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Abstract—We present Communix, a collaborative deadlock
immunity framework for Java programs. Deadlock immunity
enables applications to avoid deadlocks that they previously
encountered. Dimmunix [1], our deadlock immunity system,
detects deadlocks and saves their signatures at runtime, then
avoids execution flows that match these signatures; a signature
is an abstraction of the execution flow that led to deadlock.
Dimmunix needs all the deadlock bugs in an application to
manifest, in all possible ways, in order to provide full protection
against deadlocks for that application. Communix addresses
this shortcoming by distributing the deadlock signatures pro-
duced by Dimmunix. The signatures of a deadlock can protect
against the deadlock any user connected to the Internet and
running the same application, even if he/she did not experience
the deadlock yet. Besides signature distribution, Communix
provides signature validation and generalization. Signature val-
idation ensures that the incoming signatures match the target
applications, and protect the users against malicious signatures.
Signature generalization keeps the repository of deadlock
signatures compact, by merging multiple deadlock signatures
into one signature. Communix is application agnostic, i.e., it is
applicable to any Java application. Communix is efficient and
scalable, and can effectively protect Java applications against
malicious signatures.

I. INTRODUCTION

Failure immunization techniques protect the programs

against a specific bug or vulnerability exploit by learning

from its past manifestations. We use the term “failure” to

denote a manifestation of the bug. An immunization system

detects the failure, extracts its fingerprint, and uses it to

avoid reoccurrences of the same bug. We call this fingerprint

“bug signature”. A bug signature is an approximation of the

execution flow that led to the failure. For instance, Dimmu-

nix detects deadlocks at runtime and generates signatures to

avoid reoccurrences of the same deadlocks.

Failure immunization systems avoid only manifestations

of previously encountered bugs; a bug must manifest at least

once for the application to be protected against it. Therefore,

the false positives rate is low, because only manifestations of

real bugs are avoided. A false positive is the situation where

a failure is avoided with no reason, i.e., the failure could not

have occurred, even without any avoidance. However, there

are false negatives (i.e., bugs against which the application

is unprotected) until all the bugs manifest.

One possible solution to address the aforementioned

drawback is collaborative immunization via distribution of

bug signatures. More specifically, once a user encounters

a bug, the bug’s signature is automatically generated and

distributed to other users through the Internet. Therefore,

each bug needs to be encountered once, by any user, then

the other users get protected against the bug, without having

to experience it.

We present Communix, a collaborative immunization

framework that enables Java programs running on different

machines to immunize each other against deadlock bugs.

Communix provides three services: signature distribution,

signature validation, and signature generalization.

To distribute deadlock signatures, Communix uses an im-

munity server; client machines upload signatures discovered

by Dimmunix to the server, and periodically retrieve the

new signatures from the server. Each time a Java application

starts on a client machine, Communix selects from these

signatures the ones that are valid for that application and, if

possible, it generalizes existing deadlock signatures.

Communix is efficient and scalable. In §IV, we show

that the server can process efficiently 10,000 simultaneous

requests, at a rate of 63,000 requests/second. The agent can

analyze 1,000 new deadlock signatures in 2-3 seconds (§IV).

We present two scenarios that illustrate the benefit of

frameworks like Communix. In the first scenario, the user

opens a web page, and the browser deadlocks while ren-

dering the content of the page, due to a Java applet. The

user shuts down the browser, then restarts it and opens the

same page. If the browser is equipped with Dimmunix [1],

it will successfully open the page; if not, it might deadlock

again. However, it may be undesirable to have the browser

deadlocking in the first place. Even the first occurrence of the

deadlock may have severe consequences: the browser might

be in the middle of some important operation, like purchas-

ing an expensive product, or booking a flight. Therefore, a

framework like Communix that prevents other users from

encountering the deadlock in the first place is beneficial. In

the second scenario, a deadlock-prone version of a plugin

is released for the Eclipse IDE, which makes Eclipse hang.

If the plugin has multiple deadlock bugs, each user has to

encounter all these deadlocks for Dimmunix to be able to

avoid them. Sharing the signatures of the deadlocks with

users who just installed the plugin is useful; these users will

not experience any deadlocks while using the plugin if all

deadlocks have already been encountered by some users.

