
To appear in Cluster Computing Journal, Kluwer Academic Press, 2004

Autonomous Recovery in Componentized Internet Applications

George Candea, Emre Kiciman, Shinichi Kawamoto, Armando Fox
Computer Systems Lab, Stanford University

{candea,emrek,skawamo,fox}@cs.stanford.edu

Abstract

In this paper we show how to reduce downtime of J2EE appli-
cations by rapidly and automatically recovering from transient
and intermittent software failures, without requiring applica-
tion modifications. Our prototype combines three application-
agnostic techniques: macroanalysis for fault detection and
localization, microrebooting for rapid recovery, and external
management of recovery actions. The individual techniques
are autonomous and work across a wide range of componen-
tized Internet applications, making them well-suited to the
rapidly changing software of Internet services.

The proposed framework has been integrated with JBoss, an
open-source J2EE application server. Our prototype provides
an execution platform that can automatically recover J2EE ap-
plications within seconds of the manifestation of a fault. Our
system can provide a subset of a system’s active end users with
the illusion of continuous uptime, in spite of failures occurring
behind the scenes, even when there is no functional redun-
dancy in the system.

1 Introduction

When Web-connected systems go down, most often the ones
who notice first are the system’s end users, who then contact
technical support, who then contact the system administrators,
who can then re-establish the service’s operation. This hap-
pens frequently: a 2003 study [8] found that, of the 40 top-
performing Web sites, 72% had suffered user-visible failures
in the application, such as items not being added to a shopping
cart or an error message being displayed. These application-
level failures include failures where only part of a site goes
down, failures where only some users are affected, and failures
where functionality is only intermittently unavailable to end
users. Our conversations with Internet service operators con-
firm the difficulty of detecting and localizing the faults causing
these failures; partial service failures can sometimes take days
to detect and recover. Faster recovery is needed—a study of
three major Internet sites found that earlier detection could
have mitigated or avoided 65% of the reported user-visible
failures [43].

In spite of ever-improving development processes and tools,

all production-quality software has bugs; most of these are
difficult to track down and resolve, taking the form of
Heisenbugs, race conditions, resource leaks, and environment-
dependent bugs [19, 45]. When these bugs strike in live sys-
tems, they can result in prolonged outages [24, 40]. In the face
of system failure, operators do not have time to run sophisti-
cated diagnoses, but rather need to bring the system back up
immediately; compounding this, up to 80% of software prob-
lems are due to bugs for which no fix is available at the time
of failure [57]. Rebooting is often the last and only resort.

Our view is that, to improve dependability of Internet ser-
vices, we need autonomous recovery, which enables systems
to recover on the scale of “machine time” rather than “human
time.” The end result will be a better service experience for its
human end users.

Achieving Autonomous Recovery

As suggested by the cited studies, there are two important
components in an autonomous recovery strategy: automatic
detection and localization of faults, as well as a reliable form
of recovery. Neither of these components can afford to be
custom designed for the application, because they need to
co-evolve with the system that is being cared for (through
upgrades, workload changes, etc.). The increasingly large
scale of today’s Internet systems therefore calls for both de-
tection/localization and recovery to be application-generic.

Two observations about common failures suggest an ap-
proach to reduce this impact. First, many application-level
failures are non-fail-stop faults; and the time to detect these
failures significantly dominates the total time to recover from
the fault. One service operator, TellMe Networks, esti-
mates that over 90% of the time they spend recovering from
application-level failures is spent just detecting (75%) and di-
agnosing (18%) them [14]. We have developed an application-
generic technique for detection and localization; we describe
it in Section 4.

Second, the results of several studies [50, 24, 41] as well
as experience in the field [6, 44] suggest that many failures
can be recovered by rebooting even if their root causes are
unknown. For example, an informal analysis of the failure
reports recorded at an Internet service [33] has found many
such instances, including: malformed HTTP requests causing

1

Apache front ends to hang, overload leading to the failure of
the middle-tier-hosted product search feature, out-of-memory
conditions caused by Google rapidly crawling dynamically
created Web pages, complex ad-hoc queries against the pro-
duction database that caused DB performance to plummet, etc.
Despite automatic garbage collection, resource leaks are a ma-
jor problem for many large-scale Java applications; a recent
study of IBM customers’ J2EE e-business software revealed
that production systems frequently crash because of memory
leaks [39]. Some of the largest U.S. financial companies find
it necessary to reboot their J2EE applications as often as sev-
eral times a day [38] to recover memory, network sockets, file
descriptors, etc. Servers in Web farms are subject to an even
more aggressive rejuvenation regimen [6].

While rebooting does not necessarily address the root cause,
it is a quick band-aid fix commonly employed in large sys-
tems. While rebooting certainly meets the requirements of a
“universal” recovery technique, it tends to be expensive. Thus,
a cheaper form of reboot is required; we have developed such
a recovery technique and describe it in Section 5.

1.1 Contributions

In this paper we achieve the following three goals:

• We show that application-generic recovery from
transient/intermittent failures can be performed au-
tonomously by Internet systems, with no human
assistance.

• We propose a design pattern for autonomously recover-
ing systems and explore the relationship between its three
components: monitoring, detection/localization, and re-
covery. We show which parts should be placed inside the
system, and which parts belong outside.

• We present and evaluate a prototype application server
implemented in the popular J2EE framework. This server
leverages application-generic recovery for all J2EE appli-
cations that conform to a small set of design guidelines.

1.2 Roadmap

The remainder of the paper is structured as follows: In Sec-
tion 2 we survey related work. Section 3 gives an overview of
our design, that rests on three building blocks: macroanalysis,
microrebooting, and a recovery manager; these are described
in Sections 4, 5, and 6, respectively. Section 7 is devoted to an
evaluation of our prototype. Section 8 summarizes our tech-
nical assumptions and discusses limitations of the prototype;
Section 9 concludes the paper.

2 Related Work

2.1 Detecting and Localizing Faults

Following discussions with Internet service operators, we con-
cluded that detection methods used in practice fall into three
categories. First, low-level monitors are machine and protocol
tests, such as heart beats, pings, and HTTP error code moni-
tors. They are easily deployed and require few modifications
as the service develops, but miss high-level failures, such as
broken application logic or interface problems.

Second, application-specific monitors, such as automatic
test suites, can catch high-level failures in tested functionality.
However, these monitors cannot exercise all interesting com-
binations of functionality (consider, for example, all the kinds
of coupons, sales and other discounts at a typical e-commerce
site). More importantly, these monitors must be custom-built
and kept up-to-date as the application changes, otherwise the
monitor will both miss real failures and cause false alarms. For
these reasons, neither the sites that we have spoken with, nor
those studied in [43] make extensive use of these monitors.

Third, user-activity monitors watch simple statistics about
the gross behavior of users and compare them to historical
trends. Such a monitor might track the searches per second
or orders per minute at a site. These monitors are generally
easy to deploy and maintain, and at a site with many users,
can detect a broad range of failures that affect the given statis-
tic, though they do not give much more than an indication that
something might have gone wrong.

Once a failure has been detected, localizing it can be
challenging. Event-correlation systems for network manage-
ment [46, 5] and commercial problem-determination systems
typically rely on either expert systems with human-generated
rules or on the use of dependency models to assist in fault
localization [58, 17]. Aguilera et al. [1] and Brown et al. [7]
have used dynamic observation to automatically build such de-
pendency models. Anomaly detection has gained currency as
a tool for detecting “bad” behaviors in systems where many
assumed-good behaviors can be observed, including Windows
registry debugging [54], finding bugs in system code [23],
and detecting possible violation of runtime program invari-
ants [26]. Ward et al. [55] proposed anomaly detection as a
way to identify possible failures for Internet sites, but started
with a statistical model based on 24 hours of observing the
system, whereas in real systems one needs to build and adjusts
the model dynamically.

2.2 Recovery

Virtually all recovery techniques rely on some form of redun-
dancy, in the form of either functional, data, or time redun-
dancy. In the case of functional redundancy, good processors
can take over the functionality of failed processors, as in the
case of Tandem process pairs [4] or clusters. Failover to a

2

standby node is a powerful high availability technique, but
cannot be solely relied on (e.g., because whenever a node fails
in a cluster, the system as a whole enters a period of vulnera-
bility in which further failures could cripple it).

