
Cloud9: A Software Testing Service

Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
Cloud9 aims to reduce the resource-intensive and labor-
intensive nature of high-quality software testing. First,
Cloud9 parallelizes symbolic execution (an effective, but
still poorly scalable test automation technique) to large
shared-nothing clusters. To our knowledge, Cloud9 is the
first symbolic execution engine that scales to large clus-
ters of machines, thus enabling thorough automated test-
ing of real software in conveniently short amounts of time.
Preliminary results indicate one to two orders of magni-
tude speedup over a state-of-the-art symbolic execution
engine. Second, Cloud9 is an on-demand software test-
ing service: it runs on compute clouds, like Amazon EC2,
and scales its use of resources over a wide dynamic range,
proportionally with the testing task at hand.

1 Introduction
Software testing is resource-hungry, time-consuming,
labor-intensive, and prone to human omission and error.
Despite massive investments in quality assurance, serious
code defects are routinely discovered after software has
been released [17], and fixing them at so late a stage car-
ries substantial cost [16].
In this paper, we introduce Cloud9, a cloud-based test-

ing service that promises to make high-quality testing fast,
cheap, and practical. Cloud9 runs on compute utilities
like Amazon EC2 [1], and we envision the following three
use cases: First, developers can upload their software to
Cloud9 and test it swiftly, as part of their development cy-
cle. Second, end users can upload recently downloaded
programs or patches and test them before installing, with
no upfront cost. Third, Cloud9 can function as a qual-
ity certification service, akin to Underwriters Labs [20],
by publishing official coverage results for tested applica-
tions. In an ideal future, software companies would be
required to subject their software to quality validation on
such a service, akin to mandatory crash testing of vehicles.
In the absence of such certification, software companies
could be held liable for damages resulting from bugs.
For a software testing service to be viable, it must aim

for maximal levels of automation. This means the ser-
vice must explore as many of the software’s execution
paths as possible without requiring a human to explicitly

write test scripts. But such automation can suffer from
the tension between soundness and completeness—e.g.,
static analysis can be complete on large code bases, but
typically has a large number of false positives (i.e., is
unsound), while model checking is sound, but takes too
long to achieve practical completeness on real, large code
bases. Of course, some level of assistance is inherently
necessary to specify the difference between correct and
wrong behavior, but driving the program down execution
paths should not require human effort.

Cloud9 achieves high levels of automation by employ-
ing symbolic execution. Introduced in the 1970s [12],
this technique can explore all feasible execution paths in
a program, thus being an ideal candidate for test automa-
tion. Unfortunately, it faces serious challenges, namely
high memory consumption and CPU-intensive constraint
solving, both exponential in program size. On a present-
day computer, it is only feasible to test programs with a
few thousand lines of code; for larger programs, typically
only the shorter paths can be explored. Thus, symbolic
execution is virtually unheard of in the general software
industry, because real software often has millions of lines
of code, rendering symbolic execution infeasible.

Cloud9 is the first parallel symbolic execution engine
to run on large shared-nothing clusters of computers, thus
harnessing their aggregate memory and CPU resources.
While parallelizing symbolic execution is a natural way
to improve the technique’s scalability, doing so in a clus-
ter presents significant research challenges: First, balanc-
ing execution workload among nodes becomes a complex
multi-dimensional optimization problem with several un-
known inputs. Second, global coordination can only be
done infrequently, so new search strategies must be de-
vised for exploring a program’s paths in parallel.

This paper presents preliminary steps toward solving
these problems. After presenting the concept of a soft-
ware testing service in more detail (§2), we describe our
techniques for efficiently parallelizing symbolic execu-
tion (§3). An initial prototype suggests that our approach
is practical and useful: compared to the state of the art,
Cloud9 reduced automated testing time of 32 real UNIX
utilities on average by a factor of 47, with a maximum
of 250-fold speedup (§4). The paper closes with related
work (§5) and conclusions (§6).

