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Abstract
Fault injection—a key technique for testing the robustness of
software systems—ends up rarely being used in practice, be-
cause it is labor-intensive and one needs to choose between
performing random injections (which leads to poor cover-
age and low representativeness) or systematic testing (which
takes a long time to wade through large fault spaces). As a
result, testers of systems with high reliability requirements,
such as MySQL, perform fault injection in an ad-hoc man-
ner, using explicitly-coded injection statements in the base
source code and manual triggering of failures.
This paper introduces AFEX, a technique and tool for au-

tomating the entire fault injection process, from choosing the
faults to inject, to setting up the environment, performing the
injections, and finally characterizing the results of the tests
(e.g., in terms of impact, coverage, and redundancy). The
AFEX approach uses a metric-driven search algorithm that
aims to maximize the number of bugs discovered in a fixed
amount of time. We applied AFEX to real-world systems—
MySQL, Apache httpd, UNIX utilities, andMongoDB—and
it uncovered new bugs automatically in considerably less
time than other black-box approaches.

1. Introduction
Fault injection is a form of testing that consists of introduc-
ing faults in a system under test, with the goal of exercis-
ing the system’s error-handling code paths. Fault injection
is crucial to system testing, especially as increasingly more
general-purpose systems (e.g., databases, backup software,
Web servers) are used in business-critical settings.
These systems are often “black boxes,” in that the tester

has no (or little) knowledge of the internals, either because
the software is closed source (e.g., commercial application
servers) or because the system is just too complicated to
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understand (e.g., MySQL has over 1 million lines of code).
Even when the internals are reasonably well understood, ev-
ery major upgrade renders parts of this knowledge obsolete.
Engineers who employ fault injection to test these sys-

tems often do so in an ad-hoc manner, such as pulling out
network cables or unplugging hard drives. These actions
are typically dictated by the intersection of what is believed
might happen in production and what testers can actually
control or directly simulate. Such ad-hoc approaches are typ-
ically based on a poor understanding of the space of possible
faults and lead to poor-coverage testing. Recent tools, like
LFI [16], improve the state of the art by offering the abil-
ity to simulate a wide variety of fine-grained faults that oc-
cur in a program’s environment and become visible to appli-
cations through the application–library interface. Such tools
offer developers better control over fault injection.
However, with fine-grain control comes the necessity to

make hard choices, because these tools offer developers a
vast universe of possible fault scenarios. There exist three
degrees of freedom: what fault to inject (e.g., read() call
fails with EINTR), where to inject it (e.g., in the logging sub-
system), and when to do so (e.g., while the DBMS is flush-
ing the log to disk) [17]. Poor choices can cause test suites
to miss important aspects of the tested system’s behavior.
Ideally, a tool could automatically identify the “interesting”
faults and test the system; the human would then only need
to describe the fault space and provide one or more generic
fault injectors like LFI. Such an automated tool would then
find a small set of high-impact fault injection tests that are
good at breaking or validating the target system.
One way to avoid making the hard choices, yet still have

automated testing, is to perform brute-force exhaustive test-
ing, such as using large clusters to try out all combinations
of faults that the available injectors can simulate—this ap-
proach will certainly find the faults that cause most dam-
age. Alas, the universe of possible faults is typically over-
whelming: even in our small scale evaluation on MySQL,
the fault space consisted of more than 2 million possibilities
for injecting a single fault. Exploring such fault spaces ex-
haustively requires many CPU-years, followed by substan-
tial amounts of human labor to sift through the results. A
commonly employed alternative is to not inject all faults,
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but only a randomly selected subset: the fault space can be
uniformly sampled, and tests can be stopped whenever time
runs out. However, random injection achieves poor cover-
age, and the chances of finding the high impact faults is low.
We propose an approach in which still a subset of the fault

space is sampled, but this sampling is guided. We observe
that the universe of faults often has an inherent structure,
which both random and exhaustive testing are oblivious to,
and that exploiting this structure can improve the efficiency
of finding high impact faults. Since this structure is hard to
identify and specify a priori, it needs to be inferred.
We describe AFEX, a cluster-based parallel testing sys-

tem that uses a fitness-guided feedback-based algorithm to
search for high-impact faults in spaces with unknown struc-
ture. It uses the effect of previously injected faults to dynam-
ically learn the space’s structure and choose new faults for
subsequent tests. The search process continues until a spe-
cific target is reached, such as a given level of code cover-
age, a threshold on the faults’ impact level (e.g., “find 3 disk
faults that hang the DBMS”), or a time limit. Upon comple-
tion, AFEX analyzes the injected faults for redundancy, clus-
ters and categorizes them, and then ranks them by severity to
make it easier for developers to analyze. AFEX is also capa-
ble of leveraging domain-specific knowledge, whenever hu-
mans have such knowledge and can suitably encode it; in §7
we show how such knowledge can be provided to AFEX and
the influence it has on the speed and quality of the search.
Our paper advances the state of the art in two ways: an

adaptive algorithm for finding high value faults, and a tech-
nique for automatic categorization and ranking of faults in a
set based on their degree of redundancy and reproducibility
in testing. We embody these ideas in an extensible system
that can automatically test real-world software with fault in-
jection scenarios of arbitrary complexity.
The rest of the paper presents background and defini-

tions (§2), the fault exploration algorithm (§3), trade-offs
developers can make when using AFEX (§4), techniques for
measuring result quality (§5), the AFEX prototype (§6), and
an evaluation of its scalability and effectiveness on MySQL,
Apache httpd, UNIX utilities, and MongoDB (§7). We close
with related work (§8) and conclusions (§9).

2. Definitions
We start by defining three concepts that are central to this
paper: fault space, fault impact, and fault space structure.

Fault Space A fault space is a concise description of the
failures that a fault injector can simulate in a target system’s
environment. A fault injection tool T defines implicitly a
fault space by virtue of the possible values its parameters
can take. For example, a library-level fault injector can inject
a variety of faults at the application–library interface—the
library call in which to inject, the error code to inject, and the
call number at which to inject represent three axes describing
the universe of library-level faults injectable by T . We think

of a fault space as a hyperspace, in which a point represents
a fault defined by a combination of parameters that, when
passed to tool T , will cause that fault to be simulated in
the target system’s environment. This hyperspace may have
holes, corresponding to invalid combinations of parameters
to T .
We define the attributes of a fault φ to be the parame-

ters to tool T that cause φ to be injected. If Φ is the space
of possible faults, then fault φ ∈ Φ is a vector of attributes
< α1, ...,αN > where αi is the value of the fault’s i-th at-
tribute. For example, in the universe of failed calls made by
a program to POSIX library functions, the return of error
code -1 by the 5-th call to close would be represented as
φ =< close,5,−1>. The values of fault attributes are taken
from the finite sets A1, ...,AN , meaning that, for any fault
φ =< α1, ...,αN >∈Φ, the attribute value αi ∈ Ai.
In order to lay out the values contained in each Ai along

an axis, we assume the existence of a total order ≺i on each
set Ai, so that we can refer to attribute values by their index in
the corresponding order. In the case of φ =< close,5,−1>,
we can assume A1 is ordered as (open,close, read,write, ...),
A2 as (1,2,3, ...), and A3 as (−1,0, ...). If there is no intrinsic
total order, then we can pick a convenient one (e.g., group
POSIX functions by functionality: file, networking,memory,
etc.), or simply choose an arbitrary one.
We now define a fault space Φ to be spanned by axes

X1,X2, ...XN , meaning Φ = X1 × X2× ..× XN , where each
axis Xi is a totally ordered set with elements from Ai and
order ≺i. A fault space represents all possible combinations
of values from sets A1, ...,AN , along with the total order on
each such set. Using the example shown above, the space
of failed calls to POSIX functions is spanned by three axes,
one for call types X1 : (open≺ close≺ ...), one for the index
of the call made by the caller program to the failed function
X2 : (1≺ 2≺ ...), and one for the return value of the POSIX
function X3 : (−1 ≺ 0 ≺ ...). This enables us to represent
fault φ =< close,5,−1 > as φ =< 2,5,1 >, because the
index of close on axis X1 under order ≺1 is 2, the index of
5 on X2 under ≺2 is 5, and the index of −1 on X3 under ≺3
is 1. A fault space can have holes corresponding to invalid
faults, such as close returning 1.

