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Abstract—Debugging data-intensive distributed appli-
cations running in datacenters is complex and time-
consuming because developers do not have practical ways
of deterministically replaying failed executions. The reason
why building such tools is hard is that non-determinism
that may be tolerable on a single node is exacerbated in
large clusters of interacting nodes, and datacenter appli-
cations produce terabytes of intermediate data exchanged
by nodes, thus making full input recording infeasible.

We present ADDA, a replay-debugging system for
datacenters that has lower recording and storage overhead
than existing systems. ADDA is based on two tech-
niques: First, ADDA provides control plane determinism,
leveraging our observation that many typical datacenter
applications consist of a separate “control plane” and
“data plane”, and most bugs reside in the former. Second,
ADDA does not record “data plane” inputs, instead it
synthesizes them during replay, starting from the appli-

cation’s external inputs, which are typically persisted in
append-only storage for reasons unrelated to debugging.

We evaluate ADDA and show that it deterministically
replays real-world failures in Hypertable and Memcached.

Keywords—debugging; record-replay; reliability; data-
center; storage;

I. INTRODUCTION

More and more applications that we use on a daily
basis, such as Web search, e-mail, social networks, and
video sharing are hosted in the cloud. Furthermore,
many businesses either use cloud-based services such
as Salesforce and Google Docs, or deploy their applica-
tions in private clouds. These services often use cluster
computing frameworks such as MapReduce, BigTable,
and Memcached that run on commodity hardware clus-
ters consisting of as many as thousands of machines.
As users are growing more dependent on these hosted
services, the frameworks and applications employed by
the services need to be highly robust and available. To
maintain high availability, it is critical to diagnose the
failures and quickly debug these applications.

Unfortunately, debugging datacenter applications is
hard. When an application failure occurs, the causality
chain of the failure is often difficult to trace, as it may
span many nodes. Moreover, such applications typically
operate on many terabytes of data daily and are required

to maintain high throughput, which makes it hard to
record for potential later debugging what they do.

A cluster-wide replay-based solution is the natural
option for debugging, as it offers developers the global
view of the application: by deterministically replaying
a previously-encountered failure, one can use a debug-
ger to zoom in on various parts of the system and
understand why the failure occurred. If a cluster-wide
replay is not possible, the developer has to reason about
global (i.e., distributed) invariants, which in turn can
only be correctly evaluated at consistent snapshots in the
distributed execution. Getting such consistent snapshots
requires either a global clock (which does not exist in
clusters of commodity hardware) or complex algorithms
to capture consistent snapshots ([1]).

Developing an automated record-replay debugger is
harder for datacenter applications than for a single node,
due to the inherent recording overheads. First, these
applications are typically data-intensive, and the volume
of data they process increases proportionally with the
size of the system, the power of individual nodes (e.g.,
more CPUs means more data flowing through), and
ultimately with the success of the business. Record-
ing to persistent storage such large volumes of data
is impractical. A second reason is the abundance of
sources of non-determinism. Coordinating cluster nodes
to perform a faithful replay of a failed execution requires
having captured all critical causal dependencies between
control messages exchanged during execution. Knowing
a priori which dependencies matter is undecidable. A
third challenge is that, at large scale, the runtime over-
head of a record-replay system has important financial
consequences: making up for a 50% throughput drop
requires doubling the size of the datacenter. When
operating large datacenters it becomes cheaper to hire
more engineers to do manual debugging than to increase
the size of the datacenter to tolerate the overhead of an
automated record-replay system.

Existing work in distributed system debugging does
not offer solutions to these challenges. Systems like
Friday [2] address distributed replay, but have high
overhead for data-intensive datacenter applications.

To address these challenges, we developed ADDA,
an automated replay-based debugging system for dat-
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acenter applications. Three ideas make ADDA more
efficient than existing systems. First, a large class of
datacenter applications are split into a control plane and
a data plane, and most bugs reside in the former [3],
so focusing on deterministically replaying the control
plane enables the debugging of most problems. Second,
there is a class of datacenter applications for which
external inputs are anyway persisted in append-only
storage (e.g., for compliance, fault tolerance) and thus
are available when debugging. When combined with the
ability to replay the control plane, this property allows
ADDA to do record-replay by recording just a small
subset of all inputs. Third, with suitable recording, it
is possible to deterministically synthesize (regenerate)
all intermediate data sets during debugging, thus elim-
inating the need to record intermediate data.

In this paper, we make three contributions:

• A technique for recording the behavior of dat-
acenter applications with lower overhead than
existing systems;

• A technique for synthesizing intermediate data
to enable replay-based debugging, in a way that
is not affected by nondeterminism;

• A technique called reduced-scale replay, which
allows replaying a failed execution that oc-
curred in the production cluster on a smaller
cluster or on a subset of the original cluster.

In the rest of the paper, we give an overview (§II),
present ADDA’s design (§III) and prototype (§IV), we
evaluate ADDA (§V), discuss related work (§VI), and
end with a discussion (§VII) and conclusions (§VIII).

II. OVERVIEW

Many replay debugging systems have been built over
the years, and experience indicates that they are invalu-
able in reasoning about nondeterministic failures [2],
[4], [5], [6], [7], [8], [9], [10], [11]. However, we believe
no existing system meets the demands of the datacenter
environment. We discuss these requirements next.

