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Abstract. There is a gap between the information available at the time of a soft-
ware failure and the information actually shipped to developers in the corresponding
bug report. As a result, identifying the cause of the bug based on this bug report is
often difficult. To close this gap, we proposebug fingerprints—an augmentation of
classic automated bug reports with runtime information about how the reported bug
occurred in production.
Classic automated bug reporting systems contain at most a coredump that describes
the final manifestation of a bug. In contrast, bug fingerprints contain additional
small amounts of highly relevant runtime information that helps understand how
the bug occurred. We show how these “fingerprints” can be usedto speed up both
manual and automated debugging. As a proof of concept, we present DCop, a sys-
tem for collecting such runtime information about deadlocks and including it in the
corresponding bug reports. The runtime overhead introduced by DCop is negligible
(less than 0.17% for the Apache Web server), so it is suitablefor use in production.

1 Introduction

Software debugging is time-consuming and labor-intensive, with most of the work going
into understanding how the reported bug occurred in the field. For example, 70% of the
concurrency bugs reported to Microsoft take days to months to fix [4]. This labor-intensive
aspect makes software debugging expensive. Our work is aimed at reducing the often
needless labor involved in debugging.

A classic bug report contains at best a coredump that describes the final state of the
failed application. State-of-the-art automated bug reporting systems, such as Windows
Error Reporting (WER) [3], produce a trimmed version of the coredump, which reduces
the overhead and privacy problems of a full coredump. Most other software relies on users
to provide a coredump and a description of how to manually reproduce the bug.

The absence of precise information about how the bug occurred in the field leads to
incorrect diagnosis. Non-deterministic bugs are particularly hard to reproduce and diag-
nose, forcing developers to guess the cause of the failure based on the bug report. Since
bug reports offer no runtime information about how the bug occurred, guessing often
leads to incorrect fixes; e.g., one study reports that 30% of concurrency bugs are initially
fixed incorrectly [8]. Ideally, developers should not have to rely so much on guessing.

There do exist tools that help reduce guessing by employing full system record-
replay [2]. However, they can incur runtime recording overheads that make them im-
practical for in-production use. Other approaches use post-factum analysis to eliminate
completely the need for runtime recording (execution synthesis [15]), or to require less
recording (ODR [1], SherLog [14]). However, post-factum analysis may not be effective
for all bugs and can involve substantial compute time at the developer’s site.
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The inherent trade-off between runtime recording overheadand the fidelity/ease of
subsequently reproducing bugs forms a spectrum of solutions, with full system replay [2]
at one end, and execution synthesis [15] at the other. This spectrum is still poorly under-
stood, and an important question remains: which is the leastamount of information that
is practical to record at runtime, yet still makes it easy to diagnose bugs of a certain type.

Our observation is that, given a class of bugs, it is possibleto record a small amount
of bug-specific runtime information with negligible overhead, and this information can
substantially improve debugging. Based on this observation, we proposebug fingerprints,
small additions to classic bug reports that contain highly relevant “breadcrumbs” of the
execution in which the bug occurred. These breadcrumbs easethe reconstruction of the
sequence of events that led to the failure.

We show that this idea works for deadlocks, an important class of concurrency bugs.
We built DCop, a prototype deadlock fingerprinting system for C/C++ software—it keeps
track at runtime of each thread’s lock set and the callstacksof the corresponding lock
acquisitions; when a deadlock hangs the application, this information is added to the bug
report. DCop’s runtime overhead is negligible (e.g., less than 0.17% for the Apache Web
server), yet these breadcrumbs enable faster, even automated, debugging.

In the rest of this paper we describe the design of DCop (§2), evaluate it (§3), dis-
cuss the generalization of bug fingerprints to other bug types (§4), illustrate the use of
fingerprints for automated debugging (§5), review related work (§6), and conclude (§7).

2 Deadlock Fingerprints
Despite being frequent (e.g., 30% of the bugs reported in [8]are deadlocks), deadlock bug
reports are scarce, because deadlocks do not produce a coredump—instead, they render
the application unresponsive. Normal users restart the application without submitting a
bug report, while expert users may attach a debugger to the program and capture each
thread’s callstack. Systems such as WER can be used to createa coredump, but it is still
hard to debug deadlocks based on this information that describes only the end state.

