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Abstract. There is a gap between the information available at the tifeesoft-
ware failure and the information actually shipped to depets in the corresponding
bug report. As a result, identifying the cause of the bug thasethis bug report is
often difficult. To close this gap, we propobeg fingerprints—an augmentation of
classic automated bug reports with runtime informationuabow the reported bug
occurred in production.

Classic automated bug reporting systems contain at mosedwmp that describes
the final manifestation of a bug. In contrast, bug fingergricbntain additional
small amounts of highly relevant runtime information thatgs understand how
the bug occurred. We show how these “fingerprints” can be tsegeed up both
manual and automated debugging. As a proof of concept, veepr®©Cop, a sys-
tem for collecting such runtime information about dead®akd including it in the
corresponding bug reports. The runtime overhead intratlbgedCop is negligible
(less than 0.17% for the Apache Web server), so it is suitf@blese in production.

1 Introduction

Software debugging is time-consuming and labor-intensi most of the work going
into understanding how the reported bug occurred in the.fiedd example, 70% of the
concurrency bugs reported to Microsoft take days to mouwtfig f4]. This labor-intensive
aspect makes software debugging expensive. Our work isdaaheeducing the often
needless labor involved in debugging.

A classic bug report contains at best a coredump that desctiite final state of the
failed application. State-of-the-art automated bug répgrsystems, such as Windows
Error Reporting (WER) [3], produce a trimmed version of tleeetlump, which reduces
the overhead and privacy problems of a full coredump. Mdstictoftware relies on users
to provide a coredump and a description of how to manuallyoeyce the bug.

The absence of precise information about how the bug oatumrthe field leads to
incorrect diagnosis. Non-deterministic bugs are paréidulhard to reproduce and diag-
nose, forcing developers to guess the cause of the fails®dban the bug report. Since
bug reports offer no runtime information about how the buguoed, guessing often
leads to incorrect fixes; e.g., one study reports that 30%eéarrency bugs are initially
fixed incorrectly [8]. Ideally, developers should not hawedly so much on guessing.

There do exist tools that help reduce guessing by employitigsystem record-
replay [2]. However, they can incur runtime recording oweattis that make them im-
practical for in-production use. Other approaches use-fagsim analysis to eliminate
completely the need for runtime recording (execution sgsith[15]), or to require less
recording (ODR [1], SherLog [14]). However, post-factunabysis may not be effective
for all bugs and can involve substantial compute time at thelbper’s site.
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The inherent trade-off between runtime recording overteatithe fidelity/ease of
subsequently reproducing bugs forms a spectrum of sokytieith full system replay [2]
at one end, and execution synthesis [15] at the other. Thistispn is still poorly under-
stood, and an important question remains: which is the Eastunt of information that
is practical to record at runtime, yet still makes it easyisgdose bugs of a certain type.

Our observation is that, given a class of bugs, it is possilecord a small amount
of bug-specific runtime information with negligible ovedtk and this information can
substantially improve debugging. Based on this obsematie proposéug fingerprints
small additions to classic bug reports that contain higblgwant “breadcrumbs” of the
execution in which the bug occurred. These breadcrumbstbaseconstruction of the
sequence of events that led to the failure.

We show that this idea works for deadlocks, an importansatdgoncurrency bugs.
We built DCop, a prototype deadlock fingerprinting system36C++ software—it keeps
track at runtime of each thread’s lock set and the callsta¢kbe corresponding lock
acquisitions; when a deadlock hangs the application, tiiigtination is added to the bug
report. DCop’s runtime overhead is negligible (e.g., I&s81t0.17% for the Apache Web
server), yet these breadcrumbs enable faster, even agdndabugging.

In the rest of this paper we describe the design of DCop (82)uate it (83), dis-
cuss the generalization of bug fingerprints to other bugsy(84), illustrate the use of
fingerprints for automated debugging (85), review relatedw(§6), and conclude (87).

2 Deadlock Fingerprints

Despite being frequent (e.g., 30% of the bugs reported iar@feadlocks), deadlock bug
reports are scarce, because deadlocks do not produce aicgreednstead, they render
the application unresponsive. Normal users restart thécagpipn without submitting a
bug report, while expert users may attach a debugger to thgrggm and capture each
thread’s callstack. Systems such as WER can be used to ereatedump, but it is still
hard to debug deadlocks based on this information that ibesconly the end state.

