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Abstract

Bugs often lurk in code that is infrequently executed (i.e.,
cold code), so testing and debugging requires tracing
such code. Alas, the location of cold code is generally
not known a priori and, by definition, cold code is elu-
sive during execution. Thus, programs either incur un-
necessary runtime overhead to “catch” cold code, or they
must employ sampling, in which case many executions
are required to sample the cold code even once.

We introduce a technique called bias-free sampling
(BfS), in which the machine instructions of a dynamic
execution are sampled independently of their execution
frequency by using breakpoints. The BfS overhead is
therefore independent of a program’s runtime behavior
and is fully predictable: it is merely a function of pro-
gram size. BfS operates directly on binaries.

We present the theory and implementation of BfS for
both managed and unmanaged code, as well as both ker-
nel and user mode. We ran BfS on a total of 679 pro-
grams (all Windows system binaries, Z3, SPECint suite,
and on several C# benchmarks), and BfS incurred per-
formance overheads of just 1-6%.

1 Introduction

Monitoring a program’s control-flow is a fundamental
way to gain insight into program behavior [5]. At one
extreme, we can record a bit per basic block that mea-
sures whether or not a block executed over an entire ex-
ecution (coverage) [29]. At another extreme, we can
record the dynamic sequence of basic blocks executed
(tracing) [28]. In between these two extremes there is
a wide range of monitoring strategies that trade off run-
time overhead for precision. For example, record-replay
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systems [12, 15] that record most execution events in a
program incur a large overhead, whereas sampling strate-
gies that collect fewer runtime events for both profiling
and tracing [16] incur less overhead.

In testing and debugging, there is a need to sample in-
frequently executed (i.e., cold) instructions at runtime,
because bugs often lurk in cold code [9, 23]. However,
we don’t know a priori which basic blocks will be cold
vs. hot at runtime, therefore we cannot instrument just
the cold ones. To make matters worse, traditional tem-
poral sampling techniques [21, 24] that trade off sam-
pling rate for sampling coverage can miss cold instruc-
tions when the sampling rate is low, requiring many exe-
cutions to gain acceptable coverage. As a result, develop-
ers do not have effective and efficient tools for sampling
cold code.

In this paper, we present a non-temporal approach
to sampling that we call bias-free sampling (BfS). BfS
is guaranteed to sample cold instructions without over-
sampling hot instructions, thereby reducing the overhead
typically associated with temporal sampling.

The basic idea is to sample any instruction of interest
the next time it executes and without imposing any over-
head on any other instructions in the program.

We do this using code breakpoints (a facility present in
all modern CPUs) dynamically. We created lightweight
code breakpoint (LCB) monitors for both the kernel and
user mode of Windows for both native (with direct sup-
port in the kernel) and managed applications (with a user-
space monitor) on both Intel and ARM architectures.

To ensure that none of the cold instructions are missed,
the bias-free sampler inserts a breakpoint at every ba-
sic block in the program, both at the beginning of the
program execution and periodically during the execu-
tion. This ensures at least one sample per period of every
cold instruction. We also show how to sample without
bias hot instructions independently of their execution fre-
quency at a low rate.

Devising an efficient solution that works well in prac-



tice on a large set of programs requires solving multiple
challenges: (a) processing a large number of breakpoints,
in the worst case simultaneously on every instruction in
the program (existing debugging frameworks are unable
to handle such high volumes because their design is not
optimized for a large number of breakpoints that must be
processed quickly); (b) handling breakpoints correctly in
the presence of a managed code interpreter and JIT op-
timizations (managed code gets optimized during exe-
cution, therefore it cannot be handled the same way as
native code); and (c) preserving the correct semantics of
programs and associated services, such as debuggers.

A particular instance of LCB that we built is the
lightweight code coverage (LCC) tool. We have success-
fully run LCC at scale to simultaneously measure code
coverage on all processes and kernel drivers in a stan-
dard Windows 8 machine with imperceptible overheads.
We also have extended LCC with the ability to record
periodic code coverage logs. LCC is now being used in-
ternally at Microsoft to measure code coverage.

Using breakpoints overcomes many of the pitfalls of
code instrumentation. CPU support for breakpoints al-
lows setting (a) a breakpoint on any instruction, (b) an ar-
bitrary number of breakpoints, and (c) setting or clearing
a breakpoint without synchronizing with other threads
(with the exception of managed code) that could poten-
tially execute the same instruction.

The contributions and organization of this paper are:

* We analyze and dissect common approaches to cold
code monitoring, showing that there is need for im-
provement (§2);

* We present our BfS design (§3) and its efficient and
comprehensive implementation using breakpoints
for both the kernel and user mode of Windows for
both native and managed applications (§4);

* We show on a total of 679 programs that with our
implementation of LCB, our coverage tool LCC,
which places a breakpoint on every basic block in an
executable and removes it when fired, has an over-
head of 1-2% on a variety of native C benchmarks
and an overhead of 1-6% on a variety of managed
C# benchmarks (§5);

* We show how to use periodic BfS to extend LCC to
quickly build interprocedural traces with overheads
in the range of 3-6% (§6).

§7 discusses related work and §8 concludes with a dis-
cussion of applications for BfS.

2  From Rewriting to Bias-Free Sampling

In this section, we provide background on the approaches
used to monitor program behavior, and outline the con-
ceptual path that leads to our proposed technique.