The contributions of this work are: First, Communix

transparently distributes signatures over the Internet, to pre-

vent other users from encountering deadlock bugs. Second,
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Communix finds concise signatures of a deadlock by using

the collective knowledge of all the nodes in the Internet

that run the same application. Communix provides the above

features while protecting the Java applications against DoS

attacks that attempt to exploit Dimmunix by providing fake

deadlock signatures.

This paper is organized as follows: We provide back-

ground information in §II, describe the design of Communix

in §III, evaluate Communix in §IV, present related work

in §V, and conclude in §VI.

II. BACKGROUND

In this section, we briefly present Dimmunix (§II-A),

and introduce concepts related to collaborative deadlock

immunity (§II-B).

A. Dimmunix

Programs augmented with Dimmunix develop antibodies

against each deadlock they encounter: Dimmunix extracts

the signature of the deadlock, stores it in a persistent

history, then alters future thread schedules transparently to

the application, in order to avoid execution flows matching

the signature. A signature approximates the execution flow

leading to deadlock. With every newly encountered dead-

lock, the program’s resistance to deadlocks is improved.

Hence, deadlock signatures constitute effective antibodies

against deadlock bugs.

A deadlock signature consists of (1) the call stacks

the deadlocked threads had when they acquired the locks

involved in the deadlock and (2) the call stacks of the

deadlocked threads at the moment of the deadlock. We call

the former “outer call stacks” and the latter “inner call

stacks”; we call the top frames of these call stacks “outer”

and respectively “inner” lock statements. A deadlock bug is

uniquely delimited by the outer and inner lock statements.

Dimmunix used to keep only the outer call stacks in a

signature [1]; we made it keep also the inner call stacks,

in order to have an accurate localization of the deadlock

bug within the signature. The accuracy of a signature is

directly proportional to the length of the call stack suffixes.

A deadlock bug can have multiple signatures, each of them

corresponding to a different manifestation of the deadlock.

Dimmunix consists of two components: (1) an avoidance

module that prevents reoccurrences of previously encoun-

tered deadlocks, and (2) a detection module that detects

deadlocks, extracts their signatures, and adds them to a

persistent history. Dimmunix requires no assistance from

programmers or users, and can be used by users to defend

against deadlocks while waiting for a vendor patch. Dim-

munix runs within the address space of the target program.

Before each lock acquisition, the avoidance module de-

cides whether to allow the running thread to proceed with the

lock acquisition. Avoiding deadlocks requires anticipating

whether the lock acquisition would lead to the instantiation

of a signature from the deadlock history. For a signature with

outer call stacks CS1, ..., CSn to be instantiated, there must

exist threads t1, ...,tn that either hold or are block waiting

for locks l1, ..., ln while having call stacks CS1, ...,CSn. If

no signature from the deadlock history can be instantiated,

the avoidance module allows the caller thread to proceed

with the lock acquisition; otherwise, it suspends the thread

until the lock acquisition cannot cause any instantiation of

a signature from the history.

B. Collaborative Deadlock Immunity

In collaborative deadlock immunity, different machines

connected to the Internet work together to achieve immunity

against deadlocks by sharing their deadlock signatures.

An important benefit of sharing the deadlock signatures

is that any application can use the collective knowledge

of the other nodes to generalize deadlock signatures from

its history. The generalization consists of merging different

signatures of the same deadlock bug. The role of signature

generalization is to keep few signatures per deadlock bug,

in order to have a small size of the deadlock history for

each application. If all possible manifestations of a deadlock

bug D were experienced by some nodes in the Internet, the

current signatures of D are the most accurate signatures that

enable Dimmunix to avoid all the manifestations of D.

Upon receiving a signature from other nodes, Communix

checks whether the signature can be used by the running

application. This first validation step assumes the node that

sent the signature is honest.

Attackers may send fake deadlock signatures that do

not represent real deadlock bugs; these signatures may

cause denial of service (DoS) in applications instrumented

with Dimmunix. Such signatures may exploit Dimmunix to

increase the runtime overhead of signature matching and

reduce the parallelism due to suspending threads. The vali-

dation process should prevent such signatures from harming

the performance or the functionality of the applications.

Therefore, additional checks are performed (§III-C).