Proc. 3rd SOSP Workshop on Large Scale Distributed Systems and Middleware (LADIS) , Big Sky, MT, October 2009

2 Software Testing as a Service
Unlike classic testing frameworks, Cloud9 runs as a Web
service. It is primarily meant to operate on public cloud
infrastructures like Amazon EC2 [1], but can also be used
privately on clusters running cloud software like Eucalyp-
tus [7]. Testing-as-a-service has several benefits.
First, Cloud9 offers a cost-effective, flexible way to run

massive test jobs with no upfront cost. Unlike owning a
private cluster, Cloud9 allows necessary machines to be
commissioned only when needed for testing, in a number
suitable to the complexity of the testing task. If a team
required, e.g., 1,000 nodes for one hour every fortnight,
the corresponding yearly budget could be as low as $2,500
on EC2. This is orders of magnitude less than the cost of
acquiring and operating a private cluster of the same size.
Second, an automated-test service reduces the learning

curve associated with test frameworks. A standard Web
service API can hide the complexity of operating an au-
tomated test infrastructure, thus encouraging developers
to use it more frequently and, especially for new hires, to
adopt thorough testing practices early on.
Third, running test infrastructure as a service offers

high flexibility in resource allocation. Whereas one would
normally have to reserve a test cluster ahead of time, a
cloud-based service can provision resources on-demand,
corresponding to the complexity of the testing task at hand
(e.g., depending on program size). It can also elastically
recruit more resources during compute-intensive phases
of the tests and release them during the other phases.
The service interface requires a user to upload the pro-

gram to test, a testing goal, and a resource policy. The
program can be in binary form, source code, or an inter-
mediate representation like LLVM [14]. The test goal tells
the symbolic engine how to determine whether it reached
a termination condition—e.g., the test goal might be to
find inputs that crash the program or exercise a security
vulnerability. The resource policy indicates a cost budget
along with guidance on how to resolve tradeoffs between
the test goal and the budget. E.g., one may want as high a
coverage as possible, but all within a $1,000 budget.
Cloud9 returns to the user a set of automatically discov-

ered input tuples that trigger conditions specified in the
test goal, together with statistical information. For exam-
ple, if the test goal was 90% line coverage, Cloud9 would
produce a test suite (i.e., a set of program input tuples,
or test cases) that, in the aggregate, exercise 90% of the
uploaded program. Alternatively, the goal may be to test
for crashes, in which case Cloud9 produces a set of patho-
logical input tuples that can be used to crash the program,
prioritized based on severity. Each such input tuple can
be accompanied by a corresponding coredump and stack
trace, to speed up debugging. Cloud9 does not require any
special software on the user’s side—the input tuples serve
as the most eloquent evidence of the discovered bugs.
Upon receiving the results, users may be charged for

the service based on previously agreed terms. It is essen-

tial that the pricing model capture the true value offered
by Cloud9. While compute clouds today adopt a rental
model (e.g., EC2 nodes cost $0.10/hour/node), a Cloud9
user does not derive value proportional to this cost. We
favor a model in which users are charged according to
their test goal specification. For example, if the goal is
a certain level of coverage, then the user is charged a tele-
scoping amount $x for each percentage point of coverage.
If the goal is to find crashes, then a charge of $x for each
crash-inducing defect is reasonable. In both cases, x can
be proportional to program size. A good pricing model
encourages frequent use of the service, thus increasing the
aggregate quality of the software on the market.
Finally, a viable testing service must address issues re-

lated to confidentiality of both uploaded material and cor-
responding test results, as well as multi-tenancy. There
are also opportunities for amortizing costs across cus-
tomers, e.g., by reusing test results for frequently used
libraries and frameworks, like libc, STL, log4j, etc.
In the rest of this paper, we focus on our main research

contribution: parallelizing symbolic execution.

