare the stack traces at the injection points in the Apache
tests, cluster them, and tie the outcome into a feedback loop: When evaluating the fitness of a
candidate injection scenario, AFEX computes the edit distance between that scenario and all
previous tests, and uses this value to weigh the fitness on a linear scale (100% similarity ends up
zero-ing the fitness, while 0% similarity leaves the fitness unmodified).

The results are shown in Table 3.5. Even though the use of the feedback loop produces fewer
failed tests overall, the search target is more closely reached: fitness-guided exploration with
feedback produces about 40% more “unique” failures (i.e., the stack traces at the injection points
are distinct) than fitness-guided exploration without feedback, and 75% more “unique” crashes.
Of course, the method is not 100% accurate, since injecting a fault with the same call stack at
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the injection point can still trigger different behavior (e.g., depending on the inputs, the system
under test may or may not use a NULL pointer generated by an out-of-memory error), but it still
suggests improved efficiency.

Fitness- | Fitness-guided | Random
guided | with feedback search

# failed tests 736 512 238
# unique failures 249 348 190
# unique crashes 4 7 2

Table 3.5 — Number of unique failures/crashes (distinct stack traces at injection point) found by
1,000 tests (Apache).

Having assessed AFEX’s properties when operating with no human assistance, we now turn our
attention to evaluating the benefits of human-provided system-specific knowledge.

3.6.6 The Impact of System-Specific Knowledge

So far, we used AFEX purely in black-box mode, with no information about the system being
tested. We now construct an experiment to evaluate how much benefit AFEX can obtain from
knowledge of the tested system and environment.

We choose as search target finding all out-of-memory scenarios that cause the In and mv coreutils
to fail. Based on an exhaustive exploration of @z, We know there are 28 such scenarios for
these two utilities. Our goal is to count how many samplings of the fault space are required by
the AFEX explorer to find these 28 faults.

] || Fitness-guided | Exhaustive | Random |

Black-box AFEX 417 1,653 836
Trimmed fault space 213 783 391
Trim + Env. model 103 783 391

Table 3.6 — Number of samples (injection tests) needed to find all 28 malloc faults in Py epsiss
that cause In and mv to fail, for various levels of system-specific knowledge.

Table 3.6 shows the results for three different levels of system-specific knowledge. First, we run
AFEX in its default black-box mode; this constitutes the baseline. Then we trim the fault space
by reducing Xj,,. to contain only the 9 libc functions that we know these two coreutils call—this
reduces the search space. Next, we also add knowledge about the environment in the form of a
statistical environment model, which specifies that malloc has a relative probability of failing of
40%, all file-related operations (fopen, read, etc.) have a combined weight of 50%, and opendir,
chdir a combined weight of 10%. We use this model to weigh the measured impact of each test
according to how likely it is to have occurred in the modeled environment.
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The results show that trimming the fault space improves AFEX’s efficiency by almost 2%, and
adding the environment model further doubles efficiency—AFEX is able to reach the search
target more than 4 x faster than without this knowledge. Furthermore, compared to uninformed
random search, leveraging this domain-specific knowledge helps AFEX be more than 8 x faster,
and compared to uninformed exhaustive search more than 16 faster.

3.6.7 Efficiency in Different Development Stages

So far, we have evaluated AFEX only on mature software; we now look at whether AFEX’s
effectiveness is affected by the maturity of the code base or not. For this, we evaluate AFEX on
the MongoDB DBMS, looking at two different stages of development that are roughly 3 years
apart: version 0.8 (pre-production) and version 2.0 (industrial strength production release). We
ask AFEX to find faults that cause the tests in MongoDB’s test suite to fail, and we expose both
versions to identical setup and workloads. We let AFEX sample the fault space 250 times and
compare its efficiency to 250 random samplings. The results are shown in Figure 3.10.
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Figure 3.10 — Changes in AFEX efficiency from pre-production MongoDB to industrial strength
MongoDB.

For early versions of the software, AFEX is more efficient at discovering high-impact faults:
compared to random search, AFEX finds 2.37 x more faults that cause test failures; this efficiency
drops in the industrial strength version to 1.43x. What may seem at first surprising is that AFEX
causes more failures in v2.0 than in v0.8—this is due to increased complexity of the software and
heavier interaction with the environment, which offers more opportunities for failure. Ironically,
AFEX found an injection scenario that crashes v2.0, but did not find any way to crash v0.8. More
features appear to indeed come at the cost of reliability.

3.6.8 Scalability of our Fault Injection Framework

We have run AFEX on up to 14 nodes in Amazon EC2 [16], and verified that the number of tests
performed scales linearly, with virtually no overhead. This is not surprising. We believe AFEX
can scale much further, due to its embarrassing parallelism. In isolation, the AFEX explorer can
generate 8,500 tests per second on a Xeon E5405 processor at 2GHz, which suggests that it could
easily keep a cluster of several thousand node managers 100% busy.
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White-box Search for Trojan Mes-
sages

4.1 Intuition

We define Trojan messages as those that are accepted by correct server nodes in a distributed
system but cannot be generated by any correct client node, as illustrated in Figure 4.1. By
“correct” we mean nodes that execute the unaltered implementation of the distributed system,
in contrast to incorrect nodes, which are nodes that have encountered a fault (e.g., memory bit
flip), or are controlled by malicious users. Thus, in our definition, “correct” does not necessarily
imply that nodes follow the high-level specification of the protocol, or do what the developers
intended. Messages that respect our definition of Trojan are useless in the system and potentially
dangerous, as they are a means of failure propagation.

T —>-

c

—
-

-

Trojan message

Figure 4.1 — Trojan messages are messages that are accepted by a server but cannot be generated
by any correct client.

In this thesis we propose Achilles, a technique designed to identify Trojan messages in a
distributed system. For simplicity, we consider in our description of Achilles only client-server
systems where the client generates requests and the server replies; it is straightforward to
generalize the approach to peer-to-peer or other types of distributed systems.

Conceptually, there are three steps to find Trojan messages: (1) find what clients can send, (2)
find what servers accept as valid, and (3) compute the difference between the two. This is what
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Achilles does, albeit with a few tricks to make the approach practical (subsection 4.2.2). In a
first phase, it computes a predicate that defines all messages that can be generated by correct
clients. We call this the client predicate Pc. The set of messages that can be generated by correct
clients is ¢ = {msg | Pc(msg)}. In the second phase, Achilles computes a predicate that defines
all messages that are accepted by the server, the server predicate Ps. The set of messages that are
accepted as correct by correct servers is . = {msg | Ps(msg)}. Then, the set of Trojan messages
is defined as .7 = .\ ¢, which can be expressed as .7 = {msg | Ps(msg) N —Pc(msg)}.

In essence, Achilles extracts the grammar of the communication protocol, as implemented in
both the client and the server. It then operates on the two grammars, trying to determine the
difference between the server’s implementation of the grammar and the client’s. As we describe
later (section 4.2), Achilles uses symbolic execution in order to analyze the implementation of
clients and servers; it represents the extracted grammars using symbolic constraints.

4.1.1 Working Example

1 #define DATASIZE 100

2 peers = initializePeers ();
3 data = new int[DATASIZE];
4 while (TRUE) {

5 msg = receiveMessage () ;

6 if (!isInSet(msg.sender, peers))
7 continue ;

8 if (!isValidCRC (msg, msg.CRC))

9 continue ;

10 switch (msg.request) {

11 case READ:

12 if (msg.address >= DATASIZE)
13 continue ;

14 // Security vulnerability: forgot to check
15 /1l address < 0

16 sendMessage (msg.sender , REPLY,
17 data[msg. address]);

18 continue ;

19 case WRITE:

20 if (msg.address >= DATASIZE)
21 continue;

2 if (msg.address < 0)

23 continue ;

24 data[msg.address] =

25 msg. value;

26 sendMessage (msg. sender , ACK) ;
27 continue ;

28 default:

29 continue };

Figure 4.2 — A simple server that handles requests from clients. The server accepts Trojan
messages, as it does not correctly validate the address field of read requests.
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4.1. Intuition

To illustrate the idea underlying our approach, consider the sample server implementation
presented in Figure 4.2.

This is a simplified example, in which a server handles read or write requests from clients. The
server first initializes its internal data structures (lines 2-3). Next, the server enters an event loop
in which it handles client requests. The program receives a message and stores it in the local
variable msg (line 5). Then, the server checks that the message sender is in a pre-configured
group of known peers (line 6) and if the CRC error-detection code is correct.

If the message passes the general validation tests, the server reads the request field to get the
message type—either a READ or a WRITE request. If the request is not one of the two, the
message is discarded (line 29). For either of the request types, the server validates the address
field and handles the respective request.

The client shown in Figure 4.3 follows the same protocol as the server. It reads user requests from
standard input, validates the data (lines 5-7) and computes corresponding requests for the server.

#define DATASIZE 100
peerID = getPeerID () ;
operationType = readFromKeyboard () ;
address = readFromKeyboard () ;
if (address >= DATASIZE)
exit(1l);
if (address < 0)
exit(1);
// Client only sends addresses in [0,100)
if (operationType == READ) {
msg = new ReadMessage () ;

msg.sender = me;
msg.request = READ;
msg.address = address;

msg .CRC = computeCRC (msg) ;
sendMessage (server , msg);

}

if (operationType == WRITE) {
value = readFromKeyboard () ;
msg = new WriteMessage () ;
msg.sender = me;
msg.request = WRITE;
msg.address = address;
msg.value = value;
msg.CRC = computeCRC (msg) ;
sendMessage (server , msg);

}

Figure 4.3 — A simple client that generates messages. Correct clients validate the address field,
therefore cannot expose the bug in the server.

The sample system has a Trojan message. The server validates that the requested address is
below the maximum DATASIZE, however, for READ requests it does not ensure that the address
is greater than zero. The client, however, validates the input from the user before contacting the
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server. Therefore, no correct client can generate READ messages with negative offsets, although
they are accepted by the server. Thus, any READ message with a negative address is a Trojan
message.

In this example, the Trojan message can lead to a potential privacy leak, as attackers can read from
negative offsets in the data array and discover, for instance, the list of peers that communicate
with the server.

4.2 Design

At a high level, Achilles works as follows. In a first phase, it obtains the client predicate Pc.
Then, it pre-processes Pc to eliminate redundancy and to pre-compute structure information for
the next phase (details follow in item 4.2.2). In the second phase, Achilles computes the server
predicate Ps, as well as incrementally discovering Trojan messages. As an optimization, our
implementation does not compute the entire formula of Ps before computing Trojan messages,
but rather searches for Trojan messages incrementally, as it builds Ps.

In this section, we first give an overview of how Achilles uses symbolic execution in order to
extract the grammar from both the client and the server (subsection 4.2.1). We then describe
how Achilles finds Trojan messages efficiently using off-the-shelf constraint solvers (subsec-
tion 4.2.2). We present optimizations that enable Achilles to handle large client predicates
(item 4.2.2). Finally, we describe how Achilles handles local state in the client and in the server
(subsection 4.2.3).