Deadlocks become straightforward to debug if we have iné&tiom on how the pro-
gram acquirectverymutex involved in the deadlock. In particular, the callksof the
calls that acquired mutexdeld at the time of deadlock, together with the callstacks of
the blockedmutex acquisitions, provide rich information about how tteadlock came
about. Alas, the former type of callstack information is ander available at the time of
the deadlock, and so it does not appear in the coredump.

Fortunately, it is feasible to have this information in gvieug report: First, the amount
of information is small—typically one callstack per thre&#cond, it can be maintained
with low runtime overhead, because most programs use synidation infrequently. As
it turns out, even for lock-intensive programs DCop incuggligible overhead.

DCop’s deadlock fingerprints contain precisely this infatimn. Regular deadlock
bug reports contain callstacks, thread identifiers, andess@s of the mutexes that are
requested—but not held—by the deadlocked threads. Welwdktthenner mutexes,
corresponding to the innermost acquisition attempt in detel®cking sequence. Addi-
tionally, deadlock fingerprints contain callstack, threagdnd address information for the
mutexes that are already held by the threads that deadloelcalWthese theuter mu-
texes, because they correspond to the outer layers of thedlesking sequence. Outer
mutex information must be collected at runtime, becausduthetions where the outer
mutexes were acquired are likely to have already returnied forthe deadlock.



We illustrate deadlock fingerprints with the code in Fig. daimplified version of
the global mutex implementation in SQLite [11], a widely dsanbedded database en-
gine. The bug occurs when two threads exesgtiée3EnterMutex(@oncurrently. Fig. 1b
shows the classic bug report, and Fig. 1¢ shows the deadfugérfirint.

void sqlite3EnterMutex() { Threadt, Threadt,
pe: pthread mutex lock(&ml) ; sqlite3EnterMutex: pc, sqlite3EnterMutex: pc,
if (inMutex==0) { pthread mutex lock: pc; ot pthread mutex lock: pec, m2
pe,: pthread mutex lock (&m2) ;
o (b)
}
pey: pthread mutex_unlock (&ml) ;
++inMutex; Thread t, Thread t,
} sqlite3EnterMutex: pc, m2|
i i thread mutex lock: pc
voidimain(()i 12 = = PS \ sqlite3EnterMutex: pc,

owit],

pthread mutex lock: pc, m1|

pe,: sqlite3EnterMutex() ;

sqlite3EnterMutex: pc, i
oco pthread mutex lock: pc; \
pe.: sqlite3EnterMutex() ; sqlite3EnterMutex: pc,
5 m2
. pthread mutex lock: pc,
@) ©

Fig. 1. (a) SQLite deadlock bug #167%h) Regular bug repor{c) DCop-style deadlock fingerprint.

A regular bug report shows the final state of the deadlockegram:t; attempted to
lock mutexmy at pc; andt, attempted to lock mutem, at pc,—we invite the reader to
diagnose how the deadlock occurred based on this informafioe bug report does not
explain howt; acquiredm, and howt, acquiredmy, and this is not obvious, since there
are several execution paths that can acquire mutexesdny.

The deadlock fingerprint (Fig. 1c) clarifies the sequencevehts:t; acquiredm, at
pc; in afirst call tosqlite3EnterMutexandt, acquiredmn, atpc;. This allows a developer
to realize that, just aftety unlockedm at pcs and beforet; incremented thénMutex
variable,t, must have lockedn; at pc; and read variablenMutex which still had the
value 0. Thust, blocked waiting fom, at pc,. Next,t; resumed, incrementedMutex
calledsglite3EnterMutethe second time, and tried to acquire at pc;. Sincem; was
held byt, andm, was held byt;, the threads deadlocked. This is an example of how
DCop can help debug the deadlock and reveal the data raicd/orex

To acquire this added information, DCop uses a lightweigétrumentation layer that
intercepts the program’s synchronization operationsedbrds the acquisition callstack
for currently held mutexes in a per-thread event list. A deeddetector is run whenever
the application is deemed unresponsive, and it determihether the cause is a deadlock.

The runtime monitor is designed to incur minimal overhearstikey decision was
to avoid contention at all costs, so each thread recordsalstack information for its
lock/unlock events in a thread-local private list. The ptévlists are merged solely when
a deadlock is found (and thus the application threads ak stnyway). This avoids
introducing any additional runtime synchronization.