3 Parallel Symbolic Execution
Symbolic execution [12] offers great promise as a tech-
nique for automated testing [10, 15, 4], as it can find bugs
without human assistance. Instead of running the program
with regular inputs, a symbolic execution engine executes
a program with “symbolic” inputs that are unconstrained,
e.g., an integer input x is given as value a symbol α that
can take on any integer value. When the program encoun-
ters a branch that depends on x, program state is forked to
produce two parallel executions, one following the then-
branch and another following the else-branch. The sym-
bolic values are constrained in the two clones so as to
make the branch condition evaluate to true (e.g.,α<0), re-
spectively false (e.g., α≥0). Execution recursively splits
into sub-executions at each relevant branch, turning an
otherwise linear execution into an execution tree (Fig. 1).

void read(int x){

 if (x < 0) {

 if (x < -3)

 foo(x);

 else {

 ...

 }

 } else {

 if (x > 5)

 bar(x);

 else {

 ...

 ...

x < 0

x > 5 x < -3

TrueFalse

Figure 1: Example of an execution tree.
Symbolic execution, then, consists of the systematic

exploration of this execution tree. Each inner node is a
branching decision, and each leaf is a program state that
contains its own address space, program counter, and set
of constraints on program variables. When an execution

2

encounters a testing goal (e.g., a bug), the constraints col-
lected from the root to the goal leaf can be solved to pro-
duce concrete program inputs that exercise the path to the
bug. Thus, symbolic execution is substantially more effi-
cient than exhaustive input-based testing (it analyzes the
behavior of code for entire classes of inputs at a time,
without having to try each one out), and equally complete.

3.1 Challenges
Classic symbolic execution faces three major challenges:
path explosion, constraint solving overhead, and mem-
ory usage. Path explosion is due to the number of exe-
cution paths in a program growing exponentially in the
number of branch instructions that depend (directly or in-
directly) on inputs; as a result, larger programs cause test-
ing to take exponentially longer. Compounding this effect
is the fact that the CPU-intensive constraint solver must
be invoked every time a branch instruction that depends
on symbolic inputs is executed; we have found constraint
solving to consume on the order of half of the total execu-
tion time. Finally, highmemory usage resulting from path
explosion causes symbolic execution engines to run out of
memory before having explored a substantial fraction of
a program’s paths. As a result, state-of-the-art symbolic
execution engines [10, 4] can test only small programs
with a few thousands of lines of code, while real software
systems are orders of magnitude bigger. By parallelizing
symbolic execution on clusters, we aim for the equivalent
of a classic symbolic execution engine on a “machine”
with endlessly expandable memory and CPU power.
Parallel symbolic execution brings three new chal-

lenges: the need to do “blindfolded” work partitioning,
distributing the search strategy without coordination, and
avoiding work and memory redundancy.
First, the path exploration work must be distributed

among worker nodes without knowing how much work
each portion of the execution tree entails. The size of sub-
trees cannot be known a priori: determining the propa-
gation of symbolic inputs to other program variables re-
quires executing the program first. It is precisely this
propagation that determines which branch instructions
will create new execution states, i.e., nodes in the exe-
cution tree. As it turns out, execution trees are highly
unbalanced, and statically finding a balanced partition-
ing of an unexpanded execution tree reduces to the halting
problem. In addition to subtree size, another unknown is
how much memory and CPU will be required for a given
state—the amount of work for a subtree is the sum of all
nodes’ work. Thus, work distribution requires (as we will
see later) a dynamic load balancing technique.
Second, distributed exploration of an execution tree re-

quires coordinating the strategies of a large number of
workers, which is expensive. Classic symbolic execution
relies on heuristics to choose which state from the execu-
tion tree to explore first, so as to efficiently reach the test
goal. In the parallel case, local heuristics must be coor-

dinated across workers, to achieve the global goal while
minimizing redundant work; but global coordination im-
plies high communication overhead. Test goals, like max-
imizing test coverage, requiremore complex search strate-
gies than, e.g., iterative deepening depth-first search, often
used in model checkers.
Third, in a shared-nothing cluster, the risks of redun-

dancy in path exploration and the opportunities for mem-
ory duplication are many more than on a single node. For
instance, symbolic execution engines [5, 4] use copy-on
write to maximize sharing of memory between execution
states, substantially decreasing memory consumption. To
achieve this in a cluster, load balancing must take into ac-
count the memory sharing opportunities and group simi-
lar states on the same worker. Deduplication techniques,
such as bitstate hashing used in SPIN [11], are not read-
ily usable for nodes in a symbolic execution tree, since
different nodes in the tree can turn out to have identical
state (e.g., due to commutative path segments) and a dis-
tributed hashing data structure would need to be imple-
mented, which requires special effort and also incurs some
performance penalties.
In general, the methods used so far in parallel model