Deadlocks become straightforward to debug if we have information on how the pro-
gram acquiredeverymutex involved in the deadlock. In particular, the callstacks of the
calls that acquired mutexesheldat the time of deadlock, together with the callstacks of
the blockedmutex acquisitions, provide rich information about how thedeadlock came
about. Alas, the former type of callstack information is no longer available at the time of
the deadlock, and so it does not appear in the coredump.

Fortunately, it is feasible to have this information in every bug report: First, the amount
of information is small—typically one callstack per thread. Second, it can be maintained
with low runtime overhead, because most programs use synchronization infrequently. As
it turns out, even for lock-intensive programs DCop incurs negligible overhead.

DCop’s deadlock fingerprints contain precisely this information. Regular deadlock
bug reports contain callstacks, thread identifiers, and addresses of the mutexes that are
requested—but not held—by the deadlocked threads. We call these theinner mutexes,
corresponding to the innermost acquisition attempt in a nested locking sequence. Addi-
tionally, deadlock fingerprints contain callstack, threadid, and address information for the
mutexes that are already held by the threads that deadlock. We call these theoutermu-
texes, because they correspond to the outer layers of the nested locking sequence. Outer
mutex information must be collected at runtime, because thefunctions where the outer
mutexes were acquired are likely to have already returned prior to the deadlock.



We illustrate deadlock fingerprints with the code in Fig. 1a,a simplified version of
the global mutex implementation in SQLite [11], a widely used embedded database en-
gine. The bug occurs when two threads executesqlite3EnterMutex()concurrently. Fig. 1b
shows the classic bug report, and Fig. 1c shows the deadlock fingerprint.
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Fig. 1. (a) SQLite deadlock bug #1672.(b) Regular bug report.(c) DCop-style deadlock fingerprint.

A regular bug report shows the final state of the deadlocked program:t1 attempted to
lock mutexm1 at pc1 andt2 attempted to lock mutexm2 at pc2—we invite the reader to
diagnose how the deadlock occurred based on this information. The bug report does not
explain howt1 acquiredm2 and howt2 acquiredm1, and this is not obvious, since there
are several execution paths that can acquire mutexesm1 andm2.

The deadlock fingerprint (Fig. 1c) clarifies the sequence of events:t1 acquiredm2 at
pc2 in a first call tosqlite3EnterMutex, andt2 acquiredm1 atpc1. This allows a developer
to realize that, just aftert1 unlockedm1 at pc3 and beforet1 incremented theinMutex
variable,t2 must have lockedm1 at pc1 and read variableinMutex, which still had the
value 0. Thus,t2 blocked waiting form2 at pc2. Next, t1 resumed, incrementedinMutex,
calledsqlite3EnterMutexthe second time, and tried to acquirem1 at pc1. Sincem1 was
held by t2 andm2 was held byt1, the threads deadlocked. This is an example of how
DCop can help debug the deadlock and reveal the data race oninMutex.

To acquire this added information, DCop uses a lightweight instrumentation layer that
intercepts the program’s synchronization operations. It records the acquisition callstack
for currently held mutexes in a per-thread event list. A deadlock detector is run whenever
the application is deemed unresponsive, and it determines whether the cause is a deadlock.

The runtime monitor is designed to incur minimal overhead. First key decision was
to avoid contention at all costs, so each thread records the callstack information for its
lock/unlock events in a thread-local private list. The private lists are merged solely when
a deadlock is found (and thus the application threads are stuck anyway). This avoids
introducing any additional runtime synchronization.

A second design choice was to trim the private lists and keep them to the minimum
required size: every time a mutex is unlocked, DCop finds the corresponding lock event in
the list and discards it—mutexes that are no longer held cannot be involved in deadlocks.
Thus, DCop only keeps track of mutexes that have not yet been released, and so the size



of a per-thread event list is bounded by the maximum nesting level of locking in the
program. In our experience, no event lists ever exceeded 4 elements.

As a result of this design, DCop’s runtime overhead is dominated by obtaining the
backtrace on each mutex acquisition. To reduce this overhead to a minimum, DCop re-
solves backtrace symbols offline, since this is expensive and need not be done at runtime.