2.1 Program Rewriting

A traditional approach to monitoring program behavior
is static program rewriting as done by Gceov [13], which
takes as input an executable E and outputs a new exe-
cutable E’ that is functionally the same as E except that
it monitors the behavior of E. At Microsoft, many such
monitoring tools have been built on top of the Vulcan
binary rewriting framework [27], such as the code cover-
age tool bbcover. Vulcan provides a number of program
abstractions, such as the program control-flow graph, and
the tool user can leverage these abstractions to then use
the Vulcan APIs to add instructions at specific points in
the binary. Vulcan ensures that the branches of the pro-
gram are adjusted to reflect this addition of code.
Another approach to monitoring is dynamic program
rewriting, as done by Dynlnst [7] and Pin [22], as well
as Microsoft’s Nirvana and iDNA framework [6]. Many
of the tools built with rewriting-based approaches, both
static and dynamic, use “always-on” instrumentation
(they keep the dynamically-added instrumentation until
the program terminates), even when for goals that should
be much less demanding, like measuring code coverage.

2.2 Efficient Sampling

Static or dynamic program rewriting approaches that are
always-on incur prohibitive overheads, and they cannot
sample cold code in a bias-free manner.

In 2001, Arnold et al. introduced a framework for re-
ducing the cost of instrumented code that combines in-
strumentation and counter-based sampling of loops [24].
In this approach, there are two copies of each procedure:
The “counting” version of the procedure increments a
counter on procedure entry and a counter for each loop
back edge, ensuring that there is no unbounded portion
of execution without some counter being incremented.
When a user-specified limit is reached, control transfers
from the counting version to a more heavily instrumented
version of the procedure, which (after recording the sam-
ple) transfers control via the loop back edges back to the
counting version. In this way, the technique can record
more detailed information about acyclic intraprocedural
paths on a periodic basis.

Hirzel et al. extended this method to reduce overhead
further and to trace interprocedural paths [17]. They
implemented “bursty tracing” using Vulcan, and report
runtime overheads in the range of 3-18%. In further
work [16] they sample code at a rate inversely propor-
tional to its frequency, so that less frequently executed
code is sampled more often. This approach is based on
the premise that bugs reside mainly on cold paths.

Around the same time, Liblit et al. [21] proposed
“Sampling the Bernoulli Way” in their paper on what



later was termed “cooperative bug isolation.” The mo-
tivation for their approach was that classic sampling for
measuring program performance “searches for the ’ele-
phant in the haystack’: it looks for the biggest consumers
of time” [21]. In contrast, the goal is to look for needles
(bugs) that may occur rarely, and the sampling rates may
be very low to maintain client performance. This leads
to the requirement that the sampling be statistically fair,
so that the reported frequencies of rare events be reliable.
The essence of their approach is to perform fair and uni-
form sampling from a dynamic sequence of events. To
obtain sufficient samples of rare events, their approach
relies on collecting a large number of executions.

2.3 Bias-Free Code Sampling

There’s a fundamental tension between the desire to look
for needles in a haystack (cold code), the use of bursty
tracing, and Bernoulli sampling to achieve efficiency.
Bursty tracing can trace cold code at a high cost; sam-
pling is efficient, but it requires many runs before cold
paths are sampled, and thus may incur a large overhead.

Consider the simple example of a hot loop containing
an if-then-else statement where the else branch is
very infrequently executed compared to the loop head—
say the else branch executes once every million itera-
tions of the loop. The desire to keep the sampling rate
low for efficiency means it’s unlikely that Bernoulli sam-
pling or the bursty tracing approach will hit upon the one
execution of the else branch in a million iterations.

Furthermore, we generally do not know a priori which
code blocks will be cold during the execution of interest.
Thus, we need a way to sample all code but not let the
different frequencies of execution of the different code
blocks influence the runtime performance overhead. In
other words, the sampling rate of a code block should be
(mostly) independent of how often it is executed. We say
“mostly” because there still is a dependency: the block
must be executed at least once for it to be sampled.

The basic idea behind our approach is (using the exam-
ple above) that placing a breakpoint on the first instruc-
tion in the else branch guarantees that we will sample
the next (albeit rare) execution of the else branch with
no cost for the many loop iterations before that point.
By refreshing this breakpoint periodically, we can obtain
several samples of this rare event.

Looking at it from the other side, Bernoulli sampling
gives equal likelihood that any of the million loop itera-
tions of the loop’s execution will be sampled. This may
be fair to all the loop iterations, but it doesn’t help iden-
tify the cold code. Cooperative bug isolation makes up
for the fact that a single execution may not uncover cold
code by the law of large numbers (of executions) to in-
crease the confidence that a rare event will be sampled.

Bias-free code sampling is a way to sample cold events
just as efficiently as Bernoulli sampling with far fewer
executions.

3 Design

The core idea of BfS is to use breakpoints to: (a) sam-
ple cold instructions that execute only a few times during
an execution, without over-sampling hot instructions; (b)
sample the remaining instructions independently of their
execution frequency. Algorithm 1 presents the BfS al-
gorithm. We discuss the algorithm in its full generality
before discussing particular instantiations.

3.1 Inputs

The algorithm takes as input three parameters. The pa-
rameter K ensures that the first K executions of any in-
struction are always sampled. Assuming a nonzero K,
this ensures that rare instructions, such as those in ex-
ception paths, are always sampled when executed.

The second parameter P is the sampling distribution
of the instructions. For instance, a memory leak detec-
tor [16] might only chose to sample memory access in-
structions, and accordingly P will indicate a zero prob-
ability for non-memory-accesses. Similarly, a data-race
detector [18] might only choose memory accesses that
are not statically provable as data-race-free. Among
the instructions with non-zero probability, P might ei-
ther dictate a uniform sampling, or bias towards some
instructions, based on application needs. For instance,
additional runtime profile information could be used to
increase the bias towards hot instructions or towards in-
structions that are likely to be buggy.

The final parameter R determines the desired sampling
rate, i.e., the number of samples generated per second.
This indirectly determines the overhead of the algorithm.
In the special case when R is infinity, the algorithm
periodically refreshes breakpoints on all instructions
selected according to P.