4.2.1 Symbolic Execution and Message Grammars

Achilles uses symbolic execution [61] to extract the grammars of messages that can be sen-
t/received by an implementation of a distributed system. Symbolic execution is a technique
that systematically explores execution paths in a system. Rather than exercising a system with
concrete inputs, a symbolic execution engine provides “symbolic” data, which can conceptually
take any value. The symbolic execution engine then executes the system under test and interprets
expressions symbolically. At each branching point that depends on symbolic data, the symbolic
execution engine invokes a Satisfiability Modulo Theories (SMT) solver to assess the feasibility
of each branch, based on the current state of the system. When a branch is deemed feasible,
the execution engine follows the respective branch and also updates the symbolic data, keeping
track of the constraints that need to be satisfied such that the branch is feasible. If both paths are
feasible, the execution engine forks the exploration and follows both branches.

At every step of the symbolic execution, the engine keeps track of several possible execution
states of the system, each corresponding to a possible execution path. Figure 4.4 shows a sample
symbolic execution of a small piece of code. A symbolic execution state consists of a symbolic
store, which maps variables from the system under test to expressions on symbolic inputs, and
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A = makeSymbolic();
if (A\>0)
x =14;
else
X=A+1; A>07?

State 1: State 2:
PC: PC:
A<=0 A>0
Symb. store Symb. store:
x=A+1 /4]

Figure 4.4 — An example of symbolic execution for a small piece of code.

the set of path constraints, which represent the conditions on symbolic input that must hold for
the respective execution path to be feasible.

In Achilles, we represent message grammars as sets of constraints obtained during symbolic
execution. The server predicate Ps is expressed by the set of path constraints that correspond
to execution paths that handle accepted messages. The client predicate Pr is expressed by the
symbolic messages that the client sends over the network on different execution paths, along with
their respective path constraints.

Client Predicate. In a distributed system, clients receive “local” inputs, parse the inputs,
generate corresponding messages conforming to the specification of the protocol (or, more
precisely, to the client’s implementation of that specification), and finally send the messages to
the server. The client predicate is a representation of all valid messages that can be sent.

In order to obtain the set of all possible messages that can be generated by a client in a distributed
system, we conceptually need to provide the client with all possible “local” inputs and then
capture the messages it sends over the network. We start the client in a symbolic environment
such that any local system call that the client emits in order to read input is intercepted, and the
result is replaced with symbolic data. The symbolic execution engine keeps track of how the
symbolic data flows through the client and, when the client attempts to send a message over the
network, Achilles captures and stores the contents of the message and the corresponding path
constraints. The message payload may contain concrete data, but also expressions on symbolic
data.

Thus, the predicate Fc is the disjunction of predicates pathc, V- -+ V path , where each path, is
a conjunction of path constraints and symbolic expressions for an execution path that sends a
message. We call each such predicate path, a client path predicate.
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4 symb_PeerID, symb _Address, symb_Value :

message.sender = symb_PeerID

/\ message.request = READ

/\ message.address = symb_Address
A\ message.CRC = CRC (message)

A\ symb_Address < 100

A\ symb_Address >= 0

\%

message.sender = symb_PeerID

N\ message.request = WRITE

/\ message.address = symb_Address
N\ message.value = symb_Value

N\ message.CRC = CRC (message)

A\ symb_Address < 100

N symb_Address >= 0

Figure 4.5 — The client predicate Pc(message) of the client in Figure 4.3, as discovered by the
symbolic execution phase of Achilles.

For the example client in Figure 4.3, Achilles discovers the predicate presented in Figure 4.5.
Names that begin with symb_ indicate symbolic data automatically inserted by Achilles. There are
two main execution paths in the client that lead to messages being sent. One path corresponds to a
READ request, while the other corresponds to a WRITE request. In both cases, the message.request
header contains concrete data. This is because there is no data flow dependency between the
message.request header and any symbolic input; the values for the two paths only differ because
of control flow dependencies.

All other headers except message.request contain symbolic data. The message.value and mes-
sage.sender headers, for example, contain the respective unconstrained symbolic inputs. The
CRC header contains an expression on all other symbolic inputs (in Figure 4.5, the expression
is summarized by the CRC function, but in real deployments, the expression contains the full
chain of operations that transform the symbolic inputs). Finally, the address header contains
constrained symbolic data. There are no operations directly performed on symb_Address; how-
ever, the execution path that leads to the message imposes constraints on the possible values:
symb_Address needs to have values between [0, 100) in order for the message to be sent. This is
reflected in the path constraints that are captured and stored by Achilles.

In distributed systems, messages usually have clearly differentiated fields. Developers might be
interested to check only a subset of those fields for Trojan messages (e.g., only check the contents
of the address field). We support this selective approach in Achilles (subsection 4.4.2) and
also refer to techniques that automatically avoid complex authentication or encryption functions
(chapter 2). Since the grammar extraction phase of Achilles is based on vanilla symbolic
execution, Achilles can benefit from a variety of approaches that enhance symbolic execution.
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Server Predicate. In a distributed system, the server receives messages from a client, parses the
message, and executes the operation requested by the client. The server should discard messages
that do not follow the specification, and only execute operations corresponding to valid messages.
The server predicate Ps is a representation of all valid messages that can be received.

Each message received by the server triggers the execution of code to handle it. For simplicity,
we refer to the sequence of executed instructions as the execution path triggered by the message.
The execution path starts after the return of the receive instruction and ends when the message
processing is complete—either the server exits, or it listens for new events.

After receiving a message, the server decodes it and parses its fields, checking if the message con-
forms to the specification of the protocol (or, more precisely, to the server node’s implementation
of that specification). In order to infer the set of valid messages, Achilles first classifies execution
paths in the system under test as either accepting or rejecting. Accepting execution paths are
those that are triggered by messages that pass the initial parsing stages of the system under test
and cause the server to perform an action. Conversely, rejecting execution paths are those that
are triggered by messages that are rejected by the server. Achilles automates the classification
of paths, using some simple observations on the behavior of the server. Human operators of
Achilles can also manually place tags in the code in order to speed up the analysis (details follow
in subsection 4.4.2).

In order to obtain the server predicate, Achilles executes the server node symbolically, feeding it
an unconstrained symbolic message. The server analyzes the message and branches into different
execution paths, one for each type of message in the protocol specification. Symbolic execution
enumerates all these paths, keeping track of the constraints that make each path feasible.

We define the server predicate Ps as the disjunction of all path constraints corresponding to
accepting execution paths. Thus, Ps represents all possible messages that can trigger accepting
execution paths in the server.

Similarly to Pr, the server predicate Ps is obtained using vanilla symbolic execution. Therefore,
Achilles can benefit from any optimization that enhances the performance of symbolic execution
engines.

In the example in Figure 4.2, we define rejecting execution paths as those that do not send a reply
to the client (reach lines 7, 9, 13, 21, 23 or 29 of the server code), and accepting execution paths
as those paths that send a reply (reach line 17 or 26). The server predicate, as discovered by our
technique, is presented in Figure 4.6.

4.2.2 Systematic Search for Trojan Messages

Trojan messages are, by definition, all messages in .\ ¢’. This is equivalent to .7 = {msg |
Ps(msg) A —Pc(msg)}. In Achilles, Trojan messages are computed incrementally, as it builds up
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isInSet (message. sender, peers) = TRUE

A isValidCRC (message, message.CRC) = TRUE
/\ message.request = READ

N\ message.address < 100

V
isInSet (message. sender, peers) = TRUE
A isValidCRC (message, message.CRC) = TRUE

/\ message.request = WRITE
/\ message.address < 100
/\ message.address > 0

Figure 4.6 — The server predicate Ps(message) of the server in Figure 4.2, as discovered by the
symbolic execution phase of Achilles.

the formula of Ps. This point is essential, as clients are usually less complex than servers. The
extraction of the client predicate Pc is easier than the extraction of the server predicate Ps.

For every explored execution path in the server, Achilles keeps track of a list of client path
predicates that contain messages that can trigger the respective path, as shown in Figure 4.7. At
every branch point encountered during the symbolic execution of the server, Achilles checks
which of the client messages can still trigger each path, and whether the paths can be triggered by
any Trojan messages. As soon as an execution path cannot be triggered by any Trojan messages,
it is dropped from the exploration. Therefore, by construction, any execution path in the server
that reaches an accepting marker has Trojan messages. For such execution paths, Achilles outputs
a symbolic expression and a concrete example of the Trojan message.

Note that Trojan messages might be exclusive on execution paths (e.g., the accepting path on the
right in Figure 4.7), or they might be bundled with other, non-Trojan messages (e.g., the accepting
path on the left). The latter case means that classic symbolic execution by itself does not alleviate
the problem of finding Trojan messages by much—it weeds out execution paths with dropped
messages from those with accepted messages, but Trojan messages may be anywhere among
the execution paths that handle accepted messages. In the example in Figure 4.2, the Trojan
messages (those with msg.address < 0) are on the same execution path with valid messages
(those that satisfy msg.address >= 0 and msg.address < DATASIZE); symbolic execution by
itself would not point out the presence of a potential bug. This is also the case of the wildcard
bug found by Achilles in FSP (subsection 4.5.3) and the vulnerability found by Achilles in PBFT
(subsection 4.5.3).

We optimize the discovery of Trojan messages by adapting Achilles to the particularities of
symbolic execution, as described in the following subsections.

Constraint Solving. Predicates P and Ps are disjunctions of path predicates. Each path
predicate path € P is a conjunction of constraints and assignments. A predicate defines a class of
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Server node Q

Q Message entry point
é Client message that can trigger a state
& Trojan message

O Intermediate state in symbolic exploration
@ Final accepting state in symbolic exploration
@ Intermediate state discarded by Achilles

Figure 4.7 — Symbolic execution of a server node in Achilles. Using the predicate collected
from the client, Achilles restricts the server exploration to paths that can be triggered by Trojan
messages.

messages generated by a client, or accepted by a server. In order to compare two predicates path;
and path,, Achilles must combine the two in a single formula and then call an SMT solver in
order to check satisfiability.

In order to combine a client and a server path predicate, Achilles adds a conjunction between
their respective path constraints, and also adds an equality constraint between the value of the
message generated in the client and the value of the message received in the server. In essence, the
combination between a server and a client path predicate, paths and pathc, represents messages
msg such that:

* msgg satisfies the server predicate
* msgc satisfies the client predicate

* msgg = MSgr- = Msg

SMT solvers, such as STP [43] or Z3 [37], verify the satisfiability of a set of constraints and
expressions on symbolic variables. Furthermore, SMT solvers can compute a concrete assignment
of the symbolic variables that satisfies a set of expressions and constraints. For example, an
SMT solver can determine that the set of constraints A > 0 A A < —5 is unsatisfiable. However,
A >0AA < 5is satisfiable and A = 3 satisfies the constraints.
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In terms of symbolic expressions, the definition of the set of Trojan messages -7 can be written
as the set of messages that satisfy the server predicate, but not the client predicate:

T ={msg | Ps(msg) A—Pc(msg)}

Pc contains an existential quantifier; negating it produces a universal quantifier. This makes
solving the expression above difficult using current SMT solvers. Z3 has limited support for
quantifiers, using heuristics and patterns to eliminate quantification. Achilles calls Z3, attempting
to solve the predicate and check for the presence of Trojan messages. However, the heuristics
may fail; in this case, Z3 cannot answer whether an expression is satisfiable or not. We discuss
how we under-approximate the negation of client path predicates and eliminate the universal
quantifier in the following subsection.