A. Design Requirements

a) Whole-System Replay: The system should be
able to replay the behavior of all nodes in the distributed
system, if desired. Every layer of the stack has to be
replayed—for instance, merely using network sniffing
tools like tcpdump and tcpreplay is insufficient to con-
struct the global view that is required to understand what
occurred at the system level.

b) Low Recording Overhead: Large datacenters
consist of hundreds or thousands of machines. In such
large systems, even a moderate recording overhead can
translate into significant operation and capital costs.
Thus, low recording overhead should be a major goal
when replay-debugging datacenter applications.

c) Decoupled Debugging / Availability Concerns:
Improving the “debuggability” of applications should
not hurt service availability, especially for 24×7 ser-
vices. This means that, upon failure, the operator’s main
concern should be to bring the system back up, not to
keep the system in a state that will enable developers
to debug the problem.

d) Minimal Setup Assumptions: A replay-
debugging system should record and replay user-level
applications with no administrator or developer effort.
It should not require special hardware, languages, or
source-code analysis, and no modifications to the appli-
cations themselves. Datacenters may have components
that must be treated as black boxes (e.g., if source code
is not available), but still need to be replayable. Special
languages and source-code modifications (e.g., custom
APIs and annotations, as used in R2 [12]) are cum-
bersome to learn, maintain, and retrofit onto existing
datacenter applications. Source-code analysis is often
not possible, since some components may be closed-
source. Finally, datacenter applications operate in a
“mixed world”: while the nodes running the application
can be assumed to be recorded, other nodes (e.g., those
running DNS servers) may not be.

e) Debug Determinism: To be useful, a replay-
debugging system must reproduce a production failure
and its root cause [13] for most failures, but it need
not reproduce absolutely all failures to be considered
useful (e.g., faithful reproduction of control plane logic
is often sufficient for datacenter systems [3]).

B. Ideas Enabling Our Solution

1) Control-Plane Determinism Suffices: The key
idea is that, for debugging datacenter applications, we
do not need a precise replica of the original run. Rather,
it typically suffices to reproduce some run that exhibits
the same control plane behavior as the original.

The control plane of a datacenter application is the
code that manages data flow and implements operations
like locating a particular block in a distributed filesys-
tem, maintains replica consistency in a meta-data server,
or updates the routing table of a software router. Control
plane operations tend to be complicated: they account
for over 99% of the bugs in datacenter applications [3].
On the other hand, the control plane accounts for less
than 1% of all datacenter network traffic [3].

In contrast, datacenter application debugging rarely
requires reproducing the same data plane behavior [3].
The data plane is the code that processes the data (e.g.,
that computes checksums of an HDFS filesystem block
or searches for a string as part of a MapReduce job). In
contrast with the control plane, data plane operations are
simple: they account for under 1% of the code in a dat-
acenter application [3] and are often part of well-tested
libraries. Yet, the data plane generates and processes
over 99% of datacenter traffic [3]. Thus, unless the root
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Fig. 1: ADDA’s architecture. It uses the recorded control
plane inputs and the persistently stored data plane inputs
to generate, in a best effort fashion, a control-plane
deterministic run.

cause is in the data plane code, reproducing the same
data plane behavior is not necessary.

We observed that the separation between control
plane and data plane holds for a representative class
of datacenter applications, such as CloudStore [14],
MapReduce/Hadoop [15], Memcached [16], Cassan-
dra [17], and Hypertable [18]. However, for many other
datacenter applications, the 1%-99% separation may not
hold, therefore ADDA does not achieve low runtime
overhead for these applications.

Our hypothesis is that by deterministically replaying
the control plane, ADDA can reproduce most bugs with
low-overhead recording. We verified this hypothesis for
the bugs in our evaluation.

2) Data Plane Inputs Are Persistently Stored: The
data that enters the system from outside is often stored
persistently in append-only file systems, such as HDFS.
Thus, we can assume that these external inputs are
available during debugging. Thus, ADDA does not need
to record these external inputs. This is a crucial property
of a large number of popular datacenter applications, as
it obviates ADDA from recording prohibitive amounts of
data. ADDA mainly targets such applications.

III. DESIGN

Having described the main insights behind our ap-
proach, we now describe ADDA’s design.

A. Approach

The complex yet low data-rate nature of the control-
plane motivates ADDA’s approach of relaxing its deter-
minism guarantees. Specifically, ADDA aims for control
plane determinism—a guarantee that replayed runs will
exhibit identical control plane behavior to that of the
original run. Control plane determinism makes data-
center replay practical because it circumvents the need
to record data plane communications (which have high
data-rates), thereby allowing ADDA to efficiently record
the execution on all nodes in the system.

ADDA’s architecture is given in Fig. 1. It operates in
two phases: record mode and replay mode.

1) Record Mode:

a) What ADDA records: All ADDA-enabled nodes
record control plane nondeterministic events, by which
we mean the ordering and content of control plane
inputs and outputs (I/O). We consider thread schedul-
ing order and asynchronous control-flow changes (e.g.,
signals and preemptions) to be part of the control
plane, thus they are also recorded. Control plane non-
determinism is recorded by all nodes regardless of
whether the control plane I/O originated externally (i.e.,
from an untraced node) or internally (i.e., from an
ADDA-traced node).

b) What ADDA does not record: ADDA-enabled
nodes do not record data plane I/O, regardless of
whether the data plane I/O is external or internal. ADDA
assumes that external data plane I/O is stored persis-
tently and is available during replay. ADDA does not
assume that internal data plane I/O is stored persistently.
Instead, it attempts to regenerate it during replay.

c) The recording log: ADDA stores the recording
in a local log file on each node and asynchronously
transfers the logs to a distributed file system such as
HDFS (see Fig. 1). If the datacenter application supports
consistent snapshots, the logs can be truncated, such that
replay can start from the latest snapshot instead of the
beginning of the recording.

2) Replay Mode: ADDA’s Distributed Replay En-
gine (DRE) uses the recorded control plane I/O and
the persistently-stored data plane input to generate a
control-plane deterministic run. The replay is best effort:
DRE guarantees replay of control plane nodes (the most
complex and bug-prone components), but it may not be
able to replay multi-processor intensive data plane nodes
(the least complex and relatively bug-free component).
Toward ADDA’s goal of best-effort replay, the DRE was
designed using the following principles:

a) Synthesize missing non-deterministic inputs
when possible: While recording control plane non-
determinism is sufficient for replaying control plane
nodes in a distributed application, mixed control/data
plane nodes (e.g., a Hypertable range server) require
recording data plane nondeterminism to determinis-
tically replay even their control plane components.
The DRE attempts to recompute this unrecorded non-
determinism in a best-effort fashion using Data Plane
Synthesis (§III-C).

b) Provide a platform for automated debugging:
Going beyond replay, the DRE also serves as a platform
for writing powerful replay-mode analysis plugins for
sophisticated distributed analyses, such as distributed
data flow and global invariant checking (§III-D).
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B. Recording Control Plane Non-determinism

To record control plane non-determinism, ADDA

must first identify it. In the general case of an arbitrary
application, manually identifying is hard – it usually
requires a deep understanding of program semantics,
and, in particular, whether or not the nondeterminism
emanates from control plane code.

