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Abstract

Some of the worst concurrency problems in multi-
threaded systems today are due to data races—these
bugs can have messy consequences, and they are hard
to diagnose and fix. To avoid the introduction of such
bugs, system developers need discipline and good data
race detectors; today, even if they have the former, they
lack the latter.

We present RaceMob, a new data race detector that has
both low overhead and good accuracy. RaceMob starts
by detecting potential races statically (hence it has few
false negatives), and then dynamically validates whether
these are true races (hence has few false positives). It
achieves low runtime overhead and a high degree of
realism by combining real-user crowdsourcing with a
new on-demand dynamic data race validation technique.

We evaluated RaceMob on ten systems, including
Apache, SQLite, and Memcached—it detects data races
with higher accuracy than state-of-the-art detectors (both
static and dynamic), and RaceMob users experience an
average runtime overhead of about 2%, which is orders
of magnitude less than the overhead of modern dynamic
data race detectors. To the best of our knowledge, Race-
Mob is the first data race detector that can both be used
always-on in production and provides good accuracy.

1 Introduction

Data races are at the root of many concurrency-related
problems, including atomicity and order violations [29].
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Although prevalent in modern software, they rarely af-
fect users: only 5-24% of data races have an observ-
ably harmful effect [23, 33, 44]. But when they do have
harmful effects, their consequences can be catastrophic.
This makes data races the quintessential “corner case”:
they have effects we really want to avoid, but can only be
seen under thread interleavings that have low probability
of occurring during testing or normal use—this makes
them hard to weed out prior to releasing the software.

Not only are data races omnipresent now, but things
are likely to get worse in the future. The new C/C++
standards [19, 20] allow compilers to perform optimiza-
tions that, as a side effect, may transform code with data
races that look “benign” in the source code into machine
code where these data races are seriously harmful [5].
Furthermore, code is running on increasingly more paral-
lel hardware, thus likely to experience more unexpected
interleavings. What’s worse, practitioners already report
that, in real systems, it takes on the order of weeks to di-
agnose and fix problems whose root cause is a data race
bug [16]. This makes such data race bugs very expensive.

Data race detectors play a crucial role in addressing
this problem, because they can tell developers where data
races lurk in their code, even though developers may
choose to not fix them. There exist two broad classes
of data race detectors: static and dynamic.

Static data race detectors [10, 44] analyze the program
source code without executing it. They reason about
multiple program paths at once, and thus typically
do not miss data races (i.e., have low rate of false
negatives) [36]. Static detectors also run fast and scale
to large code bases. The problem is that static data race
detectors tend to have many false positives, i.e., produce
reports that do not correspond to real data races (e.g.,
84% of data races reported by RELAY are not true data
races [44]). This can send developers on a wild goose
chase, making the use of static detectors potentially
frustrating and expensive.

Dynamic data race detectors [18, 40] typically monitor
memory accesses and synchronization at runtime, and
determine if the observed accesses race with each other.
Such detectors can achieve low rates of false positives.



Alas, dynamic detectors miss all the data races that are
not seen in the directly observed execution (i.e., they
have false negatives), and these can be numerous. The
instrumentation required to observe all memory accesses
makes dynamic detectors incur high runtime overheads
(200x for Intel Thread Checker [18], 30x for Google
ThreadSanitizer [40]). As a result, dynamic detectors are
not practical for in-production use, rather only during
testing—this deprives them of the opportunity to observe
real user executions, thus missing data races that only
occur in real user environments. Some detectors employ
sampling [6, 31] to decrease runtime overhead, but this
comes at the cost of further false negatives.

Software developers therefore can get data race detec-
tors with low overhead but high false positive rates or
detectors with low false positive rates but high overhead
and high false negative rates. Either choice gives devel-
opers a low-accuracy tool, so data race detectors do not
see much use in practice [31].

In this paper, we present RaceMob, a way to com-
bine static and dynamic data race detection to obtain both
good accuracy and low runtime overhead. For a given
program P, RaceMob first uses a static detection phase
with few false negatives to find potential data races; in
a subsequent dynamic phase, RaceMob crowdsources
the validation of these alleged data races to user ma-
chines that are anyway running P. RaceMob provides
developers with a dynamically updated list of data races,
split into “confirmed true races”, “likely false positives”,
and “unknown”—developers can use this list to prioritize
their debugging attention. To minimize runtime overhead
experienced by users of P, RaceMob adjusts the com-
plexity of data race validation on-demand to balance ac-
curacy and cost. By crowdsourcing validation, RaceMob
amortizes the cost of validation and (unlike traditional
testing) gains access to real user executions. RaceMob
also helps discovering user-visible failures like crashes
or hangs, and therefore helps developers to reason about
the consequences of data races. We believe RaceMob is
the first data race detector that combines sufficiently low
overhead to be always-on with sufficiently good accuracy
to improve developer productivity.

This paper makes three contributions: (1) A two-phase
static—dynamic approach for detecting data races in real
world software in a way that is more accurate than the
state of the art; (2) A new algorithm for dynamically val-
idating data races on-demand, which has lower overhead
than state-of-the-art dynamic detectors, including those
based on sampling; and (3) A crowdsourcing framework
that, unlike traditional testing, taps directly into real user
executions to detect data races.

We evaluated RaceMob on ten different systems, in-
cluding Apache, SQLite, and Memcached. It found
106 real data races while incurring an average runtime

overhead of 2.32% and a maximum overhead of 4.54%.
Three of the data races hang SQLite, four data races races
crash Pbzip2, and one data race in Aget causes data cor-
ruption. Of all the 841 data race candidates found dur-
ing the static detection phase, RaceMob labeled 77% as
likely false positives. Compared to three state-of-the-art
data race detectors [6, 40, 44] and two concurrency test-
ing tools [24, 39], RaceMob has lower overhead and bet-
ter accuracy than all of them.

2 Background and Challenges

The main challenges faced by data race detectors are run-
time overhead (§2.1), false negatives (§2.2), and false
positives (§2.3).

2.1 Runtime Overhead

Static data race detectors are not used at runtime, so they
do not incur any runtime overhead.

Dynamic data race detectors, however, monitor mem-
ory accesses and track the happens-before relation-
ship [25] between them. If two instructions access the
same memory location in different threads, at least one
of the accesses is a write, and there is no happens-before
relationship between the accesses, then a dynamic detec-
tor would flag this as a data race.

Such detectors typically need to monitor many mem-
ory accesses and synchronization operations, which
makes them incur high runtime overhead (as high as
200x in industrial-strength tools like Intel Thread-
Checker [18]). The lion’s share of instrumentation over-
head is due to monitoring memory reads and writes,
reported to account for as much as 96% of all moni-
tored operations [13]. Sampling-based data race detec-
tors [6, 31] reduce this overhead but also introduce more
false negatives than classic dynamic data race detectors.

Goldilocks [9] uses thread escape analysis [32] to re-
duce the set of memory accesses that need to be moni-
tored at runtime. A similar approach was proposed ear-
lier by Choi. et al. [7], using a variant of escape analysis.
Despite this analysis, the detectors still incur overheads
that make them impractical for in-production use.

Our key objective is to have a good data race detector
that can be used in an always-on fashion in production.
This is why RaceMob uses static analysis to reduce the
number of memory accesses that need to be monitored
at runtime (§3.1), thereby reducing overhead by up to
two orders of magnitude compared to existing sampling-
based techniques (§5.3), while also being more accurate.



2.2 False Negatives

Besides runtime overhead, dynamic data race detectors
also typically have false negatives. The key reasons are:
(1) they can at best detect data races in the executions
they witness, which is typically only a tiny subset of a
program’s possible executions; and (2) while monitoring
even this small subset of executions, they may incorrectly
infer happens-before relationships that are mere artifacts
of the witnessed thread interleaving.