Negating Path Predicates. Recall that a client path predicate path- € Fc represents all possible
messages that can be generated on a particular execution path. Let negate(pathc) be an operator
that generates a predicate representing all possible messages that cannot be generated on that
path.

Figure 4.8 shows the expression of READ messages generated by the sample client in Figure 4.3.
There are three symbolic variables in the message, Apeerip, Aaaaress and Acgrc, and one concrete
variable, containing the value READ. Aperp is the unconstrained value of the symb_PeerID
input. Aggaress is the value of the symb_Address input, but it is subjected to the restrictions in the
path constraint. Finally, Acgc is a more complex operation on Apeerip, Adaress and READ.

message

A peeriD READ A Address Acre

symbolic store

Apeerip = Symb_PeerID
A ngdress = Symb_Address
Acre = CRC(Apeenp , READ, Aagdress )

path constraints

)\Address < 1 00

)\ Address 2 O

Figure 4.8 — The expression of READ messages generated by the sample client.

Achilles under-approximates the true negate operator as follows. Achilles’ custom operator
computes the negation of a path predicate as a disjunction of the negation of each individual
value in the message buffer. In order to negate a value, there are two cases:
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1. If the value is a concrete value C, then replace the respective value with a new symbolic
value A and add the constraint A # C.

2. If the value is an expression on symbolic variables, then negate the set of constraints that
influence the respective variables. If there are no constraints available, then abandon the
negation of the current value.

For the example in Figure 4.8, the negation of the path predicate is a representation of the set of
message where:

* the request field is different from READ or
* the address field is smaller than O or greater than 100 or

» the CRC field is the CRC function of a message where the address is smaller than O or
greater than 100 or its request is different from READ.

In constraint form, this is written as:
(message.request = Ayeg) N Areq # READ
V (message.address = Apqaress)
A Aaddress = 100V Apgdress < 0)
V(message.CRC = CRC(READ, Aygdresss ApeeriD))
/\()LAddress > 100V A'Address < O)

We discuss the soundness and completeness of the custom negate operator in a dedicated section
(section 4.3).

Handling Large Client Predicates. The server analysis phase of Achilles is a search problem—
find all possible execution paths that accept Trojan messages. Symbolic execution enumerates
the possible execution paths in the server, with the added precondition that there exists at least
one message that satisfies the path constraints in the server and the conjunction of all negated
client path predicates. The negation operator allows checking for Trojan messages with a single
query to the constraint solver; however, this query can be complex.

Achilles needs a strategy to efficiently handle the thousands of expressions that can appear in a
client predicate. The key idea is to keep track of which path predicates can trigger an execution
path explored in the server.

The Ps extraction phase of Achilles incrementally adds constraints to each pathg € Ps, as it
explores execution paths. Rather than just checking whether there are Trojan messages on
the current path (if pathg A negate(pathc, ) \ - -- A\ negate(pathc, ) is satisfiable), Achilles also
checks whether pathg A pathe, is satisfiable, for each path., € Fc. Whenever the latter is not
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satisfiable, Achilles drops negate(path,) from the solver query that checks for Trojan messages—
if pathg A pathc, is false, then paths A\ negate(pathc,) is implicitly true (this is because pathg
and path, are both satisfiable, by construction). Once dropped, pathc, will never be checked
again on the respective execution path; pathc, does not change, while pathg only becomes more
constrained, meaning that the conjunction can never become feasible in the future. As the
symbolic execution engine explores longer execution paths, the number of client path predicates
that can trigger the path decreases, and the size of the SMT query that checks for Trojan messages
becomes smaller (we evaluate the effect of this optimization in our experiments subsection 4.5.4).

In order to further optimize the search for Trojan messages, Achilles also exploits the process
through which path predicates are generated. The intuition behind this optimization is that
messages generated by the client are similar to each other. Two client path predicates can
represent the same values for a certain field in a message, e.g., path, = (msg.x = 1) A (msg.y = 2)
and path. = (msg.x = 1) A (msg.y = 7) have the same values for field x. In this case, if path. is
dropped due to a new server constraint on field x, then parhy. can also be dropped without further
checking.

Achilles pre-computes a data structure that stores information about relations between client path
predicates. The data structure can be seen as a three-dimensional matrix differentFrom, where
differentFromli]|j|[field] = TRUE means that there exists at least one message msg; € pathc such
that there is no message msg ; € pathcj with msg; field = msg ; field. The differentFrom data struc-
ture allows Achilles to discard several client path predicates at a time. Intuitively, when the sym-
bolic execution of the server in Figure 4.2 encounters the condition 1 f (operationType ==
it can drop all client path predicates that generate READ messages without invoking the SMT
solver each time.

The data structure is computed by applying the negate operator for each field of messages,
between each pair of client path predicates. The data structure is only computed for message
fields that are independent, meaning that they do not appear in constraints with other fields. As
can be seen in our evaluation (section 4.5), this pre-computation is fast; moreover, it is trivially
parallelizable.

While symbolically executing a server node, Achilles uses the information from differentFrom
at every point where the exploration forks. If a branching point depends on field a from the
received message (and not on any other fields), and the new constraints of the branching point
make path¢, A paths no longer satisfiable, then Achilles can drop path, from the current state,
but also all path predicates pathc, such that differentFrom|[j)[il[a] = FALSE. In other words, if
pathc; no longer holds, due to the additional checks on field a, then all path predicates pathc,

can be dropped, because they cannot have any additional values for field a.

For the sample client predicates in Figure 4.5, differentFrom[1][2][request] = TRUE, because
client predicate 1 is satisfied by an assignment message.request = READ, while predicate 2 is
not. However, differentFrom[1][2][address] = FALSE, because the message.address field of the

56

READ)



4.2. Design

READ request is not satisfied by any other values than those that also satisfy the address of the
WRITE request.

4.2.3 Support for Local State in Distributed Systems

Distributed systems often keep local state across several rounds of messages and change their
behavior based on the contents of the local state. For example, Paxos [68] uses three phases to
achieve consensus. In each phase, Paxos nodes accept different types of messages—the predicate
Ps depends on the local state of the nodes. Thus, Achilles needs a mechanism to control the local
state of the analyzed nodes. Achilles provides several alternatives to support local state.

Concrete Local State. The analysis phase of Achilles can be started at any point in the
execution of a distributed system. Achilles is implemented on top of S2E [32], a symbolic
execution platform that can run whole systems: operating systems, libraries and user applications.
This enables the possibility of running the distributed system concretely up to some point,
implicitly building up concrete local state.

This mode of operation is useful when developers are interested in the behavior of their imple-
mentation in a specific scenario. For example, in the case of basic Paxos, developers might
be interested in what happens when a Paxos Acceptor has just entered the second phase, with
proposed value 7. It should only validate Accept messages for value 7—any other message is a
Trojan message.

Another example where Concrete Local State is useful is the Amazon S3 bug [1], described in
chapter 1. The Trojan message that caused the outage incorrectly reported a high failure rate
in the system. The message was not necessarily Trojan in all possible scenarios—there may be
scenarios where there are indeed a lot of failures in the system. However, the message was Trojan
in the concrete scenario in which it occurred. By building concrete state in a deployment with
few failures, Achilles could discover that no correct client node can report high failure rates, yet
the servers accept such messages.

Constructed Symbolic Local State. As a generalization of the Concrete Local State mode,
Achilles is able to pass symbolic messages between nodes of a distributed system, such that the
nodes build up symbolic local state. The Constructed Symbolic Local State mode can capture
entire sets of possible concrete execution scenarios. However, due to the additional symbolic
variables and constraints, the Constructed Symbolic Local State mode can encounter difficulties
with complex data structures, like any symbolic execution tool.

Consider again the example of Paxos. In order to be confident that there are no Trojan messages
in the second phase of the protocol, developers need to re-use Achilles for every combination of
concrete values in the local state. Using Concrete Local State, this entails re-running Paxos with
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different proposed values (1, 2, etc.) and then applying Achilles for each scenario. Alternatively,
with Constructed Symbolic Local State, developers can run Paxos once, with a symbolic proposed
value. Paxos nodes will store the symbolic value in their local state. Thus, Achilles can be applied
a single time.

Over-approximate Symbolic Local State. The third mode of operation allows distributed
system developers to place annotations that describe the local state. Developers can insert
annotations in the code of the distributed system nodes, or insert them directly in the binary at
runtime, using S2E plugins that monitor execution. Essentially, developers can manually define
memory as symbolic local state and specify constraints on the stored values.

In the Paxos example, developers can annotate the functions that deal with local state in order to
directly return symbolic values. This approach is useful when the implementation uses complex
data structures to store local state, as it makes it possible for developers to reduce the burden on
SMT solvers.

4.3 Soundness and Completeness

The purpose of Achilles is to discover Trojan messages, i.e., messages that are accepted by a
server but cannot be generated by any correct client. Achilles can have both false positives and
false negatives and is therefore not guaranteed to be sound or complete. False positives, however,
can be kept under control by the operator of Achilles, as described below. We believe this makes
Achilles a useful testing tool for distributed system developers, who can incorporate the messages
discovered by Achilles in fault injection testing.

4.3.1 False Positives

We say that Achilles has false positives when there exists a message m that is falsely identified as
Trojan. This can happen either when m is rejected by the server, or when m can be generated by a
correct client.

Achilles relies on symbolic execution in order to extract predicates. Symbolic execution incremen-
tally builds up an expression of an entire program by systematically exploring feasible execution
paths. As long as symbolic execution does not completely explore all paths, the expression
under-approximates the program. When the client is under-approximated, it might happen that a
message m can only be generated on the execution paths that were not yet explored — this leads
to false positives in Achilles.

In our experiments in section 4.5, we did not encounter any false positives of Achilles. We
bounded the maximum messages size in both the client and server, allowing symbolic execution
to complete. We also restricted symbolic execution to only some fields of a message. Essentially,
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we restrict symbolic execution to only a subset of the input space, as has also been proposed by
Person et al. [88].

Achilles generates concrete values for the Trojan messages it discovers, as well as symbolic
expressions, allowing testers to inject the concrete messages in a real deployment (such as in
live fire drills) and check the effect of the messages, weeding out harmless messages. While this
concretization does not disambiguate between Trojan and non-Trojan messages, it helps discover
any adverse effects of the suspected Trojan messages.

It is worth pointing out that Achilles does not also encounter false positives due to inaccuracy
in Achilles’ implementation of the negate operator. The implementation is strictly an under-
approximation of the ideal negate operator. For each negated expression generated by the negate,
we use the SMT solver to check if there is any common solution between the original expression
and its negation; whenever there is such a solution, we discard the negated expression, eliminating
any false positives that could have occurred.

4.3.2 False Negatives

We say that Achilles has false negatives when there exists a message m that is not reported as a
Trojan message, although it is actually accepted by the server and cannot be generated by any
correct client.

False negatives can occur when the symbolic execution of the server does not exhaust all execution
paths. If a message m cannot be generated by any correct client, but is accepted by the server on
an execution path not explored by Achilles, then m is an undiscovered Trojan message.