Impact Metric Our proposed approach uses the effect of
past injected faults to guide the search for new, higher im-
pact faults. Therefore, we need an impact metric that quan-
tifies the change effected by an injected fault in the target
system’s behavior (e.g., the change in number of requests
per second served by Apache when random TCP packets
are dropped). Conceptually, an impact metric is a function
IS :Φ→R that maps a fault φ in the fault space Φ to a mea-
sure of the impact that fault φ has on system S. Since Φ is a
hyperspace, IS defines a hypersurface. The (adversarial) goal
of a tester employing fault injection is to find peaks on this
hypersurface, i.e., find those faults that have the largest im-
pact on the behavior of the system under test. Since testing
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is often a race against time, the tester needs to find as many
such peaks as possible in the allotted time budget.
Fault Space Structure We observe empirically that, often,
there are some patterns in the distribution of fault impact
over the fault space, as suggested by Fig. 1, which shows
the impact of library-level faults on the ls utility in UNIX.
The structure that emerges from these patterns is caused by
structure and modularity in the underlying code of the sys-
tem being tested. Engler et al. [9] made a similar observation
of bug patterns, which emerge due to implementation-based
correlations between bodies of code. When viewing the fault
space as a search space, this structure can help make the
search more efficient than random sampling; in the next sec-
tion we draw an analogy between fault space exploration and
the Battleship game.
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Figure 1. Part of the fault space created by LFI [16] for the
ls utility. The horizontal axis represents functions in the C
standard library that fail, and the vertical axis represents the
tests in the default test suite for this utility. A point (x,y) in
the plot is black if failing the first call to function x while
running test y leads to a test failure, and is gray otherwise.

To characterize the structure of a fault space, we use a
relative linear density metric ρ as follows: given a fault
φ =< α01 , ...,α

0
k , ...,α

0
N >, the relative linear density at φ

along an axis Xk is the average impact of faults
φ ′ =< α01 , ...,αk, ...,α

0
N > with the same attributes as φ ex-

cept along axis Xk, scaled by the average impact of all faults
in the space. Specifically, ρkφ =

avg[ IS(<α01 ,...,αk,...,α
0
N>), αk∈Xk ]

avg[ IS(φx), φx∈Φ ] .
If ρkφ > 1, walking from φ along the Xk axis will encounter
more high-impact faults than along a random direction. In
practice, it is advantageous to compute ρφ over only a small
vicinity of φ , instead of the entire fault space. This vicinity
is a subspace containing all faults within distance D of φ ,
i.e., all faults φ ′′ s.t. δ (φ ,φ ′′)≤ D. Distance δ :Φ×Φ→ N

is a Manhattan (or city-block) distance [6], i.e., the short-
est distance between fault φ and φ ′′ when traveling along
Φ’s coordinate axes. δ (φ ,φ ′′) gives the smallest number of
increments/decrements of attribute indices that would turn
φ into φ ′′. Thus, the D-vicinity of φ consists of all faults
that can be obtained from φ with no more than D incre-
ments/decrements of φ ’s attributes α j,1≤ j ≤ N.

To illustrate, consider fault φ =< fclose,7 > in Fig. 1,
and its 4-vicinity (the faults within a distance δ ≤ 4). If the
impact corresponding to a black square is 1, and to a gray
one is 0, then the relative linear density at φ along the verti-
cal axis is ρ2φ = 2.27. This means that walking in the vertical
direction is more likely to encounter faults that cause test er-
rors than walking in the horizontal direction or diagonally. In
other words, exploration along the vertical axis is expected
to be more rewarding than random exploration.

3. Fault Exploration
Fault exploration “navigates” a fault space in search of faults
that have high impact on the system being tested. Visiting a
point in the fault space incurs a certain cost corresponding
to the generation of a test, its execution, and the subsequent
measurement of the impact. Thus, ideally, one would aim to
visit as few points as possible before finding a desired fault.
Exhaustive exploration (as used for instance by Gu-

nawi et al. [11]) iterates through every point in the fault
space by generating all combinations of attribute values, and
then evaluates the impact of the corresponding faults. This
method is complete, but inefficient and, thus, prohibitively
slow for large fault spaces. Alternatively, random explo-
ration [1] constructs random combinations of attribute val-
ues and evaluates the corresponding points in the fault space.
When the fault space has no structure, random sampling of
the space is no less efficient than any other form of sampling.
However, if structure is present (i.e., the relative linear den-
sity is non-uniformly distributed over the fault space), then
there exist more efficient search algorithms.

Fitness-guided Exploration We propose a fitness-guided
algorithm for searching the fault space. This algorithm uses
the impact metric IS as a measure of a fault’s “fitness,” in
essence steering the search process toward finding “ridges”
on the hypersurface defined by (Φ, IS) and then following
these ridges to the peaks representing high-impact faults.
Exploring a structured fault space like the one in Fig. 1 is
analogous to playing Battleship, a board game involving two
players, each with a grid. Before play begins, each player
arranges a number of ships secretly on his/her own grid.
After the ships have been positioned, one player announces
a target square in the opponent’s grid that is to be shot at; if
a ship occupies that square, then it takes a hit. Players take
turns and, when all of a ship’s squares have been hit, the ship
is sunk. A typical strategy is to start by shooting randomly
until a target is hit, and then fire in the neighborhood of that
target to guess the orientation of the ship and sink it.
Similarly, the AFEX algorithm exploits structure to avoid

sampling faults that are unlikely to be interesting, and in-
stead focus on those that are near other faults with high im-
pact. For example, if a developer has a poor understanding of
how some I/O library works, then there is perhaps a higher
likelihood for bugs to lurk in the code that calls that library
than in code that does not. Once AFEX finds a call to the
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I/O library whose failure causes, say, data corruption, it will
eventually focus on failing other calls to that same library,
persisting for as long as it improves the achieved fault im-
pact. Note that the AFEX algorithm focuses on related but
distinct bugs, rather than on multiple instances of the same
bug. If the fault space definition contains duplicates (i.e., dif-
ferent points in the fault space expose the same bug), then
AFEX’s clustering discovers and avoids the duplicates (§5).
Another perspective on AFEX is that impact-guided ex-

ploration merely generates a priority in which tests should
be executed—if each fault in Φ corresponds to a test, the
question is which tests to run first. AFEX both generates the
tests and executes them; to construct new tests, it mutates
previous high-impact tests in ways that AFEX believes will
further increase their impact. It also avoids re-executing any
tests that have already been executed in the past. Since it
does not discard any tests, rather only prioritizes their exe-
cution, AFEX’s coverage of the fault space increases propor-
tionally to the allocated time budget.
Our proposed exploration algorithm is similar to the Bat-

tleship strategy mentioned earlier, except it is fully auto-
mated, so there are no human decisions or actions in the
critical path. AFEX consists of the following steps:

1. Generate an initial batch of tests randomly, execute the
tests, and evaluate their impact

2. Choose a previously executed high-impact test φ
3. Modify one of φ ’s attributes (injection parameters) to
obtain a new test φ ′