To illustrate point (2), consider Fig. 1. In execution 1,
the accesses to the shared variable x are ordered by an ac-
cidental happens-before relationship (due to a fortuitous
ordering of the acquire/release order of locks) that masks
the true data race. Therefore, a precise dynamic detector
would not flag this as a data race. However, this program
does have a race, which becomes visible under a differ-
ent schedule. This is shown in execution 2, where there
is no happens-before relationship between accesses to x;
a precise dynamic detector would have reported a data
race only if it witnessed this latter thread schedule.

Hybrid data race detectors [36] combine lockset-based
data race detection [38] with happens-before detection
to overcome this limitation. However, hybrid data race
detectors cannot explore the consequences of such “hid-
den” data races. They merely infer the presence of po-
tential data races, but also have false positives due to the
imprecise lockset analysis.

We wish to minimize the number of false negatives,
because every missed race is potentially a serious bug
that might compromise security, safety, or other impor-
tant system properties. In order to minimize false neg-
atives, RaceMob mitigates point (1) above with crowd-
sourcing (§3.3), and point (2) by exposing hidden data
races through schedule steering (§3.2.3).

2.3 False Positives

Dynamic detectors usually do not have false positives.
Practical static detectors, however, are notorious for hav-
ing many false positives (e.g., 84% for RELAY [44]), be-
cause they do not reason about the program’s full runtime
execution context. The problem with getting many false
positives is that they overwhelm the developers and make
them waste time investigating the race reports [16].
Practical static race detectors have three main sources
of false positives. First, they do not accurately infer
which program contexts are multithreaded. Second, they
typically handle lock/unlock synchronization primitives
but not other primitives, such as barriers, semaphores, or
wait/notify constructs. Third, static detectors cannot de-
termine accurately whether two memory accesses alias
or not. Some static race detectors cope by employing
unsound filtering to reduce false positives; while this
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Figure 1: False negatives in happens-before (HB) dy-
namic race detectors: the race on x is not detected in
Execution 1, but it is detected in Execution 2.

improves the false positive rate, it still remains high (e.g.,
RacerX [10] has 37% — 46% false positive rate). More
importantly, such filtering introduces false negatives.

3 Design

RaceMob is a crowdsourced, two-phase static—dynamic
data race detector. It first statically detects potential data
races in a program, then crowdsources the dynamic task
of validating these potential data races to users’ sites.
This validation is done using an on-demand data race
detection algorithm. The benefits of crowdsourcing are
twofold: first, data race validation occurs in the context
of real user executions; second, crowdsourcing amortizes
the per-user validation cost. Data race validation con-
firms true data races, thereby increasing the data race de-
tection coverage!.

The usage model is presented in Fig. 2. First, devel-
opers set up a “hive” service for their program P; this
hive can run centralized or distributed. The hive per-
forms static data race detection on P and finds poten-
tial data races (§3.1); these go onto P’s list of data races
maintained by the hive, and initially each one is marked
as “Unknown”. Then the hive generates an instrumented
binary P’, which users download (1) and use instead of
the original P. The instrumentation in P’ is commanded
by the hive, to activate the validation of specific data
races in P (2); different users will typically be validat-
ing different, albeit potentially overlapping, sets of data
races from P (§3.2). The first phase of validation, called
dynamic context inference (§3.2.1), may decide that a
particular racing interleaving for data race r is feasible,
at which point it informs the hive (3). At this point,
the hive instructs all copies of P’ that are validating r
to advance r to the second validation phase (4). This
second phase runs RaceMob’s on-demand detection al-

IWe define data race detection coverage as the ratio of true data
races found in a program by a detector to the total number of true data
races in that program.
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Figure 2: RaceMob’s crowdsourced architecture: A
static detection phase, run on the hive, is followed by
a dynamic validation phase on users’ machines.

gorithm (§3.2.2), whose result can be one of Race, No-
Race, or Timeout (5). As results come in to the hive, it
updates the list of data races: if a “Race” result came
in from the field for data race r, the hive promotes r
from “Unknown” to “True Race”; the other answers are
used to decide whether to promote » from “Unknown”
to “Likely False Positive” or not (§3.4). For data races
with status “Unknown” or “Likely False Positive,” the
hive redistributes “validation tasks” (6) among the avail-
able users (§3.3). We now describe each step in further
detail.

3.1 Phase I: Static Data Race Detection

RaceMob can use any static data race detector, regard-
less of whether it is complete or not. We chose RELAY, a
lockset-based data race detector [44]. Locksets describe
the locks held by a program at any given point in the pro-
gram. RELAY performs its analysis bottom-up through
the program’s control flow graph while computing func-
tion summaries that summarize which variables are ac-
cessed and which locks are held in each function. RELAY
then composes these summaries to perform data race de-
tection: it flags a data race whenever it sees at least two
accesses to memory locations that are the same or may
alias, and at least one of the accesses is a write, and the
accesses are not protected by at least one common lock.

RELAY is complete (i.e., does not miss data races) if
the program does not have inline assembly and does not
use pointer arithmetic. RELAY may become incomplete
if configured to perform file-based alias analysis or
aggressive filtering, but we disable these options in
RaceMob. As suggested in [27], it might be possible to
make RELAY complete by integrating program analysis
techniques for assembly code [4] and by handling
pointer arithmetic [45].

Based on the data race reports from RELAY, RaceMob
instruments the suspected-racing memory accesses as

well as all synchronization operations in the program.
This instrumentation will later be commanded (in
production) by RaceMob to perform on-demand data
race detection.

The hive activates parts of the instrumentation
on-demand when the program runs, in different ways
for different users. The activation mechanism aims to
validate as many data races as possible by uniformly dis-
tributing the validation tasks across the user population.

3.2 Phase II: Dynamic Validation

The hive instructs the instrumented programs for which
memory accesses to perform data race validation. The
validation task sent by the hive to the instrumented pro-
gram consists of a data race candidate to validate and one
desired order (of two possible) of the racing accesses. We
call these possible orders the primary and the alternate,
borrowing terminology from our earlier work [33].

The dynamic data race validation phase has three
stages: dynamic context inference (§3.2.1), on-demand
data race detection (§3.2.2), and schedule steer-
ing (§3.2.3). Instrumentation for each stage is present
in all the programs, however stages 2 and 3 are toggled
on/off separately from stage 1, which is always on. Next,
we explain each stage in detail.

3.2.1 Dynamic Context Inference

Dynamic context inference (DCI) is a lightweight
analysis that partly compensates for the inaccuracies of
the static data race detection phase. RaceMob performs
DCI to figure out whether the statically detected data
races can occur in a dynamic program execution context.

DCI validates two assumptions made by the static data
race detector about a race candidate. First, the static de-
tector’s abstract analysis hypothesizes aliasing as the ba-
sis for some of its race candidates, and DCI looks for
concrete instances that can validate this hypothesis. Sec-
ond, the static detector hypothesizes that racing accesses
are made by different threads, and DCI aims to validate
this as well. Once these two hypotheses are confirmed,
the user site communicates this to the hive, and the hive
promotes the race candidate to the next phase. Without
a confirmation from DCI, the race remains in the “Un-
known” state.

The motivation for DCI comes from our observation
that the majority of the potential data races detected by
static data race detection (53% in our evaluation) are
false positives due to only alias analysis inaccuracies and
the inability of static race detection to infer multithreaded
program contexts.

For every potential data race r with racing instructions
r1 and rp, made by threads 77 and T3, respectively, DCI



determines whether the potentially racing memory ac-
cesses to addresses a; and a; made by r| and rp, re-
spectively, may alias with each other (i.e., a; = ay),
and whether these accesses are indeed made by different
threads (i.e., T} # T»). To do this, DCI keeps track of the
address that each potentially racing instruction accesses,
along with the accessing thread’s ID at runtime. Then,
the instrumentation checks to see if at least one pair of
accesses is executed. If yes, the instrumented program
notifies the hive, which promotes r to the next stages of
validation (on-demand data race detection and schedule
steering) on all user machines where r is being watched.
If no access is executed by any instrumented instance of
the program, DCI continues watching r’s potentially rac-
ing memory accesses until further notice.