The benefits of restarting quickly after failures have been
recognized by many system designers, as they employed tech-
niques ranging from the use of non-volatile memory (e.g.,
Sprite’s recovery box [2]) to non-overwriting storage com-
bined with clever metadata update techniques (e.g., the Post-
gres DBMS [49]). A common theme is that of segregating and
protecting state that needs to be persistent, while treating the
rest as soft state. We see this approach reflected in recent work
in Internet services [25] and we adopt it as a basic tenet.

Checkpointing [53] employs dynamic data redundancy to
create a believed-good snapshot of a program’s state and, in
case of failure, return the program to that state. An important
challenge in checkpoint-based recovery is ensuring that the
checkpoint is taken before the state has been corrupted [56].
Another challenge is deciding whether to checkpoint trans-
parently, in which case recovery rarely suceeds for generic
applications [35], or non-transparently, in which case source
code modifications are required. In spite of these problems,
checkpointing is a useful technique for making applications
restartable, and was successfuly utilized in several systems.
We believe that maintaining state in a suitable store, however,
obviates the need for checkpoints.

Some of the most reliable computers in the world are guided
by the same principles we are following, and use dynamic re-
covery to mask failures from upper layers. For example, in
IBM S/390 mainframes [48], computation is duplicated within
each CPU and the results are compared before being commit-
ted to memory. A difference in results freezes execution, re-
verts the CPU to its state prior to the instruction, and the failed
instruction is retried. If the results now compare OK, the error
is assumed to have been transient and execution continues; if
they are different, the error is considered to be permanent, the
CPU is stopped and dynamically replaced with a spare.

2.3 Autonomic Computing

Autonomic computing [29] seeks to automate complex sys-
tems administration as much as possible, often by having a
system automatically learn or infer its operating points and
then applying automated management techniques based on
closed-loop control or statistical modeling. Recent work in
automatic inference of the behavior of complex applications
relies on collecting fine-grained (component-level) observa-
tions and extracting interesting patterns from them [15, 21],
whereas recent progress in applying automated management
techniques [20, 31] assume a predictable performance cost for
triggering management mechanisms such as recovering or ac-
tivating a node. We combine similar techniques in the context
of our three-tier J2EE prototype system.

3 Overview

Our design for autonomous recovery is illustrated abstractly
in Figure 1. More than simply combining fault detec-
tion/localization and recovery, we needed to add a separate
entity that could have end-to-end knowledge of the recovery
process and provide the vehicle for implementing a variety
of policies—the recovery manager. The autonomous recov-
ery process is made up of three stages: pervasive monitor-
ing, generic fault detection and localization, and generic re-
covery. The individual pieces have been developed in prior
work [30, 12]; the contribution of this paper is to make a first
step toward connecting them.

mon

COMP

COMP

COMP

COMP

COMP

reco

Recovery
Manager

Detection &

Engine
Localization

mon

reco

mon

reco

mon

reco
mon

reco

Figure 1: A design pattern common to autonomously recover-
ing componentized applications. In this drawing, the system
consists of five components (or subsystems), that are wrapped
in a monitoring & recovery harness. Dotted lines represent
paths for reporting potential failures, while the solid lines rep-
resent paths used by a recovery manager to send recovery in-
structions to the components’ harness.

Monitoring: The system that needs to be recovered must
have pervasive monitoring points (probes). Monitors generate
low-level observations that are centralized into an analysis en-
gine. The monitoring probes are introduced into the system
using various forms of instrumentation; in our case we used
interposition leveraging Java’s language features.

Fault Detection and Localization: The analysis engine cor-
relates monitoring reports to each other and to other infor-
mation in order to infer when the system is behaving anoma-
lously. The anomaly reports contain a preliminary location of
the fault, listing all the components that are behaving anoma-
lously. All of the reported anomalous components might be
faulty and misbehaving, or one truly faulty component might
be causing the others to misbehave.

Recovery: The anomaly reports are forwarded to a recov-
ery manager, which is responsible for interpreting anomaly
reports and deciding what action, if any, to take. Once the
action has been taken, the recovery manager evaluates its ef-
fectiveness and decides whether more action is required. Since
the cause of the failure is not known, but rather only the loca-

3

tion, a universal recovery technique is required. In our system
we use exclusively recovery based on microreboots, because
we focus on transient and intermittent failures; other systems
may employ different techniques. Microreboots restart a sin-
gle component within a larger system, resetting its state.

The time for a system to recover from a manifest fault be-
comes T = Tm + Td + Tr, where Tm is the time it takes for
monitors to pick up the symptoms and report them to the de-
tector, Td is the time for the analysis engine to correlate the
various observations and infer that a failure has occurred in a
specific component or set of components, and finally Tr is the
time it takes for the recovery manager to decide what recovery
action to take and then effect it.

3.1 The J2EE Framework

A common design pattern for Internet applications is the three-
tiered architecture: a presentation tier consists of stateless Web
servers, the application tier runs the application per se, and the
persistence tier stores long-term data in one or more databases.
J2EE is a framework designed to simplify developing applica-
tions for this three-tiered model; we applied the design de-
scribed above to a J2EE application server.

J2EE applications consist of portable components, called
Enterprise Java Beans (EJBs), together with server-specific
XML deployment descriptors. A J2EE application server
uses the deployment information to instantiate an applica-
tion’s EJBs inside management containers; there is one con-
tainer per EJB object, and it manages all instances of that EJB.
The server-managed container provides a rich set of services:
thread pooling and lifecycle management, client session man-
agement, database connection pooling, transaction manage-
ment, security and access control, etc.

End users interact with a J2EE application through a Web
interface, the application’s presentation tier. This consists of
servlets and Java Server Pages (JSPs) hosted in a Web server;
they invoke methods on the EJBs and then format the returned
results for presentation to the end user. Invoked EJBs can call
on other EJBs, interact with the backend databases, invoke
other Web services, etc.

An EJB is similar to an event handler, in that it does not con-
stitute a separate locus of control—a single Java thread shep-
herds a user request through multiple EJBs, from the point it
enters the application tier until it returns to the Web tier.

We implemented our approach to autonomous recovery in
JBoss [28], an open-source application server that complies to
the J2EE standard. JBoss is widely used: it has been down-
loaded from SourceForge several million times, was awarded
the JavaWorld 2002 Editors’ Choice Award over several com-
mercial competitors, and according to one study [3] offers bet-
ter performance than several commercial competitors. More
than 100 corporations, including WorldCom and Dow Jones,
are using JBoss for demanding computing tasks.

Figure 2 illustrates the architecture of our prototype. The
subsequent sections describe in more detail the modifications
and extensions we made to JBoss.

EJB

EJB

EJB

EJB

EJB EJB

Application Server

J2EE Application

H
T

T
P

 S
er

ve
r

S
er

vl
et

 /
JS

P
 C

o
n

ta
in

er

Web
Browsers

EJB Containers Naming Dir

Messaging Security Mgr
Microreboot

Hook

Txn Svc

Database

(clients)

Macronalysis
Engine

Recovery
Manager

SSM

Figure 2: JAGR: JBoss with Autonomous Generic Recov-
ery. The dark gray elements represent our additions to vanilla
JBoss.

4 Detection and Localization

For detecting and localizing faults, we developed a macroanal-
ysis system, called Pinpoint [30]; it is an application-generic
framework for monitoring component-based Internet services,
and detecting and localizing application-level failures without
requiring a priori knowledge about the application. The ba-
sis for pinpoint is the observation that failures affecting user-
visible behavior are also likely to affect a system’s internally-
visible behaviors. By monitoring low-level behaviors that are
closely tied to application functionality, Pinpoint develops a
model of the normal patterns of behavior inside a system.
When these patterns change, Pinpoint infers that the appli-
cation’s functionality has also changed, indicating a potential
failure. After noticing an anomaly, Pinpoint correlates it to its
probable cause in the system and issues a list of suspected-
faulty components.

4.1 Monitoring Instrumentation

We instrumented the JBoss EJB container to capture calls to
the naming directory (used by application components to find
each other) and the invocation and return data for each call to
an EJB. We also instrumented the Java Database Connection
(JDBC) wrappers to capture information on interactions with
the database tier. Each observation includes the monitored
component information, IP address of the current machine,
a timestamp, an ordered observation number, and a globally-
unique request ID, used to correlate observations.