3.2 Cold Instruction Sampling

The algorithm maintains a map BPCount that deter-
mines the number of logical breakpoints set at a particu-
lar instruction. The algorithm ensures that a breakpoint
is set at a particular instruction whenever its BPCount
is greater than zero. When a breakpoint fires, this count
is decremented and the breakpoint is removed only when
this count is zero. Setting all entries of this array to K en-
sures that the first K executions of the instructions with
nonzero probability in P are sampled.



Algorithm 1: Bias-free Sampling Algorithm
Input: int K, Dist P, int R

// BPCount[pc] > 0 implies pc has a breakpoint
Map < PC,int > BPCount

Map < PC,int > SampleCount

Set < PC > Freqlnst

function Init
For all pc with nonzero probability in P
BPCount[pc] = K

function OnBreakpoint(pc)
BPCount[pc| — —
SampleCount|pc] + +
Samplelnstruction(pc)
if SampleCount[pc] >= K then
| Freqlnst.Add(pc)
if SampleCount|pc] > K then
| ChooseRandominst()

function Periodically()
hitNum = NumBPInLastPeriod ()
if R is infinity then
L BPCount|pc| + + for all pc in FreqInst
return

while hitNum + + < R * Period do
| ChoseRandomlnst()

function ChooseRandomlinst()
pc = Choose(P, Freqlnst)
BPCountlpc] ++
Freglnst.Remove(pc)

At one extreme,With K 1, P choosing only the first
instruction in every basic block, and R as 0, we obtain
an efficient mechanism for code coverage, described as
LCC in Section 5. On the other extreme, when K is set to
infinity, one gets full execution tracing.

The algorithm maintains FregInst, a set of instruc-
tions that have executed K or more times. Periodically,
the algorithm adds breakpoints to instructions selected
from this set based on the distribution P. When one such
breakpoint fires, another breakpoint is inserted on an in-
struction chosen from this set, again based on P. One can
consider this as a single logical breakpoint moving from
the sampled instruction to a new instruction. To maintain
the number of pending logical breakpoints, the algorithm
uses the BPCount map to distinguish the initial K break-
points from new breakpoints.

3.3 Bias-Free Sampling

Perhaps surprisingly, the algorithm described above is
sufficient to sample instructions from FregInst based
on P irrespective of whether these instructions are hot or
cold. Since an instruction is sampled only when a break-
point fires and these breakpoints are inserted based on P,

we meet the desired sampling distribution [18].

However, a single breakpoint set at a cold instruction
may take a long time to fire. This can arbitrarily reduce
the sampling rate achieved by this logical breakpoint. In
the worst case, a breakpoint set in dead code will reduce
the sampling rate to zero.

The algorithm has several mechanisms to avoid this
pitfall and maintain an acceptable sampling rate. First,
the algorithm starts by setting K logical breakpoints at
every instruction. This helps in identifying only those
instructions that have executed a few times. In partic-
ular, dead code will not be added to FreqInst. Sec-
ond, once a breakpoint is set at an instruction, it will
be removed from FreqgInst till it fires (at which point
it is added back to FreqInst). This mechanism au-
tomatically prunes cold instructions from the set to pe-
riodically replenish the number of logical breakpoints.
This is similar to DataCollider [18], however, rather
than maintaining a constant number of pending logical
breakpoints, our algorithm increases the number of log-
ical breakpoints in every period that has a lower num-
ber of breakpoint firings than expected by the sampling
rate. As these logical breakpoints get “stuck” on cold
instructions, the continuous replenishing helps maintain
the sampling rate.

4 Implementation

Now, we describe the implementation of LCB in detail.
We start by reviewing hardware and operating system
support for breakpoints.

4.1 Breakpoint Mechanism

Modern hardware contain a special breakpoint instruc-
tion that tells the processor to trap into the operating
system. For instance, the x86 architecture provides an
int 3 instruction for this purpose. To set a breakpoint
on an instruction, one overwrites the instruction with
the breakpoint instruction. The breakpoint instruction is
no larger than other instructions in the ISA (in x86, the
breakpoint instruction is a single byte), making it possi-
ble to set a breakpoint without overwriting other instruc-
tions in the binary. When a breakpoint fires, the operat-
ing system forwards the interrupt to the process or to the
debugger if one is attached. Processing the breakpoint
involves removing the breakpoint by writing back the
original instruction at the instruction pointer and resum-
ing the program. The breakpoint instruction is designed
so that setting and removing a breakpoint can be done
atomically in the presence of other threads that might be
executing the same instructions. For example, in archi-
tectures (such as ARM) that support two-byte breakpoint
instructions, all instructions are always two-byte aligned.



4.2 Kernel Support

One of the key goals of LCB is to provide a general ca-
pability to set and remove a large number of breakpoints
as efficiently as possible. Equally important is to do so
without changing the semantics of the monitored pro-
grams and associated services such as debuggers. LCB
relies on kernel processing for efficient and transparent
processing of breakpoints. While most of the function-
ality of LCB can be implemented as a kernel driver that
is loaded early in the boot sequence, we relied on some
modifications to the Windows kernel. Another advan-
tage of kernel support is that we can use LCB to sample
kernel-mode drivers as well.

4.3 Efficient Processing of Breakpoints
4.3.1 Bypassing the Debugger

When a breakpoint fires, the default behavior of the ker-
nel is to notify the debugger (if attached) or send the in-
terrupt to the process. LCB driver registers itself as a
debugger so that it gets a first chance to process the in-
terrupt. Bypassing the regular debugger is crucial for ef-
ficiency, as debuggers do not handle well frequent firing
of any breakpoints. The LCB driver forwards the inter-
rupt to the debugger or to the process if the breakpoint is
not one inserted by LCB.