DCI has negligible runtime overhead (0.01%) on top
of the binary instrumentation overhead (0.77%); there-
fore, it is feasible to have DCI always-on. DCI’s memory
footprint is small: it requires maintaining 12 bytes of in-
formation per potential racing instruction (8 bytes for the
address, 4 bytes for the thread ID). DCI is sound because,
for every access pair that it reports as being made from
different threads and to the same address, DCI has clear
concrete evidence from an actual execution. DCI is of
course not guaranteed to be complete.

3.2.2 On-Demand Data Race Detection

In this section, we explain how on-demand data race de-
tection works; for clarity, we restrict the discussion to a
single potential data race.

On-demand race detection starts tracking happens-
before relationships once the first potentially racing ac-
cess is made, and it stops tracking once a happens-before
relationship is established between the first accessing
thread and all the other threads in the program (in which
case a “NoRace” result is sent to the hive). Tracking also
stops if the second access is made before such a happens-
before relationship is found (in which case a “Race” re-
sult is sent to the hive).

Intuitively, RaceMob tracks a minimal number of ac-
cesses and synchronization operations. RaceMob needs
to track both racing accesses to validate a potential data
race. However, RaceMob does not need to track any
memory accesses other than the target racing accesses,
because any other access is irrelevant to this data race.

Sampling-based data race detection (e.g., PACER [6])
adopts a similar approach to on-demand race detection
by tracking synchronization operations whenever sam-
pling is enabled. The drawback of PACER’s approach is
that it may start to track synchronization operations too
soon, even if the program is not about to execute a rac-
ing access. RaceMob avoids this by turning on tracking
synchronization operations on-demand, when an access
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Figure 3: Minimal monitoring in DCI: For this exam-
ple, DCI stops tracking synchronization operations as
soon as each thread goes once through the barrier.

reported by the static race detection phase is executed.

RaceMob tracks synchronization operations—and
thus, happens-before relationships—using an efficient,
dynamic, vector-clock algorithm similar to DJIT [37].
We maintain vector clocks for each thread and synchro-
nization operation, and the clocks are partially ordered
with respect to each other.

We illustrate in Fig. 3 how the on-demand race de-
tection stops tracking synchronization operations, using
a simple example derived from the fmm program [41]:
firstAccess executes in the beginning of the program in
To (1), and the program goes through a few thousand iter-
ations of synchronization-intensive code 2). Finally, 75
executes secondAccess (3). Tt is sufficient to keep track
of the vector clocks of all threads only up until the first
time they go through the barrier_ wait statement,
as this establishes a happens-before relationship between
firstAccess in Ty and any subsequent access in 77 and 75.
Therefore, on-demand data race detection stops keeping
track of the vector clocks of threads 7, 77, and 7> after
they each go throughbarrier_wait once.

3.2.3 Schedule Steering

The schedule steering phase further improves Race-
Mob’s data race detection coverage by exploring both the
primary and the alternate executions of potentially racing
accesses. This has the benefit of detecting races that may
be hidden by accidental happens-before relationships (as
discussed in §2.2 and Fig. 1).

Schedule steering tries to enforce the order of the rac-
ing memory accesses provided by the hive, i.e., either the
primary or the alternate. Whenever the intended order is
about to be violated (i.e., the undesired order is about to
occur), RaceMob pauses the thread that is about to make
the access, by using a wait operation with a timeout 7, to
enforce the desired order. Every time the hive receives a
“Timeout” from a user, it increments 7 for that user (up to
a maximum value), to more aggressively steer it toward
the desired order, as described in the next section.

Prior work [33, 39, 24] used techniques similar to
schedule steering to detect whether a known datarace can
cause a failure or not. RaceMob, however, uses schedule



steering to increase the likelihood of encountering a sus-
pected race and to improve data race detection coverage.

Our evaluation shows that schedule steering helps
RaceMob to find two data races (one in Memcached and
the other one in Pfscan) that would otherwise be missed.
It also helps RaceMob uncover failures (e.g., data corrup-
tion, hangs, crashes) that occur as a result of data races,
thereby enabling developers to reason about the conse-
quences of data races and fix the important ones early,
before they affect more users. However, users who do
not wish to help in determining the consequences of data
races can easily turn off schedule steering. We discuss
the trade-offs involved in schedule steering in §6.

3.3 Crowdsourcing the Validation

Crowdsourcing is defined as the practice of obtaining
needed services, ideas, or content by soliciting contri-
butions from a large group of people and especially from
the online community. RaceMob gathers validation re-
sults from a large base of users and merges them to come
up with verdicts for potential data races.

RaceMob’s main motivation for crowdsourcing data
race detection is to access real user executions. This
enables RaceMob, for instance, to detect the impor-
tant but often overlooked class of input-dependent data
races [24], i.e., races that occur only when a program is
run with a particular input. RaceMob found two such
races in Aget, and we detail them in §5.1. Crowdsourc-
ing also enables RaceMob to leverage many executions
to establish statistical confidence in the detection verdict.
We also believe crowdsourcing is more applicable today
than ever: collectively, software users have overwhelm-
ingly more hardware than any single software develop-
ment organization, so leveraging end-users for race de-
tection is particularly advantageous. Furthermore, such
distribution helps reduce the per-user overhead to barely
noticeable levels.

Validation is distributed across a population of users,
with each user receiving only a small number of races
to validate. The hive distributes validation tasks, which
contain the locations in the program of two memory ac-
cesses suspected to be racing, along with a particular
order of these accesses. Completing the validation task
consists of confirming, in the end-user’s instance of the
program, whether the indicated ordering of the memory
accesses is possible. If a user site receives more than one
race to validate, it will first validate the race whose racing
instruction is first reached during execution.

There exists a wide variety of possible assignment
policies that can be implemented in RaceMob. By de-
fault, if there are more users than races, RaceMob ini-
tially randomly assigns a single race to each user for
validation. Assigned validation tasks that fail to com-

plete within a time bound are then distributed to addi-
tional users as well, in order to increase the probability
of completing them. Such multiple assignment could be
done from the very beginning, in order to reach a verdict
sooner. The number of users asked to validate a race r
could be based, for example, on the expected severity of
r, as inferred based on heuristics or the static analysis
phase. Conversely, in the unlikely case that there are
more data races to validate than users, the default policy
is to initially distribute a single validation task to each
user, thereby leaving a subset of the races unassigned.
As users complete their validation tasks, RaceMob as-
signs new tasks from among the unassigned races. Once
a data race is confirmed as a true race, it is removed from
the list of data races being validated, for all users.
During schedule steering, whenever a race candidate
is “stubborn” and does not exercise the desired order
despite the wait introduced by the instrumentation, a
“Timeout” is sent to the hive. The hive then instructs
the site to increase the timeout 7, to more aggressively
favor the alternate order; every subsequent timeout trig-
gers a new “Timeout” response to the hive and a further
increase in 7. Once 7 reaches a configured upper bound,
the hive instructs the site to abandon the validation task.
At this point, or even in parallel with increasing 7, the
hive could assign the same task to additional users.
There are two important steps in achieving low over-
head at user sites. First, the timeout 7 must be kept low.
For example, to preserve the low latency of interactive
applications, RaceMob uses an upper bound 7 < 200 ms;
for I/O bound applications, higher timeouts can be con-
figured. Second, the instrumentation at the user site dis-
ables schedule steering for a given race after a first steer-
ing attempt for a given race, regardless of whether it suc-
ceeded or not; this is particularly useful when the racing
accesses are in a tight loop. Steering is resumed when
a new value of 7 comes in from the hive. It is certainly
possible that a later dynamic instance of the potentially
racing instruction might be able to exercise the desired
order, had steering not been disabled; nevertheless, in
our evaluation we found that RaceMob achieves higher
accuracy than state-of-the art data race detectors.
RaceMob monitors each user’s validation workload
and aims to balance the global load across the user pop-
ulation. Rebalancing does not require users to download
a new version of the program, but rather the hive sim-
ply toggles validation on/off at the relevant user sites. In
other words, each instance of the instrumented program
P’ is capable of validating, on demand, any of the races
found during the static phase—the hive instructs it which
race(s) is/are of interest to that instance of P’.
If an instance of P’ spends more time doing data race
validation than the overall average, then the hive redis-
tributes some of that instance’s validation tasks to other



instances. Additionally, RaceMob reshuffles tasks when-
ever one program experiences more timeouts than the av-
erage. In this way, we reduce the number of outliers, in
terms of runtime overhead, during the dynamic phase.