4. Execute φ ′ and evaluate its impact
5. Repeat step 2

In order to decide which test attribute to mutate, we could
rely on the linear density metric to suggest the highest-
reward axis. However, given that the fault space is not known
a priori, we instead compute dynamically a sensitivity (de-
scribed later) based on the historical benefit of choosing one
dimension vs. another. This sensitivity calculation steers the
search to align with the fault space structure observed thus
far, in much the same way a Battleship player infers the ori-
entation of her opponent’s battleships.
When deciding by how much to mutate an attribute (i.e.,

the magnitude of the increment), we choose a value accord-
ing to a Gaussian distribution, rather than a static value, in
order to keep the algorithm robust. This distribution favors
φ ’s closest neighbors without completely dismissing points
that are further away. By changing the standard deviation of
the Gaussian distribution, we can control the amount of bias
the algorithm has in favor of nearby points.
Finally, we use an “aging” mechanism among the previ-

ously executed tests: the fitness of a test is initially equal to
its impact, but then decreases over time. Once the fitness of
old tests drops below a threshold, they are retired and can
never have offspring. The purpose of this aging mechanism

Data: Qpriority: priority queue of high-fitness fault
injection tests (already executed)

Qpending: queue of tests awaiting execution
History: set of all previously executed tests
Sensitivity: vector of N sensitivity values, one for

each test attribute α1, ...αN
foreach fault injection test φx ∈Qpriority do1

testProbs[φx] := assignProbability(φx.fitness)2

end3

φ := sample(Qpriority, testProbs)4

attributeProbs := normalize(Sensitivity)5

αi := sample({α1, ...,αN},attributeProbs)6

oldValue := φ .αi // remember that oldValue ∈ Ai7

σ := chooseStdDev(φ ,Ai)8

newValue := sample(Ai,Gaussian(oldValue,σ))9

φ ′ := clone(φ)10

φ ′.αi := newValue11

if φ ′ /∈ History∧φ ′ /∈ Qpriority then12
Qpending := Qpending∪φ ′13

end14

Algorithm 1: Fitness-guided generation of the next test.
Execution of tests, computation of fitness and sensitivity,
and aging occur outside this algorithm.

is to encourage improvements in test coverage concomi-
tantly with improvements in impact—without aging, the ex-
ploration algorithm may get stuck in a high-impact vicinity,
despite not finding any new high-impact faults. In the ex-
treme, discovering a massive-impact “outlier” fault with no
serious faults in its vicinity would cause an AFEX with no
aging to waste time exploring exhaustively that vicinity.
Algorithm 1 embodies steps 2–3 of the AFEX algorithm.

We now describe Algorithm 1 in more detail.

Choosing Which Test to Mutate The algorithm uses three
queues: a priority queue Qpriority of already executed high-
impact tests, a queue Qpending of test cases that have been
generated but not yet executed, and a set History containing
all previously executed tests. Once a test in Qpending is exe-
cuted and its impact is evaluated, it gets moved to Qpriority.
Qpriority has a limited size; whenever the limit is reached, a
test case is dropped from the queue, sampled with a probabil-
ity inversely proportional to its fitness (tests with low fitness
have a higher probability of being dropped). As a result, the
average fitness of tests in Qpriority increases over time. When
old test cases are retired from Qpriority, they go into History.
This history set helps AFEX avoid redundant re-execution
of already evaluated tests.
On lines 1–4, AFEX picks a parent test φ from Qpriority,

to mutate into offspring φ ′. Instead of always picking the
highest fitness test, AFEX samples Qpriority with a probabil-
ity proportional to fitness—highest fitness tests are favored,
but others still have a non-zero chance to be picked.

4



Mutating the Test The new test φ ′ is obtained from parent
test φ by modifying one of φ ’s attributes.
On lines 5–6, we choose the fault/test attribute αi with a

probability proportional to axis Xi’s normalized sensitivity.
We use sensitivity to capture the history of fitness gain: the
sensitivity of each axis Xi of the fault space reflects the his-
torical benefit of modifying attribute αi when generating a
new test. This sensitivity is directly related to relative linear
density (from §2): the inherent structure of the system un-
der test makes mutations along one axis to be more likely to
produce high-impact faults than along others. In other words,
if there is structure in the fault space, the sensitivity biases
future mutations to occur along high-density axes. Given a
value n, the sensitivity of Xi is computed by summing the fit-
ness value of the previous n test cases in which attribute αi
was mutated. This sum helps detect “impact ridges” present
in the currently sampled vicinity: if Xi’s density is high, then
we expect this sum of previous fitness values—the sensitiv-
ity to mutations along Xi—to be high as well, otherwise not.
Our use of sensitivity is similar to the fitness-gain computa-
tion in Fitnex [27], since it essentially corresponds to betting
on choices that have proven to be good in the past.
Sensitivity guides the choice of which fault attribute to

mutate; next we describe how to mutate the chosen attribute
in order to obtain a new fault injection test.
On lines 7–9, we use a discrete approximation of a Gaus-

sian probability distribution to choose a new value for the
test attribute to be mutated. This distribution is centered at
oldValue and has standard deviation σ . The chosen standard
deviation is proportional to the number of values the αi at-
tribute can take, i.e., to the cardinality of set Ai. For the eval-
uation in this paper, we chose σ = 1

5 · |Ai|. σ can also be
computed dynamically, based on the evolution of tests in the
currently explored vicinity within the fault space—we leave
the pursuit of this alternative to future work.
Our use of a Gaussian distribution implicitly assumes that

there is some similarity between neighboring values of a test
attribute. This similarity of course depends on the meaning
of attributes (i.e., parameters to a fault injector) and on the
way the human tester describes them in the fault space. In
our experience, many parameters to fault injectors do have
such similarity and, by using the Gaussian distribution, we
can make use of this particularity to further improve on the
naive method of randomly chosing a new attribute value.
Revisiting the example from §2, it is not surprising that
there is correlation between library functions (e.g., close is
related to open), call numbers (e.g., successive calls from a
program to a given function are likely to do similar things),
or even tests from a suite (e.g., they are often grouped by
functionality). Profiling tools, like LibTrac [5], can be used
to discover such correlation when defining the fault space.
Finally, Algorithm 1 produces φ ′ by cloning φ and replac-

ing attribute αi with the new value (lines 10–11). If φ ′ has
not been executed before, it goes on Qpending (lines 12–14).

Alternative Algorithms The goal of building AFEX was to
have an automated general-purpose fault exploration system
that is not tied to any particular fault injection tool. AFEX
is tool-independent—we evaluate it using library-level fault
injection tools, but believe it to be equally suitable to other
kinds of fault injection, such as flipping bits in data struc-
tures [26] or injecting human errors [13].
In an earlier version of our system, we employed a ge-

netic algorithm [24], but abandoned it, because we found
it inefficient. AFEX aims to optimize for “ridges” on the
fault-impact hypersurface, and this makes global optimiza-
tion algorithms (such as genetic algorithms) difficult to ap-
ply. The algorithm we present here is, in essence, a variation
of stochastic beam search [24]—parallel hill-climbing with
a common pool of candidate states—enhanced with sensitiv-
ity analysis and Gaussian value selection.