The information we collect is as follows: in the HTTP
server, every time a request enters the system, we record that
the request has begun. The request is assigned a unique iden-
tifier and a counter initialized to zero; this counter is incre-
mented each time an observation is recorded. Our modified

4

EJB container intercepts calls to EJBs and records when meth-
ods are called and returned, as well as the ID of the request
associated with the invocation. We modified the RMI proto-
col to send the user request ID, and the current counter value
to the callee; when the RMI call returns, the protocol returns
the modified counter. In our instrumented Java messaging ser-
vice (JMS) we forward the current request ID along with the
message, and record the association between the sender and
receiver. Finally, we observe database accesses made through
JDBC and collect the SQL queries, updates, and the record
IDs of created or read data items, along with the ID of the re-
sponsible user request. We do not directly trace background
functionality that is not assignable to an individual request,
such as garbage collection; the unit of failure that concerns us
is the client request, since that is all the end user is aware of.

4.2 Analysis Engine

All observations are sent to a centralized engine for logging
and analysis. The expensive work of sending observations
over the network is done in one dedicated thread per Java vir-
tual machine, thus keeping in the critical path only the initial
packaging of the observation based on immediately available
state.

Our engine for analyzing component behavior is imple-
mented using a plugin-based architecture: each algorithm is
implemented as a pipeline of data aggregators, sorters, split-
ters, statistical analysis and data clustering plugins. We use
other plugins to interface between our analysis engine and
automated or human managers of the system. E.g., a plu-
gin sends failure notifications to our recovery manager; an-
other plugin provides an HTTP interface for viewing the cur-
rent anomalies and status of the system being monitored. The
plugin-based architecture combined with network plugins al-
lows us to forward data between stages of a pipeline running
on separate machines. This enables the engine to scale, if nec-
essary, by spreading an algorithm’s CPU-intensive analysis
stages across multiple machines or, depending on the details
of the analysis, parallelize a single stage of the analysis across
multiple machines.

4.3 Modeling Component Interactions

We model the behavior of a component C as a set of weighted
links between C and other components. Each link is weighted
by the proportion of runtime call paths that enter or leave C

along that link. If the weights of these links change, then the
functional behavior of C is likely to also be changing. We gen-
erate a historical model of a component’s normal behavior by
averaging the weights of links over time. We generate a peer
component model by averaging the current behaviors of repli-
cated peers (i.e., components with the same functionality).

Anomalies are detected by measuring the deviation between

a single component’s current behavior and our model of nor-
mal behavior using the χ2 test of goodness-of-fit:

Q =

k∑

i=1

(Ni − wi)
2

wi

(1)

where Ni is the number of times link i is traversed in our com-
ponent’s behavior, and wi is the expected number of traversals
of the link according to the weights in our model of normal
behavior. Q measures the confidence that the normal behavior
and observed behavior are based on the same underlying prob-
ability distribution, regardless of what that distribution may be.
The higher the value of Q, the more likely it is that the normal
behavior and the component’s behavior were generated by dif-
ferent processes, i.e., the higher the anomaly.

We use the χ2 distribution with k − 1 degrees of freedom,
where k is the number of links in and out of a component,
and we compare Q to an anomaly threshold based on our de-
sired level of significance α, where higher values of α are
more sensitive to failures but more prone to false-positives; in
our experiments, we use a level of significance α = 0.005.
While Pinpoint does not attempt to detect problems before
they happen, similar statistical techniques could be applied to
that problem.

Figure 3 shows sample output from a fault detection run in
one of our J2EE applications.

{ [1, CatalogEJB, 9.41] ,
[2, ShoppingCartEJB, 1.09] ,
[3, ShoppingControllerEJB, 0.34] ,
[4, JspServlet, 0.12] ,
[5, MainServlet, 0.02] }

Figure 3: The top five χ2 goodness-of-fit scores of compo-
nents after injecting a fault into a component called Catalo-
gEJB. The scores are normalized, so 1 is the threshold for sta-
tistical significance. CatalogEJB, the most anomalous, has a
significantly higher score than other components.

5 Recovery

We argued above that rebooting is a universal form of recovery
for many categories of failures; we developed the notion of a
component-level “microreboot” as a way to reduce the cost of
rebooting.

Reboots have pros and cons. They provide a high-
confidence way to reclaim stale or leaked resources, they do
not rely on the correct functioning of the rebooted system,
they are easy to implement and automate, and they return the
software to its start state, which is often its best understood
and best tested state. On the other hand, in some systems
unexpected reboots can result in data loss and unpredictable

5

recovery times. This occurs most frequently when the sys-
tem lacks clean separation between data recovery and process
recovery. For example, performance optimizations such as
writeback caches and buffers open a window of vulnerability
during which “persistent” data is stored only in a cache that
will not survive a crash; crash-rebooting this system would re-
cover the process, but would not recover the data in the buffers.

5.1 State Segregation

To ensure the correctness of microreboot-based recovery, we
must prevent reboots from inducing corruption or inconsis-
tency in the application’s persistent state. The inventors of
transactional databases recognized that segregating recovery
of persistent data from application logic can improve the re-
coverability of both the application and the data that must per-
sist across failures.

We take this idea further and require that microrebootable
applications keep all important state in specialized state stores
located outside the application, behind well-defined APIs. We
factored out all non-volatile state into dedicated crash-safe
state stores: a database for all durable data, and a session state
store [34] for semi-persistent (“session”) application state.
The complete separation of component recovery from data re-
covery makes unannounced microreboots safe. The burden of
data management is shifted from the often-inexperienced ap-
plication writers to the specialists who develop state stores.

Internet applications, like the ones we would expect to run
on JBoss, typically handle three types of important state: long-
term data that must persist for years (such as customer infor-
mation), session data that needs to persist for the duration of
a user session (e.g., shopping carts or wokflow state in enter-
prise applications), and virtually read-only data (static images,
HTML, JSPs, etc.). We keep these kinds of state in a database,
session state store, and a Linux ext3fs read-only filesystem,
respectively. The latter is trivially crash-safe.

Persistent state: There are three types of EJB: (a) entity
beans, which map each bean instance’s state to a row in
a database table, (b) session EJBs, which are used to per-
form temporary operations (stateless session beans) or repre-
sent session objects (stateful session beans), and (c) message-
driven EJBs (not of interest to this work). EJBs may interact
with a database directly and issue SQL commands, or indi-
rectly via an entity EJB. In microrebootable applications we
require that only stateless session beans and entity beans be
used; this is consistent with best practices for building scal-
able EJB applications. The entity beans must make use of
Container-Managed Persistence (CMP), a J2EE mechanism
that delegates management of entity data to the EJB’s con-
tainer. CMP provides relatively transparent data persistence,
relieving the programmer from the burden of managing this
data directly or writing SQL code to interact with a database.
Our prototype applications conform to these requirements.

Session state must persist at the server for long enough to
synthesize a user session from independent stateless HTTP
requests, but can be discarded when the user logs out or the
session times out. Typically, this state is maintained inside
the application server and is named by a cookie accompa-
nying incoming HTTP requests. To ensure the session state
survives both microreboots and full reboots, we externalize
session state into a modified version of SSM, a session state
store [34]. SSM’s storage model is based on leases, so or-
phaned session state is eventually garbage-collected automat-
ically. Many commercial application servers forgo this sepa-
ration and store session state in local memory only, in which
case a server crash or EJB microreboot would cause the corre-
sponding user sessions to be lost.

The segregation of state offers some level of recovery con-
tainment, since data shared across components by means of a
state store does not require that the components be recovered
together. Externalized state also helps to quickly reintegrate
recovered components, because they do not need to perform
data recovery following a microreboot.

5.2 Containment and Reintegration

For an application to gracefully tolerate the microreboot of
a component, coupling between components must be loose:
components in a microrebootable application have well-
defined, enforced boundaries; direct references, such as point-
ers, may not span these boundaries. Indirect, microreboot-safe
references can be maintained outside the components, either
by a state store or by the application platform.