4.3.2 Handling Shared Modules

Another key design decision of LCB is how to handle
shared modules. The code section of modules that are
frequently loaded by many processes, such as the C li-
braries, are loaded in memory once and shared across
many processes through appropriate virtual memory
mapping. Setting a breakpoint at an instruction in such a
shared module can be implemented in one of two ways.
The first option is to make the breakpoint common to all
processes. Thereby, the sampling of the instruction is
triggered when any of the processes executes the instruc-
tion. Another option is to create a per-process copy of
the memory page containing the instruction, causing the
loss of memory savings achieved by sharing the module.

The current design of LCB uses the first option for effi-
ciency. In many of our usage scenarios, LCB is turned on
for many processes, and the memory bloat that would oc-
cur as a result of choosing the second option is unaccept-
able (as LCB sets breakpoints on all code pages). More-
over, this allows us to extend LCB-based sampling for
multiprocess programs. For instance, when measuring
code coverage, any of the processes executing a particu-
lar C library function is sufficient to cover that function.

Sampled instruction
with a breakpoint
Resumed instruction copy
In thread-local buffer

Instl \

Inst2 N\
Instl

Jmp to Inst2

Figure 1: Implementation of multi-shot breakpoints.

4.3.3 Handling Multi-Shot Breakpoints

The functionality LCB provides may require resuming
the currently sampled instruction without removing the
breakpoint. Such multi-shot breakpoints are required,
for instance, for sampling the first X executions of a ba-
sic block. This goes against the default processing of
breakpoints, where the breakpoint needs to be removed
before resuming the sampled instruction. Once LCB has
resumed the execution, it would not get back control un-
less another breakpoint fires. In the interim, the sampled
instruction could have executed many times.

Another option is to use the single-stepping capability
of modern architectures. For instance, setting the Trap
Flag in the EFLAGS register causes the x86 processor to
generate an interrupt after executing a single instruction.
Debuggers use this facility to single-step an instruction
after removing its breakpoint and on the subsequent in-
terrupt (caused by single-stepping) set the breakpoint on
that instruction again. This is safe as debuggers usually
block all other threads during this process, however, this
generally has unacceptable overhead.

To handle multi-shot breakpoints in native code, LCB
creates a copy of the currently sampled instruction in a
thread-local buffer, as shown in Figure 1. Immediately
after the copy, LCB inserts a jump instruction to trans-
fer control to the instruction after the sampled instruc-
tion. When returning from the breakpoint handler, LCB
sets the current instruction pointer to the copy of the in-
struction. This allows the current thread to resume exe-
cution without removing the breakpoint. The jump after
the copy ensures that control returns to the original pro-
gram. Note that, this design works even if the sampled
instruction is a jump or branch instruction, in which cases
the jump instruction of the copy is not executed.

When creating a copy of the instruction, one has to
carefully handle instructions that refer to the instruc-
tion pointer. For instance, relative jump instructions
calculate their destination based on the current instruc-
tion pointer. Such instructions need to be appropriately
modified to retain their semantics when creating a copy.
While LCB handles many common cases, it defaults to
single-stepping (with all other threads blocked) for other



instructions that refer to the instruction pointer.

The instruction copy in the thread-local buffer is re-
claimed by the thread when it ensures that its current in-
struction pointer and the return values in its stack trace do
not point to the copy. For kernel-mode drivers, LCB allo-
cates a processor-local buffer, rather than a thread-local
one. This buffer is shared by all contexts that execute on
a particular process, including interrupt handlers.

4.4 BfS for Managed Code

Supporting managed code in LCB (such as code writ-
ten in .NET languages and encoded into the Common
Intermediate Language (CIL)) required overcoming sev-
eral challenges: integration with the Common Language
Runtime [2], making sure that the just-in-time (JIT) opti-
mizations do not remove certain breakpoints, and finding
and fixing issues in CLR that prohibited setting a large
number of breakpoints. In this section, we detail how we
overcame these challenges!.

Initially, we attempted to place breakpoints on every
basic block without going through the CLR debugging
APIs. However, this did not work, because CLR intro-
spects the managed binary during JITing, and if it finds
that the binary has been modified (in this case to include
a breakpoint per basic block), it throws an exception and
causes the program to crash.

Consequently, we used the CLR debugging APIs to
support managed programs in LCB. To do this, we im-
plemented a special debugger within LCB that intercepts
the load of each managed module when a program is run
and places a breakpoint in each of the program’s basic
blocks. This debugger’s core responsibility is to place
breakpoints and track their firing. A program need not
be launched using this debugger for LCB to be opera-
tional: LCB can be automatically attached to a program
at load time.

The second challenge was that the CLR JIT optimiza-
tions were modifying the programs by eliminating some
basic blocks (e.g., through dead-code elimination) or by
moving them around (e.g., through loop-invariant code
motion), causing the correspondence between the re-
moved breakpoints and source code to be lost.

To overcome this challenge, we added an option to
LCB to disable JIT optimizations and obtain perfect

'In the process of implementing LCB for managed programs, we
discovered and fixed performance bottlenecks and bugs in the CLR.
CLR debugging APIs had such issues, because they were not built to
be used by a client such as LCB that places a breakpoint in each basic
block of a program. The first bug we fixed was a performance issue
that caused threads to unnecessarily stall while LCB was removing a
breakpoint, due to an incorrect spinlock implementation. The second
bug was a subtle correctness issue that occurred only when the number
of breakpoints was above 10,000, and JIT optimizations were enabled.
We also fixed this issue that was causing the CLR to crash.

correspondence between the source code and the basic
blocks. We are looking into recovering the lost corre-
spondence through program analysis as part of future
work, thereby not forcing users of LCB to disable JIT
optimizations.