The key observation behind ADDA is that, in its
target domain of datacenter applications, the control
plane can often be manually identified with ease, and,
if not, automatic methods can be successfully applied.
Thus, ADDA semi-automatically classifies control plane
nondeterminism and then interposes on communication
channels (§III-B1) to record the ordering and the values
of the inputs only for channels classified as control
plane (§III-B2).

1) Interposing on Channels: ADDA interposes on
commonly used inter-CPU communication channels,
regardless of whether these channels connect CPUs on
the same node or on different nodes.

Socket, pipe, tty, and file channels can be easily in-
terposed efficiently, as they operate through well-defined
interfaces (system calls). Interposition is a matter of in-
tercepting these system calls, keying the channel on the
file-descriptor used in the system call (e.g., as specified
in sys_read() and sys_write()), and observing
channel behavior via system call return values. Other
sources of non-determinism (e.g., local time and random
number generators) are recorded similarly.

Shared memory channels are harder to interpose
efficiently because this requires detecting sharing (i.e.,
when a value written by one CPU is later read by an-
other CPU). A naive approach would be to maintain per-
memory-location meta-data about CPU accesses. This
is expensive, since it requires intercepting all memory
accesses.

To efficiently detect inter-CPU sharing, ADDA em-
ploys the page-based Concurrent-Read Exclusive-Write
(CREW) memory sharing protocol, first suggested in the
context of deterministic replay by Instant Replay [19]
and later implemented and refined by SMP-ReVirt [7].
Page-based CREW leverages page-protection hardware
found in modern MMUs to detect concurrent accesses to
shared pages. When CREW detects concurrent accesses
on a shared page, it serializes the accesses to the
page. Details of our CREW implementation are given
in §IV-B1.

If the application does not have internal non-
determinism caused by data races, ADDA can just record
the order of synchronization operations, with substan-
tially lower overhead. However, the applications we
evaluated ( §V) do have data races.

2) Classifying Channels: Two observations underly
ADDA’s semi-automated classification method. The first

is that, for datacenter applications, control plane chan-
nels are easily identified. For example, Hypertable’s
master and lock server are entirely control plane nodes
by design, and thus all their channels are control plane
channels. The second observation is that control plane
channels, though bursty, operate at low data-rates [3].
For example, Hadoop [15] job nodes see little com-
munication since they are mostly responsible for job
assignment – a relatively infrequent operation.

ADDA leverages the first observation by allowing
the user to specify or annotate control plane channels.
The annotations may be at channel granularity (e.g., all
communication to configuration file x), or at process
granularity (e.g., the master is a control plane process).

It may not be practical for the developer to annotate
all control plane channels. Thus, to aid completeness,
ADDA attempts to automatically classify channels. More
specifically, ADDA leverages the second observation by
using a channel’s data-rate profile, including bursts,
to automatically infer if it is a control plane channel.
ADDA employs a simple token-bucket classifier to detect
control plane channels: if a channel does not overflow
the token bucket, then ADDA deems it to be a control
channel, otherwise ADDA assumes it is a data channel.

The token-bucket classifiers on socket, pipe, tty, and
file channels are parameterized with a token fill rate of
100KBps and a maximum size of 1MB.

Shared-memory channels: The data-rates here are
measured in terms of CREW-fault rate (the rate at
which CREW serializes accesses to shared pages). The
higher the fault rate, the greater the amount of sharing
through that page. We experimentally derived token-
bucket parameters for CREW control plane communi-
cations: a bucket rate of 150 faults/second and a burst
of 1000 faults/second were enough to identify control
plane sharing (§V).

A key limitation of our automated classifier is that
it provides only best-effort classification: the heuris-
tic of using CREW page-fault rate to detect control
plane shared-memory communication can lead to false
negatives (and, unproblematically, false positives), in
which case, control plane determinism cannot be guar-
anteed. In particular, the behavior of legitimate but
high data-rate control plane activity on shared-memory
channels (e.g., spin-locks) may not be captured, which
may preclude correct replay. In our experiments, how-
ever, such false negatives were rare due to the fact
that user-level applications (especially those that use
pthreads) rarely employ busy-waiting: on a lock
miss, pthread_mutex_lock() will await notifica-
tion of lock availability in the kernel instead of spinning.

3) Taming False Sharing with Best-Effort CREW:
Under certain workloads, the CREW protocol can incur
high page-fault rates that will seriously degrade perfor-
mance. Often this is due to legitimate sharing between
CPUs, such as when CPUs contend for a spin-lock.
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More often, however, the sharing is false (a consequence
of unrelated data structures being housed on the same
page). In this case, CPUs do not actually communicate
on a channel.

Regardless of the cause, ADDA uses a simple strategy
to avoid high page-fault rates. When ADDA observes that
the fault rate results in token-bucket overflow (suggest-
ing that the page is a data plane channel), it removes
all page protections from that page and subsequently en-
ables unbridled access to it, thereby effectively turning
CREW off for that page. CREW is then re-enabled for
the page several seconds in the future to determine if
data-rates have changed. If not, CREW is disabled once
again, and the cycle repeats. When CREW is selectively
disabled, we can still provide replay, but only if the data-
race freedom assumption is met for those pages (ADDA
records the lock order to handle this case).

C. Providing Control Plane Determinism

The central challenge faced by ADDA’s Distributed
Replay Engine (DRE) is that of providing a control-
plane deterministic view of program state despite not
having recorded the original data plane inputs.

To address this challenge, the DRE employs a novel
technique we call Data Plane Synthesis (DPS). DPS
works under the assumption that external data plane
inputs are persistently stored in append-only storage by
the application and thus available later during replay
(for example, click logs that get saved for further
analytics). DPS regenerates the communication on data
plane channels using the stored data plane inputs. DPS
enables ADDA to synthesize data plane inputs during
replay without recording them in production.