Further containment of recovery is obtained through
compiler-enforced interfaces and type safety. EJBs cannot
name each others’ internal variables, nor can they use mutable
static variables. While this is not enforced by the compiler,
J2EE documents warn against the use of static variables and
recommend instead the use of singleton EJB classes, whose
state is accessed through standard accessor/mutator methods.
EJBs can obtain references to each other in order to make
inter-EJB method calls; references are obtained from a naming
service (JNDI) provided by the application server, and may be
cached once obtained. The inter-EJB calls themselves are also
mediated by the application server via the containers, to ab-
stract away the details of remote invocation (if the application
server is running on a cluster) or replication (if the application
server has replicated a particular EJB for performance or load
balancing reasons).

Since EJBs may maintain references to other EJBs, microre-
booting a particular EJB causes those references to become
stale. To remedy this, whenever an EJB is microrebooted, we
also microreboot the transitive closure of its inter-EJB refer-
ences. This ensures that when a reference goes out of scope,
the referent disappears as well. While static or dynamic anal-
ysis [10] could be used to determine this closure, we use the

6

simpler method of determining groups statically by examining
deployment descriptors, which are typically generated for the
J2EE application by the development environment. The refer-
ence information is used by the application server to determine
in what order to deploy the EJBs.

The time to reintegrate a microrebooted component is de-
termined by the amount of initialization it performs at startup
and the time it takes for other components to recognize the
newly-instantiated EJB. Initialization dominates reintegration
time; in our prototype it takes on the order of hundreds of mil-
liseconds, but varies considerably by component, as will be
seen in Table 3. The time required to destroy and re-establish
EJB metadata in the application server is negligible. Mak-
ing the EJB known to other components happens through the
JNDI naming service described earlier; this level of indirec-
tion ensures immediate reintegration once the component is
initialized.

5.3 Enabling Microreboots

We added a microreboot method to the JBoss EJB container
that can be invoked from within the application server, pro-
grammatically from outside the server through an HTTP adap-
tor, or by an administrator through a Web-based management
interface. Since we modified the JBoss container, microre-
boots can now be performed on any J2EE application (how-
ever, this is safe only if the application conforms to the guide-
lines of Sections 5.1 and 5.2). The microreboot method de-
stroys all extant instances of the EJB and associated threads,
releases all associated resources, discards server metadata
maintained on behalf of the EJB, and then reinstantiates the
EJB. This fixes many problems such as EJB-private variables
being corrupted, EJB-caused memory leaks, or the inability of
one EJB to call another because its reference to the callee has
become stale.

The only server metadata we do not discard on microre-
boot is the component’s classloader. JBoss uses a separate
class loader for each EJB to provide appropriate sandboxing
between components; when a caller invokes an EJB method,
the caller’s thread switches to the EJB’s classloader. A Java
class’ identity is determined both by its name and the class-
loader responsible for loading it; discarding an EJB’s class-
loader upon microreboot would have (unnecessarily) compli-
cated the update of internal references to the microrebooted
component. Keeping the classloader active does not violate
any of the sandboxing properties. Preserving classloaders
does not reinitialize EJB static variables upon microreboot, but
J2EE strongly discourages the use of mutable static variables
anyway (to simplify replication of EJBs in clusters).

6 Managing the Recovery Process

As will be seen in Section 7.4, microreboots are an order of
magnitude less expensive than an application restart. This
makes them suitable for use as a “first line of defense” recov-
ery mechanism even when failure detection is prone to false
positives or when the failure is not known to be microreboot-
curable. If a microreboot does not recover from the failure but
a subsequent recovery mechanism (such as a full reboot) does,
the additional recovery time added by attempting the microre-
boot first is negligible. Microrebooting is therefore a well-
suited match for Pinpoint, and we use it as the sole recovery
action taken by our recovery manager.

As shown in Figure 2, the recovery manager is an entity ex-
ternal to the application server. It attempts automated recov-
ery and only involves system administrators when automated
recovery is unsuccessful.

The recovery manager listens for UDP-based failure noti-
fications from the Pinpoint analysis engine. These notifica-
tions contain a list of suspected-faulty components, along with
an anomaly score, as described in Section 4.3. These reports
are passed to a configurable policy module (in our case, it is
the “microreboot-based recovery” module); the policy decides
what action is appropriate (i.e., to recover or not, and at what
level). The policy module invokes the microreboot method in
the application server.

6.1 Recovery Policy

The recovery manager keeps track of the previously-rebooted
subset of components and, if the new subset is the same, it
chooses to restart the entire application instead of again restart-
ing that subset of components. If the problem persists even
after rebooting the entire system, the policy module can notify
a system administrator by pager or email, as necessary. Right
now we only employ two levels of rebooting (microreboot fol-
lowed by a full reboot), but more levels could be used for other
kinds of applications.

The policy employed in our recovery manager is as follows:

1. Given a received failure report, ignore all components
with a score of less than 1.0 (since the scores are nor-
malized, 1.0 is the threshold for statistical significance).

2. The existence of several components with a score above
1.0 indicates something is wrong: either one component
is faulty and the other ones appear anomalous because
of their interaction with it, or indeed we are witnessing
multiple simultaneous faults. We choose to act conserva-
tively and microreboot all components that are above the
1.0 threshold. In other types of systems it may be better to
just microreboot the top n most anomalous components
(for some parameter n).

7

3. For the next interval of time ∆t, failure reports involving
the just-rebooted components are ignored, since it takes
a while for Pinpoint to realize the system has returned to
normal. In our experiments, ∆t was set to 30 seconds.

4. If subsequent failure reports (after ∆t) indicate that the
just-recovered components are still faulty, we can either
repeat the reboot-based recovery a number of times, or
directly proceed to restarting the entire application. Our
current policy implements the latter.

5. If, following a full application restart, the problem per-
sists (after another interval of time ∆t′), then an admin-
istrator is notified.

A detailed analysis of the various policies and the trade-
offs involved is beyond the scope of this paper. We have pur-
posely built the recovery manager such that new policy mod-
ules can be plugged in, to encourage further research on the
topic. An interesting problem we have not addressed is dealing
with faults that keep reappearing, either because they are trig-
gered by a recurring input, or are simply deterministic bugs.

One final issue is that of recovery manager availability—
should the recovery manager go down, nobody will be watch-
ing over the system. We have built the recovery manager such
that it can restart quickly and lose only recent recovery history
upon doing so. It can be run by a

while(true) { run recovery manager(); }

loop. An alternate design, as proposed in [9], is to have an-
other part of the system (such as the application server) watch
the manager and restart it, if it appears to have crashed.

7 Evaluation

In this section, we first evaluate the individual effectiveness of
each component in our recovery framework, followed by an
evaluation of the end-to-end system, and concluding with an
analysis of the performance overheads present in our proto-
type.

7.1 Test Framework

Applications

We deployed three different applications in our testbed cluster:
PetStore 1.1 [51] is Sun’s sample J2EE application, that

simulates an e-commerce Web site (storefront, shopping cart,
purchasing, tracking, etc.). It consists of 12 application com-
ponents (EJBs and servlets), 233 Java files, and about 11K
lines of code, and stores its data in a Cloudscape database.

Petstore 1.3.1 [51] is a significantly re-architected version,
that adds a suite of modules for order processing, administra-
tion, and supply-chain management to the previous Petstore.
In all, it has 47 components, 310 files, and 10K lines of code.

RUBiS [13] is an auction Web site, developed at Rice Uni-
versity for experimenting with different design patterns for
J2EE. RUBiS contains over 500 Java files and over 25K lines
of code; there are 21 application components and several
servlets.

Workload

In order to simulate realistic clients, we extended and used the
load generator that ships with RUBiS. It takes a description of
the workload for simulated clients in the form of a state tran-
sition table T , with the client’s states as rows and columns.
These states correspond naturally to the various operations
possible in RUBiS, such as Register, SearchItemsInCategory,
AboutMe, etc. (29 in total). A table cell T (s, s′) represents
the probability of a client transitioning from state s to state
s′; e.g., T (ViewItem, BuyNow) describes the probability we
associate with an end user clicking on the “Buy Now” button
after viewing an item’s description.

The simulator uses T to automatically navigate the RUBiS
Web site: when in s, it chooses a next state s′ with probabil-
ity T (s, s′), constructs the URL representing s′ and does an
HTTP GET for the given URL. Inbetween successive clicks,
simulated clients have a think time based on a random distribu-
tion with average 7 seconds and maximum 70 seconds, as done
in the TPC-W benchmark [47]. The simulator uses a separate
thread for each simulated client. In choosing the workload for
our tests, we mimic the real workload seen by a major Internet
auction site; our workload is described in Table 1.