4.5 Transparent Breakpoint Processing

For a facility that is commonly used, such as breakpoints,
one would not expect the use of breakpoints to change
the semantics of programs. While this is generally true,
we had to handle several corner cases in order to apply
LCB to a large number of programs.

4.5.1 Code Page Permissions

Setting a breakpoint requires write permission to modify
the code pages. However, for security purposes, all code
pages in Windows are read-only. A straightforward ap-
proach is to change the permission to enable writes, then
set/clear the breakpoint, and then reset the permission to
readonly. However, this leaves a window in which an-
other (misbehaving) thread could potentially write to the
code page. Under such conditions, the original program
would have received an access violation exception while
the same program running with LCB would not.

To avoid this, LCB creates an alternate virtual map-
ping to the same code page with write permissions and
uses this mapping to set and clear breakpoints. This map-
ping is created at a random virtual address to reduce the
chances of a wild memory access matching the address.
The virtual mapping is cached to amortize the cost of
creating the mapping across multiple breakpoints—due
to code locality, breakpoints in the same page are likely
to fire together.

When sampling kernel-mode drivers, LCB sometimes
has the need to process breakpoints at interrupt levels
during which it is unable to call virtual-memory-related
functions to create/tear down virtual mappings. In such
scenarios, LCB uses the copy mechanism for dealing
with multi-shot breakpoints described above (§ 4.3.3) to
temporarily resume execution without removing a break-
point. At the same time, LCB queues a deferred proce-
dure call that is later invoked at a lower interrupt level to
remove the breakpoint.

Finally, LCB does not set or clear breakpoints on code
pages that are writable in order to avoid conflicts with
self-generated code.

4.5.2 Making Breakpoints Invisible to the Debugger

Many programs with LCB enabled run with a debugger
attached. As described above, LCB hides its breakpoints
from the debugger by processing them before the debug-
ger. However, debuggers need to read the code pages,



say in order to disassemble code to display to the user.
LCB traps such read requests and provides an alternate
view with all its breakpoints removed.

5 LCC Evaluation

In this section, we measure the cost of placing “one-shot”
breakpoints on every basic block in an executable us-
ing LCB monitors in order to measure code coverage.
The resulting code coverage tool is called LCC. LCC
represents the leanest instance of LCBWe first perform
a case study on the Z3 automated theorem prover [10]
(§5.1), followed by a broader investigation on the SPEC
2006 CPU integer benchmarks (§5.2), then three man-
aged benchmarks from the CLR performance bench-
marks (§5.3), and a large scale evaluation on Windows
binaries (§5.4).

The code coverage evaluations were performed on an
HP Desktop with a 4-core Intel Xeon W3520 and 8 GB
of RAM running Windows 8. In our study, we consider
three configurations for each application: no code cov-
erage (base), the application statically rewritten by the
bbcover tool (bbcover), and the application breakpoint-
instrumented by LCC (Icc). In order to make the com-
parison between the tools as fair possible, we use the
same basic blocks for LCC breakpoints as identified by
the Vulcan framework for the bbcover tool. We instruct
LCC to insert a breakpoint at the address of the first in-
struction in each basic block. On the firing of a break-
point, a bit (in a bitvector) is set to indicate that the basic
block has been covered.

51 Z3

73 is an automated theorem prover written in C++ con-
sisting of 439,927 basic blocks (as measured by Vulcan).
Z3 is computationally and memory intensive, having a
SAT solver at its core, which is solving an NP-complete
problem. We run Z3 on a set of 66 input files that take
73 anywhere from under 1 second to 150 seconds to pro-
cess (and many points in between). Each file contains
a logic formula over the theory of bit vectors (generated
automatically by the SAGE tool [14]) that Z3 attempts to
prove satisfiable or unsatisfiable. Z3 reads the input file,
performs its computation, and outputs “sat” or “unsat”.
We test the 64-bit version of the Release build of Z3. For
each test file, we run each configuration five times.2

We added timers to LCC to measure the cost of setting
breakpoints, which comes to about 100 milliseconds to
set all 439,927 breakpoints.

2We validated that the output of Z3 is the same when run under each
code coverage configuration as in the base run and that the coverage
computed by LCC is the same as that computed by bbcover.
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Figure 2: Plot comparing the absolute run-times of cov-
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Figure 3: Log-log plot comparing the overhead of

bbcover (orange triangles) and LCC (blue circles), in
seconds over base (y-axis), as a function of base (x-axis).

Figure 2 plots the absolute run time of each test ¢ for
the base configuration (the median of 5 runs) against
each of the two code coverage configurations and shows
the best linear fit for each configuration. We see that the
overhead for LCC is less than 1%, with much less pertur-
bation than the overhead of bbcover, while the overhead
for bbcover is around 90% and has outliers.

We would expect that the overhead for LCC be a small
constant, independent of the running time of the base ex-
ecution. In the log-log plot of Figure 3, the x-axis is
the run-time in seconds of the base configuration on a
test 7, while the y-axis represents the overhead (in sec-
onds) of each of the code coverage configurations (over
the base configuration) on the same test z. We see the
expected linear relationship of the cost of code coverage
with respect to execution time for bbcover. The plot
for LCC shows that the overhead for LCC appears to in-
crease slightly with the base time, although its overhead
never exceeds 1.5 seconds.

Figure 4 shows the number of basic blocks (y-axis)
covered as a function of run-time (x-axis, log scale).
The first thing to notice is that most of the tests cover
somewhere between 17,000 and 29,000 basic blocks, a



29000 blocks covered ‘
LY °
.