checkers [19, 3, 13, 2, 11] do not scale to shared-nothing
clusters. They also rely often on a priori partitioning a
finite state space.
In a cloud setting, running parallel symbolic execu-

tion further requires coping with frequent fluctuation in
resource quality, availability, and cost. Machines have
variable performance characteristics, their network prox-
imity to each other is unpredictable, and failures are fre-
quent. A system like Cloud9 must therefore cope with
these problems in addition to the fundamental challenges
of parallel symbolic execution.

3.2 Overview of Our Solution
Cloud9 consists of multiple workers and a load balancer
(see Fig. 2). Each worker independently explores a sub-
tree of the program’s execution tree, by running a sym-
bolic execution engine—consisting of a runtime and a
searcher—and a constraint solver. Upon encountering a
conditional branch in the program, the runtime initializes
a child node in the execution tree corresponding to each
branch outcome. The searcher is asked which node in the
tree to go to next (e.g., a DFS strategy would dictate al-
ways choosing the leftmost unexplored child). Once the
searcher returns a choice, the runtime calls upon the con-
straint solver to determine the feasibility of the chosen
node, i.e., whether there exist values that would satisfy
the conjunction of the branch predicates along the path to
the chosen node. If the path is feasible, the runtime fol-
lows it and adds the corresponding branch predicate to the
path’s constraints; otherwise, a new choice is requested.
A smart exploration strategy helps find sooner the paths

leading to the requested goal. This is particularly relevant
for symbolic execution trees of infinite size. The searcher

3

....Worker #1

Worker #2

Worker #n

Load balancer

Searcher
Constraint

solver

Runtime

Program under Test

Figure 2: Cloud9 architecture

can choose any node on the unexplored horizon of the exe-
cution tree, not just the immediate descendants of the cur-
rent node.
The overall exploration is global, while Cloud9

searchers have visibility only into the execution trees as-
signed to their particular workers. Thus, worker-level
strategies must be coordinated—a tightly coordinated
strategy could achieve as efficient an exploration (i.e.,
with as little redundant work) as a single-node symbolic
execution engine. It is also possible to run multiple in-
stances of the runtime and searcher on the same physical
machine, in which case the strategies of the co-located
searchers can see all subtrees on that machine. But tight
coupling limits the ability of workers to function indepen-
dently of each other, and would thus hurt scalability.
In order to steer path exploration toward the global

goal, Cloud9 employs several techniques: Two-phased
load balancing (§3.3) starts with an initial static split of the
execution tree and adjusts it dynamically, as exploration
progresses. Replacing a single strategy with a portfolio
of strategies (§3.4) not only compensates for the limited
local visibility, but can also better exploit Cloud9’s par-
allelism. Finally, we employ techniques for reducing re-
dundancy, handling worker failures, and coping with het-
erogeneity (§3.5).

3.3 Load Balancing
Ameasure of a Cloud9 worker’s instantaneous load is the
amount of work it is guaranteed to have in the near future.
When a worker forks new states, it adds these states to a
work queue, and the length of this queue provides a lower
bound on the amount of work left. In order to account for
heterogeneity of both the states and the underlying hard-
ware, we are exploring other second-ordermetrics as well,
such as states’ average queue wait time, amount of mem-
ory they consume, number of queries passed to the con-
straint solver, etc. Workers periodically report their load
to the central load balancer, which computes the global
load distribution.
When Cloud9 starts, there is no load information, so

it statically partitions the search space (execution tree)
among workers. Figure 3(a) illustrates an initial choice
for a two-worker Cloud9: one branch of the first branch
instruction in the program is explored by workerW1 and
the other branch by workerW2.