Crowdsourcing offers RaceMob the opportunity to tap
into a large number of executions, which makes it pos-
sible to only perform a small amount of monitoring per
user site without harming the precision of detection. This
in turn reduces RaceMob’s runtime overhead, making it
more palatable to users and easier to adopt.

3.4 Reaching a Verdict

The hive receives from the instrumented program in-
stances three possible results: Race, NoRace, or Time-
out. After aggregating these over all users, the hive
reaches one of three verdicts: “True Race”, “Likely False
Positive”, or “Unknown” (Fig. 4). RaceMob does not
currently quantify its statistical confidence in these ver-
dicts, but this could easily be done.

True Race RaceMob decides a race candidate is a
true race whenever both the primary and the alternate
orders are executed at a user site, or when either of
the orders is executed with no intervening happens-
before relationship between the corresponding mem-
ory accesses. Among the true races, some can be
specification-violating races in the sense of [24] (e.g.,
that cause crash or deadlock). In the case of a crash, the
RaceMob instrumentation catches the SIGSEGV signal
and submits a crash report to the hive. In the case of an
unhandled SIGINT (e.g., the user pressed Ctrl-C), Race-
Mob prompts the user with a dialog asking whether the
program has failed to meet expectations. If yes, the hive
is informed that the enforced schedule leads to a specifi-
cation violation. Of course, users who find this kind of
“consequence reporting” too intrusive can disable sched-
ule steering altogether.

Likely False Positive RaceMob concludes that a po-
tential race is likely a false positive if at least one user
site reported a NoRace result to the hive (i.e., on-demand
race detection discovered a happens-before relationship
between the accesses in the primary or alternate). Race-
Mob cannot provide a definitive verdict on whether the
race is a false positive or not, because there might exist
some other execution in which the purported false posi-
tive proves to be a real race (e.g., due to an unobserved
input dependency). The “Likely False Positive” verdict,
especially if augmented with the number of correspond-
ing NoRace results received at the hive, can help devel-
opers decide whether to prioritize for fixing this partic-
ular race over others. RaceMob continues validation for

Timeout
[6<max]

Timeout
[6=max]

Likely FP

Figure 4: The state machine used by the hive to reach
verdicts based on reports from program instances.
Transition edges are labeled with validation results
that arrive from instrumented program instances;
states are labeled with RaceMob’s verdict.

“Likely False Positive” data races for as long as the de-
velopers wishes.

Unknown As long as the hive receives no results from
the validation of a potential race r, the hive keeps the
status of the race “Unknown”. Similarly, if none of the
program instances report that they reached the maximum
timeout value, r’s status remains ‘“Unknown”. How-
ever, if at least one instance reaches the maximum time-
out value for r, the corresponding report is promoted to
“Likely False Positive”.

The “True Race” verdict is definite: RaceMob has
proof of the race occurring in a real execution of the pro-
gram. The “Likely False Positive” verdict is probabilis-
tic: the more NoRace or Timeout reports are received
by the hive as a result of distinct executions, the higher
the probability that a race report is indeed a false pos-
itive, even though there is no precise probability value
that RaceMob assigns to this outcome.

4 Implementation

We implemented RaceMob in 4,147 lines of C++ (in-
strumentation code) and 2,850 lines of Python (hive and
user-side daemon). To reduce contention to a mini-
mum, the instrumentation uses thread-local data struc-
tures, synchronization operations partitioned by race re-
port, and C++11 weak atomic load/store operations that
rely on relaxed memory ordering. In this way, we avoid
introducing undue contention in the monitored applica-
tion; together with crowdsourcing, this is key to keep-
ing RaceMob’s runtime overhead low and to scaling to a
large number of application threads.

RaceMob can use any data race detector that outputs
data race candidates; preferably it should be complete
(i.e., not miss data races). We use RELAY, which ana-
lyzes programs that are turned into CIL, an intermediate



language for C programs [34]. The instrumentation en-
gine at the hive is based on LLVM [26]. We wrote a 500-
LOC plugin that converts RELAY reports to the format
required by our instrumentation engine.

The instrumentation engine is an LLVM static analysis
pass. It avoids instrumenting empty loop bodies that have
a data race on a variable in the loop condition (e.g., of
the form while (notDone) {}). These loops occur often
in ad-hoc synchronization [46]. Not instrumenting such
loops avoids excessive overhead that results from run-
ning the instrumentation frequently. When such loops
involve a data race candidate, they are reported by the
hive directly to developers. We encountered this situa-
tion in two of the programs we evaluated, and both cases
were true data races (thus validating prior work that ad-
vocates against ad-hoc synchronization [46]), so this op-
timization did not effect RaceMob’s accuracy.

Whereas Fig. 2 indicates three possible results from
user sites (Race, NoRace, and Timeout), our prototype
also implements a fourth one (NotSeen), to indicate that
a user site has not witnessed the race it was expected
to monitor. Technically, NotSeen can be inferred by the
hive from the absence of any other results. However, for
efficiency purposes, we have a hook at the exit of main,
as well as in the signal handlers, that send a NotSeen
message to the hive whenever the program terminates
without having made progress on the validation task.

Our prototype can be obtained from the RaceMob
website (http://dslab.epfl.ch/proj/racemob).

5 Evaluation

In this section, we address the following questions about
RaceMob: Can it effectively detect true races in real
code (§5.1)? Is it efficient (§5.2)? How does it com-
pare to state-of-the-art data race detectors (§5.3) and
interleaving-based concurrency testing tools (§5.4)? Fi-
nally, how does RaceMob scale with the number of
threads (§5.5)?

We evaluated RaceMob using a mix of server, desk-
top and scientific software: Apache httpd is a Web server
that serves around 65% of the Web [17]—we used the
mpm-worker module of Apache to operate it in multi-
threaded server mode and detected races in this spe-
cific module. SQLite [42] is an embedded database
used in Firefox, iOS, Chrome, and Android, and has
100% branch coverage with developer’s tests. Mem-
cached [12] is a distributed memory-object caching sys-
tem, used by Internet services like Twitter, Flickr, and
YouTube. Knot [43] is a web server. Pbzip2 [14] is a
parallel implementation of the popular bzip?2 file com-
pressor. Pfscan [11] is a parallel file scanning tool that
provides the combined functionality of £ind, xargs,

and fgrep in a parallel way. Aget is a parallel vari-
ant of wget. Fmm, Ocean, and Barnes are applications
from the SPLASH suite [41]. Fmm and Barnes simulate
interactions of bodies, and Ocean simulates ocean move-
ments.