User operation results mostly in... Fraction of
workload

Read-only DB access (e.g., ViewItem, ViewBidHistory) 32%
Creation/deletion of session state (e.g., Login, Logout) 23%
Exclusively static HTML content (e.g., home page) 12%
Search (e.g., SearchItemsInCategory) 12%
Forms that update session state (e.g., MakeBid, BuyNow) 11%
DB updates (e.g., CommitBid, RegisterItem) 10%

Table 1: Test workload. Overall, 8% of requests both read and
write to the database, 61% only read, and 31% do not access
the database at all. In terms of session state, 27% of requests
both read and write, 60% only read, and 13% do not access
session state at all.

In choosing the number of clients to simulate, we aimed
to maximize system utilization while still getting good per-
formance; for our system, this balance was reached at 350
concurrent clients for one application server node. This is
slightly more aggressive than current Internet services, which
typically run their application server nodes at 50-60% utiliza-
tion [36, 22]. We deployed our application server with an em-
bedded Web/servlet tier on Athlon 2600XP machines with 1.5
GB of RAM; the database, Pinpoint, and SSM were hosted on
Pentium 2.8 GHz nodes with 1 GB of RAM and 7200rpm 120
GB hard drives. The client simulator ran on a 4-way P-III 550

8

MHz multiprocessor with 1 GB of RAM. All machines were
interconnected by a 100 Mbps Ethernet switch and ran Linux
kernel 2.4.22 with Java 1.4.1 and J2EE 1.3.1.

The RUBiS client simulator is specific to the RUBiS appli-
cation. Thus, for the two Petstore versions we wrote an HTTP
load generator, that plays back traces of several parallel, dis-
tinct user sessions with each session running in its own client
thread. A session consists of a user entering a site, perform-
ing various operations such as browsing or purchasing items,
and then leaving the site. We choose session traces so that the
overall load on the service fully exercises the components and
functionality of the site. If a client thread detects an HTTP
error, it retries the request. If the request continues to return
errors, the client quits the trace and begins the session again.
The traces are designed to take different routes through the
Web service, such that a failure in a single part of the Web ser-
vice will not artificially block all the traces early in their life
cycle.

Faultload

We measured end-user-perceived system availability in the
face of failures caused by faults we injected, with the recog-
nition that no fault injection experiment can claim to be com-
plete or to accurately reflect real-life faults. As mentioned in
Section 1, our work focuses exclusively on failures that can
be cured with some form of a reboot. Despite J2EE’s popu-
larity as a commercial infrastructure, we were unable to find
any published systematic studies of faults occuring in produc-
tion J2EE systems, so we relied on advice from colleagues
in industry who routinely work with enterprise applications
or application servers [19, 45, 38, 18, 44, 33]. We also sur-
veyed studies of reported faults in other kinds of systems
and the faults injected by other researchers in their experi-
ments [43, 27, 16]. We converged onto the following cate-
gories of software-related failures:

• accidental use of null references (e.g., during exception
handling) that result in NullPointerException

• hung threads due to deadlocks, interminable waits, etc.

• bug-induced corruption of volatile metadata

• leak-induced resource exhaustion

• omission faults (intercept a method call and do not return,
or return 0/null if a return value is required)

• simple source code bugs, injected with Polyglot [42]

• various other Java exceptions and errors that are not han-
dled correctly

We aimed to reproduce these problems in our system by
adding facilities for runtime fault injection: we can (a) set

component class variables to null, (b) directly induce dead-
lock conditions and infinite loops in EJBs, (c) alter global
volatile metadata, such as garble entries in the JNDI naming
service’s database, (d) leak a certain amount of memory per
call, and (e) intercept calls to EJBs and, instead of passing
the call through to the component, throw an exception/error of
choice or drop the call.

We do not inject low-level hardware or OS faults, such as
CPU register bit-flips, memory corruptions and IO errors be-
cause, empirically, these faults do not manifest as application-
level failures that would otherwise go unnoticed [12]. We do
not inject all faults in all experiments.

7.2 Detection

To test Pinpoint’s effectiveness in detecting failures, we in-
jected faults in three different J2EE applications (both variants
of Petstore and RUBiS). The faults took the form of forced
runtime Java exceptions, forced declared Java exceptions, call
omissions, and source code bugs; the experimental details can
be found in [30]. We then placed load on the application
and attempted to detect the presence of the faults with three
different detectors: one that monitors for HTTP errors, one
that parses HTML pages and searches for keywords indicat-
ing errors, and Pinpoint, respectively. Table 2 summarizes
the results. Although Pinpoint is better, the main improve-
ment in comparison to the other two simple monitors is not
that much its ability to detect failures, but the fact that it is
a low-maintenance, application-generic solution to high-level
fault-detection.

Detector Declared Exc. Runtime Exc. Omissions Src Bugs

Pinpoint 56% / 89% 68% / 96% 70% / 96% 12% / 37%
HTTP codes 48% / 64% 53% / 70% 44% / 65% 10% / 37%

HTML parsing 28% / 40% 24% / 35% 17% / 20% 2% / 13%

Table 2: For each detector, we show the fraction of injected
faults it detected across all our applications. In each cell, the
first number indicates how well we detected all faults in the
category, while the second indicates how well we detected ma-
jor outage-causing faults in the category.

We do not include application-specific monitors in our com-
parison, since deciding what application functionality to test
would have been the determining factor in detecting many
of these failures; an application-specific monitor can be en-
gineered to test for almost any known/expected fault. While
a highly application-specific detector might be able to detect
close to 100% of an application’s failures (in the extreme, du-
plicating the application’s functionality inside the detector),
writing and maintaining it would be very difficult. For this
reason, such detectors are seldomly used in practice.

9

7.3 Localization

The overall results of our localization tests are shown in Fig-
ure 4. We measured the efficacy of localization in Pinpoint’s
component interaction analysis and also compared it to three
other algorithms, that use decision trees. These other algo-
rithms are part of Pinpoint, but were not employed in the sub-
sequent experiments of this paper.

Figure 4: Localization rate of several algorithms per fault type.
For this paper we used exclusively “component interaction
analysis,” which exceeds 85% for all three types of faults.

7.4 Recovery

We evaluated microreboots with a version of RUBiS (the auc-
tion application) that maintains session state in SSM [34]. To
measure the impact of failures on end users, we defined a new
metric, action-weighted goodput (Gaw). We view a user ses-
sion as beginning with a login operation and ending with an
explicit logout or abandonment of the site. Each session con-
sists of a sequence of user actions (such as “search for a pair of
Salomon ski boots and place a $200 bid on them”); this action
is successful if and only if all operations (i.e., HTTP requests)
within that action succeed; otherwise, the action fails as a unit.
Whenever an operation fails, all operations in the containing
action are counted as failed. Gawaccounts for the fact that both
long-running and short-running operations must succeed for a
user to be happy with the site. Gawalso captures the fact that,
when an action with many operations succeeds, it often means
that the user got more work done than in a short action.

In order to isolate the effects of recovery, we wrote for this
section a custom, application-specific “perfect” fault detector
that is able to detect practically immediately each failure. We
injected a sequence of faults into SSM-RUBiS and allowed
the system to recover from failure in two ways: by restarting
SSM-RUBiS or by microrebooting a component, respectively.
We consider recovery to be successful when end users do not
experience any more failures after recovery (unless new faults
are deliberately injected). JBoss allows for a J2EE application
to be hot-redeployed, and this constitutes the fastest way to
do reboot-based recovery in unmodified JBoss; we use SSM-

RUBiS application restart as a baseline, and call this a full re-
boot.

Table 3 shows comprehensive measurements for all the re-
covery units in our system; the first three rows are not EJBs
and are shown mainly for comparison purposes. Most EJBs
generally recover an order of magnitude faster than an appli-
cation reboot.