1) Regenerating Intermediate Inputs: The external
data plane inputs can be used to replay those processes
that read them directly (i.e., front-end systems). Typical
front-end systems transform these external inputs and
pass them to internal/intermediate nodes. ADDA does
not record these intermediate inputs, instead it regen-
erates them using the classic technique of order-based
replay [19]: given the original inputs to a computation,
and the ordering of channel communications on a node,
one can deterministically reproduce the original outputs
of that node.

The key challenge is to apply order-based replay
to all internal/recorded nodes. We describe inductively
how ADDA provides order-based replay:

Base Case. Replay the data plane outputs of a single
node, given access to all inputs. As long as shared
memory non-determinism on the node is replayed, the
node will generate the same data plane outputs as the
original execution.

Inductive Step. Given n order-replayed nodes
A1,A2, ...,An, whose outputs are inputs to node B,
ADDA ensures that B gets the merged outputs of

A1,A2, ...,An in the original order. Since shared
memory non-determinism on B is replayed, B generates
the original outputs because they are fully determined
by A1,A2, ...,An and the execution of B.

2) Dealing with a Mixed World: In an ideal world,
all nodes in the datacenter would be using ADDA. In
reality, only some of the nodes (the ones running a
particular datacenter application) are traced. External
nodes, such as the distributed filesystem housing the
persistent store and the network (i.e., routers) used by
the application, are not recorded and thus may behave
differently at replay time.

ADDA handles these two aspects separately:

a) Persistent-Store Nondeterminism: Since the
persistent store housing data plane inputs are not traced,
DPS faces the following challenge:

Replaying applications will need to obtain data plane
inputs from the store during replay, but these original
inputs may no longer be present on the same nodes at
replay time. For instance, HDFS uses its own interface,
which is not compatible with VFS, and may redistribute
blocks or even alter block IDs. Hence, a naive approach
that simply reissues HDFS requests with original block
IDs will produce nondeterministic results.

ADDA addresses this challenge using a layer of indi-
rection. In particular, ADDA requires that the target dis-
tributed application communicates with the distributed
file-system via a VFS-style (i.e., filesystem mounted)
interface (e.g., HDFS’s Fuse support or the NFS VFS
interface) rather than using the socket-based HDFS
protocol directly. The VFS layer addresses the challenge
by providing a well-defined and predictable read/write
interface to ADDA, keyed only on the target filename,
hence shielding it from any internal protocol state that
may change over time (e.g., HDFS block assignments
and IDs).

b) Network Nondeterminism: ADDA does not
record and reproduce low-level network (i.e., router)
behavior. This introduces two key challenges for DPS.

First, nodes may be replayed on hosts different than
those used in the original run, making it hard for DPS
to determine where to send messages to. For example,
ADDA’s reduced-scale replay enables replaying a 1000
node cluster on fewer (e.g., 100) nodes, and some of
these replay nodes will have different IP addresses. The
second challenge is that the network may unpredictably
drop messages (e.g., for UDP datagrams). This means
that simply re-sending a message during replay is not
enough to synthesize packet contents at the receiving
node: ADDA must ensure that the target node actually
receives the message.

c) REPLAYNET: As with persistent-store non-
determinism, ADDA shields DPS from network non-
determinism using a layer of indirection. ADDA intro-
duces REPLAYNET, a virtual replay-mode network that
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abstracts away the details of IP addressing and unre-
liable delivery: rather than sending messages directly
through the physical network at replay time, ADDA

sends messages through REPLAYNET. At the high level,
REPLAYNET can be thought of as a key-value store that
maps unique message IDs to message contents. To send
a message over REPLAYNET, a node simply inserts the
message contents into the key-value store keyed on the
message’s unique ID. To receive the message contents, a
node queries REPLAYNET with the ID of the message
it wishes to retrieve. REPLAYNET guarantees reliable
delivery and doesn’t require senders and receivers to be
aware of replay-host IP addresses.

To send and receive messages on REPLAYNET,
senders and receivers must be able to identify messages
with unique IDs. These message IDs are simple UUIDs
that are assigned at record time. Conceptually, the
message ID for each message is logged by both the
sender and receiver. The receiver can record the message
ID since the sender piggy-backs it on the outgoing
message at record time. Further details of piggy-backing
are given in §IV-B3.

REPLAYNET employs a distributed master/slave ar-
chitecture in which a single master node maintains a
message index and the slaves maintain the messages.
To retrieve message contents at replay time, a node first
consults the master for the location (i.e., IP address)
of the slave holding the message contents for a given
message ID. Once the master replies, the node can
obtain the message contents directly from the slave.

3) Coping with Unrecorded Shared-Memory Order-
ing: ADDA ensures that the components that are only
part of the control plane (e.g., Hypertable’s master or
lock server) can always be replayed independently of
whether data plane nodes can be replayed or not. This
holds for two reasons. First, all the inputs of the control
plane nodes are recorded, because all such inputs are
control plane in nature. Second, shared-memory data
rates on control plane nodes are, in our experience,
extremely low, and therefore ADDA is able to capture
all CREW ordering information. The ability to replay
control plane nodes is still valuable because the control
plane accounts for most bugs [3].

A key requirement of order-based replay is that
complete ordering information must be available. Unfor-
tunately, ADDA’s recording of shared memory interleav-
ings may be incomplete, since ADDA disables CREW
for high data-rate pages (§III-B3). In particular, the
interleaving of data races on such pages is not recorded,
hence precluding the reproduction of computation on
intermediate data plane inputs and the subsequently gen-
erated outputs. Hence, ADDA does not guarantee replay
of mixed control/data plane nodes in multiprocessors.

D. Enabling Automated Debugging

In addition to replay, ADDA provides a powerful
platform for building powerful replay-mode, automated

debugging tools. ADDA was designed to be extended
via plugins, hence enabling developers to write sophis-
ticated distributed analyses that would be too expensive
to run in production. We created several plugins using
this architecture, including distributed data flow anal-
ysis, global invariant checking, communication graph
analysis, and distributed-system visualization.