The deadlock detection component of DCop is activated when the user stops an appli-
cation due to it being unresponsive. The detector processeseach thread’s list and creates
a resource allocation graph (RAG) based on the events in the lists. The RAG contains a
vertex for each active thread and mutex, and edges correspond to mutex acquisitions (or
acquisition requests that have not succeeded yet). Edges are labeled with the thread id of
the acquiring thread and the callstack corresponding to thelock operation. Once the RAG
is constructed, the detector checks for cycles in the graph—a RAG cycle corresponds to
a deadlock. If a deadlock is found, the detector assembles the corresponding fingerprint
based on the callstacks and thread identifiers found on the cycle’s edges.

DCop’s deadlock detector has zero false positives. Furthermore, since the size of the
threads’ event lists is small, assembling a deadlock fingerprint is fast.

We implemented DCop inside FreeBSD’slibthrPOSIX threads library; our changes
added 382 LOC. One advantage of recording fingerprints from within the existing thread-
ing library is the opportunity to leverage existing data structures. For example, we added
pointers to DCop’s data structures inside the library’s ownthread metadata structure. An
important optimization in DCop is the use of preallocated buffers for storing the backtrace
of mutex acquisitions—this removes memory allocations from the critical path.

3 Performance Evaluation

Having discussed DCop’s design, we now turn our attention tothe key question of whether
it is suitable for use in production? We evaluate DCop’s performance on a workstation
with two Intel 4×1.6GHz-core CPUs with 4GB of RAM running FreeBSD 7.0.

First, we employ DCop on interactive applications we use ourselves, such as the
emacs text editor. There is no perceptible slowdown, leading to the empirical conclusion
that user-perceived overhead is negligible. However, since recording mutex operations
adds several instructions at each synchronization operation, (e.g., obtaining the backtrace
for a lock operation), some lock intensive programs may exhibit more overhead.
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Fig. 2. Comparative request throughput for the Apache
2.2.14 server at various levels of client concurrency.

Next, we use DCop for the
Apache Web server with 50 worker
threads. We vary the number of con-
current clients and, for each con-
currency level, we execute 5× 105

GET requests for a 44-byte file. In
Fig. 2 we compare the aggregate re-
quest throughput to a baseline with-
out DCop. The overhead introduced
by DCop is negligible throughout,
with the worst-case being a less than
0.17% drop in throughput for 200
concurrent clients. Both baseline and
DCop throughput decrease slightly with concurrency level,most likely because there are



more clients than worker threads. The maximum synchronization throughput (lock oper-
ations/second) reaches 7249 locks/second.

To analyze DCop’s overhead in depth, we wrote a synchronization-intensive bench-
mark that creates 2 to 1024 threads that synchronize on 8 shared mutexes. Each thread
holds a mutex forδin time, releases it, waits forδout time, then tries to acquire another
mutex.δin andδout are implemented as busy loops, thus simulating computationdone
inside and outside a critical section. The threads randomlycall multiple functions within
the microbenchmark, in order to build up highly varied callstacks (“fingerprints”).
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Fig. 3. Overhead of collecting deadlock finger-
prints as a function of the number of threads.

We measure how synchronization
throughput varies with the number of
threads. In Fig. 3 we show DCop’s over-
head forδin=1 microsecond andδout=1
millisecond, simulating a program that
grabs a mutex, updates in-memory shared
data structures, releases the mutex, and
then performs computation outside the
critical section. The worst case overhead
is less than 0.33% overhead. The decreas-
ing overhead shows that indeed DCop in-
troduces no lock contention. Instead, the
application’s own contention amortizes DCop’s overhead.

We repeat the experiment for various combinations of 1≤ δin ≤ 104 and 1≤ δout ≤

104 microseconds, simulating applications with a broad range of locking patterns. The
measured overhead ranges from 0.06% in the best case to 0.77%in the worst case. The
maximum measured synchronization throughput reaches 831,864 locks/second.

These results confirm that DCop introduces negligible runtime overhead, thus making
it well suited for running in production, even for server applications. We hope this advan-
tageous cost/benefit trade-off will encourage wider adoption of deadlock fingerprinting.