Our evaluation results are obtained primarily using a
test environment simulating a crowdsourced setting, and
we also have a small scale, real deployment of RaceMob
on our laptops. For the experiments, we use a mix of
workloads derived from actual program runs, test suites,
and test cases devised by us and other researchers [48].
We configured the hive to assign a single dynamic vali-
dation task per user at a time. Altogether, we have exe-
cution information from 1,754 simulated user sites. Our
test bed consists of a 2.3 GHz 48-core AMD Opteron
6176 machine with 512 GB of RAM running Ubuntu
Linux 11.04 and a 2 GHz 8-core Intel Xeon E5405 ma-
chine with 20 GB of RAM running Ubuntu Linux 11.10.
The hive is deployed on the 8-core machine, and the sim-
ulated users on both machines. The real deployment uses
ThinkPad laptops with Intel 2620M processors and 8 GB
of RAM, running Ubuntu Linux 12.04.

We used C programs in our evaluation because RE-
LAY operates on CIL, which does not support C++
code. Pbzip2 is a C++ program, but we converted it
to C by replacing references to STL vector with an
array-based implementation. We also replaced calls to
new/delete withmalloc/free.

5.1 Effectiveness of Data Race Detection

To investigate whether RaceMob is an effective way to
detect data races, we look at whether RaceMob can de-
tect true data races, and whether its false positive and
false negative rates are sufficiently low.

RaceMob’s data race detection results are centralized
in Table 1. RaceMob detected a total of 106 data races in
ten programs. Four races in Pbzip2 caused the program
to crash, three races in SQLite caused the program to
hang, and one race in Aget caused a data corruption (that
we confirmed manually). The other races did not lead to
any observable failure. We manually confirmed that the
“True Race” verdicts are correct, and that RaceMob has
no false positives in our experiments.

The “Likely FP” row represents the races that Race-
Mob identified as likely false positives: (1) Not alias-
ing are reports with accesses that do not alias to the
same memory location at runtime; (2) Context are re-
ports whose accesses are only made by a single thread at
runtime; (3) Synchronization are reports for which, the
accesses are synchronized, an artifact that the static de-
tector missed. The first two sources of likely false posi-
tives (53% of all static reports) are identified using DCI,
whereas the last source (24% of all static reports) is iden-
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| Program | Apache | SQLite | Memcached| Fmm | Barnes| Ocean | Pbzip2 | Knot | Aget | Pfscan |
| Size (LOC) | 138456 | 113,326 | 19397 | 9,126 | 7580 [ 6,551 | 3,521 | 3,586] 2,053] 2,033 |
| Race candidates | 18] 88 | 7] 176 166 [ 115 ] 65| 65] 24 ] 17 |
Causes hang 0 3 0 0 0 0 0 0 0 0
2 § Causes crash 0 0 0 0 0 0 3 0 0 0
& & [Both orders 0 0 1 5 10 0 2 0 0 0
Single order 8 0 0 53 6 3 4 2 4 2
2 Not aliasing 10 31 0 33 65 13 0 18 2 0
:ﬁ £ [Context 61 10 2 61 28 42 21 28 10 4
~ Synchronization 1 37 3 10 49 47 34 13 7 11
| Unknown | 38 ] 7] 1] 14 | 8 | 10 | 1] 4] 1] 0 |

Table 1: Data race detection with RaceMob. The static phase reports Race candidates (row 2). The dynamic
phase reports verdicts (rows 3-10). Causes hang and Causes crash are races that caused the program to hang or
crash. Single order are true races for which either the primary or the alternate executed (but not both) with no
intervening synchronization; Both orders are races for which both executed without intervening synchroniza-

tion.

tified using on demand race detection. In total, 77% of
all statically detected races are likely false positives.

As we discussed in §3.4, RaceMob’s false negative
rate is determined by its static data race detector. We
manually verified that none of RELAY’s sources of false
negatives (i.e., inline assembly and pointer arithmetic)
are present in the programs in our evaluation. Further-
more, Chimera [27], a deterministic record/replay sys-
tem, relies on RELAY; for deterministic record/replay to
work, all data races must be detected; in Chimera’s eval-
vation (which included Apache, Pbzip2, Knot, Ocean,
Pfscan, Aget), RELAY did not have any false nega-
tives [27]. We therefore cautiously conclude that Race-
Mob’s static phase had no false negatives in our evalua-
tion. However, this does not exclude the possibility that
for other programs there do exist false negatives.

For all the programs, we initially set the timeout for
schedule steering to T = 1 ms. As timeouts fired during
validation, the hive increased the timeout 50 ms at a time,
up to a maximum of 200 ms. Developers may choose to
adapt this basic scheme depending on the characteristics
of their programs. For instance, the timeout could be
increased multiplicatively instead of linearly.

In principle, false negatives may also arise from 7 be-
ing too low or from there being insufficient executions
to prove a true race. We increased T in our experiments
by 4x, to check if this would alter our results, and the
final verdicts were the same. After manually examining
races that were not encountered during dynamic valida-
tion, we found that they were either in functions that are
never called but are nonetheless linked to the programs,
or they are not encountered at runtime due to the work-
loads used in the evaluation.

5.2 Efficiency

The more efficient a detector is, the less runtime over-
head it introduces, i.e., the less it slows down a user’s ap-
plication (as a percentage of uninstrumented execution).
The static detection phase is offline, and it took less than
3 minutes for all programs, except Apache and SQLite,
for which it took less than 1 hour. Therefore, in this sec-
tion, we focus on the dynamic phase.
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Table 2: Runtime overhead of race detection as a per-
centage of uninstrumented execution. Average over-
head is 2.32 %, and maximum overhead is 4.54 %.

741 1.60] 0.10] 454 2.98 ] 2.05] 2.90] 1.27] 3.00] 3.03]

Table 2 shows that runtime overhead of RaceMob is
typically less than 3%. The static analysis used to re-
move instrumentation from empty loop bodies reduced
our worst case overhead from 25% to 4.54%. The high-
est runtime overhead is 4.54%, in the case of Fmm,
a memory-intensive application that performs repetitive
computations, which gives the instrumentation more op-
portunity to introduce overhead. Our results suggest that
there is no correlation between the number of race can-
didates (row 2 in Table 1) and the runtime overhead (Ta-
ble 2)—overhead is mostly determined by the frequency
of execution of the instrumentation code.

The overhead introduced by RaceMob is due to the
instrumentation plus the overhead introduced by valida-
tion (DCI, on-demand detection, and schedule steering).
Fig. 5 shows the breakdown of overhead for our ten tar-



| Program | Apache [ SQLite | Memcached | Fmm | Barnes | Ocean | Pbzip2 | Knot | Aget | Pfscan |
RaceMob 8 3 1 58 16 3 9 2 4 2
TSAN 8 3 0 58 16 3 9 2 2 1
RELAY 118 88 7 176 166 115 65 157 256 17

Table 3: Race detection results with RaceMob, ThreadSanitizer (TSAN), and RELAY. Each cell shows the num-
ber of reported races. The data races reported by RaceMob and TSAN are all true data races. The only true
data races among the ones detected by RELAY are the ones in the row ‘“RaceMob”. To the best of our knowledge,
two of the data races that cause a hang in SQLite were not previously reported.

get programs. We find that the runtime overhead without
detection is below 1% for all cases, except the memory-
intensive Fmm application, for which it is 2.51%. We
conclude that, in the common case when a program is in-
strumented by RaceMob but no detection is performed,
the runtime overhead is negligible; this property is what
makes RaceMob suitable for always-on operation.
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Figure 5: Breakdown of average overhead into

instrumentation-induced overhead and detection-
induced overhead.

The dominant component of the overhead of race de-
tection (the black portion of the bars in Fig. 5) is due to
dynamic data race validation. The effect of DCI is negli-
gible: it is below 0.1% for all cases; thus, we don’t show
it in Fig. 5. Therefore, it is feasible to leave DCI on for
all executions. This can help RaceMob to promote a race
from “Likely FP” to “True Race” with low overhead.