Component Avg Min Max
JBoss app server restart 51,800 49,000 54,000
RUBiS application restart 11,679 7,890 19,225
Jetty (embedded Web server) 1,390 1,009 2,005
SB CommitBid 286 237 520
SB BrowseCategories 340 277 413
SB ViewUserInfo 398 288 566
SB ViewItem 465 284 977
SB RegisterUser 502 292 681
SB CommitUserFeedback 509 316 854
SB SearchItemsByRegion 529 296 906
SB CommitBuyNow 550 297 1,102
SB RegisterItem 552 363 837
SB Auth 554 317 1,143
SB BrowseRegions 597 241 906
SB BuyNow 603 303 1,417
SB ViewBidHistory 623 317 2,058
SB AboutMe 639 330 1,287
SB LeaveUserFeedback 680 314 1,275
SB MakeBid 856 232 2,920
SB SearchItemsByCategory 911 488 3,019
IDManager 1,059 663 1,547
UserFeedback 1,248 761 1,591
BuyNow 1,421 668 4,453
User-Item 1,828 876 4,636

Table 3: Recovery times (in msec) for whole JBoss, SSM-
RUBiS, the Web tier collocated with JBoss, and the various ap-
plication components. Components prefixed by SB are state-
less session EJBs, while the rest are entity EJBs. We ran 10
trials per component, under load from 350 concurrent clients.

Figure 5 shows Gaw as measured by our client simulator
with a load of 350 clients; each sample point represents the
number of successful/failed requests observed during the cor-
responding 1-second interval. In choosing the locations for
fault injection, we wanted to study the extremes of recovery
time, as well as the spectrum of workload-induced effects.
Hence, we injected the first fault in the component that takes
the shortest time to recover, the seconds fault in the one that
takes the longest, the third fault in the most frequently called
component, and the fourth fault in the least frequently called
one. Requests are seen to “fail” prior to the injection point be-
cause of how Gawis computed: if an operation fails, then all
operations within that user action that succeeded in the past
are failed retroactively, to reflect that the user’s work has been
lost.

For a thorough evaluation of microreboots, we refer the

10

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

G
aw

 [r
es

po
ns

es
/s

ec
on

d]

Time [minutes]

350 clients FULL REBOOTS requests: 56028 OK / 3916 failed

Satisfied
Failed

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

G
aw

 [r
es

po
ns

es
/s

ec
on

d]

Time [minutes]

350 clients MICROREBOOTS requests: 61527 OK / 425 failed

Satisfied
Failed

Figure 5: Full reboots vs. microreboots: We injected a null reference fault in SB CommitBid, then a corrupt JNDI database
fault for User-Item, followed by a RuntimeException in SB BrowseCategories, and a Java Error in SB CommitUserFeedback.
Left graph shows automatic recovery via full application reboot; right graph shows recovery from the same faultload using
microreboots. SB CommitBid took 387 msec to recover, User-Item took 1742 msec, SB BrowseCategories 450 msec, and
SB CommitUserFeedback 404 msec. In reaction to the second failure, our recovery service’s diagnosis included 6 false posi-
tives, resulting in 6 unnecessary microreboots, totaling 4765 msec. In spite of this, there are 89% fewer failed requests (425 vs.
3916) and 9% more successful requests (61527 vs. 56028) in the case of microrebooting.

reader to [12].

7.5 Combination recovers autonomously

In Figure 6 we illustrate the functioning of the integrated sys-
tem in reaction to a single-point fault injection; this is repre-
sentative of the reaction to the other categories of faults we
injected.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

G
aw

 [r
es

po
ns

es
/s

ec
on

d]

Time [minutes]

350 clients AUTONOMOUS RECOVERY requests: 26591 OK / 792 bad

Injected
 fault

Component
recovered

Satisfied
Failed

Figure 6: Autonomous recovery: We corrupted an internal
data structure in SB ViewItem, setting it to null, which results
in a NullPointerException for SB ViewItem callers. Labeled
light-colored vertical lines indicate the point where the fault is
injected and where the faulty component completes recovery,
respectively.

In Figure 7 we zoom in on the interval between 5:32 and 6
seconds, to analyze the events that occur; the horizontal axis
now represents seconds. We mark on the graph the points
(along with the time, to millisecond granularity) at which the
following events occur: we inject the fault (t1), then the first
end user request to fail as a consequence is at t2, the Pinpoint
analysis engine sends its first failure report to the recovery
manager (t3), the recovery manager decides to send a recov-
ery command to the microreboot hook (t4), the microreboot is

initiated (t5), and finally the microreboot completes (t6) and
no more requests fail.

 0

 10

 20

 30

 40

 50

 60

 70

 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360

G
aw

 [r
es

po
ns

es
/s

ec
on

d]

Time [seconds]

 Autonomous Recovery: ZOOM IN

Inject fault
t1=336.453

First req fails
t2=336.516

PP reports
t3=354.730

Reco cmd
t4=355.033

uRB start
t5=355.247

uRB done
t6=355.852

Satisfied
Failed

Figure 7: Zooming in on the time interval [5:32, 6:00]. Re-
covery time is 19.4 seconds from the time the first end user
notices a failure; of this interval, 18.5 seconds is spent by Pin-
point noticing that SB ViewItem is faulty.

The system recovers on its own within 19.4 seconds of the
first end user failure; of this interval, 18.5 seconds is spent
by Pinpoint detecting and localizing the fault. This time com-
pares favorably to the recovery times witnessed in Internet ser-
vices involving human assistance; recovery there can range
from minutes to hours. Note that the kind of faults we inject
cannot be noticed by TCP or HTTP-level monitors, because
the web pages returned by the server constitute valid HTML.
It takes on the order of a second or less to recover from a faulty
EJB with a microreboot, compared to a full application reboot.

Finally, in Figure 8 we show the result of a multi-point in-
jection: three different faults in three different components,
respectively. Our system notices and recovers two of the com-
ponents within 19.9 seconds, and the third component 46.6
seconds after the injection. The reason for the delay is that,
in our workload, the first two components are called more fre-
quently than the third. Thus, the Pinpoint analysis engine re-

11

ceives more observations sooner, which gives it a quicker op-
portunity to detect and localize the injected fault.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

G
aw

 [r
es

po
ns

es
/s

ec
on

d]

Time [minutes]

350 clients AUTONOMOUS RECOVERY requests: 26591 OK / 792 bad

Satisfied
Failed

Figure 8: Correlated faults: We simultaneously injected a
data corruption fault in SB PutBid (C1), a Java Exception
fault in SB ViewUserInfo (C2), and a Java Error fault in
SB SearchItemsByRegion (C3). The more frequently-called
C1 and C3 are detected and recovered sooner (19.9 sec after
injection) than C2 (46.6 sec after injection).

7.6 Application Evolution

To test Pinpoint’s resilience against “normal changes”, we ran
two experiments with Petstore; the historical model we used
was based on the behavior of Petstore 1.3.1 under our normal
workload for both experiments.

First, we significantly changed the load offered by our
workload generator: we stopped sending any ordering or
checkout related requests. Second, we upgraded Petstore
v1.3.1 to a bug-fix release, Petstore v1.3.2.

In both experiments, Pinpoint did not trigger any false pos-
itives. Alhough the gross behavior of application components
did change with the workload, the fact that we analyze com-
ponent interactions in the context of different types of requests
compensated for this, and we detected no significant changes
in behavior. In the upgrade to Petstore 1.3.2 our component
behaviors did change noticeably, but still did not pass our
threshold according to the χ2 test. Though not comprehensive,
these two experiments suggest that our fault detection tech-
niques are robust against reporting spurious anomalies when
actual application functionality has not changed. This is a ben-
efit of the fact that Pinpoint is application-generic.

7.7 Performance Overhead

The Pinpoint instrumentation of JBoss to trace requests adds
a latency penalty of 2-40 msec to each client request, depend-
ing on the number of components called, and degrades overall
throughput by 17% on the mixed workload used in our exper-
iments. Pinpoint’s analysis engine operates on a separate ma-
chine and does not directly impact application performance;
however, if the machine is slower than the ones used in our
testbed, it could lead to engine overload. In this case, we drop

observations on the JBoss side, rather than hurt performance.
The deployment of commercial instrumentation packages such
as IntegriTea (www.tealeaf.com) on large sites such as Price-
line.com suggests that fine-grained instrumentation is practical
if some engineering effort is focused on the implementation.