4. Developer Trade-Offs in AFEX
Leveraging Domain Knowledge By default, AFEX works
in pure black-box mode, in that it has no a priori knowledge
of the specifics of the system under test or its environment.
This makes AFEX a good fit for generic testing, such as that
done in a certification service [8].
However, developers often have significant amounts of

domain knowledge about the system or its environment, and
this could enable them to reduce the fault space explored
by AFEX, thus speeding up exploration. For example, when
using a library-level fault injector and an application known
to use only blocking I/O with no timeouts, it makes sense
to exclude EAGAIN from the set of possible values of the
errno attribute of faults injected in read. AFEX can accept
domain knowledge about the system under test, the fault
space, and/or the tested system’s environment; we evaluate
in §7.5 the benefit of doing so.
AFEX can also benefit from static analysis tools, which

provide a complementary method for detecting vulnerable
injection points (LFI’s callsite analyzer [17] is such a tool).
For example, AFEX can use the results of the static analysis
in the initial generation phase of test candidates. By starting
off with highly relevant tests from the beginning, AFEX
can quickly learn the structure of the fault space, which is
likely to boost its efficiency. This increase in efficiency can
manifest as finding high impact faults sooner, as well as
finding additional faults that were not suggested by the static
analysis. For example, we show in §7.1 how AFEX finds
bugs in the Apache HTTP server and MySQL, both of which
have already been analyzed by the Reasoning service [2].

Injection Point Precision An injection point is the location
in the execution of a program where a fault is to be injected.
Even though AFEX has no knowledge of how injection
points are defined, this does affect its accuracy and speed.
In our evaluation we use LFI [16], a library fault injec-

tion tool that allows the developer to fine-tune the definition
of an injection point according to their own needs. Since we
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aim to maximize the accuracy of our evaluation, we define
an injection point as the tuple 〈 testID, functionName, call-
Number 〉. testID identifies a test from the test suite of the tar-
get system (in essence specifying one execution path, mod-
ulo non-determinism), functionName identifies the called li-
brary function in which to inject an error, and callNumber
identifies the cardinality of the call to that library function
that should fail. This level of precision ensures that injec-
tion points are unique on each tested execution path, and all
possible library-level faults can be explored. However, this
produces a large fault space, and introduces the possibility
of test redundancy (we will show how AFEX explores this
space efficiently in §7.1 and mitigates redundancy in §7.4).
A simple way to define an injection point is via the call-

site, i.e., file and line number where the program is to en-
counter a fault (e.g., failed call to a library or system call,
memory operation). Since the same callsite may be reached
on different paths by the system under test, this definition
is relatively broad. A more accurate definition is the “failure
ID” described by Gunawi et al. [11], which associates a stack
trace and domain-specific data (e.g., function arguments or
state of system under test) to the definition of the injection
point. This definition is more tightly related to an individual
execution path and offers more precision. However, unlike
the 3-tuple definition we use in our evaluation, failure IDs
ignore loops and can lead to missed bugs.
The trade-off in choosing injection points is one between

precision of testing and size of the resulting fault space: on
the one hand, a fine-grain definition requires many injec-
tion parameters (fault attributes) and leads to a large fault
space (many possible combinations of attributes), which
takes longer to explore. On the other hand, more general
injection points reduce the fault space, but may miss impor-
tant fault scenarios (i.e., incur false negatives).

5. Quantifying Result Quality
In addition to automatically finding high-impact faults,
AFEX also quantifies the level of confidence users can have
in its results. We consider three aspects of interest to prac-
titioners: cutting through redundant tests (i.e., identifying
equivalence classes of redundant faults within the result set),
assessing the precision of our impact assessment, and identi-
fyingwhich faults are representative and practically relevant.

Redundancy Clusters One measure of result quality is
whether the different faults generated by AFEX exercise
diverse system behaviors—if two faults exercise the same
code path in the target system, it is sufficient to test with only
one of the faults. Being a black-box testing system, AFEX
cannot rely on source code to identify redundant faults.
AFEX computes clusters (equivalence classes) of closely

related faults as follows: While executing a test that injects
fault φ , AFEX captures the stack trace corresponding to φ ’s
injection point. Subsequently, it compares the stack traces

of all injected faults by computing the edit distance between
every pair of stack traces (specifically, we use the Leven-
shtein distance [14]). Any two faults for which the distance
is below a threshold end up in the same cluster. In §7.4 we
evaluate the efficiency of this technique in avoiding test re-
dundancy. In choosing this approach, we were inspired by
the work of Liblit and Aiken on identifying which parts of a
program led to a particular bug manifestation [15].
Besides helping developers to analyze fault exploration

results, redundancy clusters are also used online by AFEX
itself, in a feedback loop, to steer fault exploration away
from test scenarios that trigger manifestations of the same
underlying bug. This improves the efficiency of exploration.

Impact Precision Impact precision indicates, for a given
fault φ , how likely it is to consistently have the same im-
pact on the system under test S. To obtain it, AFEX runs the
same test n times (with n configured by the developer) and
computes the variance Var(IS(φ)) of φ ’s impact across the n
trials. The impact precision is 1

Var(IS(φ))
, and AFEX reports it

with each fault in the result set. The higher the precision, the
more likely it is that re-injecting φ will result in the same im-
pact that AFEX measured. In other words, a high value for
impact precision suggest that the system’s response to that
fault in that environment is likely to be deterministic. Devel-
opers may find it easier, for example, to focus on debugging
high-precision (thus reproducible) failure scenarios.

Practical Relevance The final quality metric employed by
AFEX is a measure of each fault’s representativeness and,
thus, practical relevance. Using published studies [4, 25] or
proprietary studies of the particular environments where a
system will be deployed, developers can associate with each
class of faults a probability of it occurring in practice. Using
such statistical models of faults, AFEX can automatically as-
sociate with each generated fault a probability of it occurring
in the target environment. This enables developers to better
choose which failure scenarios to debug first.

6. AFEX Prototype
We built a prototype that embodies the techniques presented
in this paper. The user provides AFEX with a description of
the explorable fault space Φ, dictated by the available fault
injectors, along with scripts that start/stop/measure the sys-
tem under test S. AFEX automatically generates tests that
inject faults from Φ and evaluates their quality. Our proto-
type is a parallel system that runs on clusters of computers,
thus taking advantage of the parallelism inherent in AFEX.
The core of AFEX consists of an explorer and a set of

node managers, as shown in Fig. 2. The explorer receives
as input a fault space description and an exploration target
(e.g., find the top-10 highest impact faults), and produces
a set of fault injection tests that satisfy this target. AFEX
synthesizes configuration files for each injection tool and
instructs the various node managers to proceed with the
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injection of the corresponding faults. The managers then
report to the explorer the results of the injections, and, based
on this, the explorer decides which faults from Φ to inject
next.
Each of the managers is associated with several fault

injectors and sensors. One manager is in charge of all tests
on one physical machine. When the manager receives a fault
scenario from the explorer (e.g., “inject an EINTR error
in the third read socket call, and an ENOMEM error in
the seventh malloc call”), it breaks the scenario down into
atomic faults and instructs the corresponding injectors to
perform the injection. The sensors are instructed to run the
developer-providedworkload scripts (e.g., a benchmark) and
perform measurements, which are then reported back to the
manager. The manager aggregates these measurements into
a single impact value and returns it to the explorer.
The goal of a sequence of such injections—a fault ex-

ploration session—is to produce a set of faults that satisfy
a given criterion. For example, AFEX can be used to find
combinations of faults that cause a database system to lose
or corrupt data. As another example, one could obtain the
top-50 worst faults performance-wise (i.e., faults that affect
system performance the most). Prior to AFEX, this kind of
test generation involved significant amounts of human labor.
To further help developers, AFEX presents the faults it

found as a map, clustered by the degree of redundancy with
respect to code these faults exercise in the target S. For each
fault in the result set, AFEX provides a generated script that
can run the test and replay the injection. Representatives of
each redundancy cluster can thus be directly assembled into
(or inserted into existing) regression test suites.