We describe ADDA’s plugin model, and then describe
a simple automated-debugging plugin for distributed
data flow analysis.

1) Plugin Model: A key goal of ADDA’s plugin
model is to ease the development of sophisticated plug-
ins. Therefore, ADDA plugins are written in Python and
provide the following properties.

An illusion of global state. ADDA enables plugins
to refer to remote application state as though it was
all housed on the same machine. For example, the
following code snippet grabs and prints a chunk of
memory bytes from node ID 2 (IDs are generated during
the recording):

my_bytes = node[2].mem[0x1000:4096]

print my_bytes

An illusion of serial replay. ADDA guarantees that
plugin execution is serializable and deterministic, hence
freeing the plugin developer from having to reason
about concurrency and non-deterministic results.

Access to fine-grained analysis primitives. ADDA

is pre-loaded with commonly-used, fine-grained anal-
ysis primitives. An example of such a primitive is
ADDA’s data-flow analysis primitive, which exports
two functions (is_tainted(node, addr) and
set_taint(node, addr)) that plugins can invoke
to determine if the byte of memory at address addr is
tainted by an external data source and to set the byte of
memory at address addr as tainted.

2) Distributed Data Flow Plugin: DDFLOW is a
distributed data flow analysis plugin for ADDA. DDFLOW
provides a trace of all instructions or functions that
operate, transitively, on the contents of a (user-specified)
origin data file or message. DDFLOW is particularly
useful in diagnosing bugs that lead to data loss: it allows
developers to track the flow of data and helps quickly
identify where data ends up – a process that could take
hours if done manually. DDFLOW highlights the power
of ADDA plugins because it is an analysis that is too
heavyweight to do in production, but can easily be done
during replay. The DDFLOW plugin can be written in just
a few lines (initialization code is omitted):

msg_taint_map = {}

def on_send(msg):

if msg.is_tainted():

msg_taint_map[msg.id] = 1

def on_recv(msg):

if msg_taint_map[msg.id]:

local.set_taint(msg.rcvbuf)
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else:

local.untaint(msg.rcvbuf)

del msg_taint_map[msg.id]

IV. IMPLEMENTATION

We implemented ADDA for clusters of Linux x86
machines. ADDA consists of approximately 150 KLOC
of source code (40% LibVEX [20] and 60% ADDA +
plugins). We show how to use ADDA and then discuss
the main implementation challenges we encountered.

A. Usage

The first step in using ADDA consists of recording;
to start this phase, a user invokes ADDA on the appli-
cation binary, specifying the location of the log (e.g.,
distributed storage) and the location of persistent data
files (e.g., an HDFS mount):

$ adda-record --save-as=hdfs://host/demo

--persistent-store=/mnt/hdfs/data ./application

ADDA will then record the application, without
recording data plane inputs originating from the speci-
fied persistent storage.

To replay using the DDFLOW analysis plu-
gin (§III-D2), one only specifies the plugin name and
the location of previously collected recordings:

$ adda-replay --plugin=dtaint hdfs://host/demo/

B. Lightweight Recording of User-Level Code

Bugs in datacenter applications often reside in ap-
plication code rather than kernel code. ADDA therefore
only records the non-determinism needed to replay user-
level code of developer-selected application processes.

1) Interpositioning: ADDA interposes on user-level
communication channels (sockets, pipes, files, and
shared-memory) of traced processes.

Sockets, pipes, and files are interposed with a kernel
module. The module delivers to ADDA a signal for every
system call invoked by a traced process. To address the
high syscall rates of some datacenter applications, we
also intercept syscalls made through Linux’s vsyscall
page, hence avoiding the expense of signals for a
majority of syscalls (most libc calls go through the
vsyscall).

Shared memory accesses are interposed with the help
of ADDA’s CREW kernel module. The module uses
virtual memory page protections to serialize conflicting
user-level page accesses. Conceptually, ADDA’s CREW
implementation follows that of SMP-ReVirt [7]: it main-
tains shadow page tables whose permission are up-
graded and downgraded at CREW events. Unlike SMP-
ReVirt, ADDA maintains shadow page tables only for
those processes that are traced. Moreover, ADDA does

not shadow kernel pages (they are identical to those in
guest page tables) hence avoiding CREW overhead due
to false sharing in the kernel (a significant bottleneck in
SMP-ReVirt). ADDA interposes on page table operations
using Linux’s paravirt_ops, similarly to Xen.

2) Asynchronous Events: The only asynchronous
events ADDA must record are signals and thread pre-
emptions. This is a key benefit of recording at the user
level, unlike VM-level replay tools that also have to
record all interrupts.

ADDA ensures accurate delivery of asynchronous
events during replay (i.e., at the same point in program
execution as during recording). One way to do this is
to count the number of instructions at record time and
deliver the event at the recorded instruction count during
replay. This requires the use of a software instruction
counter that would incur high runtime overhead. Instead,
ADDA precisely identifies a point in program execution
via the triple <eip, ecx, branch count>, which can be
efficiently obtained from x86 CPUs.

3) Piggy-backing: ADDA needs to communicate
trace data (logical clocks, unique message IDs) to
remote nodes during recording, and uses piggy-backing
techniques to do so. However, the naive approach of
piggy-backing trace data on each network packet results
in impractical communication costs.

Instead, ADDA uses two techniques, both leveraging
the semantics of system calls, to reduce piggy-backing
overheads: message-level piggy-backing and TCP-aware
unique IDs. Message-level piggy-backing leverages the
observation that data plane channels send data in large
chunks (e.g., Memcached performs sys_send on 2
MB buffers), so ADDA piggy-backs at the message level
instead of packet level. ADDA leverages the observation
that datacenter applications typically use TCP to transfer
data, and each message in a TCP stream has a unique
ID within the stream (i.e., its sequence number). Thus,
one can obtain a globally unique id for any given
TCP message using a <stream id, local id> tuple. The
stream ID need only be communicated once, when the
TCP connection is established, while the local ID can
be computed during replay, based on the ordering of
messages received on the stream.