4 Generalizing Bug Fingerprinting
Having seen how bug fingerprinting works for deadlocks, we now turn our attention to
generalizing bug fingerprinting to other kinds of bugs. In §5we discuss how bug finger-
prints can be employed in automated debugging.

In essence, a bug fingerprint serves todisambiguate executions: when faced with a
bug report, a developer must find (guess) which of the many (often infinite) possible
executions of the software could have led to the observed failure. The bug report provides
clues for trimming down the set of possible executions, and the bug fingerprint should
narrow it down to only a handful of possibilities. Fingerprint information must be small,
to avoid undue recording overheads. Choosing what runtime information to include in a
given fingerprint is therefore specific to each class of bugs.We illustrate this process with
two examples: data races and unchecked function returns.

A bug fingerprint for a data race-induced failure contains information on the races
that manifested during execution prior to the failure in thebug report. This way, it is
possible to determine which potential data races influencedthe execution and which did
not. However, monitoring memory accesses efficiently is noteasy.

An efficient data race fingerprinting system employs static analysis to determine of-
fline, prior to execution, which memory accesses are potential data races. It then monitors



at runtime only these accesses. There are two options to perform such monitoring with
low overhead: debug registers and transactional memory (TM). x86 debug registers [6]
can be configured to deliver an interrupt to a monitor thread whenever two memory ac-
cesses to the same address are not ordered by a happens-before relation and at least one
of the access is a write (i.e., a data race occurred). The corresponding program counters
and memory address are then saved for later inclusion in the bug report, should a failure
occur. One drawback is that today’s CPUs can monitor only a small set of addresses at
a time, so debug registers can be used to watch only a subset ofthe statically-discovered
potential races. An alternative approach is to use the conflict detection mechanism of TM
to detect data races, and record the fingerprint. If TM features are available in hardware,
this can be done quite efficiently.

Another interesting class of bugs appears in code that “forgets” to check all possible
return values of a library function. For example, not checking whether a socketread()
call returned -1 can lead to data loss (if caller continues asif all data was read) or even
memory corruption (if return value is used as an index). For such unchecked-return bugs,
the fingerprint contains (a) the program locations where a library function call’s return
value was not checked against all possible return values, and (b) the actual return value.
Such fingerprinting can be done with low overhead by statically analyzing the program
binary to determine the places in the program where library calls are not properly checked
(e.g., using the LFI callsite analyzer [9]), and monitoringat runtime only those locations.

For most bug types, a general solution is to incrementally record the execution in-
dex [12] and include it in the bug fingerprint. The execution index is a precise way to
identify a point in an execution and can be used to correlate points across multiple exe-
cutions. Such a bug fingerprint can be used to reason with highaccuracy about the path
that the program took in production, but has typically high recording overhead (up to
42% [12]). It is possible to reduce the overhead by recordingonly a partial execution
index (e.g., by sampling) that, although less precise, can still offer clues for debugging.

It is practical to fingerprint any class of bugs, as long as theruntime information
required to disambiguate possible executions that manifest the bug can be recorded effi-
ciently. Fingerprinting mechanisms can leverage each other, so that collecting fingerprints
for n classes of bugs at the same time is cheaper thann times the average individual cost.

5 Debugging Using Deadlock Fingerprints
Augmenting bug reports with bug fingerprints can substantially speed up debugging. For
example, a developer debugging a deadlock can get from the deadlock fingerprint all
mutexes involved in the deadlock and the callstacks corresponding to their acquisition
calls. This allows the developer to insert breakpoints at all outer mutex locations and
understand how the deadlock can occur.

Bug fingerprints are also an excellent aid for automated debuggers, like ESD [15].
ESD is based on execution synthesis, an automated techniquethat starts from a bug report
and finds an execution path and a thread schedule that reproduce the bug deterministically,
with no human intervention. The technique employs a static analysis phase, that proceeds
backward from the coredump and identifies critical transitions that take the program to
the state contained in the coredump. Then a forward symbolicexecution phase searches
for the necessary inputs and thread schedule to reproduce the bug.