S0

S1 S2

W2W1

S0

S1 S2

S4 S6S5

W2

S1

S4

W1

S3

(a) (b)

S7

S0

Figure 3: (a) Initial partition of the search space; (b)
Repartitioning: W1 delegates to W2 the subtree rooted at
state S4. Dotted circles indicate states that are remote;
dotted edges similarly indicate locally-unexplored paths.

The search space must be repartitioned on the fly, be-
cause the execution tree can become highly imbalanced.
Consider the execution tree in Figure 1: calling foo(α)
could execute substantially more branch instructions that
depend on α than bar(α), thereby causing more new
states to be created in the corresponding subtree. Figure
3b illustrates one of the simplest cases of work imbalance:
workerW2 finishes exploring its subtree beforeW1, soW1
delegates toW2 the expansion of subtree S4.
More generally, the load balancer declares a load im-

balance when the most loaded worker W has at least x
times the load of the least loaded worker w. We obtained
good results by using x= 10, which helps preventing high
overheads associated with frequent load balancing. At
this point, the load balancer instructs W and w to nego-
tiate a way of equalizing their load. The two workers
agree on the set of states {Si} to delegate from W to w,
based not only on the number of states, but also on other
locally-computed metrics, such as which states (subtrees)
appear to have highest constraint solving time or highest
memory footprint. The main load balancing primitive is a
worker-to-worker operation delegate(S,W,w), which shifts
the responsibility for exploring the subtree rooted at state
S from overloaded workerW to the lighter-loaded w. The
actual computation and delegation occur asynchronously,
allowing the workers to continue exploring while load is
being balanced.
There are two ways to delegate subtrees: state copy-

ing and state reconstruction. In state copying, W mar-
shals the states (roots of the subtrees to be explored) and
sends them over the network tow, which unmarshals them
and adds them to its work queue. In state reconstruc-
tion, the identity of a state Si is encoded as a bitvec-
tor representing the then/else decisions needed to reach
from the program’s start state to Si. For example, re-
ferring to Figure 3b, node S1 is encoded as 0, S4 as 01,
S7 as 000, etc. When delegating responsibility for Si, W
merely sends the bitvector encoding of Si tow, after which
w reconstructs Si by rerunning the program symbolically
along the path indicated by the bitvector. Since the exe-
cution tree is uniquely determined by the program under
test, each node can be deterministically reconstructed this
way. Our bitvector encoding resembles encodings used in

4

stateless search, first introduced by Verisoft [9] for model
checking concurrent programs.
Choosing the best candidate for delegation is governed

by the CPU vs. network tradeoff: sending bitvectors is
network-efficient, but consumes CPU for reconstruction
on the target worker, while transferring states is CPU-
efficient, but consumes network bandwidth. State recon-
struction is cheaper for subtrees whose roots are shallow
in the execution tree. In addition, to optimize reconstruc-
tion time, the target worker reconstructs from the deep-
est common ancestor between already-explored nodes and
the newly received subtree. Since Cloud9 uses copy-on-
write to share common memory objects between states,
the longer the common prefix of two nodes in the execu-
tion tree, the higher the memory sharing benefit will be.
Finally, during reconstruction, Cloud9 need not invoke the
constraint solver, since the bitvector-encoded path is guar-
anteed to be feasible.

3.4 Exploration Strategy Portfolio
Load balancing provides the means of connecting local
strategies to the global goal. For instance, if the goal is to
obtain high coverage tests, Cloud9 searchers will assign
a local score for each state S indicating the expected cov-
erage one might obtain by exploring S. High-score states
are moved to the head of each worker’s queue and priori-
tized for delegation to less loaded workers, to be executed
as soon as possible. Thus, each load balancing decision
moves Cloud9 closer to the global goal.
In contrast to sequential symbolic execution, which is

constrained to using one search strategy at a time, Cloud9
can employ a portfolio of concurrent strategies. We think
of this portfolio in analogy to financial investment port-
folios: if a strategy is a stock, workers represent cash,
and the portfolio’s return is measured in results per unit
of time, then we face the problem of allocating cash to
stocks so as to maximize overall return. By casting the
exploration problem as an investment portfolio optimiza-
tion problem, we expect to reuse portfolio theory results,
such as diversification and speculation, as well as quanti-
tative techniques for improving returns, such as efficient
frontier and alpha/beta coefficients. For example, we can
speculatively devote a small number of workers to a strat-
egy that works exceptionally well, but only for a small
fraction of programs. Running this exploration on a copy
of the execution tree in parallel with a classic strategy that
bears less risk may improve the expected time of reaching
the overall goal.