A second design choice was to trim the private lists and keemtto the minimum
required size: every time a mutex is unlocked, DCop finds tlieesponding lock eventin
the list and discards it—mutexes that are no longer heldaaminvolved in deadlocks.
Thus, DCop only keeps track of mutexes that have not yet bedeaged, and so the size



of a per-thread event list is bounded by the maximum nesgrgl lof locking in the
program. In our experience, no event lists ever exceedeeiagits.

As a result of this design, DCop’s runtime overhead is doteithdoy obtaining the
backtrace on each mutex acquisition. To reduce this ovdrteea minimum, DCop re-
solves backtrace symbols offline, since this is expensidenaed not be done at runtime.

The deadlock detection component of DCop is activated wihenser stops an appli-
cation due to it being unresponsive. The detector processgsthread’s list and creates
a resource allocation graph (RAG) based on the events instse The RAG contains a
vertex for each active thread and mutex, and edges corrdgpanutex acquisitions (or
acquisition requests that have not succeeded yet). Edgéasbamied with the thread id of
the acquiring thread and the callstack corresponding tottieoperation. Once the RAG
is constructed, the detector checks for cycles in the grawRAG cycle corresponds to
a deadlock. If a deadlock is found, the detector assembéesdiresponding fingerprint
based on the callstacks and thread identifiers found on ttle’syedges.

DCop’s deadlock detector has zero false positives. Furthes, since the size of the
threads’ event lists is small, assembling a deadlock fingers fast.

We implemented DCop inside FreeBSDisbt hr POSIX threads library; our changes
added 382 LOC. One advantage of recording fingerprints frihimthe existing thread-
ing library is the opportunity to leverage existing dataistares. For example, we added
pointers to DCop’s data structures inside the library’s ¢dkinead metadata structure. An
important optimization in DCop is the use of preallocateffidrs for storing the backtrace
of mutex acquisitions—this removes memory allocationsgifthe critical path.

3 Performance Evaluation

Having discussed DCop’s design, we now turn our attentidimedcey question of whether
it is suitable for use in production? We evaluate DCop’s genfance on a workstation
with two Intel 4x 1.6GHz-core CPUs with 4GB of RAM running FreeBSD 7.0.

First, we employ DCop on interactive applications we useselves, such as the
emacs text editor. There is no perceptible slowdown, leattirthe empirical conclusion
that user-perceived overhead is negligible. However,esiecording mutex operations
adds several instructions at each synchronization operge.g., obtaining the backtrace
for a lock operation), some lock intensive programs maylgkhiore overhead.

Next, we use DCop for the
Apache Web server with 50 workeru 7300 P ——
threads. We vary the number of cong DCop —&—
current clients and, for each con< 7200 |- 1
currency level, we execute 510° £
GET requests for a 44-byte file. In% 7100 - 8
Fig. 2 we compare the aggregate re&
quest throughput to a baseline with- 7000 4‘0 e‘;o éo 150 1‘20 1L10 1<‘so 1‘80 200 220
out DCop. The overhead introduced # Concurrent Clients

b)_’ DCop is negligible_ throughout,rig 2 comparative request throughput for the Apache
with the worst-case being a less thap 2.14 server at various levels of client concurrency.
0.17% drop in throughput for 200

concurrent clients. Both baseline and
DCop throughput decrease slightly with concurrency lewelst likely because there are




more clients than worker threads. The maximum synchraoizaéiiroughput (lock oper-
ations/second) reaches 7249 locks/second.

To analyze DCop’s overhead in depth, we wrote a synchranizamtensive bench-
mark that creates 2 to 1024 threads that synchronize on @dlmautexes. Each thread
holds a mutex foy, time, releases it, waits fal, time, then tries to acquire another
mutex. dn and doy; are implemented as busy loops, thus simulating computaliore
inside and outside a critical section. The threads randaadlymultiple functions within
the microbenchmark, in order to build up highly varied dalt&s (“fingerprints”).

We measure how synchronization
throughput varies with the number of  ose oo oL K0 Soul Moo
threads. In Fig. 3 we show DCop’s over- .
head ford,=1 microsecond an@yy,=1
millisecond, simulating a program that
grabs a mutex, updates in-memory shareg ***
data structures, releases the mutex, and 01%
then performs computation outside the  o%

" . 4 8 16 32 64 128 256 512 1024
critical section. The worst case overhead Number of Threads
is less than 0.33% overhead. The decreasy 3. overhead of collecting deadlock finger-
ing overhead shows that indeed DCoPp ifyrints as a function of the number of threads.
troduces no lock contention. Instead, the
application’s own contention amortizes DCop’s overhead.

