
High System-Code Security
with Low Overhead
Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder

École Polytechnique Fédérale
de Lausanne

Royal Holloway,
University of London

High System-Code Security?

Today’s software is dangerous.

Example: OpenSSL 
Overflow in ssl/t1_lib.c:3997 →

OpenSSL contains 53,073 memory accesses. 
How to protect them all?

Protect all dangerous operations using sanity checks
✓ Checks are automatically added at compile time

✓ No source code modification is needed

*p = 42;

if (!isValidAddress(p)) {
 reportError(p);
 abort();
}
*p = 42;

AddressSanitizer

Tool Avg. Overhead

AddressSanitizer
(memory errors)

73%

SoftBound/CETS
(full memory safety)

116%

UndefinedBehaviorSanitizer
(integer overflows, type errors…)

71%

Assertions, code contracts, … depends

Problem: Sanity checks cause high performance overhead

Problem: Sanity checks cause high performance overhead

People use checks heavily for testing,
but disable them in production

Goal: checks in production

Insight: Checks are not all equal

Most of the overhead comes from a few expensive checks

Most of the protection comes from many cheap checks

Checks in hot code,
each executed many times

Checks in cold code

Most of the overhead comes from a few expensive checks

Most of the protection comes from many cheap checks

Our Approach

Lets users choose their overhead budget (e.g., 5%)

Automatically identifies sanity checks in software

Analyzes the cost of every check

Selects as many checks as fit in the user’s budget

: ASAP
As Safe As Possible

ASAP Insight & Results
Sa

ni
ty

 le
ve

l

0%

20%

40%

60%

80%

100%

Overhead
0% 10% 20% 30% 40% 50% 60%

Fraction of critical operations
protected by a check

Most protection comes
from cheap checks

A few checks are very expensive
A user on a 5% budget
can get 87% of the protection

Outline

Introduction: What is ASAP?

Design

Key Algorithms

Results

Conclusion

Design
ASAP is built into the compiler
✓ Easy to use (set CC and CFLAGS)

✓ Compatible (parallel compilation, …)

Compiler (LLVM)

Identify 
sanity checks

Profiler: 
measure 

check costs

Optimizer: 
select maximum

set of checks

Users use ASAP like a regular compiler that adds checks

.cc
.h

ASAP

.exe .llvm
+

ASAP stores intermediate
compiler output

Users use ASAP like a regular compiler that adds checks

.cc
.h

ASAP

.exe .llvm
+

ASAP generates a program variant with profiling
instrumentation.

ASAP

.llvm Profiler .exe

Workload

Costs

Users run this to measure check costs.

Users use ASAP like a regular compiler that adds checks

.cc
.h

ASAP

.exe .llvm
+

ASAP generates a program variant with profiling
instrumentation.

ASAP

.llvm Profiler .exe

Workload

Costs

Users run this to measure check costs.

ASAP uses costs & budget to generate an optimized program

ASAP

.llvm OptimizerCosts .exe+ Budget+

Outline

Introduction: What is ASAP?

Design

Key Algorithms

Results

Conclusion

ASAP

.exeBudget

ASAP

.exe

Measure
check cost Quantify

protectionBudget

Identify check
instructions

(de)activate
checks

profiling workload

compiler driver

IDE integration

Can users trust ASAP
to select checks that
use the least CPU cycles?

If ASAP says you’re 87%
protected, what does
this mean?

...

Measure Check Cost

if (!isValidAddress(p)) {
 reportError(p);
 abort();
}
*p = 42;
...

...

Measure Check Cost

if (!isValidAddress(p)) {

 reportError(p);
 abort();
}

*p = 42;
...

prof1++;

prof2++;

prof3++;

1. Add profiling counters

...
prof1++;
if (!isValidAddress(p)) {
 prof2++;
 reportError(p);
 abort();
}
prof3++;
*p = 42;
...

1. Add profiling counters
2. Identify check instructions

Measure Check Cost

1. Add profiling counters
2. Identify check instructions
3. Use static model 

of cycles per instruction

Measure Check Cost
...
prof1++;
if (!isValidAddress(p)) {
 prof2++;
 reportError(p);
 abort();
}
prof3++;
*p = 42;
...

1. Add profiling counters
2. Identify check instructions
3. Use static model 

of cycles per instruction
4. Compute cost for check 

in CPU cycles:
X

i2check

prof(i) · cycles(i)

Measure Check Cost

Precise cost in CPU cycles

...
prof1++;
if (!isValidAddress(p)) {
 prof2++;
 reportError(p);
 abort();
}
prof3++;
*p = 42;
...

ASAP

.exe

Measure
check cost Quantify

protectionBudget

Identify check
instructions

(de)activate
checks

profiling workload

compiler driver

IDE integration

If ASAP says you’re 87%
protected, what does
this mean?