False negatives can also occur due to the fact that our implementation of the negate operator
under-approximates the real negate. As described in the Design section (subsection 4.2.2), we
use two alternative approaches to compute the negation: one approach relies on quantifier support
in the Z3 SMT solver, while the other approach relies on tweaked constraints that are solved
using the STP SMT solver. Z3 uses heuristics to eliminate quantifiers, and may fail to determine
satisfiability. When this happens, Achilles falls back to customized constraints sent to STP.
Achilles’ customized negate is under-approximate; for example negate((A =2%x) A (x > 0))
produces ((A = 2x%x) A (x <0)), even though —1 and 1 are also values for A that do not satisfy
the initial expression. In our evaluation (section 4.5), though, we found that although under-
approximate, Achilles’ customized implementation of negate can find Trojan messages in real
distributed systems.

4.4 A Prototype Implementation

In this section, we describe some implementation details of our Achilles prototype. We built
Achilles on top of the S2E symbolic execution platform [32]. S2E can run whole systems; this
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means that S2E allows running the implementation of distributed system nodes in their real
environment, enabling Achilles to also discover Trojan messages that are due to third party
system components, such as libraries. S2E is also highly extensible through a rich plugin API,
simplifying the development of Achilles.

4.4.1 Intercepting System Calls

Achilles uses the LD_PRELOAD mechanism in Linux to intercept calls to the standard libc
library. Thus, Achilles can insert symbolic data automatically by overwriting calls that read
inputs, replacing concrete values with symbolic data.

Achilles also intercepts calls to network operations, in order to automatically mark server
execution paths as accepting or rejecting. By default, we consider that any execution path that
sends a reply to the user is accepting, while any execution path that waits for new messages
is rejecting. The assumption behind this is that servers have a single event loop to listen for
messages; restarting the loop means that the previous message was processed. This can be
trivially extended to handle other common error signaling mechanisms (e.g., 4xx status codes in
HTTP). Of course, human operators can also provide additional domain knowledge by manually
placing accept or reject markers in the system under test. For example, if the target protocol
uses encryption, it makes sense for the human operator to place an accept marker before the
encryption of the reply.

Achilles uses system call interception in order to implement the Constructed Symbolic Local
State mode. In order to avoid unnecessary forking in device drivers, Achilles intercepts network
operations that send symbolic data and reroutes them through custom channels (currently, nodes
are deployed within the same S2E instance and messages are rerouted through shared memory).

4.4.2 Analysis API for Distributed System Developers

Developers can use annotations to speed up Achilles. The annotations can be inserted in the code
of the distributed system, or can be injected in the system at runtime, using S2E’s plugin support.

» mark_accept is a server-side annotation that marks an execution path as accepting, trigger-
ing the check for any Trojan messages.

* mark_reject is a server-side annotation that marks an execution path as rejecting.

* function_start and function_end are used in order to over-approximate the behavior of a
function. The operator can add constraints between the two markers, in order to impose
constraints on return values.

* drop_path is used in conjunction with the function_ markers in order to impose constraints
on the return values.
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* return_symbolic is used in conjunction with the function_ markers in order to set the return
value of a function.

* make_symbolic makes a system variable symbolic; it can be used in order to mark local
state as symbolic.

For example, a developer can over-approximate the getPeerID() function from the client code in
Figure 4.3, as shown in Figure 4.9. The over-approximation bypasses the code of the function
completely and returns a new symbolic value constrained to the interval [0, 10]. In our evaluation
(section 4.5) we used annotations to bypass cryptography and authentication code and speed up
predicate extraction.

int getPeerID () {

function_start () ;

int toRet = makeSymbolic () ;

if ( toRet < 0 ) drop_path();

if ( toRet > 10 ) drop_path();

return_symbolic (toRet);

function_end () ;

/l actual code of getPeerID

Figure 4.9 — An example of using Achilles annotations in order to over-approximate a function
to return values [0, 10]

Achilles supports a mask to “hide” certain message fields from the analysis. The symbolic
execution of the server still branches on the hidden values; however, Achilles does not check for
Trojan messages involving those fields. The mask increases the signal-to-noise ratio of Achilles
by hiding uninteresting results, and also makes the analysis faster, since it reduces the workload
of the SMT solver (Achilles applies the mask before calling the SMT solver).

4.5 Evaluation

In this section, we evaluate the ability of Achilles to analyze an implementation of a distributed
system and extract Trojan messages. After a description of our experimental setup (4.5.1), we
answer the following questions:

* How accurate is Achilles at finding Trojan messages in real distributed systems (§ 4.5.2)?

* What is the impact of Trojan messages discovered by Achilles on real distributed sys-
tems(§ 4.5.3)?

* How does Achilles manage large symbolic expressions (§ 4.5.4)?
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4.5.1 Setup

We ran experiments on a 16-core (dual Intel E5-2690) machine with 256 GB of RAM running
Ubuntu Linux 11.04.

Achilles gathered the client and server predicates by running individual system nodes in the
S2E [31] platform. The S2E virtual machine ran 32-bit Ubuntu Linux 10.04.

We applied Achilles to FSP 2.8.1b26 [42], a UDP-based file transfer protocol, and to the latest
version of PBFT [29], a Byzantine-fault-tolerant replication system.

FSP is an implementation of a file transfer protocol. An FSP deployment consists of a server
and several client utilities, which emulate well-known UNIX core utilities, such as cp, mv, rm,
etc. The FSP implementation of these utilities parses command-line arguments (usually a target
file path and a set of flags), tweaks the path to follow some protocol-specific rules (e.g., always
start paths with ‘/’), and finally generates a corresponding command for the server. The server
parses the command, performs the corresponding action on its local file system, and replies to the
client.

An FSP command message has the following fields:

* cmd - 1-byte identifier of the requested action
* sum - 1-byte checksum

* bb_key - 2-byte message key

* bb_seq - 2-byte message sequence number

* bb_len - 2-byte length of file path

* bb_pos - 4-byte position of block in a file

* buf - arbitrary-length payload (file path + file data)

In our evaluation, we approximated the values of sum, bb_key, bb_seq and bb_pos: we added
annotations in both the client and the server in order to bypass the checks on these fields, such
that the client writes a predefined constant value and the server checks that value (there are
other approaches that can alleviate the problem of checksums, authentication or encryption for
symbolic execution [26]). We focused our evaluation on how FSP parses file paths. We started the
FSP clients with symbolic command line arguments (of fixed length) and inserted symbolic data
in any system calls from the client. In the FSP server, we set accept markers at the point where
it invokes system calls to make changes to its local file system, as requested by the command
received from the client.
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PBFT is a Byzantine fault-tolerant replication protocol implementation. PBFT clients send
requests to a set of replicas. The replicas ensure total order among requests from all clients, and
forward them to an upper layer application.

A PBFT client request has the following fields:

* tag - 2-byte identifier of the message type

* extra - 2-byte flags field (1 bit per flag)

* size - 4-byte length of message

* od - 16-byte message digest

* replier - 2-byte identifier of responsible replica
* command_size - 2-byte length of command

* cid - 2-byte client id

* rid - 2-byte request id

* command - arbitrary-length command payload

* MAC - list of message authenticators, signed with a private key for each replica

In our evaluation, we approximated the values of the digest and authenticator fields: we used
annotations in both the client and server in the same way as for FSP, replacing the digest and
authenticators with predefined constant values. In the PBFT replica, we also over-approximated
local state: the replicas keep an internal data structure to track previous requests from a given
client, which we over-approximate with unconstrained symbolic values. We started a PBFT client
and generated a request with symbolic extra, replier, rid, cid, and command. We set a fixed length
for the command, list of authenticators, and for the overall message. We considered a message to
be accepted when the replica generates a Pre_prepare message for the client request, initiating
the agreement protocol.

4.5.2 Accuracy of Achilles

The purpose of this experiment is to quantify the accuracy of Achilles at finding Trojan messages.
We compute the overlap between the expression of Trojan messages computed by Achilles
and a known set of Trojan messages in the protocol under test. Ideally, the overlap should be
perfect—the representation generated by Achilles should cover all known Trojan messages, and
no known non-Trojan messages.

We evaluated the accuracy of Achilles on real Trojan messages in FSP. Achilles discovered that
the FSP server accepts messages where the file path length is less than the length reported in the
message header (more details in subsection 4.5.3).
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To enable symbolic execution to complete, we restricted the FSP clients and servers to only
handle file paths with length less than 5. For this scenario, we can mathematically compute how
many different types of Trojan messages exist: there is one Trojan message for reported length
1 (the file path is empty), two Trojan messages for reported length 2 (file path is empty or has
length 1), three Trojan messages for reported length 3 and four Trojan messages for reported
length 4. We analyze eight FSP clients that have a single file path as argument. Therefore, there
are in total (14243 +4) 8 = 80 Trojan messages that differ in the reported length of the file
path, request type or true length of the path.

The bounded path size enabled symbolic execution to run to completion. The total testing time
for Achilles to find all Trojan messages was approximately 1 hour, which was split as follows:

* Gathering the client predicate took 3 minutes
* Preprocessing the client predicate took 15 minutes.

* Analyzing the server took 45 minutes.

Figure 4.10 shows the percentage of the known Trojan messages discovered by Achilles, as a
function of server analysis time. Achilles produced the first Trojan message after 20 minutes
of server analysis and discovered all Trojan messages in 43 minutes. Achilles did not produce
any false positives. The figure shows how Achilles produces Trojan messages incrementally, as
it analyzes the server; even if the analysis is interrupted before completion, Achilles produces
valuable results.
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Figure 4.10 — Percentage of real Trojan messages in FSP discovered by Achilles, as a function of
time.

We compared Achilles to classic symbolic execution of a server node. We ran the FSP server in
vanilla S2E, under the same conditions as Achilles (same bounds, annotations and approximation).
Table 4.1 summarizes the results. Achilles discovers all Trojan messages and produces no false
negatives. Classic symbolic execution also found all Trojan messages in 2 minutes, but with low
signal-to-noise ratio. Trojan messages are “hidden” among valid messages, and it is left to the
developer to sift among the results.
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H Achilles | Classic symbolic execution

True Positives 80 80
False Positives 0 7,520

Table 4.1 — Results obtained by Achilles in 1 hour, compared to classic symbolic execution

As expected, classic symbolic execution of the server is faster than Achilles, since it performs
fewer computations (it does not need to combine server and client constraints). However, classic
symbolic execution cannot identify Trojan messages among other, valid messages. Even worse,
in the case of FSP, all Trojan messages are on the same server execution paths as non-Trojan
messages (as opposed to having execution paths that only contain Trojan messages and execution
paths that only contain non-Trojan messages). This makes it difficult for the human operators
to sift through results and discover Trojan messages—they need to investigate not only each
execution path, but also each message on each execution path. This is a difficult task; as we
also discuss in the Design section (subsection 4.2.2), current SMT solvers are not designed to
enumerate all values that satisfy a given constraint and are inefficient at doing so.

We ran the same experiment for PBFT. Achilles discovered a single type of Trojan message (more
details in subsection 4.5.3). Surprisingly, PBFT replicas make few checks on the data received
from clients. They verify that request ids are recent and have not already been handled, verify
that the client id is in a set of known clients and also check if the flags field marks the request as
read-only.