6.1 Architecture
Since tests are independent of each other, AFEX enjoys
“embarrassing parallelism.” Node managers need not talk to
each other, only the explorer communicates with node man-
agers. Given that the explorer’s workload (i.e., selecting the
next test) is significantly less than that of the managers (i.e.,
actually executing and evaluating the test), the system has
no problematic bottleneck for clusters of dozens of nodes,
maybe even larger. In this section, we provide more details
on our prototype’s two main components, the explorer and
the node manager.

Explorer The AFEX explorer is the main control point in
the exploration process. It receives the fault space descrip-
tion and the search target, and then searches the fault space
for tests to put in the result set. The explorer can navigate
the fault space in three ways: using the fitness-guided Algo-
rithm 1, exhaustive search, or random search.

NodeManager The node manager coordinates all tasks on
a physical machine. It contains a set of plugins that convert
fault descriptions from the AFEX-internal representation to
concrete configuration files and parameters for the injectors
and sensors. Each plugin, in essence, adapts a subspace of

TU

Fault Space
Description

Figure 2. AFEX prototype architecture: an explorer coordi-
nates multiple managers, which in turn coordinate the injec-
tion of faults and measurement of the injections’ impact on
the system under test.

the fault space to the particulars of its associated injector.
The actual execution of tests on the system S is done via
three user-provided scripts: A startup script prepares the en-
vironment (setting up workload generators, necessary envi-
ronment variables, etc.). A test script starts up S and signals
the injectors and sensors to proceed; they in turn will report
results to the manager. A cleanup script shuts S down after
the test and removes all side effects of the test.

6.2 Input
AFEX takes as input descriptions of the fault spaces to be
explored, sensor plugins to measure impact metrics (which
AFEX then uses to guide fault exploration), and search tar-
gets describing what the user wants to search for, in the form
of thresholds on the impact metrics.

Fault Description Language The language for describing
fault spaces must be expressive enough to allow the defini-
tion of complex fault spaces, but succinct and easy to use
and understand. Fig. 3 shows the grammar of the fault space
description language used in AFEX.
Fault spaces are described as a Cartesian product of sets,

intervals, and unions of subspaces (subtypes). Subspaces are
separated by “;”. Sets are defined with “{ }”. Intervals are
defined using “[ ]” or “< >”. The difference between these
two is that, during fault selection, intervals marked with “[ ]”
are sampled for a single number, while intervals marked with
“< >” are sampled for entire sub-intervals (we say < 5,10 >
is a sub-interval of < 1, 50 >).
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syntax = {space};
space = (subtype | parameter )+";";
subtype = identifier;
parameter = identifier ":"
( "{" identifier ( "," identifier )+ "}" |

"[" number "," number "]" |
"<" number "," number ">"

);
identifier = letter ( letter | digit | "_" )*;
number = (digit)+;

Figure 3. AFEX fault space description language.

function : { malloc, calloc, realloc }
errno : { ENOMEM }
retval : { 0 }
callNumber : [ 1 , 100 ] ;

function : { read }
errno : { EINTR }
retVal : { -1 }
callNumber : [ 1 , 50 ] ;

Figure 4. Example of a fault space description.

function malloc errno ENOMEM retval 0
callNumber 23

Figure 5. Example of a fault scenario description.

Fig. 4 shows an example representing the fault space for
a library fault injection tool. This fault space is a union of
two hyperspaces, separated by “;”. The injection can take
place in any of the first 100 calls to memory allocation, or in
any of the first 50 calls to read. One possible fault injection
scenario the explorer may sample from this fault space is
shown in Fig. 5. This scenario would be sent by the explorer
to a node manager for execution and evaluation.

6.3 Output
AFEX’s output consists of a set of faults that satisfy the
search target, a characterization of the quality of this fault
set, and generated test cases that inject the faults of the re-
sult set into the system under test S and measure their im-
pact on S. In addition to these, AFEX also reports opera-
tional aspects, such as a synopsis of the search algorithms
used, injectors used, CPU/memory/network resources used,
exploration time, number of explored faults, etc.

Quality Characterization: The quality characterization
provides developers with additional information about the
tests, in order to help guide their attention toward the most
relevant ones. The two main quality metrics are redundancy
and repeatability/precision, described earlier in §5. AFEX
aims to provide a confidence characterization, similar to
what a Web search engine user would like to get with her
search results: which of the returned pages have the same
(or similar) content. A practical relevance evaluation of the

fault set is optionally available if the developer can provide
the corresponding statistical model (§5).

Test Suites: AFEX automatically generates test cases that
can directly reproduce each fault injection and the observed
impact on the system. Each test case consists of a set of con-
figuration files for the system under test, configuration of the
fault injector(s), a script that starts the system and launches
the fault injector(s), and finally a script that generates work-
load on the system and measures the faults’ impact. We find
these generated test scripts to save considerable human time
in constructing regression test suites.

6.4 Extensibility and Control
The AFEX system was designed to be flexible and extensi-
ble. It can be augmented with new fault injectors, new sen-
sors and impact metrics, custom search algorithms, and new
result-quality metrics.
We present below the steps needed to use AFEX on a

new system under test S. In our evaluation, adapting AFEX
for use on a new target S took on the order of hours.

1. Write fault injection plugins. These are small Java code
snippets required to wrap each fault injector tool to be
used (∼150 lines of code).

2. Choose fault space. The developer must write a fault
space descriptor file (using the language specified in
Fig. 3). We found that the simplest way to come up with
this description is to analyze the target system S with a
tracer like ltrace, or to use a static analysis tool, such as
the profiler that ships with LFI [17].

3. Design impact metric. The impact metric guides the ex-
ploration algorithm. The easiest way to design the metric
is to allocate scores to each event of interest, such as 1
point for each newly covered basic block, 10 points for
each hang bug found, 20 points for each crash, etc.

4. Provide domain knowledge. Optionally, the developer
can give AFEX domain knowledge in various ways. For
example, if the system under test is to be deployed in a
production environment with highly reliable storage, it
may make sense to provide a fault relevance model in
which I/O faults are deemed less relevant (since they are
less likely to occur in practice), unless they have catas-
trophic impact on S. This will discouraging AFEX from
exploring faults of little interest.

5. Write test scripts. Developers must provide three scripts:
startup, test, and cleanup. These are simple scripts and
can be written in any scripting language supported on the
worker nodes.

6. Select search target. The tester can choose to stop the
tests after some specified amount of time, after a number
of tests executed, or after a given threshold is met in terms
of code coverage, bugs found, etc.
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7. Run AFEX. AFEX is now ready to start. It provides
progress metrics in a log, so that developers can follow
its execution, if they wish to do so.

8. Analyze results. AFEX produces tables with measure-
ments for each test (fitness, quality characterization, etc.),
and it identifies a representative test for each redundancy
cluster (as described in §5). AFEX also creates a folder
for each test, containing logs, core dumps, or any other
output produced during the test.

7. Evaluation
In this section, we address the following questions about
the AFEX prototype: Does it find bugs in real-world sys-
tems (§7.1)? How efficient is AFEX exploration compared
to random and exhaustive search (§7.2)? To what extent does
fault space structure improve AFEX’s efficiency (§7.3)? Can
AFEX leverage result-quality metrics to improve its search
efficiency (§7.4)? To what extent can system-specific knowl-
edge aid AFEX (§7.5)? How does AFEX’s usefulness vary
across different stages of system development (§7.6)? How
well does the AFEX prototype scale (§7.7)?