ASAP quantifies protection
using the sanity level

We would like to know the
effective protection level

Methodology: measure how
many bugs/vulnerabilities
are effectively prevented

ASAP quantifies protection
using the sanity level

We would like to know the
effective protection level

Methodology: measure how
many bugs/vulnerabilities
are effectively prevented

Experiment 1

Source code of Python 2.7

Bug: line that has received a
patch between version 
2.7.1 and 2.7.8

0

20%

40%

60%

80%

100%

0 20% 40% 60% 80% 100%
Sanity level

Bu
gg

y
lin

es
 c

ov
er

ed
 b

y
ch

ec
ks

Sanity level 87% ≈ 91% protection

Effective Protection ≥ sanity level

ASAP quantifies protection
using the sanity level

We would like to know the
effective protection level

Methodology: measure how
many bugs/vulnerabilities
are effectively prevented

Experiment 2
Known bugs

Project Bugs

Python 3.4 3

OpenSSL 1

RIPE
Benchmarks 10

All of these are in cold code

Experiment 2
Known bugs

Project Bugs

Python 3.4 3

OpenSSL 1

RIPE
Benchmarks 10

All of these are in cold code

Experiment 3

Vulnerabilities from CVE DB

Analyze 145 vulnerabilities from 2014
• Memory errors
• Open source
• Patch available
• Error location known

83% of these are in cold code

Checks in cold code provide real value

Outline

Introduction: What is ASAP?

Design

Key Algorithms

Results

Conclusion

Results

0

20

40

60

80

100

120

lib
qu

an
tu

m
lb

m
so

pl
ex m
cf

na
m

d
as

ta
r

bz
ip

2
m

ilc
sp

hi
nx

3
hm

m
er

go
bm

k
sj

en
g

gc
c

po
vr

ay

O
ve

rh
ea

d
in

 %

Overhead for:
SPEC benchmarks
AddressSanitizer

100%
sanity level

Results
Overhead for:
SPEC benchmarks
AddressSanitizer

95%
sanity level

0

20

40

60

80

100

120

lib
qu

an
tu

m
lb

m
so

pl
ex m
cf

na
m

d
as

ta
r

bz
ip

2
m

ilc
sp

hi
nx

3
hm

m
er

go
bm

k
sj

en
g

gc
c

po
vr

ay

O
ve

rh
ea

d
in

 %

CPU cycles saved

Results
Overhead for:
SPEC benchmarks
AddressSanitizer

90%
sanity level

0

20

40

60

80

100

120

lib
qu

an
tu

m
lb

m
so

pl
ex m
cf

na
m

d
as

ta
r

bz
ip

2
m

ilc
sp

hi
nx

3
hm

m
er

go
bm

k
sj

en
g

gc
c

po
vr

ay

O
ve

rh
ea

d
in

 %

Results
Overhead for:
SPEC benchmarks
AddressSanitizer

80%
sanity level

0

20

40

60

80

100

120

lib
qu

an
tu

m
lb

m
so

pl
ex m
cf

na
m

d
as

ta
r

bz
ip

2
m

ilc
sp

hi
nx

3
hm

m
er

go
bm

k
sj

en
g

gc
c

po
vr

ay

O
ve

rh
ea

d
in

 %

Residual overhead
(not due to checks)

Conclusion
Run-time checks deliver strong protection at high cost

ASAP

Identify 
sanity checks

measure 
check costs

select maximum
set of checks .exeBudget

Most of the overhead comes from a few expensive checks

Most of the protection comes from many cheap checks

Protect your software!
dslab.epfl.ch/proj/asap

Backup slides

Sanity Check
in LLVM

; <label>:0
%1 = load i32* %fmap_i_ptr, align 4
%2 = zext i32 %1 to i64
%3 = getelementptr inbounds i32* %eclass, i64 %2
%4 = ptrtoint i32* %3 to i64
%5 = lshr i64 %4, 3
%6 = add i64 %5, 17592186044416
%7 = inttoptr i64 %6 to i8
%8 = load i8* %7, align 1
%9 = icmp eq i8 %8, 0
br i1 %9, label %18, label %10

; <label>:10
%11 = ptrtoint i32* %3 to i64
%12 = and i64 %11, 7
%13 = add i64 %12, 3
%14 = trunc i64 %13 to i8
%15 = icmp slt i8 %14, %8
br i1 , label %18, label %16

; <label>:16
%17 = ptrtoint i32* %3 to i64
call void @__asan_report_load4(i64 %17) #3
call void asm sideeffect "", ""() #3
unreachable

; <label>:18
%19 = load i32* %3, align 4

%15