We repeat the experiment for various combinations ef &, < 10* and 1< oyt <
10* microseconds, simulating applications with a broad rarfgeaking patterns. The
measured overhead ranges from 0.06% in the best case to l7AR&worst case. The
maximum measured synchronization throughput reache8881gcks/second.

These results confirm that DCop introduces negligible meatverhead, thus making
it well suited for running in production, even for server Apgtions. We hope this advan-
tageous cost/benefit trade-off will encourage wider adwoypdif deadlock fingerprinting.

0.3%

head [%]

4 Generalizing Bug Fingerprinting

Having seen how bug fingerprinting works for deadlocks, we harn our attention to
generalizing bug fingerprinting to other kinds of bugs. Inv@discuss how bug finger-
prints can be employed in automated debugging.

In essence, a bug fingerprint servedisambiguate executioneshen faced with a
bug report, a developer must find (guess) which of the maneriahfinite) possible
executions of the software could have led to the observadéaiThe bug report provides
clues for trimming down the set of possible executions, ddbug fingerprint should
narrow it down to only a handful of possibilities. Fingergrinformation must be small,
to avoid undue recording overheads. Choosing what runtirfegmation to include in a
given fingerprint is therefore specific to each class of bgsillustrate this process with
two examples: data races and unchecked function returns.

A bug fingerprint for a data race-induced failure contairferimation on the races
that manifested during execution prior to the failure in they report. This way, it is
possible to determine which potential data races influetfoee@xecution and which did
not. However, monitoring memory accesses efficiently isaasty.

An efficient data race fingerprinting system employs statialysis to determine of-
fline, prior to execution, which memory accesses are pa@uhdia races. It then monitors



at runtime only these accesses. There are two options torpeguch monitoring with
low overhead: debug registers and transactional memory).(X86 debug registers [6]
can be configured to deliver an interrupt to a monitor threhémnever two memory ac-
cesses to the same address are not ordered by a happerestbkftion and at least one
of the access is a write (i.e., a data race occurred). Thegponding program counters
and memory address are then saved for later inclusion inubedport, should a failure
occur. One drawback is that today’s CPUs can monitor only allsset of addresses at
a time, so debug registers can be used to watch only a subthet statically-discovered
potential races. An alternative approach is to use the con#tection mechanism of TM
to detect data races, and record the fingerprint. If TM festare available in hardware,
this can be done quite efficiently.

Another interesting class of bugs appears in code that étsigo check all possible
return values of a library function. For example, not chagkivhether a socketead()
call returned -1 can lead to data loss (if caller continuei$ ak data was read) or even
memory corruption (if return value is used as an index). Bohaunchecked-return bugs,
the fingerprint contains (a) the program locations wherdmaty function call’s return
value was not checked against all possible return values(l@rthe actual return value.
Such fingerprinting can be done with low overhead by stdyiGtalyzing the program
binary to determine the places in the program where libralig @are not properly checked
(e.g., using the LFI callsite analyzer [9]), and monitoratiguntime only those locations.

For most bug types, a general solution is to incrementattpne: the execution in-
dex [12] and include it in the bug fingerprint. The executindéx is a precise way to
identify a point in an execution and can be used to correlatetp across multiple exe-
cutions. Such a bug fingerprint can be used to reason withdgghracy about the path
that the program took in production, but has typically higlearding overhead (up to
42% [12]). It is possible to reduce the overhead by recordinly a partial execution
index (e.g., by sampling) that, although less precise, thioffer clues for debugging.

It is practical to fingerprint any class of bugs, as long asrtir@ime information
required to disambiguate possible executions that mdriliesoug can be recorded effi-
ciently. Fingerprinting mechanisms can leverage eachratbéhat collecting fingerprints
for n classes of bugs at the same time is cheaperithianes the average individual cost.

5 Debugging Using Deadlock Fingerprints

Augmenting bug reports with bug fingerprints can substdytaeed up debugging. For
example, a developer debugging a deadlock can get from thelatk fingerprint all
mutexes involved in the deadlock and the callstacks cooredipg to their acquisition
calls. This allows the developer to insert breakpoints hbaler mutex locations and
understand how the deadlock can occur.