C. Distributed Replay and Analysis

1) Serial Replay: The current ADDA prototype pro-
vides the illusion of serial replay by replaying nodes
serially: only one thread at any given node is allowed to
execute at a time. Though simple to implement and ver-
ify, the undesirable consequence of this implementation
decision is that replay overhead will increase linearly
with the number of nodes being replayed. That is, 1000
nodes will take approximately 1000x as long to replay,
even if replay is distributed over 1000 nodes. We are
currently working on parallel replay. This can be done
by allowing nodes to proceed in parallel during replay
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and enforce the relative order given by the Lamport
clocks that ADDA already records.

2) Fine-Grained Analyses: ADDA plugins have ac-
cess to a variety of fine-grained analysis primitives,
such as data-flow tracking and instruction tracing. Under
the hood, ADDA implements these primitives by binary
translating the replay execution. The binary translation
is done by LibVEX, an open-source binary translator
that offers an easy-to-use RISC-style intermediate rep-
resentation for performing instruction-level analyses.

A key challenge in replaying in binary translated
mode is that LibVEX does not simulate operations
on hardware performance counters, which are used by
ADDA to deliver asynchronous events during replay.
ADDA addresses this problem by adding branch counting
emulation support to LibVEX (in the form of a module
that counts branches in software).

V. EVALUATION

In this section we aim to answer the following
questions: a) Is ADDA effective in debugging real-world
problems occurring in real-world datacenter applica-
tions? (§V-A) b) Is ADDA’s recording overhead toler-
able, and how does it scale with cluster size and input
data volume? (§V-B) c) Is ADDA efficient in replaying
failed executions for debugging? (§V-C).

A. Experience

In this section we describe how we used ADDA

to succesfully reproduce and debug bugs in Hy-
pertable [21]. Hypertable [21] is an open source,
high performance data store designed for large-scale
data-intensive tasks and is modeled after Google’s
Bigtable [22]. Hypertable is deployed at Baidu, the
leading search services in China, and the Rediff online
news provider.

1) Hypertable Hang Under Memory Pressure: We
found a new bug in Hypertable while recording various
workloads with ADDA. We noticed that occasionally Hy-
pertable clients timed-out, and the system became un-
responsive. This failure was hard to reproduce without
ADDA. It turned out that the error would manifest when
the machine where the Hypertable master server was
running experienced memory pressure and a memory
allocation failed, which in turn hung the master. ADDA’s
deterministic replay and the visualization plugin helped
to quickly identify that nodes were trying to connect
to the master, which was not making any progress. We
identified the failed memory allocation, which explained
the random Hypertable hangs that we were experienc-
ing. On subsequent analysis, we discovered that the
particular cluster machine was accidentally configured
without a swap partition, making memory allocations
more likely to fail.

2) Data Loss in Hypertable: We used ADDA to
debug a previously solved Hypertable defect [23] that
causes updates to a database table to be lost when
multiple Hypertable clients concurrently load rows into
the same table. According to Hypertable’s bug tracker,
this bug took 6 days to fix. The bug is hard to reproduce,
and its root cause spans multiple nodes. The load
operation appears to be a success—neither clients nor
slaves receiving the updates produce error messages.
However, subsequent dumps of the table do not return
all rows—several thousand are missing. The data loss
results from rows being committed to slave nodes that
are not responsible for hosting them (the slave nodes are
called Hypertable range servers and they are responsible
for holding a piece of the entire data). The slaves honor
subsequent requests for table dumps, but do not include
the mistakenly committed rows in the dumped data.
The committed rows are merely ignored. The erroneous
commits stem from a race condition in which row
ranges migrate to other slave nodes at the same time
that a recently received row within the migrated range
is being committed to the current slave node.

Reproducing this failure required 8 concurrent
clients that insert 500MB of data into the same table,
after which they check the consistency of the table.
We recorded several executions with ADDA until the
failure was reproduced—the recording overhead was
40%. Afterwards, we replayed the failure with ADDA in
a single-machine setup. We inserted breakpoints during
row range migration, where we suspected the root cause
to be located, and we observed the data race occurring
deterministically. ADDA’s ability to reliably replay the
failure, combined with the bird’s eye view of the entire
system, made debugging substantially easier and faster.

B. Recording Efficiency

We ran all experiments in a cluster with 14 machines
with two Intel Xeon 3.06GHz processors, 2GB of
RAM, two 7200RPM drives in RAID 0, running 32-
bit Linux 2.6.29. The machines were in a single rack,
had 1Gbps NICs, and were interconnected by a single
1Gbps switch.

The size of the cluster may not be representative of
the size of current datacenters, however, we used the
largest cluster that was available to us and in which we
had access to the bare-metal hardware. We could not
use a virtualized environment such as EC2, because we
needed access to the hardware branch counter in order
to replay asynchronous events (§IV-B2). This limitation
may be removed by on-going work on virtualizing
performance counters [24].

We measure ADDA’s recording overhead versus the
overhead of the naive approach that records all inputs,
in order to show the benefits of DPS. To simulate the
naive approach, we configured ADDA to log all inputs.
We first evaluate the single processor case (§V-B1), then
the logging overhead (§V-B2) and then the multiple
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CPU case (§V-B3). We did not compare against mature
record-replay solutions, such as VMWare Workstation,
since it does not work for multiple CPUs and has been
deprecated since version 7.

1) Runtime Overhead: We first evaluate the single
processor case, therefore the CREW protocol was not
used. To use a single CPU, we pinned the recorded
process to a single CPU for both the native and the
recorded systems.

We evaluate on two systems: Memcached and Hy-
pertable.

Memcached [16] is a high-performance, distributed
memory object caching system, typically used for
speeding up dynamic web applications by alleviating
database load. Memcached is used by online services
providers such as Youtube, Wikipedia, and Flickr.