Evaluation Targets Most of our experiments focus on
three real-world code bases: the MySQL 5.1.44 database
management system, the Apache httpd 2.3.8Web server, and
the coreutils 8.1 suite of UNIX utilities. These systems range
from large (> 106 lines of code in MySQL) to small (∼103
lines of code per UNIX utility). We used AFEX to find new
bugs inMySQL and Apache httpd, both mature systems con-
sidered to be highly reliable. The UNIX utilities, being small
yet still real-world, allow us to closer examine various details
of AFEX and show how the various ideas described in the
paper come together into a fitness-guided exploration frame-
work that is significantly more efficient than random explo-
ration, while still requiring no source code access. We also
report measurements on the MongoDB NoSQL database,
versions 0.8 and 2.0.

Fault Space Definition Methodology AFEX can explore
both single-fault and multi-fault scenarios, but we limit our
evaluation to only single-fault scenarios, which offer suffi-
cient opportunity to examine all aspects of our system. Even
this seemingly simple setup produces fault spaces with more
than 2 million faults, which are infeasible to explore with
brute-force approaches.
Our fault space is defined by the fault injection tools

we use, along with profiling tools and, for some specific
experiments, general knowledge of the system under test.
We use the LFI library-level fault injector [16] and focus
on injecting error returns into calls made to functions in the
standard C library, libc.so. This library is the principal way
for UNIX programs to interact with their environment, so
we can use LFI to simulate a wide variety of faults in the file
system, network, and memory. To define the fault space, we
first run the default test suites that ship with our test targets,

and use the ltrace library-call tracer to identify the calls that
our target makes to libc and count how many times each
libc function is called. We then use LFI’s callsite analyzer,
applied to the libc.so binary, to obtain a fault profile for each
libc function, indicating its possible error return values and
associated errno codes.
We use this methodology to define a fault space for

the UNIX coreutils that is defined by three axes: Xtest
corresponds to the tests in the coreutils test suite, with
Xtest = (1, ...,29). Xfunc corresponds to a subset of libc func-
tions used during these tests, and their index values give us
Xfunc = (1, ...,19). Finally, Xcall corresponds to the call num-
ber at which we want to inject a fault (e.g., the n-th call
to malloc). In order to keep the fault space small enough
for exhaustive search to be feasible (which allows us to
obtain baseline measurements for comparison), we restrict
these values to Xcall = (0,1,2), where 0 means no injec-
tion, and 1 or 2 correspond to the first or second call, re-
spectively. The size of the resulting fault space Φcoreutils is
29× 19× 3= 1,653 faults. To measure the impact of an in-
jected fault, we use a combination of code coverage and exit
code of the test suite. This encourages AFEX to both inject
faults that cause the default test suite to fail and to cover as
much code as possible.
For the MySQL experiments, we use the same methodol-

ogy to obtain a fault space with the same axes, except that
Xtest = (1, ...,1147) and Xcall = (1, ...,100), which gives us
a fault space ΦMySQL with 2,179,300 faults. If we assume
that, on average, a test takes 1 minute, exploring this fault
space exhaustively would take on the order of 4 CPU-years.
MySQL therefore is a good example of why leveraging fault
space structure is important. We use a similar impact metric
to that in coreutils, but we also factor in crashes, which we
consider to be worth emphasizing in the case of MySQL.
For the Apache httpd experiments, we have the same fault

space axes, but Xtest = (1, ...,58) and Xcall = (1, ...,10), for a
fault space ΦApache of 11,020 possible faults.

Metrics To assess efficiency of exploration, we count the
number of failing tests from the Xtest axis and analyze the
generated coredumps. While imperfect, this metric has the
benefit of being objective. Once fault injection becomes
more widely adopted in test suites, we expect developers
to write fault injection-oriented assertions, such as “under
no circumstances should a file transfer be only partially
completed when the system stops,” in which case one can
count the number of failed assertions.

Experimental Platform The experiments reported in §7.1
and §7.3–§7.5 ran on an Intel quad-core 2.4GHz CPU with
4GB RAM and 7200rpmHDD. The experiments in §7.2 ran
on 5 small Amazon EC2 instances [3], the ones reported in
§7.6 on a quad-core Intel 2.3GHz CPUwith 16GBRAM and
Intel SSD, and the ones reported in §7.7 on a range of 1–14
small Amazon EC2 instances.

9



7.1 Effectiveness of Search
In this section, we show that AFEX can be used to success-
fully test the recovery code of large, production-grade soft-
ware, such as MySQL and the Apache httpd server, with
minimal human effort and no access to source code. After
running for 24 hours on a small desktop computer, AFEX
found 2 new bugs in MySQL and 1 new bug in Apache httpd.

MySQL After exploring the ΦMySQL fault space for 24
hours, AFEX found 464 fault injection scenarios that cause
MySQL to crash. By analyzing the generated core dumps,
we found two new bugs in MySQL. The results are summa-
rized in Table 1. Comparison to exhaustive search is imprac-
tical, as it would take multiple CPU-years to explore all of
ΦMySQL.

MySQL test suite Fitness-guided Random
Coverage 54.10% 52.15% 53.14%
# failed tests 0 1,681 575
# crashes 0 464 51

Table 1. Comparison of the effectiveness of fitness-guided
fault search vs. random search vs. MySQL’s own test suite.

We find that AFEX’s fitness-guided fault search is able to
find almost 3× as many failed tests as random exploration,
and cause more than 9× as many crashes. Of course, not all
these crashes are indicative of bugs—many of them result
from MySQL aborting the current operation due to the in-
jected fault. The random approach produces slightly higher
general code coverage, but spot checks suggest that the re-
covery code coverage obtained by fitness-guided search is
better. Unfortunately, it is impractical to estimate recov-
ery code coverage, because this entails manually identifying
each block of recovery code in MySQL. We now describe
briefly the two bugs found by AFEX.
The first one [20] is an example of buggy error recovery

code—the irony of recovery code is that it is hard to test,
yet, when it gets to run in production, it cannot afford to fail.
Since MySQL places great emphasis on data integrity, it has
a significant amount of recovery code that provides graceful
handling of I/O faults. However, in the code snippet shown
in Fig. 6, the recovery code itself has a bug that leads to an
abort. It occurs in a function that performs a series of file
operations, any of which could fail. There is a single block
of error recovery code (starting at line mi_create.c:836) to
which all file operations in this function jump whenever they
fail. The recovery code performs some cleanup, including
releasing the THR_LOCK_myisam lock (on line 837), and
then returns an error return code up the stack. However, if
it is the call to my_close (on line 831) that fails, say due to
an I/O error, then the recovery code will end up unlocking
THR_LOCK_myisam twice and crashing.
The second MySQL bug is a crash that happens when a

read from errmsg.sys fails. This bug is a new manifestation

mi_create.c
...
830: pthread_mutex_unlock(&THR_LOCK_myisam);
831: if (my_close(file,MYF(0)))

goto err;
...
836: err:
837: pthread_mutex_unlock(&THR_LOCK_myisam);

Figure 6. Buggy recovery code in MySQL.

of a previously discovered bug [19] that was supposedly
fixed. MySQL has recovery code that checks whether the
read from errmsg.sys was successful or not, and it correctly
logs any encountered error if the read fails. However, after
completing this recovery, regardless of whether the read
succeeded or not, MySQL proceeds to use a data structure
that should have been initialized by that read. This leads to
MySQL crashing.
It is worth noting that MySQL does use an (admittedly

ad-hoc) method for fault injection testing. The code has
macros that override return values and errno codes after calls
to libc, in order to simulate faults. These macros are enabled
by recompilingMySQLwith debug options. However, doing
fault injection this way is laborious, because the macros need
to be manually placed in each location where a fault is to be
injected, and the specifics of the injected fault need to be
hardcoded. This explains, in part, why MySQL developers
appear to have lacked the human resources to test the scenar-
ios that AFEX uncovered. It also argues for why AFEX-style
automated fault exploration is useful, in addition to the fact
that AFEX allows even testers unfamiliar with the internal
workings of MySQL—such as ourselves—to productively
test the server in black-box mode.