© 27000 e L,

ot .uﬁ?op.“::: ®. & : 0y, o
1 23000

21000

19000

3 17000

15000 log(sec.)
0.01 0.1 1 10 100 1000

Figure 4: Run-time of base configuration (x-axis, in sec-
onds on log scale) versus number of basic blocks cov-
ered, for each of the 66 tests.

small fraction of all the basic blocks in Z3. This is not a
surprise, as the 66 tests were selected from a suite that
exercises just a part of Z3 (the bit vector theory and
SAT solver). The two tests that cover less than 21,000
blocks also have the shortest runtimes. Block coverage
increases slightly as execution time increases, correlated
with the observed increase in runtime overhead for LCC.

5.2 SPEC CPU2006 Integer Benchmarks

To understand the cost of code coverage on a wider set
of programs, we integrated both bbcover and LCC into
the SPEC CPU2006 Monitoring Facility and performed
experiments on the SPEC 2006 CPU Integer benchmarks
(except for 462.libquantum and 483.xalancbmk, which
did not compile successfully on Windows 8).

Table 1 presents the results of the experiments, with
one row per benchmark. We ran each benchmark for five
iterations using base tuning. The second and third col-
umn show the number of basic blocks in a benchmark
and the number of tests for that benchmark (each itera-
tion runs all tests once and sums the results). We call
out the number of tests because each test is a separate
execution of the benchmark, which starts collection of
code coverage afresh. Thus, for example, the 403.gcc
benchmark has 9 tests and so will result in setting break-
points 9 times on all 198719 blocks (for one iteration).
The columns labeled base, lcc, and bbcover are the me-
dian times reported by the runspec script (in seconds)
of the five runs, for each configuration, respectively, as
well as the standard deviation. The overhead of the lcc
and bbcover configurations to the base configuration is
reported in the remaining two columns.

The overhead of bbcover ranges from a low of
18.67% (429.mcf) to a high of 176.22% (400.perlbench).
In general, the slowdown varies quite a bit depending on
the benchmark. Our experience with static instrumenta-
tion is that the number of the frequently executed basic
blocks in the executable is the main determiner of over-
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Figure 5: Plot comparing absolute runtimes in seconds
(y-axis) of bbcover (triangles), LCC (circles), and unin-
strumented execution (squares) on the RayTracer pro-
gram as a function of input size (x-axis).

head. The overhead of LCC, on the other hand, ranges
from 1.4% to 2.18%, showing that LCC achieves low
overhead across a range of benchmarks, despite the high
cost of breakpoints.

5.3 Managed Code

We evaluated LCB’s managed code support using three
programs used internally at Microsoft for CLR perfor-
mance benchmarking: RayTracer, a program that per-
forms ray tracing; BizTalk, a server application used in
business process automation; and ClientSimulator, a web
client simulation program. We measured the uninstru-
mented runtimes and coverage measurement overheads
for bbcover and LCC. All results are averages of five
runs.

In Figure 5, we vary the size of the input object Ray-
Tracer processes from 100 to 600 pixels to see how the
overhead changes with input size. The y-axis shows the
absolute runtime. The runtime overhead of LCC is a
steady 0.2 seconds corresponding to a maximum of 6%
overhead irrespective of input size, whereas the runtime
overhead of bbcover is proportional to the runtime of
RayTracer with a maximum absolute time of 28 seconds
and a maximum overhead factor of 3 x.

Similar to the native Z3 binary, this experiment shows
that for the managed RayTracer binary, LCC’s overhead
is less than that of bbcover and it is independent of the
program’s runtime behavior.

For BizTalk and ClientSimulator, we used standard
workloads of the benchmarks. For Biztalk, LCC incurs
1.1% runtime overhead versus bbcover’s 2.0% over-
head; for ClientSimulator, LCC incurs 5.8% runtime
overhead versus bbcover’s 34.7% overhead.

RayTracer has several loops that execute many times,
therefore, for this case, the runtime overhead of bbcover
(which instruments the code) is two orders of magni-



Benchmark num. of | num. of || base std. lcc std. bbcover| std. lcc bbcover
blocks | tests (sec.) | dev. || (sec.) | dev. || (sec.) dev. overhead | overhead
400.perlbench || 68224 3 || 473.71| 098 || 481.98 | 1.33 || 1308.49| 12.31 1.75% | 176.22%
401.bzip2 6667 6 || 575.02| 0.77 || 584.31| 2.57 || 1108.96| 5.73 1.62% | 92.86%
403.gcc 198719 9 || 402.27 | 0.81 || 410.55 | 2.75 765.55| 1.32 2.06% | 90.31%
429.mcf 5363 1 || 366.49 | 0.66 || 373.00 | 5.50 434.93| 0.99 1.78% 18.67%
445.gobmk 43714 5 || 530.79 | 0.74 || 541.47 | 0.72 || 1162.91| 0.63 2.01% | 119.09%
456.hmmer 15563 2 || 350.59 | 1.31 || 357.65| 0.17 446.69| 1.78 2.01% | 27.41%
458.sjeng 10502 1 || 629.40 | 3.04 || 638.24| 1.02 || 1496.96| 3.06 1.40% | 137.84%
464.h264ref 24189 3 || 604.54| 0.74 || 613.95| 0.93 || 1008.73| 3.57 1.56% | 66.86%
471.omnetpp 47069 1 || 342.99 | 0.64 || 350.47 | 0.12 641.45| 1.97 2.18% | 87.01%
473.astar 6534 1 || 439.59| 0.77 || 446.95| 0.59 670.12| 4.81 1.67% | 52.44%

Table 1: Results of running coverage tools on the SPEC 2006 CPU Integer benchmarks. See text for details.

tude more than LCC'’s.

LCC also has lower overhead

100%

for BizTalk and ClientSimulator. We conclude that the
managed code support for LCC is efficient.