Due to the simplicity of checks on the client request fields, Achilles completed the PBFT analysis
in just a few seconds. The Trojan message discovered by Achilles appears on all execution paths
in the server; however, just like for FSP, it is bundled on the same execution paths with valid
messages. Thus, classic symbolic execution cannot easily identify the Trojan message among the
valid messages, while Achilles identifies it accurately.

We also make a theoretical comparison between Achilles and a naive black-box fuzzing tool.
There are other, more sophisticated fuzzers, which use various heuristics to improve performance.
However, we are not aware of any fuzzer that optimizes towards anything similar to Trojan
messages, so it would be difficult to obtain an unbiased comparison.

We first measured the maximum throughput that a fuzzing tool could achieve on FSP on our
testbed: 75,000 tests per minute. Then, we compute the probability of discovering a Trojan
message at random. In order to be fair, we only fuzz the same message fields that are analyzed by
Achilles and by classic symbolic execution. There are 8 bytes relevant to the Trojan messages:
cmd, bb_len and buf. There are 8 relevant possible values for the command field (corresponding
to commands with a single file path argument). There are 4 relevant values for the length field.
The FSP server only accepts printable characters in the file path (ASCII codes 33 to 126). Thus,
there are 94 x 94 x 94 x 8§ = 6.6 million messages that exhibit a Trojan message for length 1 (first
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character in the message is ‘\0’, second must be \O’ due to server checks, other three can be
any ASCII character with code 33-126). In total, there are 66 million Trojan messages out of
the 256% = 1.8 10'? possible bit combinations. This means that the expected number of Trojan
messages found in 1 hour of fuzzing is 0.00001. Fuzzing also produces 4.5 million non-Trojan
messages, which correspond to false positives.

Our experiments show that Achilles is significantly more efficient at discovering Trojan messages
than fuzzing or classic symbolic execution. While classic symbolic can find all messages
accepted by the server faster than Achilles, it cannot disambiguate between Trojan and non-Trojan
messages. Black-box fuzzing is several orders of magnitude worse than symbolic execution.

4.5.3 Bugs Triggered by Trojan Messages

FSP: The Wildcard Character. Achilles discovered a bug in FSP related to the handling of
the “*’ wildcard character. In essence, FSP clients always expand the ‘*’ wildcard before sending
a command to the server. There is no possibility of escaping the ‘*’ character, thus correct clients
cannot send a command with “*’ in a source file path to the server. The server, however, accepts
any printable character, including ‘*’ in the file paths it receives. This leads to an interesting
behavior where it is possible to create files containing ‘*’ on the server, but not possible to delete
them directly.

In UNIX environments, shells use a simple form of pattern matching in order to expand file
paths using wildcard characters (this simple pattern matching is referred to as globbing). For
example, the command ‘rm file*” will delete all files with name prefixed by ‘file’ from the current
directory. The ‘*’ character is a wildcard that can be expanded to any sequence of characters.
The expansion of the wildcard is handled directly by the shell, before invoking the rm utility.
Suppose the current directory has files ‘filel’, ‘file2’ and ‘file3” and that the user executes the
command ‘rm file*’. The shell will initially parse the command and expand ‘rm file*’ into ‘rm
filel file2 file3’. Then the shell invokes ‘rm’ with the three command line arguments.

The FSP implementation emulates the regular UNIX globbing behavior. When parsing command-
line arguments, the FSP client will first try to expand any source file path containing a wildcard.
Unlike most shells, however, the FSP globbing does not allow the user to escape any wildcard
character. Destination file paths, however, are not globbed; for example the ‘mv filel* file2*’
will rename any file that matches the pattern ‘file!*’ to the literal string ‘file2*’. The FSP server
handles wildcards like any regular character.

Trojan messages in FSP can lead to an interesting scenario, where it is possible to create a file
called ‘file*’ on the server, but it is then difficult to actually remove the respective file. A file
called file*’ can be created by a user of FSP (e.g., ‘mv file file*’), by a malicious third party
that has access to the server, or even by a bit flip that appears on the client during a command
execution (a single bit flip can convert the ASCII ‘j* character into “*’).
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Once the file named ‘file*” appears on the server, it is difficult to remove. Calling ‘rm file*’ would
remove ‘file*’, but would also remove any other file prefixed by ‘file’, including a potentially
valuable ‘fileWithAlIMyBankAccounts’. Similarly, ‘mv file* fileToDelete’ would rename all files
prefixed by file’ to ‘fileToDelete’, removing all but one of the original files. Calling ‘rm file\*’
would delete all files prefixed by ‘file\’, since there is no escape character in the FSP globbing.

It is interesting to point out that this bug discovered using Achilles is a semantic bug, which
makes it difficult to detect automatically using other approaches. While there are techniques to
detect buffer overflows or divisions by zero automatically, the FSP bug cannot be found unless
the developers write a complex (and potentially buggy) specification of correct behavior. This is
one of the main benefits of finding Trojan messages.

FSP: Mismatched String Lengths. Achilles also discovered that the FSP server does not
check whether the file path lengths it receives in commands match the actual lengths. It accepts
messages that have the actual file path length smaller than the value in the message’s length field
(i.e., there is a \0’ character in the file path). The bug allows malicious users to send an additional
arbitrary payload to the server.

While the mismatched length does not have a particularly high impact for FSP, incorrect handling
of length can lead to important security bugs, like buffer overflows or information leaks (e.g., the
Heartbleed bug !). Typically, sender nodes generate string lengths themselves, using functions
such as st r1en, which compute the lengths correctly. Thus, we argue that many remote buffer
overflow bugs are triggered by Trojan Messages and, as in the case of FSP, Achilles can find
them automatically.

PBFT: The MAC Attack. Achilles discovered that PBFT replicas (servers) accept client
requests without checking their authentication code. This leads to a known vulnerability of the
protocol, known as the MAC attack [35].

Clients can send messages with incorrect authenticators. The first replica to receive the client
request does not verify any of the authenticators. If forwards the message to other replicas, which
discover the incorrect authenticator, but cannot know whether the original client or the first replica
have corrupted the message. In order to guarantee progress, they initiate an expensive recovery
protocol, which impacts performance. This allows incorrect nodes to have a significant impact
on the performance of the system. A node whose private key was corrupted due to a memory
error will always produce incorrect MAC authenticators and will trigger recovery. Alternatively,
a malicious client can also corrupt its own messages in order to trigger the expensive recovery
mechanism and slow down the system, affecting the service of other, correct clients.

This vulnerability is an interesting example of the subtle effects that Trojan messages can have

Uhttp://heartbleed.com/
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on a system.

4.5.4 Effect of Optimizations

In this section, we analyze internal details of Achilles. We look at how the optimizations described
in item 4.2.2 enable Achilles to handle large client predicates.

Figure 4.11 shows the number of client path predicates Achilles keeps for each execution path
analyzed during the FSP server exploration, as a function of the length of the path. The figure
shows results for the paths as they are incrementally generated—many of the points in the figure
represent incomplete paths. A point at length 7 with 1,000 matching predicates means that
there exists an execution path in the server which encountered 6 branching points that depend
on symbolic data, and can be triggered by messages in 1,000 different path predicates. Recall
from subsection 4.2.2 that Achilles uses these path predicates to search for any existing Trojan
messages—the more path predicates in a state, the more complex the check.
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Figure 4.11 — Number of client path predicates that can trigger each execution path in the FSP
server, as a function of the length of the path.

The number of path predicates decreases as the length of paths increases—longer execution paths
become more and more specialized, and can be triggered by a smaller group of messages. This
makes the check for Trojan messages easier, as Achilles makes fewer calls to the solver.

To quantify the effect of optimizations, we compared Achilles to a non-optimized implementation
of symbolic constraint differencing. We ran unmodified S2E on both the FSP client and server,
and then computed Trojan messages a posteriori. The total execution time of the non-optimized
implementation was 2 hours and 15 minutes, compared to the 1 hour and 3 minutes required by
Achilles.
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5.1 Intuition

In this chapter, we describe a mechanism for enabling instrumentation in production, in order to
reduce the impact of any corner-case bugs lurking in the code. The insight behind our work is that
many types of instrumentation can be split in small atoms, and the benefit of the instrumentation
is actually the sum of the benefits of each individual atom. Thus, the trade-off between benefit
and cost of instrumentation becomes a continuum, rather than a binary choice. Moreover, few
execution paths in a program are performance-critical—atoms of instrumentation can be enabled
on many execution paths (and reduce the impact of many bugs) with little cost in terms of
overhead.

5.1.1 A Survey of System Call Vulnerabilities in the Linux Kernel

To validate the intuition, we present the results of a thorough study of vulnerabilities in the Linux
kernel that can be triggered via system calls. We show that:

* there are many vulnerabilities that can lead to a complete compromise of the system;

* more than one third of these vulnerabilities are memory errors, which could be detected by
instrumentation tools;

* most vulnerabilities appear in system calls that are rarely used in regular userspace pro-
grams.

5.1.2 The Case for Instrumentation

First, we analyzed high-impact vulnerabilities in the Linux kernel. We used the National Vulnera-
bility Database search engine' to find vulnerabilities that allow attackers to gain root privileges

Uhttps://web.nvd.nist.gov/view/vuln/search
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Search Query # results
linux privileges array index 7
linux privileges buffer overflow 63
linux privileges use after free 7
linux privileges pointer 26
linux privileges length 15
linux privileges address 10
Total 128

Table 5.1 — Search queries in the National Vulnerability Database search engine and their
respective number of results.

on a system (thus completely compromising the system). Running the query “linux privileges”
yielded 372 such vulnerabilities. We estimated how many of these are due to memory errors by
running search queries with keywords common to memory errors, as summarized in Table 5.1.

We manually validated the data by looking at vulnerabilities reported between January 2013
and July 2014. Out of 59 vulnerabilities that allow attackers to gain privileges, 32 are memory
management errors.

This data makes apparent once again how vulnerable much of our infrastructure is; considering
that the last two years brought 59 newly discovered critical vulnerabilities, it is easy to imagine
that hundreds more will be uncovered in the years to come. Yet, a significant fraction of these 59
vulnerabilities could have been mitigated by inserting instrumentation into production code (32
of them are memory safety bugs).

5.1.3 The Case for Elastic Instrumentation

In this part of the survey, we analyzed the distribution of system call configurations. We
define a system call configuration to be tuples of the form <name, arg>, where name is a
system call name and arg is a named constant (defined in Linux headers) that is passed as an
argument. Configurations carry more information than the system call name alone and allow a
finer partitioning of system calls that corresponds to the sections of kernel code that are eventually
run. For example, the socket system call can actually instantiate dozens of different types of
sockets.” The behavior of the socket system call differs significantly depending on its parameters,
and our definition captures this as different configurations.

We measured the popularity of system call configurations by analyzing the source code of
packages in the Debian repository. Our scripts use the C preprocessor and the M4 macro
processor to eliminate comments from source code, perform proper parenthesis matching and
search for function calls that match system call names. For each such call, we removed all

2Domains are defined at http://Ixr.free-electrons.com/source/include/linux/socket.h#L.141
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parameters that do not match constants defined in the user-facing Linux headers, replacing them
with the wildcard any. Thus, a function call such as open(path, O_RDONLY) becomes open(any,
O_RDONLY)—the function call is stripped to just the template that identifies that system call
configuration. By analyzing the Debian repository packages—more than 100 GB of source
files—we found 490,514 function calls that match system calls. They are categorized in 2,492
different system call configurations.