Apache httpd We let AFEX explore theΦApache fault space
of 11,020 possible faults, and we stopped exploration af-
ter having executed 1,000 tests. Using fitness-guided explo-
ration, AFEX found 246 scenarios that crash the server; upon
closer inspection, we discovered one new bug.
Table 2 summarizes the results. When limited to 1,000

samplings of ΦApache, AFEX finds 3× more faults that fail
Apache tests and almost 12× more tests that crash Apache,
compared to random exploration. It finds 27 manifestations
of the bug in Figure 7, while random exploration finds none.

Fitness-guided Random
# failed tests 736 238
# crashes 246 21

Table 2. Effectiveness of fitness-guided fault search vs. ran-
dom search for 1,000 test iterations (Apache httpd).

An industrial strengthWeb server is expected to run under
high load, when it becomes more susceptible to running out
of memory, and so it aims to handle such errors gracefully.
Thus, not surprisingly, Apache httpd has extensive checking
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code for error conditions like NULL returns from malloc
throughout its code base. The recovery code for an out-of-
memory error generally logs the error and shuts down the
server. Nevertheless, AFEX found a malloc failure scenario
that is incorrectly handled by Apache and causes it to crash
with no information on why. Fig. 7 shows the code.

config.c
...
578: ap_module_short_names[m->module_index]

= strdup(sym_name);
579: ap_module_short_names[m->module_index][len]

= ’\0’;

Figure 7. Missing recovery code in Apache httpd.

What the Apache developer missed is that strdup itself
uses malloc, and can thus incur an out-of-memory error that
is propagated up to the Apache code. When this happens, the
code on line config.c:579 dereferences the NULL pointer,
triggers a segmentation fault, and the server crashes without
invoking the recovery code that would log the cause of the
error. As a result, operators and technical support will have
a hard time understanding what happened.
This bug illustrates the need for black-box fault injection

techniques: an error behavior in a third-party library causes
the calling code to fail, because it does not check the return
value. Such problems are hard to detect with source code
analysis tools, since the fault occurs not in the test system’s
code but in the third-party library, and such libraries are
often closed-source or even obfuscated.

The MySQL and Apache experiments in this section
show that automatic fault injection can test real systems and
find bugs, with minimal human intervention and minimal
system-specific knowledge. We now evaluate the efficiency
of this automated process.

7.2 Efficiency of Search
To evaluate efficiency, we compare fitness-based exploration
not only to random search but also to exhaustive search. In
order for this to be feasible, we let AFEX test a couple UNIX
coreutils, i.e., explore theΦcoreutils fault space (1,653 faults).
This is small enough to provide us an exhaustive-search
baseline, yet large enough to show meaningful results.
First, we evaluate how efficiently can AFEX find interest-

ing fault injection scenarios. We let AFEX run for 250 test
iterations, in both fitness-guided and random mode, on the
ln and mv coreutils. These are utilities that call a large num-
ber of library functions. We report in the first two columns
of Table 3 how many of the tests in the test suite failed due
to fault injection. These results show that, given a fixed time
budget, AFEX is 2.3× more efficient at finding failed tests
(i.e., high-impact fault injections) than random exploration.
Exhaustive exploration finds 2.77× more failed tests than
fitness-guided search, but takes 6.61× more time (each test
takes roughly the same amount of time, and ∼90% of the

Fitness-guided Random Exhaustive
Code coverage 36.14% 35.84% 36.17%
# tests executed 250 250 1,653
# failed tests 74 32 205

Table 3. Coreutils: Efficiency of fitness-guided vs. random
exploration for a fixed number (250) of faults sampled from
the fault space. For comparison, we also show the results for
exhaustive exploration (all 1,653 faults sampled).

time in each test iteration is taken up by our coverage compu-
tation, which is independent of injected fault or workload).
Fitness-guided exploration is efficient at covering error

recovery code. Consider the following: running the entire
coreutils test suite without fault injection obtains 35.53%
code coverage, while running additionally with exhaustive
fault exploration (third column of Table 3) obtains 36.17%
coverage; this leads us to conclude that roughly 0.64% of
the code performs recovery. Fitness-guided exploration with
250 iterations (i.e., 15% of the fault space) covers 0.61%
additional code, meaning that it covers 95% of the recovery
code while sampling only 15% of the fault space.
Code coverage clearly is not a good metric for measur-

ing the quality of reliability testing: even though all three
searches achieve similar code coverage, the number of failed
tests in the default test suite differs by up to 6×.
In Fig. 8 we show the number of failed tests induced by

injecting faults found via fitness-guided vs. random explo-
ration. As the number of iterations increases, the difference
between the rates of finding high-impact faults increases as
well: the fitness-guided algorithm becomes more efficient,
as it starts inferring (and taking advantage of) the structure
of the fault space. We now analyze this effect further.
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Figure 8. Number of test-failure-inducing fault injections
for fitness-guided vs. random exploration.

7.3 Benefits of Fault Space Structure
To assess how much AFEX leverages the structure of the
fault space, we evaluate its efficiency when one of the fault
space dimensions is randomized, i.e., the values along that
Xi are shuffled, thus eliminating any structure it had. If the
efficiency of AFEX is hurt by such randomization, then
it means that the structure along that dimension had been
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suitably exploited by AFEX. We perform this experiment on
Apache httpd with ΦApache.
The results are summarized in Table 4: the randomization

of each axis results in a reduction in overall impact. For ex-
ample, 25% of the faults injected by AFEX with the original
structure of ΦApache led to crashes; randomizing Xtest causes
this number to drop to 22%, randomizingXfunc makes it drop
to 13%, and randomizing Xcall makes it drop to 17%. The
last column, random search, is equivalent to randomizing all
three dimensions. This is clear evidence that AFEX takes
substantial advantage of whatever fault space structure it can
find in each dimension in order to improve its efficiency.

Original Rand. Rand. Rand. Random
structure Xtest Xfunc Xcall search

# failed tests 73% 59% 43% 48% 23%
# crashes 25% 22% 13% 17% 2%

Table 4. Efficiency of AFEX in the face of structure loss,
when shuffling the values of one dimension of the fault
space (Apache httpd). Percentages represent the fraction of
injected faults that cause a test in Apache’s test suite to fail,
respectively crash (thus, 25% crashes means that 25% of all
injections led to Apache crashing).

Additionally, in the MySQL experiments of §7.1, we in-
spected the evolution of the sensitivity parameter (described
in §3) and the choice of test scenarios, in order to see what
structure AFEX infers in the ΦMySQL fault space. The sen-
sitivity of Xfunc converges to 0.1, while that of Xtest and
Xcall both converge to 0.4 for MySQL. Table 4 suggests that
ΦApache is different from ΦMySQL: randomizing Xfunc, which
was the least sensitive dimension in the case of MySQL,
causes the largest drop in number of crashes, which means
that for ΦApache it is actually the most sensitive dimension.