5.4 Windows Native Binaries

To evaluate the robustness of LCB, we applied LCC to
all the native binaries from an internal release of Win-
dows 8. We integrated and ran LCC on a subset of sys-
tem tests in the standard Windows test environment. The
goal of this experiment was to check if LCC can robustly
handle a variety of executables, including kernel-mode
drivers that are loaded during the operating system boot
up. Another goal of this experiment was to ensure that
LCC does not introduce test failures either due to imple-
mentation bugs or due to the timing perturbation intro-
duced by the firing of breakpoints.

The system tests ran for a total of 4 hours on 17 ma-
chines. We repeated the test for different system builds:
32-bit and 64-bit x86 binaries, and ARM binaries. The
size of the binaries covered ranges from 70 basic blocks
to ~1,000,000. All tests completed successfully with no
spurious failures or performance regressions.

To compare coverage, we ran the same tests with the
bbcover tool. Figure 6 shows the difference in coverage
achieved by the two tools. Of the 665 binaries, bbcover
didn’t produce coverage for 45 binaries because its over-
head caused those tests to time out, thereby failing them.
Therefore, the figure reports the coverage for the remain-
ing 620 binaries. The binaries in the x-axis are ordered
by the coverage achieved with bbcover.

As the tests are highly timing dependent and involve
several boot-reboot cycles, there can be up to 20% dif-
ference in coverage across runs. Despite this nondeter-
minism, Figure 6 shows a clear trend. For all but 40 bi-
naries, LCC reports more coverage than bbcover. This
increased coverage is due to the fact that tests that time
out or fail under bbcover, due to problems in relocation
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Figure 6: Difference between the coverage reported by
LCC vs. bbcover (y-axis) for 620 Windows binaries
(x-axis).

or excessive runtime, run to completion with LCC. For a
small number of cases, LCC reports less coverage than
bbcover due to test non-determinism.

6 Cold Block Tracing

In this section, we extend LCC to create a simple trac-
ing/logging facility for cold basic blocks, using two dif-
ferent strategies. First, we store the order in which break-
points fire in a log. This reflects a compressed form of
an execution trace where all instances of a basic block
beyond its first execution are dropped. The size of this
log is bounded by the size of the program. We call this
“single-shot logging”, since a basic block identifier will
appear at most once in the log. Second, we set the R
parameter to infinity in the BfS algorithm (§3), to pe-
riodically refresh breakpoints on all basic blocks. With
this option enabled, the size of the log file is proportional
to the length of program execution rather than program
size. Next, we discuss these two strategies in detail.



base lec per0.5 per5.0 lec per0.5 per5.0
Test#|| (sec.) | (sec.) (sec.) \ overhead || (sec.) \ overhead || blocks|| blocks | Growth|| blocks| Growth
21 3146 3294 | 36.29| 1533%| 33.10| 5.20% | 28731 85459| 2.97 | 46356 1.61
52 31.41| 3147 3555| 13.17% | 32.72| 4.15% || 26506| 72886| 2.75 || 42359 1.60
12 46.95| 47.38| 54.39| 15.84% | 49.02| 4.40% || 25472 | 113730| 4.46 | 45437 1.78
57 48.07| 48.14| 54.76| 1391% | 49.69| 3.37% || 25525 || 114658 4.49 | 45882 1.80
43 57.22| 56.89| 6544| 1436%| 60.13 5.07% || 27264 || 129836 4.76 || 51316 1.88
65 61.53| 61.19| 70.74| 1496% | 6390| 3.84% || 25175| 138819| 5.51 || 48581 1.93
14 70.74| 71.63| 81.27| 14.88% | 74.22| 491% || 25690 | 149329| 5.81 | 59058 | 2.30
62 89.14| 89.31| 101.96| 14.38% | 94.07| 5.54% || 28191 || 185079 6.57 || 67408 | 2.39
29 155.09 | 156.63 || 175.82 | 13.37% || 164.88 6.31% || 25522 || 269179| 10.55 || 72864 | 2.85

Table 2: Periodic logging of Z3 on tests that execute 30 seconds or more.
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Figure 7: Scatterplot of the coverage log for Z3 test 15
with single-shot code coverage. The base execution of
Z3 on test 15 took 20 seconds.

6.1 Single-Shot Code Coverage Logs

The additional cost to log basic block identifiers to a file
is negligible for long executions and can be ameliorated
by writing the log to a memory buffer, which in the case
of single-shot logging is bounded by the size of the pro-
gram. We give details on the overhead of logging when
we consider periodic logging.

We can view a code coverage log as a sequence of
events (i,b(i)), where i is the index of the event in the
log and b(i) is the block id. Such information about the
relative ordering of the first execution of each basic block
can be useful for identifying phases in a program’s exe-
cution. Each basic block b has associated symbol infor-
mation, including an identifier of the function f(b) in
which it resides. We assign to each function f a count
¢(f) which corresponds to the number of unique func-
tions that appear before it in the log.

Figure 7 shows, for a single execution of Z3, a scat-
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ter plot that contains one point for each log entry (exe-
cuted basic block) with index i (x-axis), where the y-axis
is the count of the function containing block, namely
c(f(b(i))). The scatterplot shows there are about 4500
events in the log. Phases are identified naturally by the
pattern of “lower triangles” in which the blocks of a set
of functions execute close together temporally. In the
plot of the Z3 execution, we have highlighted six phases:
(1) initialization of basic Z3 data structures and parsing
of the input formula; (2) initialization of Z3’s tactics that
determine which decision procedures it will use to solve
the given formula; (3) general rewriting and simplifica-
tion; (4) bit blasting of bit-vector formula to proposi-
tional logic; (5) the SAT solver; (6) output of information
and freeing of data structures.