III. DESIGN

In this section, we describe the architecture of the Com-

munix framework (§III-A), explain the signature distribu-

tion (§III-B), and describe in detail the signature valida-

tion (§III-C) and signature generalization (§III-D).

A. Communix Framework

Communix has five components, as we illustrate in Fig-

ure 1: Dimmunix (i.e., the deadlock immunization compo-

nent of Communix), Communix plugin, Communix server,

Communix client, and Communix agent. Dimmunix is in

charge of (1) detecting deadlocks, (2) saving their corre-

sponding signatures into the running application’s deadlock

history, and (3) preventing the application from encountering

the same deadlocks again.

Communix uses a centralized signature distribution frame-

work. The Communix plugin, implemented on top of
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Dimmunix, sends the deadlock signatures to the Commu-

nix server, right after Dimmunix produces the signatures.

Figure 1. Communix architecture.

In order to obtain new

deadlock signatures from

the server, a machine must

have the Communix client

installed; the client period-

ically downloads the new

deadlock signatures from

the server into a local

repository. Any Java appli-

cation running with Dim-

munix can use these signatures to improve its protection

against deadlocks.

A centralized signature distribution improves the protec-

tion against deadlocks for all the machines connected to

the Internet that are equipped with Communix. Each newly

discovered signature S becomes available to any machine

connected to the Internet; as soon as other nodes download S
from the Communix server and validate it, they are protected

against deadlock manifestations matching S, without having

to encounter S.

The client-side signature validation and signature gener-

alization are performed by the Communix agent. The agent

runs together with Dimmunix, in a Java application’s address

space. When the application starts, the agent selects from

the local repository the new signatures that are valid, i.e.,

that can be used by the application. If a new signature S is

found valid, the agent attempts to merge S with an existing

signature from the running application’s deadlock history. If

S cannot be merged with any existing signature, then it repre-

sents a new deadlock bug; the agent adds S to the history, in

order to prevent future occurrences of deadlocks matching S.

To validate a new deadlock signature, the Communix

agent checks whether the signature matches the running ap-

plication. In addition, Communix protects the users against

DoS attacks based on distributing malicious signatures. To

generalize deadlock signatures, Communix merges signa-

tures representing the same deadlock bug into one signature.

This paper focuses on deadlock bugs; however, a similar

collaborative immunity framework can be imagined for other

bugs, like data races and atomicity violations.

B. Signature Distribution

Communix allows different users running the same ap-

plication (or different applications sharing some deadlock-

prone library) to share signatures. The more users run some

deadlock-prone code, the more likely it is that all possible

manifestations of the deadlock bug are experienced in a short

period of time, and all users get fully immunized against the

deadlock.

Once Dimmunix detects a deadlock, the Communix plu-

gin sends the corresponding signature to the Communix

server. The Communix server collects in a database all the

deadlock signatures discovered by Java applications running

with Dimmunix on arbitrary machines connected to the

Internet. To decide whether to add an incoming signature

to the database, the server performs a simple signature

validation, described in §III-C2.

The Communix client, running on an arbitrary machine

in the Internet, periodically downloads the new deadlock

signatures from the server into a local repository. The local

repository is updated once a day; a high frequency (e.g., once

a minute) would overload the Communix server. The updates

are incremental, i.e., the client requests from the server only

the signatures that are not present in the local repository.

When a Java application A starts, the Communix agent

inspects the new signatures from the local repository: the

agent checks the validity of each new signature S (§III-C3);

if S is valid, the agent adds S to A’s deadlock history. The

inspection of the local repository is incremental, i.e., every

signature is analyzed only once.

The Communix client runs as a background process,

decoupled from the agent. Without this decoupling, the

Communix agent would have to connect to the server and re-

trieve new deadlock signatures every time a Java application

starts. This would introduce an unnecessary overhead.

Note that Communix does not require users to provide

any application specific information (like name or version)

with the signatures they share. Communix only needs hash

values of class bytecodes, in order to distinguish different

versions of the same class or different classes having the

same name. The hash values are automatically computed

by the Communix plugin, when Dimmunix produces the

signatures. This makes Communix application agnostic.

C. Signature Validation

Before sending a signature to the server, the Communix

plugin attaches to each call stack frame of the signature the

hash of the class bytecode containing that frame.