3.5 Minimizing Redundant Work
An important aspect of achieving scalability is the avoid-
ance of redundant work. One source of redundant work
is state duplication, which occurs by expanding identi-
cal states on different machines, which occurs frequently

when testing multi-threaded programs. We intend to han-
dle this problem by exploring commutative thread inter-
leavings on the same machine, and perform state dedupli-
cation locally, using dynamic partial order reduction [8].
Commutative (but different) path segments can also lead
to different nodes being identical in terms of contents.
We found constraint solving to account for half or more

of total symbolic execution time. Some of this time goes
into re-solving constraints previously solved. Thus, we
are building a distributed cache of constraint solutions,
which allows workers to reuse the computation performed
by other workers.
Failing workers—a frequent occurrence in large

clusters—also lead to redundancy, as other workers have
to redo the work of failed workers. In Cloud9 we em-
ploy checkpointing at multiple levels to enable restarting
a failed search on a peer worker. Since symbolic execu-
tion is memory and CPU-intensive, asynchronous check-
points to stable storage are cheap. Worker failure can
be thought of as an extreme case of worker performance
heterogeneity, which is normally handled by monitoring
queue lengths and constraint solving times, as mentioned
in §3.3.

4 Initial Prototype
We built a preliminary Cloud9 prototype that runs on
Amazon EC2 [1] and uses the single-node Klee symbolic
execution engine [4]. Preliminary measurements indicate
that Cloud9 can achieve substantial speedups over Klee.
For our measurements, we used single-core EC2 nodes
and instructed both Klee and Cloud9 to automatically gen-
erate tests to exercise various UNIX utilities, with the aim
of maximizing test coverage, as in [4].

16
 50

 100
 150
 200
 250

echo

join

head

ln cp ptx
du chgrp

cut
date

cksum

ls pr comm

csplit

fmt
od factor

chmod

printf

basename

chown

expand

mv cat
nl dircolors

readlink

paste

chcon

rm mktemp

fold

Sp
ee

du
p

(t K
LE

E/
t C

lo
ud

9)

Tool

Figure 4: Time to match Klee’s coverage with Cloud9.
The 16× line represents linear speedup.

We measured how much faster a 16-node Cloud9 can
achieve the same level of coverage that Klee achieves in
one hour. We tested a random subset of 32 UNIX utilities,
with a uniform distribution of binary sizes between the
smallest utility (echo at 40 KB) and the largest one (ls
at 170 KB). Figure 4 shows the results: speedup ranges
from 2× to 250×, with an average speedup of 47×. The
speedup exceeds the 16-fold increase in computation re-
sources, because Cloud9 not only partitions the search

5

across 16 nodes, but also increases the probability that a
given worker will find states with high coverage potential.
We also compared the amount of coverage obtained for

a given level of CPU usage. We ran Klee for 16 hours
on one node and Cloud9 for 1 hour on 16 nodes (Fig-
ure 5), thus giving each tool 16 CPU-hours. Cloud9 out-
performed Klee in 28 out of 32 cases, reconfirming the
multiplicative benefit of parallel symbolic execution.

 0

 20

 40

 60

 80

 100

ptx
ls chcon

cp head

date

join

pr fmt
du cat

fold

dircolors

csplit

echo

od chmod

expand

mv ln nl paste

cut
cksum

chgrp

comm

rm chown

factor

basename

printf

mktemp

readlink

C
ov

er
ag

e
(%

)

Tool

Cloud9 (1 hr x 16 nodes)
Klee (16 hrs)

Figure 5: Coverage obtained by Cloud9 and Klee, using
identical number of CPU-hours.