If RaceMob assigns more than one validation task at
a time per user, the aggregate overhead that a user ex-
periences will increase. In such a scenario, the user
site would pick a validation candidate at runtime de-
pending on which potentially racing access is executed.
This scheme introduces a lookup overhead to determine
at runtime which racing access is executed, however, it
would not affect the per-race overhead, because of Race-
Mob’s on-demand race detection algorithm.

5.3 Comparison to Other Detectors

In this section, we compare RaceMob to state-of-the art
dynamic, static, and sampling-based race detectors.

We compare RaceMob to the RELAY static data race
detector [44] and to ThreadSanitizer [40] (TSAN),
an open-source dynamic race detector developed by
Google. We also compare RaceMob to PACER [6], a
sampling-based race detector. Our comparison is in
terms of detection results and runtime overhead. We
do not compare to LiteRace, which is another sampling-
based data race detector, because LiteRace has higher
overhead and lower data race detection coverage than
PACER [31]. The detection results are shown in Table 3.

5.3.1 Comparative Accuracy

We first compared RaceMob to TSAN by detecting races
for all the test cases that were available to us, except
for the program executions from the real deployment of
RaceMob, because we do not record real user execu-
tions. RaceMob detected 4 extra races relative to TSAN:
For Memcached and Pfscan, RaceMob detected, with the
help of schedule steering, 2 races missed by TSAN. Race-
Mob also detected 2 input-dependent races in Aget that
were missed by TSAN (of which one causes Aget to cor-
rupt data), because RaceMob had access to executions
from the real deployment, which were not accessible to
TSAN. These races required the user to manually abort
and restart Aget. For 3 races in Pbzip2, RaceMob trig-
gered a particular interleaving that caused the program to
crash as a result of schedule steering, which did not hap-
pen in the case of TSAN. Furthermore, we have not ob-
served any crash during detection with TSAN; this shows
that, without schedule steering, the consequences of a
detected race may remain unknown.

Note that we give TSAN the benefit of access to all
executions that RaceMob has access to (except the ex-
ecutions from the real users). This is probably overly
generous, because in reality, dynamic race detection is
not crowdsourced, so one would run TSAN on fewer ex-
ecutions and obtain lower data race detection coverage
than shown here. We did not use TSAN’s hybrid data
race detection algorithm, because it is known to report
false positives and therefore lower the accuracy of data
race detection.

RELAY typically reports at least an order of magnitude
more races than the real races reported by RaceMob, with



Program Aggregate overhead | TSAN user-

with RaceMob [ # | perceived

of race candidates x | overhead in

# of users ] in % %
Apache 339.30 25,207.79
SQLite 281.60 1,428.57
Memcached 2.20 3,102.32
Fmm 1,598.08 47,888.07
Barnes 989.36 30,640.00
Ocean 360.70 3,069.39
Pbzip2 377.00 3,001.00
Knot 165.10 751.47
Aget 144.00 184.22
Pfscan 103.20 13,402.15

Table 4: RaceMob aggregate overhead vs. TSAN’s
average overhead, relative to uninstrumented execu-
tion. RaceMob’s aggregate overhead is across all the
executions for all users. For TSAN, we report the aver-
age overhead of executing all the available test cases.

no indication of whether they are true races or not. Con-
sequently, the developers would not have information on
how to prioritize their bug fixing. This would in turn im-
pact the users, because it might take longer to remove the
data races with severe consequences. The benefit of tol-
erating a 2.32% average detection overhead with Race-
Mob is that race detection results are more detailed and
helpful. To achieve a similar effect as RaceMob, static
data race detectors use unsound heuristics to prune some
race reports, and thus introduce false negatives.

5.3.2 Comparative Overhead

RELAY’s static data race detection is offline, and the
longest detection we measured was below 1 hour.

We compared the overheads of dynamic race detec-
tion in RaceMob and TSAN. We chose TSAN because it
is freely available, actively maintained, and works for C
programs. The results are shown in Table 4. The average
overhead of TSAN ranged from almost 49 x for Fmm to
1.84x for Aget. The average overhead of RaceMob per
user is about three orders of magnitude less than that of
TSAN for all three programs.

The aggregate overhead of RaceMob represents the
sum of all the overheads of all the executions at all the
user sites. It represents RaceMob’s overall overhead for
detecting the data races in row 2 of Table 3. We com-
pare RaceMob’s aggregate overhead to TSAN’s overhead
because these overheads represent what both tools incur
for all the races they detect. The aggregate overhead of
RaceMob is an order of magnitude less than the overhead
of TSAN. This demonstrates that mere crowdsourcing of
TSAN would not be enough to reduce its overhead (it
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Figure 6: Contribution of each technique to lower-
ing the aggregate overhead of RaceMob. Dynamic
detection represents detection with TSAN. RaceMob
without DCI and on-demand detection just uses static
data race detection to prune the number of accesses
to monitor.

would still be one order of magnitude away from Race-
Mob), and so the other techniques proposed in RaceMob
are necessary too.

In particular, there are two other factors that contribute
to lower overhead: the static race detection phase and
the lightweight dynamic validation phase. The contri-
bution of each such phase depends on whether the ap-
plication for which RaceMob performs race detection
is synchronization-intensive or not. To show the ben-
efit of each phase, we picked Ocean (synchronization-
intensive) and Pbzip2 (uses less synchronization), and
measured the contribution of each phase.

The results are shown in Fig. 6. This graph shows how
the overhead of full dynamic detection reduces with each
phase. The contribution of static race detection is more
significant for Pbzip2 in comparison to Ocean. This is
because, for Pbzip2, narrowing down the set of accesses
to be monitored has a good enough contribution. On
the other hand, Ocean benefits more from DCI and on-
demand race detection, because static data race detec-
tion is inaccurate in this case (and is mitigated by DCI),
and Ocean employs heavy synchronization (mitigated by
on-demand data race detection). Thus, we conclude that
both the static race detection phase and DCI followed by
on-demand race detection are essential to lowering the
overhead of aggregate race detection in the general case.

We also compared the runtime overhead with PACER,
a sampling-based data race detector. We do not have ac-
cess to a PACER implementation for C/C++ programs;
therefore, we modified RaceMob to operate like PACER.
We allow PACER to have access to the static race de-
tection results from RELAY, and we assumed PACER
starts sampling whenever a potential racing access is per-
formed (as in RaceMob) rather than at a random time.
We refer to our version of PACER as PACER-SA.

PACER-SA’s runtime overhead is an order of



magnitude larger than that of RaceMob for non-
synchronization-intensive programs: 21.56% on average
for PACER-SA vs. 2.32% for RaceMob. RaceMob has
lower overhead mainly because it performs race detec-
tion selectively: it does not perform on-demand race de-
tection for every potential race detected statically, rather
it only does so after DCI has proven that the relevant ac-
cesses can indeed alias and that they indeed can occur
in a multithreaded context. Table 1 shows that DCI ex-
cludes on this basis more than half the race candidates
from further analysis.

For synchronization-intensive programs, like Fmm,
Ocean and Barnes, PACER-SA’s overhead can become up
to two orders of magnitude higher than that of RaceMob.
This is due to the combined effect of DCI and on-demand
race detection. The latter factor is more prominent for
synchronization-intensive applications. To illustrate this,
we picked Fmm and used RaceMob and PACER-SA to
detect races. For typical executions of 200 msec, where
we ran Fmm with its default workload, Fmm performed
around 15,000 synchronization operations, which incur
a 200% runtime overhead with PACER-SA compared to
4.54% with RaceMob.

We conclude that, even if PACER-SA’s performance
might be considered suitable for production use for non-
synchronization-intensive programs, it is prohibitively
high in the case of synchronization-intensive programs.
This is despite giving the benefit of a static race detec-
tion phase to vanilla PACER. PACER could have lower
overhead than RaceMob if it stopped sampling soon af-
ter having started and before even detecting a data race,
but it would of course also detect fewer data races.