7.4 Benefits of Result-Quality Feedback
Another source of improvement in efficiency is the use of
immediate feedback on the quality of a candidate fault rela-
tive to those obtained so far. AFEX aims to generate a result
set that corresponds as closely as possible to the search tar-
get, and it continuouslymonitors the quality of this result set.
One important dimension of this assessment is the degree of
redundancy. In this section, we show how AFEX automati-
cally derives redundancy clusters and uses these online, in a
feedback loop, to increase its exploration efficiency.
As mentioned in §5, AFEX uses the Levenshtein edit

distance for redundancy detection. In this experiment, we
compare the stack traces at the injection points in the Apache
tests, cluster them, and tie the outcome into a feedback loop:
When evaluating the fitness of a candidate injection scenario,
AFEX computes the edit distance between that scenario and
all previous tests, and uses this value to weigh the fitness on
a linear scale (100% similarity ends up zero-ing the fitness,
while 0% similarity leaves the fitness unmodified).

The results are shown in Table 5. Even though the use
of the feedback loop produces fewer failed tests overall, the
search target is more closely reached: fitness-guided explo-
ration with feedback produces about 40% more “unique”
failures (i.e., the stack traces at the injection points are dis-
tinct) than fitness-guided exploration without feedback, and
75% more “unique” crashes. Of course, the method is not
100% accurate, since injecting a fault with the same call
stack at the injection point can still trigger different behavior
(e.g., depending on the inputs, the system under test may or
may not use a NULL pointer generated by an out-of-memory
error), but it still suggests improved efficiency.

Fitness- Fitness-guided Random
guided with feedback search

# failed tests 736 512 238
# unique failures 249 348 190
# unique crashes 4 7 2

Table 5. Number of unique failures/crashes (distinct stack
traces at injection point) found by 1,000 tests (Apache).

Having assessed AFEX’s properties when operating with
no human assistance, we now turn our attention to evaluating
the benefits of human-provided system-specific knowledge.

7.5 Benefits of System-Specific Knowledge
So far, we used AFEX purely in black-boxmode, with no in-
formation about the system being tested. We now construct
an experiment to evaluate how much benefit AFEX can ob-
tain from knowledge of the tested system and environment.
We choose as search target finding all out-of-memory

scenarios that cause the ln and mv coreutils to fail. Based
on an exhaustive exploration of Φcoreutils, we know there are
28 such scenarios for these two utilities. Our goal is to count
how many samplings of the fault space are required by the
AFEX explorer to find these 28 faults.

Fitness-guided Exhaustive Random
Black-box AFEX 417 1,653 836
Trimmed fault space 213 783 391
Trim + Env. model 103 783 391

Table 6. Number of samples (injection tests) needed to find
all 28 malloc faults in Φcoreutils that cause ln and mv to fail,
for various levels of system-specific knowledge.

Table 6 shows the results for three different levels of
system-specific knowledge. First, we run AFEX in its de-
fault black-box mode; this constitutes the baseline. Then we
trim the fault space by reducing Xfunc to contain only the 9
libc functions that we know these two coreutils call—this re-
duces the search space. Next, we also add knowledge about
the environment in the form of a statistical environment
model, which specifies that malloc has a relative probabil-
ity of failing of 40%, all file-related operations (fopen, read,
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etc.) have a combined weight of 50%, and opendir, chdir a
combined weight of 10%. We use this model to weigh the
measured impact of each test according to how likely it is to
have occurred in the modeled environment.
The results show that trimming the fault space improves

AFEX’s efficiency by almost 2×, and adding the environ-
ment model further doubles efficiency—AFEX is able to
reach the search target more than 4× faster than without this
knowledge. Furthermore, compared to uninformed random
search, leveraging this domain-specific knowledge helps
AFEX be more than 8× faster, and compared to uninformed
exhaustive search more than 16× faster.

7.6 Efficiency in Different Development Stages
So far, we have evaluated AFEX only on mature software;
we now look at whether AFEX’s effectiveness is affected
by the maturity of the code base or not. For this, we evalu-
ate AFEX on the MongoDBDBMS, looking at two different
stages of development that are roughly 3 years apart: version
0.8 (pre-production) and version 2.0 (industrial strength pro-
duction release). We ask AFEX to find faults that cause the
tests in MongoDB’s test suite to fail, and we expose both ver-
sions to identical setup and workloads. We let AFEX sample
the fault space 250 times and compare its efficiency to 250
random samplings. The results are shown in Figure 9.
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Figure 9. Changes in AFEX efficiency from pre-production
MongoDB to industrial strength MongoDB.

For early versions of the software, AFEX is more effi-
cient at discovering high-impact faults: compared to random
search, AFEX finds 2.37× more faults that cause test fail-
ures; this efficiency drops in the industrial strength version
to 1.43×. What may seem at first surprising is that AFEX
causes more failures in v2.0 than in v0.8—this is due to in-
creased complexity of the software and heavier interaction
with the environment, which offers more opportunities for
failure. Ironically, AFEX found an injection scenario that
crashes v2.0, but did not find any way to crash v0.8. More
features appear to indeed come at the cost of reliability.

7.7 Scalability
We have run AFEX on up to 14 nodes in Amazon EC2 [3],
and verified that the number of tests performed scales lin-
early, with virtually no overhead. This is not surprising. We

believe AFEX can scale much further, due to its embarrass-
ing parallelism. In isolation, the AFEX explorer can generate
8,500 tests per second on a Xeon E5405 processor at 2GHz,
which suggests that it could easily keep a cluster of several
thousand node managers 100% busy.

8. Related Work
Pacheco [22] presents a technique that selects from a large
set of test inputs a small subset likely to reveal faults in the
software under test. This work focuses on finding software
flaws in normal operation of software, different from our
goal of finding weak points by injecting faults.
In our work we leverage the impact of previous injections

to guide the exploration of the fault space. This impact is
expressed using various metrics, and there is extensive prior
work that has used metrics to characterize the effect of fail-
ures. Hariri et al. [12] present an agent-based framework
that quantifies how attacks and faults impact network per-
formance and services, discovers attack points, and exam-
ines how critical network components behave during an at-
tack. Nagaraja et al. [21] propose a two-phase methodology
for quantifying the performability of cluster-based Internet
services, combining fault impact measurements with the ex-
pected fault load in a production environment.
Gunawi et al. [11] describe a framework for systemati-

cally injecting sequences of faults in a system under test. The
authors present Failure IDs as a means of identifying injec-
tion points and describe a method for systematically generat-
ing injection sequences on the fly. The framework presented
by Gunawi et al. takes an exhaustive exploration approach.
An important merit of their method, however, is the means
through which the fault space is automatically generated.
KLEE [7], a well-known symbolic execution tool, also

has an optional fault injection operationmode. The approach
in KLEE is again an example of exhaustive exploration. An
important advantage of symbolic execution is that it allows
fine-grain control on the execution paths through the system
under test. We expect AFEX would benefit from the power
of symbolic execution, allowing more control on the system
under test, but at the cost of a significantly larger exploration
space.
Godefroid et al. [10] and Pacheco et al. [23] introduce

search algorithms for maximizing code coverage by gener-
ating input based on execution feedback. As suggested by
our usage scenarios, we target finding errors at higher level
(integration level).
McMinn surveyed various approaches towards the use

of metaheuristic search techniques in software testing [18].
This survey covers various heuristics, such as Genetic Algo-
rithms or Simulated Annealing, and various test techniques,
from white box to black box testing. The survey relates to
exploring the control flow graph of a program, rather than
fault injection in particular.
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9. Conclusion
We presented a set of techniques for enabling automated
fault injection-based testing of software systems. Our main
contribution is a fitness-driven fault exploration algorithm
that is able to efficiently explore the fault space of a sys-
tem under test, finding high-impact faults significantly faster
than random exploration. We also show how to categorize
the found faults into equivalence classes, such that the hu-
man effort required to analyze them is reduced. We imple-
mented our ideas in the AFEX prototype, which found new
bugs in real systems like MySQL and Apache httpd with
minimal human intervention and no access to source code.
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