Bug signatures can improve the efficiency of execution synthesis, since they help
disambiguate between possible executions. The more execution paths appear to be likely



to reach the end state contained in the coredump, the longer ESD has to search. Bug
signatures, however, contain clues that can substantiallyprune this search space.

For example, a major challenge in execution synthesis for deadlocks is identifying
the thread schedule that leads to deadlock. DCop’s deadlockfingerprints narrow down
the set of possible schedules, thus reducing search time. Inpreliminary measurements,
we find that for a program with three threads and an average lock nesting level of three,
the thread schedule synthesis phase of ESD can be reduced by an order of magnitude.
Similarly, in the case of data races, we expect orders of magnitude improvement in search
performance, if data race fingerprints are available.

The combination of low-overhead bug fingerprinting with ESD-style automated de-
bugging promises to improve the productivity of software developers. Thus, we consider
a combined deployment to be an appealing solution for the software industry.

6 Related Work

Runtime support for debugging ranges from classic bug reporting systems, that provide a
partial or complete coredump, to heavyweight whole-systemrecord-replay systems. Spe-
cial hardware can be used to make the latter approach faster.In between these extremes,
there exist multiple approaches that record less information and use post-factum analysis
to reconstruct the missing pieces offline. We briefly survey this spectrum of solutions.

The state of the art in automated bug reporting systems, suchas Windows Error Re-
porting [3], collect bug reports from a large number of users. These bug reports reveal
some information about the bug (e.g., the end state of the application), but not how the
application got there. Bug fingerprints enrich bug reports with bug-specific runtime in-
formation that can help these systems classify failures more accurately. As shown earlier,
bug fingerprints preserve the low runtime overhead of classic bug reporting systems.

FDR [13] uses modified hardware to perform efficient execution recording. It piggy-
backs on the cache coherence hardware to record thread ordering information. While this
approach can help debugging, it requires hardware featuresthat are not available today
and that are uncertain to exist in the future. In contrast, a system like DCop can be used
today, without requiring any hardware or software changes.

Other approaches record system execution at the virtual machine level and use this
information to deterministically replay executions. Theyare highly precise, but can incur
significant overhead (e.g., up to 260% for Revirt [2]); recording multiprocessor executions
has typically several orders of magnitude higher overhead.Bug fingerprints operate at a
higher level: they leverage knowledge about the bug class toidentify minute pieces of
runtime information that help reproduce the bugs with minimal recording. Although they
require more human effort and they lack the precision of VM-based record-replay, bug
fingerprints are an effective debugging aid with virtually no runtime overhead.

R2 [5] performs record-replay at the library level, and can interpose at high-level
APIs to reduce the recording overhead. R2 offers the flexibility of choosing what exactly
to record, so it is in essence a mechanism for performing selective recording. We believe
R2 could be used to obtain fingerprints for certain classes ofbugs, although R2 has lim-
ited support for nondeterministic executions. That being said, DCop incurs two orders of
magnitude less overhead than R2 on Apache, for identical workloads.

ODR [1] and PRES [10] are recent systems for replaying concurrency bugs; they
trade runtime overhead for post-factum analysis time, and thus explore new points in the



spectrum of solutions. The benefit of deterministic replay comes at a cost of more than
50% runtime overhead, which makes them less compelling for production use. In DCop
we forgo the goal of deterministic replay in exchange for negligible runtime overhead.

Dimmunix [7] also collects deadlock fingerprints, but for a different reason: immu-
nity against deadlocks. Once a deadlock occurs, Dimmunix records a signature of the
deadlock that is then used to identify and avoid that same deadlock pattern in subsequent
executions. Since DCop is focused on collecting fingerprints, not on avoidance, it can
perform the collection with two orders of magnitude less runtime overhead and produce
fingerprints that are richer than Dimmunix’s signatures.

7 Conclusions
This paper describedbug fingerprints, an augmentation of classic bug reports with run-
time information about how the reported bug occurred. Fingerprints contain clues that
substantially help in both manual and automated debugging.A proof-of-concept system
fingerprints deadlocks with negligible overhead (less than0.17% for Apache). We dis-
cussed how to extend this approach to other types of bugs, andargued that coupling bug
fingerprints with automated debugging techniques can make debugging more efficient.
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