To evaluate the efficiency of recording a Memcached
deployment, we simulated a photography blog Web
application in which Memcached is used by user-facing
Web application servers to cache the files containing
the photos. This setup resembles the Facebook photo
storage [25], in which Memcached is used to reduce
latency. We assume that the photos are stored in persis-
tent storage (i.e., HDFS) and the clients (i.e., the user-
facing Web applications, which are also running in the
same datacenter) copy them from persistent storage to
the Memcached servers. We used various setups with
a varying number of Memcached servers, number of
clients, and total input sizes. Each server and client runs
on a separate machine. Each client randomly selects
one of the Memcached servers to either read or write
a photo—reads are selected with 90% probability and
writes with 10% probability, since reads are predomi-
nant in Facebook’s daily photo traffic [25].

For this experiment we used a setup consisting of
4 Memcached servers and 7 clients, each client having
4 threads. Overhead is measured in terms of reduction
in client throughput. In the baseline execution, clients
achieve a maximum throughput of 68MB/s, correspond-
ing to 68 Memcached operations per second. The photos
were configured to have a fixed size of 1MB, they were
randomly generated and previously stored in the clients’
local disks before starting the experiment.

ADDA’s recording overhead with varying size of the
input from persistent storage (Fig. 2) is between 18%
and 23%. On the other hand, the naive approach imposes
a high overhead: between 100% and 125%. This shows
the benefits of DPS: logging all inputs causes the naive
approach to have up to 5 times higher runtime overhead
than ADDA.

Fig. 3 shows ADDA’s scalability with the number of
nodes in the system. We varied the number of recorded
nodes by increasing the number of Memcached clients.
Each client connects to a shared pool of 4 Memcached
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Fig. 2: Recording overhead compared to the native
execution in Memcached while varying the total size
of the input from persistent storage.

servers. The overhead is measured in terms of reduction
in client throughput relative to the native execution.

This experiment shows that ADDA’s overhead is
between 20% and 65%, and scales well with the number
of nodes in the system (Fig. 3). Moreover, ADDA

scales well when the servers operate under heavy load.
The naive approach has high overhead (up to 250%).
However, as the Memcached servers become saturated,
clients become less loaded. Since in the naive approach
clients have to record all their inputs, the clients become
slower, so the impact of heavy recording for the naive
approach decreases.
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Fig. 3: Recording overhead for Memcached with vary-
ing number of clients.

Hypertable The Hypertable workload consists of
several clients inserting a log of Web search queries
and click streams into a Hypertable table. A query is
several hundred bytes long and contains the timestamp,
user id, the query keywords, and the links clicked by
the user. The clients generate a workload that would be
performed by a user-facing component of the datacenter,
such as a Web application server.

The range servers store the content of the database
tables in memory and also dump this content to a
distributed file system such as HDFS. Because ADDA

currently requires that the target application use a
VFS-like interface to communicate with the file sys-
tem (§III-C2) we used a dedicated machine in our
cluster as a dedicated shared file system for the range
servers. In future work we intend to use the HDFS Fuse
support and fix a bug in Hypertable that prevented us
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from experimenting with this setup.

Fig. 4 shows that, for Hypertable, the recording
overhead scales well with the size of the input from
persistent storage. The overhead, measured as reduction
in transaction throughput, is between 10% and 50%. On
the other hand, the naive approach has higher overhead,
which increases up to 90% for the largest total input
size. In this experiment, Hypertable was configured with
one master, one lock server, 3 range servers, and 7
clients that placed a heavy load on the system. Each
client used an input file ranging from 30MB to 150MB.
Clients read the input file from persistent storage.
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Fig. 4: Recording overhead for Hypertable with varying
size of the input from persistent storage.

Fig. 5 shows that ADDA scales well with the number
of traced nodes and the overhead is in between 40% and
50%. Due to higher logging rates, the naive approach
has higher overhead. In this experiment, Hypertable was
configured with one master, one lock server, 2 range
servers, and a number of clients ranging from 3 to 9.
Each component was run on a separate machine. The
overhead is measured in terms of throughput loss.
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Fig. 5: Recording overhead in Hypertable with varying
number of clients.

2) Log Size: ADDA has low logging rates. Fig. 6
shows ADDA’s log size for a Memcached workload,
while varying the total input size read from persistent
storage. The naive approach also records internal inputs
(inputs exchanged between recorded nodes), therefore
it produces an order of magnitude larger logs. For both
systems, the log size increases linearly with the input
size, yet the slope is larger for the naive approach.
Memcached is designed so that server instances do not
communicate with each other, otherwise the log size

for the naive approach would increase even more, while
ADDA does not record this communication.
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Fig. 6: Log size for recording a Memcached workload
with varying input size from persistent storage. ADDA
has 10× smaller logs compared to the naive approach.

Hypertable exhibits a similar behavior (Fig. 7). We
expect these results to improve even more with a simple
optimization: our current DPS prototype allocates a
static 15KB entry (or a multiple of this size, if needed)
for recording the meta-data associated with an I/O
system call. However, a single 15KB entry is typically
too large: for Hypertable, log entries are dominated by
zeros, which we could compress to 100× smaller size.
By adding support for variable entry sizes, we expect
ADDA’s logging rates to improve substantially.
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Fig. 7: Log size for recording a Hypertable workload
while varying the input size from persistent storage.

3) Performance for Multi-Processors: To validate
that our assumption about applying CREW selectively
to control plane components (i.e., the Hypertable master
and lock server) holds (§III-B), we enabled CREW
in the experiment in Fig. 5. Thus, the control plane
components were allowed to take advantage of both
CPUs of their machines. ADDA had the same overhead
compared to the baseline, showing that using CREW
for the control plane components in Hypertable does
not slow down the execution even when the system is
under heavy load. This is confirmed by the small rate
of CREW faults (at most 150 faults / sec) for each of
these components.

To validate that CREW imposes a high overhead for
the data plane components of the system, we recorded
also the Hypertable data plane components (the range
servers) using CREW and observed overheads larger
than 400%.
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These experiments confirm our design choice to turn
on CREW for the control plane components is likely to
impose low overhead, while having CREW turned on
all the time for data plane components is not practical
for production use. However, this assumption may not
hold for all datacenter applications and we are in the
process of evaluating this further.