We also analyzed the distribution of known vulnerabilities among system call configurations.
Given a vulnerability from the CVE database, we asked which system call configuration would
trigger the error. We wrote a script that parses the entire CVE database and analyzes the CVE
descriptions to find references to system calls. We manually analyzed over 3,000 matches,
trimming the list to 178 Linux kernel vulnerabilities for which we could identify the system call
configuration (note that we discarded vulnerabilities that are triggered by user-level programs
communicating directly to modules via the /dev/ interface).

Finally, we matched the data for system call configuration popularity with the data for vulnera-
bilities. The data shows that most vulnerabilities are in “unpopular” system call configurations.
In fact, 36 of the vulnerabilities are in system call configurations that we never found in De-
bian package repositories. One particular example is CVE-2000-0461 [2], in which the “kernel
contained an undocumented system call,” which had not yet been fully released and therefore
was not used by any application. This result gives further evidence for the intuition that unused
code contains more bugs than regularly exercised code. These 36 vulnerabilities could have been
safely avoided (on a system using only Debian packages) by completely removing the code that
contains them; we discuss some approaches that automate this removal in chapter 2. Yet, for the
remaining vulnerabilities, removing the code would affect the functionality of some applications.

Figure 5.1 shows the comparison between the number of times system calls configurations appear
in the Debian repository and their security exposure. We found that 437,000 of the system call
configurations that appear in source code from Debian repositories, which correspond to 90% of
all system calls, are configurations that appear more than 300 times each. Instrumenting these
configurations would therefore negatively impact the performance of many user-level programs.
These configurations are also well exercised—many programs use them in many different ways,
effectively testing them and leading to possible bugs being reported early. As the figure shows,
only 13% of syscall vulnerabilities that were ever reported to the CVE database are triggered
via one of these “hot system calls”. Most vulnerabilities are triggered by uncommon system call
configurations, with 60% of vulnerabilities appearing in configurations that appear less than 10
times each in Debian source code.

5.2 The Elastic Instrumentation Principle

The survey suggests the high potential of selectively instrumenting system calls in the Linux
kernel. Many Linux vulnerabilities lie in rarely used system calls; for these corner case-executions,
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Figure 5.1 — The distribution of vulnerabilities in the kernel as a function of system call
configuration popularity in Debian repositories.

the performance overhead of instrumentation has little effect on the overall performance of the
kernel and thus powerful instrumentation is no longer inaccessible.

We now introduce the Elastic Instrumentation principle®. We first provide a model to clarify why
and how instrumentation should be made elastic (§5.2.1) and then explain under which conditions
this can be achieved automatically using our framework (§5.2.2).

5.2.1 Model

In our model, we think of instrumentation as a set of atoms—an individual memory safety check,
a logging statement, etc. Each such atom consists of a sequence of instructions in the target
program.

We say that an atom of instrumentation is useful only in program states where its execution is
essential for achieving the desired effect of the instrumentation. By this definition, a memory
safety check is useful only when it fails and detects a memory corruption, and a logging statement
is useful when it distinguishes different program executions.

An atom that is executed in a state where it is useful is a true positive (TP). Otherwise, if it is
executed but ends up not being useful, we classify it as false positive (FP). When instrumentation
is disabled or used selectively, there are also cases where instrumentation was not used but could
have helped (a false negative, FN) and where it was not used and would not have helped (a true
negative, TN).

Currently, developers must choose between two extremes: Not use instrumentation at all and
maximize the FNs, or use full instrumentation and maximize FPs. False positives lead to overhead

3Note that the Elastic Instrumentation Principle and the framework are joint work with another PhD student, Jonas
Wagner. As the main author of ASAP [101], Jonas approached the problem from the perspective of selecting atoms of
instrumentation statically, at particular lines of code in a given system, while this thesis focuses on selecting atoms of
instrumentation dynamically, on particular execution paths.
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that can cause SLAs to be violated, drive users away from a website (e.g., because the web page
takes more than two seconds to load), cause an interactive application to feel sluggish, etc.

Our approach measures the cost (the number of false positives) and benefit (the likelihood of
a true positive) for each atom of instrumentation. It then activates atoms either statically or
dynamically.

Static activation decides at compile-time whether to activate an atom or not. It maximizes benefit
under a given cost budget by selecting the atoms with the highest overall benefit-to-cost ratio.
Dynamic activation can defer this decision, and evaluate cost and benefit for a particular program
state encountered at runtime. This incurs a cost to examine the program state, but can reduce the
number of false positives by using extra information.

5.2.2 A Recipe for Elastic Instrumentation

We now outline the factors that a user needs to consider when applying Elastic Instrumentation.

1. Identify a Problem We start from a problem that can be solved with instrumentation. A
QA team might find that extra logging would help them reproduce bug reports; an engineer
might want to track down a performance problem using extra tracing; a developer might want to
harden a security-critical system against memory errors. All these cases can be solved through
instrumentation, either added manually or by a tool.

At this step, the users focus on solving the problem. The performance optimization is handled by
our framework, as long as the instrumentation satisfies the basic properties outlined below.

2. Analyze the Instrumentation Three properties determine how well an instrumentation
lends itself to Elastic Instrumentation: granularity, elasticity, and cost/benefit distribution.

Granularity measures how well the instrumentation code can be subdivided into individual chunks.
Log and tracing statements, many types of safety checks, and assertions are examples of code
that is very granular: it is composed of many small and independent statements. High granularity
makes it possible to precisely select the best benefit/cost trade-off and fine-tune the overhead. In
practice, users can measure the granularity using the code analysis tools we provide, by looking
at the statistics produced by the instrumentation tool, or manually, e.g., by grepping through
source code.

Elasticity quantifies how much the overheads of the instrumentation can be controlled by the
tool. Elasticity is related to granularity: instrumentation is fully elastic when each individual
instrumentation atom can be enabled individually and does not rely on any other instrumentation
code. In practice, many instrumentation tools insert extra code for updating metadata that is used
by multiple atoms and thus cannot be removed independently. Users can estimate elasticity by
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Figure 5.2 — Elastic Instrumentation consists of five steps. The output of the first step is a
program augmented with instrumentation. The second step is to divide this instrumentation into
atoms that can be individually enabled or disabled. We then measure the cost and benefit of
each of these atoms (3), and pass this data to an optimizer that selects which atoms are worth
enabling (4). Finally, the fifth step generates a selectively instrumented program. For each step,
the figure also shows the individual components that implement the process.

configuring our framework to remove all instrumentation atoms, and then measuring the overhead
of the generated program. This measures the cost of logging at the least verbose level, or the
cost of memory safety instrumentation with all checks removed. We call this remaining cost the
residual overhead. For example, memory safety instrumentation tools keep track of allocated
objects, regardless of whether checks are enabled or not. The residual overhead is a lower bound
on the effectiveness of Elastic Instrumentation.

Cost/benefit measurements give a sense of how much users can gain from the Elastic Instru-
mentation approach in practice. The key insight is that both cost and benefit are often highly
skewed: a security check in a hot loop is much more expensive than a check in rarely-executed
error-handling code, and instrumenting a rarely-used system call has a higher expected benefit
than instrumenting a system call that is widely used and thoroughly tested. Because of 80/20
rules, users can expect highly skewed distributions, and therefore careful optimization can yield
both high benefit and low cost.

3. Apply Elastic Instrumentation By this point, the user has selected instrumentation tech-
niques and obtained evidence that the Elastic Instrumentation principle is applicable. To proceed
and apply the principle, the user can now choose the design options that best fit the use case. In
particular, the user decides how to estimate the cost and benefit of instrumentation (statically
or using profiling data) and how to activate it (statically or dynamically). For each step of the
approach, the user selects which of the tools in our framework to run. We discuss these choices
and our prototypes in the following sections.

Currently, the choice of tools is guided by the choice between static and dynamic activation. Each
activation approach has its own specific tools. We discuss in how we envision static and dynamic
activation combined. This thesis focuses on the tools specific to dynamic activation.
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5.3 The Elastic Instrumentation Framework

We have built a framework to automate the steps for applying the Elastic Instrumentation principle.
As input, it takes a target software system and an instrumentation tool, and processes them over
the five steps shown in Figure 5.2. The steps are performed while compiling the target and
generate a version of it that activates the optimal set of instrumentation atoms.

5.3.1 Dividing the Instrumentation

The purpose of this step is to identify atoms of instrumentation, that is, the smallest parts that can
be individually enabled or disabled. We propose two ways of dividing instrumentation: at the
level of program execution paths and at the level of program instructions.

Path-based division classifies related execution paths into groups by examining the program state.
For example, examining the kernel system call arguments allows to classify execution paths into
groups that are triggered by the same system call configuration. Paths in the same group can be
assumed to have similar instrumentation costs and benefits and their instrumentation is activated
as a whole. Path-based division is specific to dynamic activation.

Instruction-based division attempts to classify each program instruction as either original program
code, or as belonging to a sequence of instrumentation code. Instruction-based division lends
itself to static activation.

5.3.2 Estimating Cost and Benefit

This section explains how to obtain cost and benefit information for each instrumentation atom
identified in the previous step.

For static activation, our framework provides a custom profiler to measure cost. The profiler runs
a user workload several times, with and without instrumentation, and computes the contribution
of each instrumentation atom (small sequence of instructions) to the overall overhead of the
instrumentation.

For dynamic activation, we built a popularity estimation component for our framework in order to
quantify cost and benefit. It counts the number of locations in a large code base where a particular
API functionality is invoked. The component distinguishes API calls by their function name and
parameters, as described for the Linux system call configurations.

Our popularity estimation component is based on the intuition that popularity is an indication of
code reliability. This intuition is similar to the results observed by Mileva et al. [80], who analyzed
the popularity of library APIs and proposed a reliability metric for specific API versions based
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on their popularity. Our study shows that most bugs are in unpopular system call configurations*

(subsection 5.1.1).

Our metrics are rather simple in comparison to existing work. Software engineering researchers
have built tools to predict the location of software defects from version control histories and bug
databases [86, 83]. Another approach uses data from program runs to identify statistical bug
predictors, i.e., program behaviors that are likely to encounter a failure [20]. For logging, the
SherLog project [105] proposed a methodology to estimate how useful a log statement is for
finding a bug’s root cause. Also, sophisticated commercial tools exist to analyze logfiles and
prioritize logfile entries [9, 10, 12].

We believe that our framework is general enough that such techniques could be incorporated.
Metrics that apply to static program locations ([86, 83]) are well suited to our instruction-based
division of instrumentation and static activation. Metrics that assign benefit to program behaviors
([20]) are useful for path-based division and dynamic activation.

5.3.3 Optimally Selecting Instrumentation

After cost/benefit estimation, we have a set of instrumentation atoms with their benefits and costs,
and are facing the problem of selecting a subset to enable. Users can choose to optimize for either
cost or benefit.

This is an instance of the well-known Knapsack problem. Despite its NP-hardness, several
algorithms can solve practical instances sufficiently quickly for our case ([77]).