We separately evaluated our microreboot-centric design;
Table 4 compares three different configurations: vanilla JBoss
3.2.1 release running HttpSession-enabled RUBiS and SSM-
enabled RUBiS running on top of both microreboot-enabled
JBoss and vanilla JBoss 3.2.1, respectively. HttpSession-
enabled RUBiS is a version of the application that uses the
in-memory HttpSession mechanism for storing session state,
instead of the SSM solution; HttpSessions do not survive re-
boots.

JBoss 3.2.1 w/ uRB-JBoss w/ JBoss 3.2.1 w/
HttpSession-RUBiS SSM-RUBiS SSM-RUBiS

Throughput [req/sec] 44.8 44.5 44.4

Request
Latency
[msec]

Ave 39 82 83

Min 3 3 3

Max 826 1245 1097

StDev .066 .131 .142

Table 4: Performance comparison of microrebootable vs. non-
microrebotable design. Results from a 30-minute fault-free
run, with 350 concurrent clients against a single node.

Comparing the first two configurations, we see that in
spite of the modifications we made to enable microreboot-
ing, throughput remains virtually the same (within 1%). On
the other hand, average response time doubles from 39 to 82
msec. However, human-perceptible delay is commonly be-
lieved to be 100-200 msec, which means that the 82 msec la-
tency is of no consequence for an interactive Internet service
like ours. The worst case response time increases from 0.8 sec
to 1.2 sec; while certainly human-perceptible, this level is be-
low the 2-second threshold for what human users perceive as
fast [37]. Both latency and throughput are within the range of
measurements done at a major Internet auction service [52],
where average throughput per cluster node is 41 req/sec, while
latency varies between 33 and 300 msec.

A comparison of HttpSession-RUBiS and SSM-RUBiS run-
ning on vanilla JBoss reveals that the observed increase in
response time is entirely due to our use of SSM. Given that
session state is externalized to a separate node, accessing it
requires the session object to be marshalled, sent over the net-
work, then unmarshalled; this consumes considerably more
CPU than if it were kept in the server’s memory. Maintain-
ing a write-through cache of session data in the application
server could absorb some of this latency penalty. However,
performance optimization was not one of our goals, so we did
not explore this possibility.

12

8 Discussion

8.1 Assumptions

The most fundamental assumption we have made in our design
and implementation is that the monitored application is built
from interconnected modules (components) with well-defined
narrow interfaces. Typical large Internet services will often be
written using one of several standard component frameworks,
such as .NET or J2EE, and will have a three-tiered architec-
ture.

Another important assumption is that the application has a
structure determined by call paths, and components interact
with each in accordance to this structure. We assume that,
by observing the interactions between components, we can
dynamically build a model of “normal” behavior and detect
when such behavior becomes anomalous. The more pervasive
the monitoring, the more observability we gain into the system
and the better we can detect faults.

We are also assuming Internet-style HTTP workloads, con-
sisting of large numbers of relatively short tasks that frame
peristent state updates. Such request-reply workloads imply
that a single interaction with the system is relatively short-
lived, and its processing can be broken down as a sequence
of calls to various components, resulting in a tree of named
components that participate in the servicing of that request.
Failing any one user request (e.g., due to a microreboot) has a
negligible impact across the entire user population.

Our analysis engine requires a large workload to exercise
all aspects of the application in order to develop a good sta-
tistical model of correct behavior. Combining a high volume
of largely independent requests from different users allows us
to appeal to “law of large numbers” arguments justifying the
application of statistical techniques.

Finally, for microrebooting to be effective as a general tech-
nique against transient/intermittent failures, the application
needs to conform to the guidelines outlined in Section 5; these
design principles are collectively known as “crash-only soft-
ware” [11]. Requests need to either be idempotent, or be eas-
ily made idempotent through the use of transactions. This is
true of many Internet systems today, but may not carry over to
other types of systems.

8.2 Limitations

Pinpoint faces difficulties when an application switches to a
different, but correct, operating mode because of external con-
ditions. For example, under heavy load, CNN.com simpli-
fies its “headline” pages rather than deny service [32]; such
a large-scale change would likely appear anomalous when it
is triggered. If mode switching occurs often, it should be rec-
ognized as normal behavior, but activation of rarely-exercised
modes will confuse our historical analysis (though not our peer
analysis).

When a component exhibits multiple modes of behavior,
our component interaction model attempts to capture a non-
existent average of the multiple modes, and subsequently de-
tects all the components as deviating from this average, result-
ing in a deluge of false positives. One possible solution is to
use a model that captures multi-modality, though this has the
danger of mis-classifying truly anomalous behavior as simply
“another mode.”

If state updates are atomic, as they are with a database and
with SSM, there is no distinction between microreboots and
full reboots from the point of view of the state store. The
case of non-transactional, shared EJB state is more challeng-
ing: the microreboot of one component may leave the state
inconsistent, unbeknownst to the other components that share
it. A full reboot, on the other hand, would not give the other
components the opportunity to see the inconsistent state, since
they would be rebooted as well. J2EE best practices do dis-
courage sharing state by passing references between EJBs or
using static variables, but we believe they could be enforced
by a suitably modified JIT compiler; alternatively, should the
runtime detect such practices, it could disable the use of mi-
croreboots for the application in question.

Our implementation of microreboots does not scrub
application-global data maintained by the application server,
such as the JDBC connection pool and various other caches.
Microreboots also generally cannot recover from problems oc-
curring at layers below the application, such as the application
server or the JVM. In all these cases, a full server restart may
be required.

Poor failure diagnosis may result in one or more ineffec-
tual microreboots of the wrong EJBs, leading to microreboot-
ing progressively larger groups of components until the whole
application is rebooted. Even in this case, however, microre-
booting adds only a small additional cost to the total recovery
cost.

9 Conclusion

In this paper we showed how to combine statistical anomaly
detection with microrecovery to build an application server
that autonomously recovers J2EE applications. Our system is
effective in detecting and recovering realistic transient faults,
with no a priori application-specific knowledge. This ap-
proach combines the generality and deployability of low-level
monitoring with the sophisticated failure-detection abilities
usually exhibited only by application-specific high-level mon-
itoring. Due to its level of generality, false positives do occur,
but cheap recovery makes the cost of these false positive neg-
ligible. Microreboots are cheap enough for frequent use as a
first line of defense [12], because even if microrebooting ends
up being ineffective, it doesn’t hurt to try. The synergy be-
tween Pinpoint and microreboots offers the potential for sig-

13

nificant simplification of failure management.
Recovering by microreboot does not mean that the root

causes should not eventually be identified and the bugs fixed.
However, reboot-based recovery provides a separation of con-
cerns between recovery and diagnosis/repair, consistent with
the observation that the latter is not always a prerequisite for
the former. Attempting to recover a reboot-curable failure by
anything other than a reboot always entails the risk of taking
longer than a reboot would have taken in the first place: trying
to diagnose the problem can often turn what could have been
a fast reboot into a long-delayed reboot, thus hurting availabil-
ity. Microrebooting has the advantage of confining recovery
to a small part of the application, thus protecting the majority
of active users from experiencing an outage.

Autonomous recovery enables automated response to fail-
ures, that operates in “machine time” rather than “human
time,” thus improving end user experience. Such autonomy is
particularly useful for systems located in zero-administration
environments, where access to the system is not immediate.
Although we exploited properties of the J2EE programming
model to simplify our implementation, we believe the tech-
niques presented here can be applied more generally to non-
J2EE systems.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed sys-
tems of black boxes. In Proc. 19th ACM Symposium on Oper-
ating Systems Principles, Bolton Landing, NY, 2003.

[2] M. Baker and M. Sullivan. The Recovery Box: Using fast re-
covery to provide high availability in the UNIX environment.
In Proc. Summer USENIX Technical Conference, San Antonio,
TX, 1992.

[3] M. Barnes. J2EE application servers: Market overview. The
Meta Group, Mar. 2004.

[4] J. F. Bartlett. A NonStop kernel. In Proc. 8th ACM Symposium
on Operating Systems Principles, Pacific Grove, CA, 1981.

[5] A. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and
fault identification in communication networks. IEEE Trans-
actions on Communications, 1994.

[6] E. Brewer. Lessons from giant-scale services. IEEE Internet
Computing, 5(4):46–55, July 2001.