This section showed that RaceMob detects more true
races than state-of-the art detectors while not introducing
additional false negatives relative to what the static race
detectors already do. It also showed that RaceMob’s run-
time overhead is lower than state-of-the-art detectors.

5.4 Concurrency Testing Tools

A concurrency testing tool can be viewed as a type of
race detector, and vice versa. In this vein, one could
imagine using RaceMob for testing, by using schedule
steering (§3.2.3) to explore races that may otherwise be
hard to witness and that could lead to failures. As a sim-
ple test, we ran SQLite with the test cases used in our
evaluation 10,000 times and never encountered any hang
when not instrumented. When running it under Race-
Mob, we encountered 3 hangs within 176 executions.
Similarly, we ran the Pbzip?2 test cases 10,000 times and
never encountered a crash, but RaceMob caused the oc-
currence of 4 crashes within 130 executions. This sug-
gests that RaceMob could also be used as a testing tool
to quickly identify and prioritize data race bugs.

Thread T, Thread T, Thread T, Thread T,
x = 0; 4
signal (c)
lock (1) sleep sleep
HB > wait (c)
unlock (1)
TIME
I_Plock(l)
signal (c)
unlock (1)
HB> ait (c)
[bench; | x = 1;
Thread T, Thread T, Thread T,Thread T, Thread T,
x = 0; x = 0; if (inl)
signal (c) . x = 1;
lock (1) sleep|ly _ 0; if(in2)
HB S wait (c) v = 1;
unlock (1) z = 0; if(in3)
HB>1lock (1) y - 1:
x = 1; !
bench; unlock (1) bench,

Figure 7: Concurrency testing benchmarks: bench;
is shown in Fig. 1, thus not repeated here. In bench,,
the accesses to x in 7 and 7, can race, but the long
sleep in 75 and 75 causes the signal-wait and lock-
unlock pairs to induce a happens-before edge between
Ty and T5. bench; has a similar situation to bench,. In
benchy, the accesses to variables x,y, z from 7j and T;
are racing if the input is either in,, in,, or ins.

Existing concurrency testing tools perform an analysis
similar to schedule steering to detect and explore races.
In the rest of this section we compare RaceMob to two
such state-of-the-art tools: RaceFuzzer [39] and Por-
tend [24]. These tools were not intended for use in pro-
duction, and thus have high overheads (up to 200x for
RaceFuzzer and up to 5,000 % for Portend), so we do not
compare on overhead, but focus instead on comparing
their respective data race detection coverage.

RaceFuzzer works in two stages: First, it uses impre-
cise hybrid race detection [36] to detect potential races
in a program and instrument them. Second, it uses a
randomized analysis to determine whether these poten-
tial races are actual races. Portend uses precise happens-
before dynamic race detection and explores a detected
race’s consequences along multiple paths and schedules.

To compare data race detection coverage, we use
benchmarks bench;, bench,, benchj (taken from Google
TSAN) and benchy (taken from the Portend paper [24]).
The benchy benchmark has three races that only manifest
under specific inputs inj, inp, and in3. Simplified ver-
sions of the benchmarks are shown in Fig. 7 and Fig. 1.

The RaceFuzzer implementation is not available, so
we simulate it: we use TSAN in imprecise hybrid
mode, as done in RaceFuzzer, and then implement Race-
Fuzzer’s random scheduler. The results appear in Ta-
ble 5. For bench;, bench;, and benchsz, RaceFuzzer per-
forms as well as RaceMob in terms of data race detection
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Figure 8: Data race detection coverage for RaceMob
vs. RaceFuzzer. To do as well as RaceMob, Race-
Fuzzer must have a priori access to all test cases (the
RaceFuzzer; curve).

coverage. For benchy, RaceFuzzer’s data race detection
coverage varies between 0/3 —3/3.

| Tool | bench; | bench, | bench; | bench, ]
RaceMob 1/1 1/1 1/1 3/3
RaceFuzzer 1/1 1/1 1/1 | 0-3/3
Portend 0/1 0/1 0/1 3/3

Table 5: RaceMob vs. concurrency testing tools: Ra-
tio of races detected in each benchmark to the total
number of races in that benchmark.

To understand this variation, we run the following ex-
periment: we assume that initially neither tool has access
to any test case with input iny, inp, or in3. Thus, Race-
Fuzzer cannot detect any race, so it cannot instrument
the racing accesses, and generates an instrumented ver-
sion of benchy we call RaceFuzzery. RaceMob, however,
detects all three potential races in benchy, thanks to static
race detection, and instruments benchy at the potentially
racing accesses. If we allow RaceFuzzer to see a test with
input ing, then it generates a version of benchy we call
RaceFuzzer ; if we allow it to see both a test with input
in and iny, then it generates RaceFuzzer;. RaceFuzzer;
corresponds to having seen all three inputs.

We run both RaceFuzzer’s and RaceMob’s versions of
the instrumented benchmark and plot data race detec-
tion coverage in Fig. 8. When run on random inputs
different from iny, iny, and in3, neither tool finds any
race (0/3), as expected. When given input in;, RaceMob
finds the race, RaceFuzzery doesn’t, but RaceFuzzer;,
RaceFuzzer;, and RaceFuzzers do. And so on.

Of course, giving RaceFuzzer the benefit of access
in advance to all test cases is overly generous, but this
experiment serves to illustrate how the tool works. In
contrast, RaceMob achieves data race detection cover-
age proportional to the number of runs with different in-
puts iny, inp, ins, irrespective of which test cases were

available initially, since it performs static race detection
to identify potential races. RaceFuzzer could potentially
miss all input-dependent races even when the program
under test is run with the inputs that expose such races,
because it may have missed those races in its initial in-
strumentation stage. However, this is not a fundamen-
tal shortcoming: it is possible to mitigate it by replacing
RaceFuzzer’s dynamic data race detection phase with a
static data race detector.

The results of the comparison with Portend appear
in Table 5. Portend discovered all the input-dependent
races in benchy, but failed to detect the races in the other
benchmarks, because it employs a precise dynamic de-
tector. RaceMob detects all three test cases for benchy,
as well as all the races in all the other benchmarks.

5.5 Scalability with Application Threads

RaceMob uses atomic operations to update internal
shared structures related to dynamic data race valida-
tion and signal-wait synchronization to perform schedule
steering; in this section, we analyze the effect these op-
erations have on RaceMob’s scalability as the number of
application threads increases.

We configured multiple clients to concurrently request
a 10 MB file from Apache and Knot using the Apache
benchmarking tool ab. For SQLite and Memcached, we
inserted, modified, and removed 5,000 items from the
database and the object cache, respectively. We used
Pbzip2 to decompress a 100 MB file. For Ocean, we sim-
ulated currents in a 256 x 256 ocean grid. For Barnes, we
simulated interactions of 16,384 bodies (default number
for Barnes). We varied the number of threads from 2 —
32. For all programs, we ran the instrumented versions
of the programs while performing data race detection and
measured the overhead relative to uninstrumented ver-
sions on the 8-core machine.

T
2 threads
I 4 threads
8 threads
16 threads
32 threads

N W A 000 N
T
1

Overhead
[% of uninstrumented execution]
T
1

Apache SQLite Memcached Barmes  Ocean  Pbzip2 Knot

Figure 9: RaceMob scalability: Induced overhead as
a function of the number of application threads.

Fig. 9 shows the results. We expected RaceMob’s
overhead to become less visible after the thread count



reached the core count. We wanted to verify this, and
that is why we used the 8-core machine. For instance,
for Apache the overhead is 1.16% for 2 threads, it
slightly rises to its largest value of 2.31% for 8 threads,
and then it decreases as the number of threads exceeds
the number of cores. We observe a similar trend for
all other applications. We conclude that RaceMob’s
runtime overhead remains low as the number of threads
in the test programs increases.