For our prototypes, we chose to use a simple greedy algorithm that computes an approximately
optimal set of instrumentation atoms. It first sorts the atoms by decreasing benefit-to-cost ratio.
The algorithm then iterates through the atoms in this order, adding the current chunk to the set if
its cost fits into the budget.

Three reasons made us opt for that choice. Firstly, the main cause for the difficulty of the
Knapsack problem is high correlation between cost and benefit. In our experiments, we did not
observe such correlation. On the contrary: atoms that are most beneficial tend to be in obscure,
cold parts of software, and are thus likely cheap. In such cases, our approximation algorithm
produces the optimal result. Secondly, we wanted our prototypes to be simple. Complex decisions
can make compilation slow (in the case of static activation) or runtime decisions slow (in the case
of dynamic activation). Thirdly, the greedy algorithm lends itself very well to adaptive activation
schemes using a runtime monitor.

Consider that the greedy algorithm adds atoms to the selected set as long as the user’s constraints

4Note that we have not investigated bug density in detail, as we do not have an enumeration of all possible system
call configurations. Popularity is also an indicator of overall cost, which contributes to its effectiveness as a metric in
our approach. We do not yet know what is the contribution of popularity as a benefit metric and as a cost metric in the
results we obtained.
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are satisfied. This implies the existence of a threshold cost-to-benefit ratio, ¢, for which all checks
with cost-to-benefit > ¢ are in the set. When using a dynamic activation scheme as described
in subsection 5.3.4, we can execute an atom if its cost-to-benefit ratio exceeds the value of a
global variable typtime. A runtime monitor can set fynime according to the current performance;
the monitor can increase it if performance is unsatisfactory, and decrease it if extra resources
become available for use by instrumentation.

5.3.4 Activating Instrumentation

When instrumentation atoms have been selected, users of Elastic Instrumentation can choose
from two activation mechanisms.

They can activate instrumentation statically at compile time using the static activator component
of our framework. This is the simplest activation strategy. It has the benefit that there is no runtime
overhead due to the activation: the static activator generates a binary where the instrumentation
atoms selected in the previous step are present, and the rest are eliminated. Static activation is
applicable if cost and benefit values do not depend on parameters known only at runtime.

Secondly, the dynamic activator can generate a program where all the instrumentation is compiled
in, but guarded by a decision procedure. This allows activation based on context-sensitive
properties.

Figure 5.3 describes at a high level how dynamic activation modifies the target system. Our
framework duplicates each function in the target system and applies instrumentation to only
one of the copies. It then inserts a decision layer at the entry point (or entry points) of the
system; the decision of whether to execute the instrumented or non-instrumented version of the
code is taken at runtime. Shared data, such as global or static memory is not duplicated. Since
instrumentation does not change the semantics of the application, both the instrumented and
non-instrumented version of a function can operate on the same shared data, without conflicts.
This allows transparent interleaving of instrumented and non-instrumented executions.

We use the dynamic activator to instrument the Linux kernel section 4.5. For each system call
configuration, the instrumentation selection step decided whether that configuration should be
protected. The activation step generates code that sets or resets the guard flag according to that
decision. We inserted the generated decision procedure code manually at the system call entry
point. The kernel is particularly suited for dynamic activation: it is a large, monolithic piece of
software and thus has many functions whose benefit depends on the context in which they are
called. For example, the copy_ from_user function, which is used to copy data from user
space to kernel space, does not check bounds and can corrupt memory if used improperly—the
cost and benefit of instrumentation inside this function depends on the calling context.

Dynamic activation is more flexible than static activation. Cost and benefit of a chunk need no
longer be constants—they can be context-sensitive. This allows the system to protect code in
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Figure 5.3 — The results of Elastic Instrumentation using dynamic activation to a system. The
left side of the figure shows the original system and the right side shows the same system after
applying our framework. Functions marked by superscript “i” are instrumented.

some circumstances but not in others. The downside of this scheme is that evaluating the context
introduces extra overhead, beyond that of the instrumentation itself.

Dynamic activation can be further enhanced using runtime properties beyond just the calling
context of a function. A runtime monitor can execute concurrently to the instrumented software
to monitor performance. This monitor can measure request latencies, system load, or SLA
compliance, and consider these parameters when deciding whether to enable instrumentation or
not. This approach has the advantage that users get tight control over the overhead budget. It is
useful in cases where workloads are variable and hard to predict.

5.4 Implementation

We implemented the dynamic activation pass in the gcc compiler. The purpose of this pass is to
tweak the generated binary of the target in order to allow deciding at runtime whether to enable or
disable instrumentation. Thus, unlike the static activation, the dynamic activation compiler pass
does not use any decision procedure at compile time, but rather generates a mechanism through
which the decision can be taken at runtime.

The dynamic activation pass generates multiple versions of each function in the target program
and inserts a dispatching mechanism at the beginning of each function. Our pass runs early in
the compilation; it marks each version of the function using function attributes, such that the
versions will be handled differently by the compilation passes that add or tweak instrumentation.
Currently, our prototype only generates two versions of each function (the original and a clone)
and marks the clone using the “no_sanitize_address” attribute, such that the Address Sanitizer
pass does not instrument it.

Our pass also inserts a dispatcher at the beginning of each original function. This dispatcher
is needed for every function to avoid the execution of a system call unintentionally switching
between the instrumented and non-instrumented versions (this can happen, for instance, due to

78



5.5. Evaluation

~ ~ ~N
k= _>éo f Sunl flag = 1,4\ __no_instt funl
3 = =17
£ .S [ - - | [imp__no_instr_funt]| | |[ - |
wn
S call fun2 | P [call __no_instr_fun2|
A \
~ N\
= fun2 no_insty fun?2
< X — ==
S flag = 1?
o § yes+ N +no lv
= = | | [imp __no_instr_fun2]| [ [ - |
£ 8 .

Figure 5.4 — Detailed illustration of the binary generated by the dynamic instrumentation pass.

indirect calls, as we describe in the next paragraph). However, the dispatcher does not need to
re-evaluate the context every time; the context is only evaluated once, at the system call entry
point, after which a globally-accessible thread-local flag is set accordingly. The dispatchers in
the functions only checks this flag and jumps to the clone when the flag is set.

Figure 5.4 shows in more detail the binary generated by our dynamic activation pass. In the figure,
functions funl and fun2 are instrumented by Elastic Instrumentation. One clone is created for
each, prefixed by __non_instr. The original functions themselves become dispatchers, through the
condition inserted at the beginning of each function. As an optimization, our pass changes direct
calls from the non-instrumented versions of functions to directly point to other functions with no
instrumentation (i.e., without going through the dispatcher again). However, this optimization
is difficult to perform for indirect calls, whose targets cannot be determined at compile time>.
Therefore, indirect calls remain untouched; at runtime, any such indirect call would invoke the
original function, which has the dispatcher built-in, so the dispatcher would redirect to the proper
version. Thus, the “fast path” through the program, where no instrumentation is applied, will
only incur the cost of the flag check once at the program entry point and once for each indirect
call that cannot be handled statically by the compiler.

5.5 Evaluation

In this section, we describe how we used our Elastic Instrumentation framework to add memory
safety instrumentation to the Linux Kernel. We answer the following questions:

5The Split Kernel [65] uses an ingenious trick to handle indirect calls statically, by placing the original and
instrumented functions at fixed offsets from each other and using pointer arithmetic before any indirect call. The same
trick could be applied to our implementation.
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* Would Elastic Instrumentation have helped preventing recent security vulnerabilities (sub-
section 5.5.2)?

* What overheads and benefits can be achieved when using the Elastic Instrumentation
approach in practice (subsection 5.5.3)?

5.5.1 Setup

Our evaluation measures both effectiveness and performance. In our benchmarks, we measure
effectiveness using a reference set of known bugs and vulnerabilities. These are real-world
vulnerabilities, present in past versions of the kernel, that have been reported to the Common
Vulnerabilities and Exposures (CVE) database. We re-introduced these vulnerabilities into the
kernel, by reverse-applying the patch that fixed them. We also wrote a script to trigger each of
these vulnerabilities, either using a real exploit or—if no known exploit was available—using a
hook in the kernel itself.

We use security vulnerabilities because they are publicly available, representative of real-world
problems, and often in the scope of instrumentation tools. However, it is worth keeping in mind
that the instrumentation tool we use (Kernel AddressSanitizer®) was built for debugging, rather
than security; it reduces the attack surface and can make vulnerabilities harder to exploit, but
does not provide a comprehensive security guarantee.

We measure performance by measuring the performance of user-level applications running on top
of the kernel. We compare overhead relative to the same application running on an uninstrumented
baseline version of the kernel.

We use two sets of vulnerabilities as reference sets.

First, we attempt to reproduce recent high-impact vulnerabilities. We analyzed vulnerabilities
reported to the CVE database between January 2013 and July 2014 and found eleven that can
potentially lead to local malicious applications gaining root access, completely compromising
the target machine. Two of them are not due to memory errors, so they are not in the scope of
this experiment, but the remaining nine are memory errors. We “ported” the vulnerable code that
enables these nine exploits to version 3.19 of the kernel, by analyzing the patch that fixed them
and then reversing the patch.

For three of the vulnerabilities, we found public exploits that gain root access; we managed to
reproduce these exploits on our kernel. For the remaining six, we wrote our own test cases to
exercise the bug that enables them. Our test cases do not attempt to gain root access, but rather
just trigger a simple out-of-bounds write. We use this first set to evaluate the usefulness of Elastic
Instrumentation (subsection 5.5.2).

Our second reference set is the data we obtained from the survey (subsection 5.1.1): 178

Shttps://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
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5.5. Evaluation

vulnerabilities in the Linux kernel for which we could identify the system call configuration.
We use these as reference when we evaluate the efficiency of our approach (subsection 5.5.3).
Note that we did not reproduce these 178 vulnerabilities, but instead report whether Elastic
Instrumentation enables instrumentation for the respective syscall configuration that triggers each
vulnerability.

We compiled the kernel with regular Kernel AddressSanitizer (KASan) and with Elastic Instru-
mentation. The elastic version uses the dynamic activator; it executes code with or without
instrumentation based on the popularity of the system call configuration that is being processed.
The popularity estimator from our framework measured each system call configuration’s pop-
ularity, and generated code to evaluate it at runtime—a large nested C switch statement that
takes as input the system call number and parameters and outputs the popularity. We inserted
the generated code in the kernel, at the system call entry point. This required us to write ~10
additional lines of code. We also wrote the decision function—an if statement that compares the
popularity value with a fixed threshold.

When studying exploits, we noticed that file descriptors in system calls are also highly discrimi-
nant for system call behavior. We decided to incorporate file descriptors in the instrumentation
activation decision, by keeping track of whether an uncommon system call was ever executed
on a file descriptor. This information is stored in the file descriptor metadata. If an uncommon
system call was executed having a file descriptor as parameter, then all subsequent system calls
on the respective file descriptor will have instrumentation enabled. This change required less than
10 lines of code.