This simple analysis shows that a one-shot log can be
used to naturally identify sets of related functions since it
provides an interprocedural view of control-flow behav-
ior. We intend to use this information to identify program
portions with performance bottlenecks and to improve
job scheduling inside a datacenter [26, 11].

6.2 Periodic Logs

While one-shot code coverage logs are cheap to collect,
there are many other (cold) traces the program will ex-
ecute that will not be observed with the one-shot ap-
proach. To collect such information, we can periodically
refresh the breakpoints on all basic blocks, as supported
by the LCB framework.

Figure 8 shows the scatterplot of the execution log of
73 run on the same test as in Figure 7, but with break-
points refreshed every half second. From this plot, we
can see that the SAT solver accounts for most of the log.
Furthermore, notice that compared to the one-shot log
in Figure 7, we see the interplay between the code of
the SAT solver in phase 5 and the code of functions exe-
cuted early on (during phase 1), which represent various
commonly used data structures. We also observe more
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Figure 8: Scatterplot of the coverage log for Z3 test 15 with breakpoints are refreshed every .5 seconds.

activity between the functions in the final phase and the
rest of the code (except for the SAT solver).

To evaluate the time and space costs of periodic log-
ging, we selected all the 9 Z3 tests that execute 30 sec-
onds or more in the base configuration. In our first exper-
iment, we refresh all 439,927 breakpoints every half sec-
ond (configuration per(.5), measure the overhead as well
as the number of breakpoint firings. Note that the time to
set all breakpoints is around 0.1 seconds, expected over-
heads range from 6 (for a 30 second test) to 30 seconds
(for the longest test at around 150 seconds).

Table 2 shows the 9 tests ordered in increasing order
of base execution time. As expected, we see that the
execution times for per0.5 increase execution overhead
by 4 seconds on the low end (test 21) compared to base
and 20 seconds on the high end (test 29). While refresh-
ing breakpoints twice a second significantly increases the
overhead compared to the single-shot logging of the /cc
configuration, it is still less expensive than the bbcover
tool (which doesn’t log). Not surprisingly, the size of the
periodic log (column “per0.5 blocks™) compared to that
of one-shot logging (“Icc blocks”) is substantial (ranging
from a growth of 2.97x to 10.55x%).

In the second experiment, we refresh the breakpoints
every 5 seconds (configuration per5.0), resulting in run-
times closer to that of Icc than per0.5, and reducing the
growth rate of the periodic log substantially.

7 Related Work

Once debuggers gave programmers the ability to set and
remove breakpoints on instructions [19], the idea of us-
ing a one-shot breakpoint to prove that an instruction was
executed (or covered) by a test was born. The rest is
just a “simple matter of coding”. The first tool we found
that uses one-shot breakpoints to collect code coverage
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is the Coverage Assistant in the IBM Application Test-
ing Collection [4] which mentions “minimal” overheads
but does not provide implementation specifics.

DataCollider [18] uses hardware breakpoints to sam-
ple memory accesses and detect data races, therefore, it
uses a small number of breakpoints at a time (e.g. 4 in
x86 processors). Conversely, bias-free sampling requires
a large number of breakpoints—Iinear in the size of the
program—to be handled efficiently, which LCB does.

Residual test coverage [25] places coverage probes for
deployed software only on statements that have not been
covered by pre-deployment testing, but these probes are
not removed during execution when they have fired.

Tikir et al.’s work on efficient code coverage [29] uses
the dynamic instrumentation capabilities of the DynInst
system [7] to add and remove code coverage probes at
run-time. While efficient, such approaches suffer from
the problem that basic blocks that are smaller than the
jump instruction (5 bytes on x86) cannot be monitored
without sophisticated fixup of code that branches to the
code following the basic block. In addition, special care
has to be taken to safely perform the dynamic rewriting
of the branch instruction in the presence of concurrent
threads. For instance, Dynlnst temporarily blocks all the
threads in the program before removing the instrumen-
tation to ensure that all threads either see the instruction
before or after the instrumentation.

The Pin framework [22] provides a virtual machine
and trace-based JIT to dynamically rewrite code as it exe-
cutes, with a code cache to avoid rewriting the same code
multiple times. The overhead of Pin without any probes
added is around 60% for integer benchmarks. The code
cache already provides a form of code coverage as the
presence of code in the cache means it has been executed.

Static instrumentation tools like PureCoverage [3],
BullseyeCoverage [1], and Geov [13] statically modify
program source code to insert instrumentation that will



be present in the program throughout its lifetime. These
tools can also be used to determine infrequently executed
code, albeit at the expense of always triggering the in-
strumentation for frequently-executed code.

THeME [30] is a coverage measurement tool that
leverages hardware monitors and static analysis to mea-
sure coverage. THeME’s average overhead is 5% (with
a maximum overhead of up to 30%), however it can de-
termine only up to 90% of the actual coverage. LCB has
similar average overhead as THeME, but it fully accu-
rately determines the actual coverage. Furthermore, LCB
can be used to obtain multi-shot periodic logs.

Symbolic execution [20, 8] can be used to achieve high
coverage in the face of cold code paths. In particular,
symbolic execution can explore program paths that re-
main unexplored after regular testing, to increase cov-
erage. However, symbolic execution is typically costly,
and therefore, it is more suited to be used as an in-house
testing method. Developers can employ symbolic execu-
tion in conjunction with BfS; the latter can be used in the
field thanks to its low overhead.

8 Conclusion

Bias-free sampling of basic blocks provides a low over-
head way to quickly identify and trace cold code at
runtime. Its efficient implementation via breakpoints
has numerous advantages over instrumentation-based ap-
proaches to monitoring. We demonstrated the applica-
tion of bias-free sampling to code coverage and its ex-
tension to periodic logging, with reasonable overheads
and little in the way of optimization.
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