5 Related Work
To our knowledge, we are the first to parallelize symbolic
execution to clusters of computers. There has been work,
however, on parallel model checking [19, 3, 2]. Never-
theless, there are currently no model checkers that can
scale to many loosely connected computers, mainly due
to the overhead of coordinating the search across mul-
tiple machines and transferring explicit states. SPIN is
a mature model checker that parallelizes and diversifies
its search strategy on a shared-memory multi-core sys-
tem [3, 11]; we cannot directly apply those techniques
to shared-nothing clusters. Moreover, for the programs
tested in [3, 11], the search space could be statically par-
titioned a priori, which is not feasible for Cloud9.
There have been previous efforts to scale symbolic ex-

ecution that do not involve parallelization. For example,
concolic testing [18] runs a program concretely, while at
the same time collecting path constraints along the ex-
plored paths; the constraints are then used to find alternate
inputs that would take the program along different paths.
Another example is S2E [6], which improves scalability
by automatically executing symbolically only those parts
of a system that are of interest. Our techniques are com-
plementary, and in our future work we intend to combine
S2E with Cloud9. In general, Cloud9 benefits from almost
all single-node improvements of symbolic execution.

6 Conclusion
This paper proposes Cloud9, a cloud-based parallel sym-
bolic execution service. Our work is motivated by the
severe limitations of symbolic execution—memory and
CPU usage—that prevent its wide use. Cloud9 is de-
signed to scale gracefully to large shared-nothing clusters;

by harnessing the aggregate resources of such clusters, we
aim to make automated testing based on symbolic execu-
tion feasible for large, real software systems.
Cloud9 is designed to run as a Web service, thus open-

ing up the possibility of doing automated testing in a pay-
as-you-go manner. We believe that a cloud-based test-
ing service can become an essential component of soft-
ware development infrastructure: it provides affordable
and effective software testing that can be provisioned on-
demand and be accessible to all software developers.

References
[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] J. Barnat, L. Brim, and P. Rockai. Scalable multi-core LTL

model-checking. In Intl. SPIN Workshop, 2007.
[3] J. Barnat, L. Brim, and J. Stribna. Distributed LTL model-

checking in SPIN. In Intl. SPIN Workshop, 2001.
[4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for com-
plex systems programs. In Symp. on Operating Systems
Design and Implementation, 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: Automatically generating inputs of
death. In Conf. on Computer and Communication Secu-
rity, 2006.

[6] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea.
Selective symbolic execution. InWorkshop on Hot Topics
in Dependable Systems, 2009.

[7] Eucalyptus software. http://open.eucalyptus.com/.
[8] C. Flanagan and P. Godefroid. Dynamic partial-order re-

duction for model checking software. SIGPLAN Not.,
2005.

[9] P. Godefroid. Model checking for programming languages
using Verisoft. In Symp. on Principles of Programming
Languages, 1997.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Conf. on Programming Lan-
guage Design and Implementation, 2005.

[11] G. J. Holzmann, R. Joshi, and A. Groce. Swarm verifica-
tion. In Intl. Conf. on Automated Software Engineering,
2008.

[12] J. C. King. Symbolic execution and program testing. Com-
munications of the ACM, 1976.

[13] R. Kumar and E. G. Mercer. Load balancing parallel ex-
plicit state model checking. In Intl. Workshop on Parallel
and Distributed Methods in Verification, 2004.

[14] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. In Intl.
Symp. on Code Generation and Optimization, 2004.

[15] R. Majumdar and K. Sen. Hybrid concolic testing. In Intl.
Conf. on Software Engineering, 2007.

[16] S. McConnell. Code Complete, chapter 3. Microsoft Press,
2004.

[17] Redhat security. http://www.redhat.com/
security/updates/classification/, 2005.

[18] K. Sen. Concolic testing. In Intl. Conf. on Automated Soft-
ware Engineering, 2007.

[19] U. Stern and D. L. Dill. Parallelizing the Murφ verifier. In
Intl. Conf. on Computer Aided Verification, 1997.

[20] Underwriters Labs. http://www.ul.com.

6