[7] A. Brown, G. Kar, and A. Keller. An active approach to charac-
terizing dynamic dependencies for problem determination in a
distributed environment. In Proceedings of the 7th IFIP/IEEE
International Symposium on Integrated Network Management
(IM 2001), Seattle, WA, May 2001.

[8] Business Internet Group. The black Friday report on Web ap-
plication integrity. San Francisco, CA, 2003.

[9] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda.
Reducing recovery time in a small recursively restartable sys-
tem. In Proc. International Conference on Dependable Systems
and Networks, Washington, DC, June 2002.

[10] G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic
failure-path inference: A generic introspection technique for
software systems. In Proc. 3rd IEEE Workshop on Internet Ap-
plications, San Jose, CA, 2003.

[11] G. Candea and A. Fox. Crash-only software. In Proc. 9th Work-
shop on Hot Topics in Operating Systems, Lihue, Hawaii, 2003.

[12] G. Candea, S. Kawamoto, Y. Fujiki, and A. Fox. A microre-
bootable system – design, implementation, and evaluation. In
Proc. 6th USENIX Symposium on Operating Systems Design
and Implementation, San Francisco, CA, Dec. 2004.

[13] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance
and scalability of EJB applications. In Proc. 17th Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, Seattle, WA, 2002.

[14] M. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox, and
E. Brewer. Path-based macroanalysis for large, distributed sys-
tems. In First Symposium on Networked Systems Design and
Implementation, 2004.

[15] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. Failure
diagnosis using decision trees. In International Conference on
Autonomic Computing, New York, NY, May 2004.

[16] R. Chillarege and N. S. Bowen. Understanding large system
failures - a fault injection experiment”. In Proc. International
Symposium on Fault Tolerant Computing, June 1989.

[17] J. Choi, M. Choi, and S. Lee. An alarm correlation and fault
identification scheme based on OSI managed object classes. In
Proc. of IEEE Conference on Communications, 1999.

[18] T. C. Chou. Personal communication. Oracle Corp., 2003.
[19] H. Cohen and K. Jacobs. Personal communication. Oracle

Corporation, 2002.
[20] K. Coleman, J. Norris, A. Fox, and G. Candea. OnCall: De-

feating spikes with a free-market server cluster. In Proc. Inter-
national Conference on Autonomic Computing, New York, NY,
May 2004.

[21] A. Diaconescu, A. Mos, and J. Murphy. Automatic perfor-
mance management in component based software systems. In
First International Conference on Autonomic Computing, New
York, NY, May 2004.

[22] S. Duvur. Personal communication. Sun Microsystems, 2004.
[23] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs

as deviant behavior: A general approach to inferring errors in
systems code. In Proc. 18th ACM Symposium on Operating
Systems Principles, Lake Louise, Canada, Oct 2001.

[24] J. Gray. Why do computers stop and what can be done about it?
In Proc. 5th Symposium on Reliability in Distributed Software
and Database Systems, Los Angeles, CA, 1986.

[25] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for Internet service con-
struction. In Proc. 4th USENIX Symposium on Operating Sys-
tems Design and Implementation, San Diego, CA, Oct. 2000.

[26] S. Hangal and M. Lam. Tracking down software bugs using au-
tomatic anomaly detection. In Proceedings of the International
Conference on Software Engineering, May 2002.

[27] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection tech-
niques and tools. IEEE Computer, 30(4):75–82, 1997.

[28] JBoss. Homepage. http://www.jboss.org/, 2002.
[29] J. O. Kephart and D. M. Chess. The Vision of Autonomic Com-

puting. Computer Magazine, Jan 2003.

14

[30] E. Kiciman and A. Fox. Detecting application-level failures in
component-based internet services. 2004. In preparation.

[31] E. Lassettre, D. Coleman, Y. Diao, S. Froelich, J. Hellerstein,
L. Hsiung, T. Mummert, M. Raghavachari, G. Parker, L. Rus-
sell, M. Surendra, V. Tseng, N. Wadia, and P. Ye. Dynamic
Surge Protection: An Approach to Handling Unexpected Work-
load Surges with Resource Actions that have Lead Times. In
Proc. of 1st Workshop on Algorithms and Architectures for Self-
Managing Systems, San Diego, CA, June 2003.

[32] W. LeFebvre. CNN.com—Facing a world crisis. In 15th
USENIX Systems Administration Conference, 2001. Invited
Talk.

[33] H. Levine. Personal communication. EBates.com, 2003.
[34] B. Ling, E. Kiciman, and A. Fox. Session state: Beyond soft

state. In First Symposium on Networked Systems Design and
Implementation, 2004.

[35] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure
transparency and the limits of generic recovery. In Proc. 4th
USENIX Symposium on Operating Systems Design and Imple-
mentation, San Diego, CA, 2000.

[36] A. Messinger. Personal communication. BEA Systems, 2004.
[37] R. Miller. Response time in man-computer conversational

transactions. In Proc. AFIPS Fall Joint Computer Conference,
volume 33, 1968.

[38] N. Mitchell. IBM Research. Personal Communication, 2004.
[39] N. Mitchell and G. Sevitsky. LeakBot: An automated and

lightweight tool for diagnosing memory leaks in large Java
applications. In Proc. 17th European Conference on Object-
Oriented Programming, Darmstadt, Germany, July 2003.

[40] B. Murphy and N. Davies. System reliability and availability
drivers of Tru64 UNIX. In Proc. 29th International Symposium
on Fault-Tolerant Computing, Madison, WI, 1999. Tutorial.

[41] B. Murphy and T. Gent. Measuring system and software relia-
bility using an automated data collection process. Quality and
Reliability Engineering International, 11:341–353, 1995.

[42] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
Extensible Compiler Framework for Java. In Proc. of the 12th
International Conference on Compiler Construction, Warsaw,
Poland, Apr. 2003.

[43] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do In-
ternet services fail, and what can be done about it? In Proc.
4th USENIX Symposium on Internet Technologies and Systems,
Seattle, WA, 2003.

[44] A. Pal. Personal communication. Yahoo!, Inc., 2002.
[45] D. Reimer. IBM Research. Personal Communication, 2004.
[46] I. Rouvellou and G. W. Hart. Automatic alarm correlation for

fault identification. In Proc. IEEE INFOCOM ’95, 1995.
[47] W. D. Smith. TPC-W: Benchmarking an E-Commerce solu-

tion. Transaction Processing Council, 2002.
[48] L. Spainhower and T. A. Gregg. IBM S/390 parallel enterprise

server G5 fault tolerance: A historical perspective. IBM Jour-
nal of Research and Development, 43(5/6), 1999.

[49] M. Stonebraker. The design of the Postgres storage system.
In Proc. 13th Conference on Very Large Databases, Brighton,
England, 1987.

[50] M. Sullivan and R. Chillarege. Software defects and their im-
pact on system availability – a study of field failures in operat-
ing systems. In Proc. 21st International Symposium on Fault-
Tolerant Computing, Montréal, Canada, 1991.

[51] Sun Microsystems. Java Pet Store Demo.
http://developer.java.sun.com/developer/releases/petstore/,
2002.

[52] TBD. A major Internet auction site. Terms of disclosure are
being negotiated, May 2004.

[53] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. M. R.
Kintala. Checkpointing and its applications. In Proc. 25th In-
ternational Symposium on Fault-Tolerant Computing, 1995.

[54] Y.-M. Wang, C. Verbowski, and D. R. Simon. Persistent-state
checkpoint comparison for troubleshooting configuration fail-
ures. In Proc. of the IEEE Conference on Dependable Systems
and Networks, 2003.

[55] A. Ward, P. Glynn, and K. Richardson. Internet service per-
formance failure detection. In Proc. Web Server Performance
Workshop, 1998.

[56] K. Whisnant, R. Iyer, P. Hones, R. Some, and D. Rennels. Ex-
perimental evaluation of the REE SIFT environment for space-
borne applications. In Proc. International Conference on De-
pendable Systems and Networks, Washington, DC, 2002.

[57] A. P. Wood. Software reliability from the customer view. IEEE
Computer, 36(8):37–42, Aug. 2003.

[58] A. Yemeni and S. Kliger. High speed and robust event correla-
tion. IEEE Communications Magazine, 34(5), May 1996.

15