6 Discussion

In this section we discuss some remaining open questions
and RaceMob’s limitations.

Why would application users want to use RaceMob?
RaceMob can make the life of some users harder: it in-
troduces some overhead (in our opinion negligible), and
the use of schedule steering (§3.2.3) may trigger races
with unpleasant effects that would otherwise not occur
(although schedule steering is a configurable option). On
the upside, once a user encounters a true race, the devel-
oper immediately learns about it and can fix it, instead of
having to wait for users to report it and then spend time
diagnosing it (which can take on the order of weeks [16]).
This benefits the entire user community, and it amortizes
the cost of detection across all members. For individ-
ual motivation, we envision developers offering rewards
to users who find true races, similar to how users are
rewarded in distributed DES and RSA cracking efforts
or in Folding@home [1] or SETI@home [2]. Rewards
could consist of free upgrades or trials, or “badges of
honor” in the case of open-source software. RaceMob
can additionally be employed for beta testers (e.g., Win-
dows 7 had over 8 million beta testers [3]).

Per-user vs. aggregate overhead In order for the user
community to get the benefits outlined above, it expends
in aggregate a fair amount of CPU time and energy, even
though to the individual user this is likely negligible.
It is unclear how to quantify this trade-off, when this
expenditure is set against the costs of delayed fixing of
data race bugs. For example, multiple users losing data
due to a given race may expend more energy recovering
their lost work than participating in RaceMob. Some
failures, such as security breaches using a race-based
exploit [47], may have exorbitant cost. We do expect
aggregate overhead for a given program to reduce over
time and asymptotically reach zero, as data races are
progressively eradicated from the software, so perhaps
the trade-off is favorable to RaceMob in the long run.

Will RaceMob replace in-house testing? We view
RaceMob as complementing existing testing techniques
and making them more potent. For example, RaceMob
can augment both the code and schedule coverage ob-
tained by in-house testing, by “harvesting” executions
that emerge naturally during real use but that are not part
of the developers’ test suite.

Will RaceMob encourage developers to release buggy
software? We doubt developers would start relying on
RaceMob to find bugs they could otherwise find on their
own. Today developers release software with data race
bugs not because they have an incentive to do so, but be-
cause they lack the right tools to productively find these
bugs. We believe most developers want to improve their
code, and RaceMob offers them help in deploying soft-
ware that is free of data race bugs.

There is an exponentially large space of program
states and schedules; can users’ hardware make a dif-
ference? RaceMob’s static race detection phase sub-
stantially reduces the exponential search space in code
paths and possible schedules. In fact, the space that
users’ machines need to search is related more to the
number of race candidates output by the static detector
than by the size of the program. Note that RaceMob does
not have to explore all possible paths and thread sched-
ules, but rather only those that are relevant: the ones ex-
perienced by real users. Finally, an application’s user
population typically has a lot more hardware at its dis-
posal than what the developer can devote to testing, es-
pecially with the rise of mobile devices (by the end of
this year, the number of mobile devices is expected to
surpass the size of the human population [8]).

Which are the limitations of RaceMob? Like any
race detector, RaceMob must be explicitly made aware
of all synchronization constructs, otherwise it may report
legitimate synchronization constructs (e.g., the use of
lock-free algorithms) as races. RaceMob recognizes the
ad-hoc synchronization mechanisms described in [46].
A crowdsourced framework like RaceMob has certain
privacy implications. For the case of data race detection,
we believe these implications are minimal, but we are
nevertheless looking into ways of quantifying the bal-
ance between privacy and the amount of execution in-
formation sent from users to the hive. Enabling an ap-
plication to be controlled remotely by the hive may be
problematic as well, though the developer (who operates
the hive) is typically trusted by the users of his/her code.
Finally, RaceMob has no provisions for thwarting ma-
licious users who send false results to the hive in order
to fool it. One possibility is to cross-check results across



multiple reporting users, to achieve some statistical con-
fidence in their veracity. Alternatively, the hive could
“test” individual users by sending validation tasks for
races it already has a certain verdict for, and checking if
the user validation result is correct; dishonest users can
be removed from the system. Other options include trust-
ing only verified user accounts (as in the case of verified
beta testers) as well as using various reputation systems.

7 Related Work

RaceMob’s crowdsourcing approach is in part inspired
by cooperative bug isolation (CBI) [28]. CBI collects
various information about program execution at user
sites from both failing and successful runs to identify the
likely causes of failures. The first system that detected
concurrency bugs in a collaborative setup was CCI [21].
CCI extended CBI to gather information pertaining to
concurrency bugs. Both CBI and CCI detect bugs that
cause software failures. RaceMob targets a different
problem: detecting all data races in a program, most of
which only rarely cause visible failures.

RaceMob is inspired in part by Windows Error Re-
porting (WER) [15], a large collaborative error reporting
system developed by Microsoft. WER collects informa-
tion (e.g., coredumps) after a crash, in order to prioritize
potential bugs. In some sense, WER implicitly crowd-
sources program executions and gathers reports after
crashes, then formulates a hypothesis about a potential
bug. This hypothesis has to be validated manually. Race-
Mob reverses this process: it formulates the hypothesis
prior to crowdsourcing (based on static analysis) and
then uses crowdsourcing to automatically validate it.

Crowdsourcing has the same effect as sampling, in
that it reduces the runtime overhead either by perform-
ing data race detection using temporal sampling (for a
certain time interval, e.g., as in PACER [6]), or using spa-
tial sampling (for certain accesses in the program, e.g.,
as in LiteRace [31]). RaceMob achieves spatial sam-
pling by crowdsourcing and temporal sampling by on-
demand data race detection. RaceMob’s static race de-
tection phase further improves upon traditional tempo-
ral sampling by allowing RaceMob to determine when to
start sampling.

Prior research combined static and dynamic analysis
to perform data race detection. Goldilocks [9] and Choi
et al. [7] used a static thread escape analysis phase
to eliminate the need to track thread-local variables.
RaceMob takes a similar approach to these tools, but
uses a complete detecto—which is more accurate than
just using thread escape analysis—to detect all data
races. It then uses on-demand data race detection and
crowdsourcing to achieve lower runtime overhead than
these tools.

Schedule steering was previously used to analyze the
consequences of known data races (i.e., data races pre-
viously detected using dynamic detectors) [33, 39, 24].
However, schedule steering by itself is not enough to
find a data race—either because the accesses may need
to happen closer together in time, or because the ac-
cesses will only race in particular environments and in-
puts. RaceMob focuses on accurately detecting data
races (rather than just analyzing their consequences)
by using on-demand data race detection in addition to
schedule steering, and uses static race detection results as
hints for which memory accesses to reorder during race
detection.

Exterminator [35] was the first system to propose col-
laborative bug fixing for memory errors. Aviso [30] pro-
posed a collaborative approach for fixing concurrency
bugs. Although RaceMob focuses on collaborative de-
tection instead of fixing, it could be integrated with
CFix [22], an automated concurrency bug fixing tool, to
avoid racing thread interleavings.

8 Conclusion

In this paper, we described RaceMob, a crowdsourcing-
based approach for better data race detection: it em-
ploys static analysis to find candidates for data races, and
then dynamically validates these candidates by leverag-
ing execution information from all its users. This two-
phase static—-dynamic approach for detecting data races
was shown to work on several real-world programs and
systems; it has higher accuracy and lower overhead than
the state of the art. We described a new algorithm for dy-
namically validating data races on-demand, and a crowd-
sourcing framework that, unlike traditional testing, taps
directly into real user executions to detect data races.
Overall, RaceMob detected 106 real data races in ten pro-
grams, with an average runtime overhead of 2.32%.
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