Bug fingerprints are also an excellent aid for automated gigéxs, like ESD [15].
ESD is based on execution synthesis, an automated techthafigtarts from a bug report
and finds an execution path and a thread schedule that reygrtitzibug deterministically,
with no human intervention. The technique employs a staiidysis phase, that proceeds
backward from the coredump and identifies critical transgithat take the program to
the state contained in the coredump. Then a forward symbgrécution phase searches
for the necessary inputs and thread schedule to reproded®ith

Bug signatures can improve the efficiency of execution s3sith since they help
disambiguate between possible executions. The more éar@#ths appear to be likely



to reach the end state contained in the coredump, the longBrtas to search. Bug
signatures, however, contain clues that can substanpialiye this search space.

For example, a major challenge in execution synthesis fadideks is identifying
the thread schedule that leads to deadlock. DCop’s deadilogérprints narrow down
the set of possible schedules, thus reducing search tingreliminary measurements,
we find that for a program with three threads and an averagenesting level of three,
the thread schedule synthesis phase of ESD can be reduceddger of magnitude.
Similarly, in the case of data races, we expect orders of iadmimprovement in search
performance, if data race fingerprints are available.

The combination of low-overhead bug fingerprinting with ESiple automated de-
bugging promises to improve the productivity of softwargalepers. Thus, we consider
a combined deployment to be an appealing solution for thisvaoé industry.

6 Reated Work

Runtime support for debugging ranges from classic bug tempsystems, that provide a
partial or complete coredump, to heavyweight whole-systord-replay systems. Spe-
cial hardware can be used to make the latter approach fastegtween these extremes,
there exist multiple approaches that record less infoonatnd use post-factum analysis
to reconstruct the missing pieces offline. We briefly surtéy $pectrum of solutions.

The state of the art in automated bug reporting systems, asitkindows Error Re-
porting [3], collect bug reports from a large number of us@ifsese bug reports reveal
some information about the bug (e.g., the end state of thiécagipn), but not how the
application got there. Bug fingerprints enrich bug reporith Wwug-specific runtime in-
formation that can help these systems classify failuresraocurately. As shown earlier,
bug fingerprints preserve the low runtime overhead of atdssg reporting systems.

FDR [13] uses modified hardware to perform efficient executexording. It piggy-
backs on the cache coherence hardware to record threadhgydgormation. While this
approach can help debugging, it requires hardware feathia¢sre not available today
and that are uncertain to exist in the future. In contrasystesn like DCop can be used
today, without requiring any hardware or software changes.

Other approaches record system execution at the virtuahimadevel and use this
information to deterministically replay executions. Ttaag highly precise, but can incur
significant overhead (e.g., up to 260% for Revirt [2]); reliog multiprocessor executions
has typically several orders of magnitude higher overhBad.fingerprints operate at a
higher level: they leverage knowledge about the bug clasgetatify minute pieces of
runtime information that help reproduce the bugs with malinecording. Although they
require more human effort and they lack the precision of Vaédd record-replay, bug
fingerprints are an effective debugging aid with virtualtymuntime overhead.

R2 [5] performs record-replay at the library level, and catelipose at high-level
APIs to reduce the recording overhead. R2 offers the flailnf choosing what exactly
to record, so it is in essence a mechanism for performingseterecording. We believe
R2 could be used to obtain fingerprints for certain classémig$, although R2 has lim-
ited support for nondeterministic executions. That beaid,sDCop incurs two orders of
magnitude less overhead than R2 on Apache, for identicétloads.

ODR [1] and PRES [10] are recent systems for replaying carogy bugs; they
trade runtime overhead for post-factum analysis time, hod &xplore new points in the



spectrum of solutions. The benefit of deterministic replagnes at a cost of more than
50% runtime overhead, which makes them less compellingrfadyrction use. In DCop
we forgo the goal of deterministic replay in exchange forligégle runtime overhead.

Dimmunix [7] also collects deadlock fingerprints, but for iffetent reason: immu-
nity against deadlocks. Once a deadlock occurs, Dimmurtgros a signature of the
deadlock that is then used to identify and avoid that saméldelapattern in subsequent
executions. Since DCop is focused on collecting fingerprinbt on avoidance, it can
perform the collection with two orders of magnitude lesstime overhead and produce
fingerprints that are richer than Dimmunix’s signatures.

7 Conclusions

This paper describelug fingerprintsan augmentation of classic bug reports with run-
time information about how the reported bug occurred. Hipdets contain clues that
substantially help in both manual and automated debuggimyoof-of-concept system
fingerprints deadlocks with negligible overhead (less tharY% for Apache). We dis-
cussed how to extend this approach to other types of bugsaraned that coupling bug
fingerprints with automated debugging techniques can mekagting more efficient.
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