C. Replay

Replay is serial, therefore replay overhead is ex-
pected to be proportional with the number of recorded
nodes. For replaying a Memcached workload similar to
the one in the previous experiments with 3 nodes (one
server and 2 clients), replay was 2.46× slower than the
original recorded run. We also replayed a Hypertable
workload similar to the previous experiments. The Hy-
pertable setup consisted of a lock server, a master server,
2 range servers, and 3 clients. The replay was 2.7×
slower than the original run. In both experiments, all
inputs were recorded due to a bug that prevented us from
doing the replay with REPLAYNET. Only these two
experiments were done without REPLAYNET. However,
we observed that, typically for these applications, replay
overhead using REPLAYNET is similar to the replay
overhead of the naive approach. In both these exper-
iments the replay was not n× slower (where n is
the total number of nodes), because replay can fast-
forward the execution of some instructions by elimi-
nating “dead cycles”. For instance, operations such as
sleep or blocking I/O can complete faster during replay.
In real setups, such dead cycles may also arise from
multiple applications sharing the same node.

VI. RELATED WORK

Classic single node replay systems such as Instant
Replay [19], VMWare [6], and SMP-ReVirt [7] may
be adapted for large-scale distributed operation. Never-
theless, they are unsuitable for the datacenter, because
they record all inbound disk and network traffic. The
ensuing logging rates not only incur throughput losses
but also call for additional storage infrastructure (e.g., an
additional large scale distributed file system). Moreover,
systems like WiDS [4] and Friday [2] provide dis-
tributed replay but have high overhead for data-intensive
applications.

Several relaxed-deterministic replay systems (e.g.,
PRES [8] and ReSpec [9]) and hardware and/or
compiler-assisted systems (e.g., Capo [11], Core-
Det [26]) support efficient recording of multi-core pro-
grams. But, like classic systems, they still incur high
record rates on network and disk-intensive distributed
systems such as datacenter systems.

R2 [12] provides an API and annotation mechanism
with which developers may select the application code
to be recorded and replayed. R2 could be used to
record just control plane inputs, thus incurring low

recording overheads. However, the annotations require
considerable developer effort to manually identify the
components that need to be recorded. On the other hand,
ADDA makes this selection automatically based on the
data-rate heuristic.

MPIWiz [27] is a hybrid deterministic replay system
that exploits the traffic patterns of MPI applications
to reduce recording overhead by identifying subgroups
of MPI processes for which it is more efficient to
record all communication messages vs. the order of the
exchanged messages. First, MPIWiz addresses MPI ap-
plications, while ADDA targets datacenter applications.
Second, MPIWiz does not handle non-determinism
caused by data races and assumes shared memory non-
determinism is due only to the order of MPI calls.
ADDA is more general and captures all sources of non-
determinism, including data races. Third, MPIWiz de-
cides to record all communication data at the granularity
of a process group, while ADDA does it per network
channel, using the control/data plane separation.

Replay-debugging systems such as SherLog [28]
and ESD [10] can efficiently replay single-node ap-
plications while recording very little information, or
no information at all. These systems use inference to
recompute missing runtime information. However, they
were not designed for recording distributed systems,
much less so datacenter applications. Even for single
node replay, these systems have to reason about an
exponential number of program paths, which limits their
ability to replay at the scale of the datacenter.

VII. DISCUSSION

For the systems that do not meet our assump-
tions, the runtime overhead may be deemed to be
too high for production use. For such cases, ADDA is
still useful during development. Our evaluation shows
runtime overhead ranging between 10% to 65% (§V).
We are not aware of any other record-replay system
that has lower overhead for data-intensive datacenter
applications. We see opportunities for several simple
engineering optimizations and hope that a production-
grade implementation of ADDA can reduce the overhead
to under 10% for an important subset of the datacenter
applications and workloads.

Not all applications may meet our two main as-
sumptions about the control/data plane separation and
the persistence of external inputs (§II). For instance the
running time of a parallel scientific application may
be dominated by the control plane code. Moreover,
a datacenter application may not store external inputs
(such as data acquired by a telescope) to append-
only storage simply because of the sheer size of the
inputs. On the one hand, for these applications, ADDA’s
overhead may be unacceptably high. On the other hand,
several applications in addition to the applications we
evaluated (§V), such as, Hadoop [15], Cassandra [17],
CloudStore [14], and applications that process click
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streams (in which the initial inputs are logged for audit
purposes) do meet ADDA’s assumptions. Moreover, the
external inputs to MapReduce jobs are typically stored
in HDFS, which is append-only storage. This represents
an important subset of datacenter applications.

Reduced-scale replay (§III-C) is useful in several
common cases. For instance, there are cases in which
the original machines are not available for replay any-
more (e.g., machines may be down due to hardware
failures, or the cluster may be loaded with another job).
We designed reduced-scale replay for these cases.

If ADDA does to record an un-synthesizable source
of non-determinism (e.g., a data race in the data-
plane), the replay might diverge from the recording.
ADDA detects divergences by checking that the delivery
point of asynchronous events (i.e., the triple <eip, ecx,
branch_count>) is the same during record and replay.

ADDA supports recording of multiple multi-
processor nodes, but does not yet support multi-
processor replay. We plan to add this in future work.
Replaying CREW events is done in other systems [7]
and is not challenging if all CREW events are recorded.
However, if ADDA missed the recording of CREW
events (e.g., due to misclassifying control plane code as
data plane code), this could lead to divergence during
replay, therefore replay may not be possible. In this case,
ADDA could use inference-based techniques [8], at the
expense of longer replay time.

VIII. CONCLUSION

We presented ADDA, a replay-debugging system
for data-intensive datacenter applications. To reduce
recording overhead, ADDA leverages two important ob-
servations: that the “control plane” and “data plane” of
datacenter applications can be identified and recorded
with different determinism guarantees and that external
inputs are typically persisted in append-only storage for
an important class of datacenter applications. ADDA has
low runtime overhead and logging rates, and determinis-
tically replays real-world failures in popular datacenter
applications. To achieve this, ADDA records with high
accuracy the control plane of a datacenter application
and does not record intermediate data that it can synthe-
size during replay, starting from the application’s exter-
nal inputs. Moreover ADDA can perform reduced-scale
replay and run sophisticated analyses during replay.
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