We compared the performance of user-level applications when running on top of the Linux
3.19 kernel. We compiled the kernel with no address sanitization, with full KASan sanitization,
and with Elastic Instrumentation using different benefit thresholds. Other than sanitization, all
other kernel compilation options were identical. We ran OpenBenchmarking.org benchmarks for
SQLite and building PHP, as well as Apache web server version 2.4.6. For Apache, we ran two
configurations: one in which the workload generator (ab) runs on the same system as the web
server (and is also affected by the overhead in the kernel), and one in which ab runs on a separate
machine. Our experiments were performed on a machine with Intel Core i7 CPU (4 cores @
2.6 GHz) and 16 GB RAM.

5.5.2 Usefulness of Elastic Instrumentation

Kernel root exploits allow non-privileged user-space applications to gain unauthorized root-level
access to a system. Some users intentionally execute exploits on their own devices in order to
obtain root access and bypass restrictions imposed by the manufacturer. However, such exploits
can be silently run by malware in order to compromise the device.

We found publicly-disclosed exploits for three vulnerabilities due to memory errors. KASan flags
an error in two of these exploits, at an overhead of 28% for Apache; with Elastic Instrumentation,
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we can reduce the overhead to 7% while still detecting the same exploits.

The CVE-2013-2094 [6] exploit [5] targets an out-of-bounds access in a global array, which
is due to an integer overflow. By carefully controlling the parameters to the perf_event_open
system call, attackers can increment values at arbitrary memory locations. In order to find the
offset of the array in kernel memory and calibrate the arbitrary write primitive it constructs, the
exploit first maps a large amount of memory and initializes it to known values. It then triggers
the increment once; it “calibrates” the write primitive by checking which value in the mapped
region was modified. With this primitive, the exploit can then modify arbitrary kernel memory;
in this particular case, it overwrites an interrupt descriptor table entry in order to take control of
the kernel control flow. KASan flags the initial “calibration” stage, as the kernel writes directly to
user-space-mapped memory. The system call that triggers the bug, perf_event_open, is rare, so
sanitization is enabled in Elastic Instrumentation when the exploit executes. Both KASan and
Elastic Instrumentation detect this exploit and prevent it from executing.

The CVE-2013-1763 [4] exploit [3] targets an array indexing error in NETLINK_SOCK_DIAG
sockets. A global array in the Linux kernel is indexed with a one-byte value (the socket family),
without first checking whether the index is greater than the maximum number of families. With
KASan enabled, the one-byte offset falls into poisoned memory; this bug can no longer be
exploited to hijack control flow in the kernel. Since the system call that triggers the exploits
is an operation on a rare NETLINK_SOCK_DIAG socket, Elastic Instrumentation enables
instrumentation for the respective system call, flagging the exploit.

The CVE-2014-0038 [8] exploit [7] targets a bug where the kernel directly casts a struct timestruct
pointer received from user space to a kernel pointer. The exploit crafts this pointer such that
the kernel overwrites a function pointer, so that a subsequent indirect call is hijacked by the
exploit. The size of timestruct is 16 bytes, which is larger than the 8 bytes of the function pointer
it overwrites. However, KASan does not currently insert poisoned memory in between elements
of the same struct; since the function pointer is in a larger struct, KASan does not detect this
overwrite. Not that the buggy code is in a rarely executed 32-bit compatibility system call; if
KASan supported intra-struct poisoning, both KASan and Elastic Instrumentation would detect
this exploit.

We also executed our own test cases for the remaining six exploits: CVE-2013-1826, CVE-2013-
1827, CVE-2013-1827, CVE-2013-4587, CVE-2013-4588 and CVE-2013-6368. KASan flags
five of them. Elastic Instrumentation always enables instrumentation for the system calls that
trigger the bug, as they are all uncommon system calls, and flags the same bugs as full KASan.

We observed from this experiment that address sanitization can help prevent some bugs from
being exploited. Enabling sanitization in production forces potential attackers to make their
exploits more precise, in order to avoid touching poisoned memory. For example, it would not be
possible to overwrite a single 8-byte pointer by using a 16-byte struct, as the write would also
touch some unallocated memory around the target pointer. We argue that this reduces the attack
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Figure 5.5 — Overhead vs. effectiveness for the Linux kernel

Figure 5.6 — Achievable points in the trade-off between effectiveness and overhead of instrumen-
tation. We use the fraction of vulnerabilities for which the corresponding system call configuration
is protected.

surface for existing bugs.

This experiment showed that the Elastic Instrumentation version of the kernel is as protected
against recent high-impact as a fully instrumented kernel. Instrumentation can make some bugs
unexploitable and others more difficult to exploit. Yet, the Elastic Instrumentation kernel obtains
these benefits while incurring 7% overhead for an Apache web server workload, significantly
less than the 28% incurred by full instrumentation.

5.5.3 Effectiveness vs. Overhead

We now evaluate the effectiveness and overhead that can be obtained using Elastic Instrumentation.
Our approach enables users to control the amount of instrumentation, thus choosing a point in
the trade-off between effectiveness and overhead. In this section, we explore the shape of this
trade-off curve.

Figure 5.6 shows the levels of effectiveness and overhead that can be achieved for different
applications running on top of the Linux kernel. For example, an Apache server running on a fully
instrumented kernel will experience a latency increase of 28%. Using Elastic Instrumentation,
it is possible to reduce overhead to 9% while enabling instrumentation for 80% of the known
vulnerabilities. If the ab workload generation tool for Apache is also run on the same machine,
the overhead is even higher, as ab also makes a large number of system calls and puts pressure
on the kernel. SQLite is less kernel-intensive and therefore less affected by the overhead of
instrumentation, while building PHP is least affected by the different levels of instrumentation.

Note that, because we do not have exploits for all the vulnerabilities in our survey, we do not
know how many vulnerabilities are actually detected by instrumentation; we merely measure the
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fraction of vulnerabilities for which the buggy system call is instrumented.

The principle of diminishing returns is clearly visible in the convex shape of the curves in
this graph. For effectiveness levels from O to about 75%, the overhead remains very close to
the residual overhead—at least 75% of the vulnerabilities in our experiments lie in cold code
where instrumentation is almost free. The remaining 25% get progressively more expensive to
instrument.

The graph also shows the residual overhead for Kernel AddressSanitizer. This is the overhead at
0% effectiveness. It is due to various factors, including the overhead of the decision function,
changes to the memory allocator, reduced function inlining because instrumentation increases
function size, increased instruction cache pressure, bookkeeping to track allocated objects and
poisoned areas between objects, and changes to built-in functions. We believe that this residual
overhead can be further reduced through engineering efforts.
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In this chapter we discuss several ideas through which the techniques introduced in this thesis
can be improved.

One idea that applies to all techniques is better support for developer involvement. This thesis
attempts to automate testing and instrumentation as much as possible. Full automation lowers the
entry barrier, allowing developers to integrate our techniques with little effort, yet it does not tap
in the vast knowledge that human developers have about their systems. Ideally, we would have a
system that uses any amount of information the developer is willing to add. Integrating developer
knowledge is still an open problem. We discussed in this thesis some isolated examples of ways
through which developers’ domain-specific knowledge can speed up black-box and white-box
testing, but not a principled way of combining human and machine effort throughout the entire
development process.

In order to persuade developers to spend effort and add their knowledge to reliability tools, we
imagine mechanisms to provide early feedback during code development. Automated tests could
run in the background, as developers write new code; by integrating the testing frameworks in
development environments (IDEs), the testing frameworks could notify developers immediately
when their code is wrong (this idea is explored by other tools as well, e.g. the formal verification
tools behind Ironclad Apps [53] integrate with Visual Studio). Since the code is fresh in their
mind, it is likely easier for developers to fix bugs.

Achilles can have false positives due to the incompleteness of symbolic execution. To improve on
this, we imagine a feedback loop through which a candidate set of Trojan messages is refined over
several iterations. Specifically, once a potential Trojan message is discovered, Achilles could re-
evaluate the clients, guiding the symbolic execution towards the expression of the Trojan message.
As shown by ESD [107] or Demand-driven symbolic execution [18], this focused symbolic
execution is significantly faster than “blind” exploration, and can help eliminate false positives in
Achilles. This approach is similar in spirit to the abstraction refinement in CEGAR [34].

Our Elastic Instrumentation framework currently has a clear separation between static and
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Chapter 6. Future Work

dynamic activation. However, the two approaches complement each other, and could be applied
together. Static activation has the advantage of performance, as it requires no run-time overhead to
decide which version of code to run. Dynamic activation has the advantage of context-sensitivity,
which can lead to better decisions. The two approaches can work together: dynamic activation
can be used strictly for functions where the cost and benefit of instrumentation is determined
to be context-sensitive. The difficulty here is how to determine where cost and benefit are
context-sensitive.

Another area in which Elastic Instrumentation can be improved is the granularity of dynamic
activation. Currently, the decision of whether to instrument or not is only taken once, at the entry
point of a program. The reason for this is that the actually analysis of context and decision taking
is an expensive task. However, in some cases it might be worth trading in this overhead for more
fine-grained decisions. Dynamic activation currently applies instrumentation at a function-level
granularity: either a function is fully instrumented, or not at all. While this worked well for our
kernel use-case, other systems might need more fine-level control. This increased granularity
could be achieved by cloning a function more than once, with different levels of instrumentation
in each clone, or by inserting more decision points in each function.

Finally, we envision a tighter integration between testing and instrumentation. The intuition
behind Elastic Instrumentation is that some parts of a system are more reliable than others. By
knowing which parts of a system have been more thoroughly tested, Elastic Instrumentation
could assess the benefit of instrumenting each part. Conversely, if developers use instrumentation
to harden parts of a program, then they can focus their testing and validation efforts on the
remaining parts. For example, in the Linux kernel, developers could allocate more resources to
the performance-critical system calls that are not instrumented. Since only a minority of system
calls are performance-critical, a thorough validation is possible even with limited resources.
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74 Conclusion

Modern systems are composed of many components that communicate and coordinate with
each other. Corner-case bugs can lurk in the interaction between components. Regular testing
techniques cannot find these elusive bugs, so they can remain hidden until software is released in
production, with dire consequences. This thesis proposed three techniques to help developers
harden their systems against such bugs.

We proposed a black-box fault injection algorithm to search for high-impact failures. By learning
and exploiting the inherent patterns of how a system under test handles failures, our algorithm
chooses the fault scenarios that are most likely to have high impact. We showed how this approach
can find new bugs in mature software, such as the MySQL database management system and the
Apache web server.

We also described a white-box approach that can systematically find Trojan messages in the
implementation of distributed systems. Trojan messages are a means through which failures
propagate among nodes. Thus, they represent the Achilles’ heel of distributed system. We showed
how our technique found subtle bugs due to Trojan messages in the implementations of the FSP
file service protocol and PBFT Byzantine-Fault-Tolerant protocol.

Finally, we proposed the Elastic Instrumentation framework, which enables developers to use
instrumentation tools in production in order to harden their systems against remaining corner-case
bugs. We showed that instrumentation can often be split into small pieces that can be selectively
enabled or disabled in a system. By enabling instrumentation only on corner-case executions, our
approach obtains most of the benefit of instrumentation for only a fraction of its performance
overhead. We applied our technique to the Linux kernel and showed that Elastic Instrumentation
is as efficient as full instrumentation at protecting against recent high-impact vulnerabilities but
only incurs a quarter of the overhead.
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