Each time a Java application running Dimmunix starts,

the Communix agent selects from the local repository the

signatures that match the running application. The agent

checks whether the hashes of an incoming signature match

the bytecode hashes of the running application. If the hashes

do not match for all the top frames, the signature is rejected;

otherwise, the agent keeps from the signature the longest call

stack suffixes with hashes matching the application.

If all nodes were honest, the above check would have

been sufficient; unfortunately, there are attackers that may try

to exploit Dimmunix by sending fake signatures, therefore

additional checks are needed.

1) Preventing (Containing) DoS Attacks: An attacker

may attempt to perform a performance DoS attack based on

signature flooding, to put pressure on Dimmunix’s signature

matching mechanism. Such an attack consists of sending

many fake signatures that manage to pass the validation and

get accepted into the deadlock history of an application.
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This would put pressure on Dimmunix, because all these

signatures have to be matched at runtime.

Communix manages to prevent such attacks by per-

forming three additional checks. The first two checks are

performed by the server, and the third one is performed by

the Communix agent, on the client side. If any of these

checks fails, the signature is rejected.

First, the server requires each incoming signature to be

accompanied by an encrypted id of the sender. The encrypted

id is provided once by the Communix server. The server uses

the sender ids to bind each incoming signature to the user

who sent the signature. Since an attacker can fake many IP

addresses, they cannot be used to identify the senders; it

must be hard for an attacker to obtain multiple ids.

Second, the server makes sure that every two distinct

signatures sent by the same user (i.e., having the same sender

id) have no common top frames. This restriction should not

affect honest users, because it is not likely that a user would

experience such “adjacent” deadlocks. However, if he/she

does experience such situations, the signatures wrongly re-

jected due to this restriction can be provided by other users.

Third, the agent checks whether the outer call stacks of a

new signature end in nested synchronized blocks/methods.

Checking whether a synchronized block/method is nested is

straightforward, due to the disciplined way the Java compiler

nests these constructs. We describe the algorithm in §III-C3.

Communix does not handle explicit lock/unlock operations

(e.g., calls to ReentrantLock.lock/unlock()). However, this

is a minor deficiency, since Java programs use mostly

synchronized blocks/methods (§IV).

Thanks to the above three checks, the possibility to flood

Dimmunix with fake signatures is limited. If there are N
nested synchronized blocks/methods in a Java application

A, an attacker cannot “provide” more than N signatures that

get accepted into A’s deadlock history. Typically, in a Java

application there are a few hundred nested synchronized

blocks/methods (§IV). Therefore, an attacker cannot force

more than a few hundred signatures into the deadlock history

of an application.

Another type of performance DoS attack that an attacker

may attempt is to send fake signatures that slow down

an application. These attacks force Dimmunix to avoid

instantiations of fake signatures or signatures that are too

general. The more general a signature is, the more often

Dimmunix has to avoid instantiations of the signature. This

means Dimmunix suspends threads more often then needed,

which may considerably slow down the application. The

attacker may exploit the generalization mechanism to retain

only the top frames of the outer call stacks, or send directly

signatures with outer call stacks of depth 1.

The Communix agent prevents the attackers from sending

signatures with outer call stacks of depth < 5. For the appli-

cations we studied, the outer call stacks have large depths

(usually > 10); therefore, we believe that this restriction does

not affect the honest users. Signatures with outer call stacks

of depth 5 incur an acceptable performance overhead; for

depth 1, the overhead is considerable (§IV-B). Therefore,

the outer call stacks must have the depth ≥ 5. To prevent

an attacker from exploiting the signature generalization

mechanism to obtain outer call stacks of depth 1, the agent

does not merge signatures below depth 5, for the outer

call stacks. Alternatively, one could compute the minimal

depth d that outer call stacks corresponding to a nested

synchronized block/method can have; the threshold would

be min(d,5), rather than 5, in this case.

The third check ensures that the worst damage an attacker

can do is to force into the deadlock history of an application

signatures with outer call stacks of depth 5, that cover all the

nested synchronized blocks/methods. We show in §IV that

such a scenario causes only 8-40% performance overhead in

the Java applications we studied.

An attacker may also attempt a functionality DoS attack

that disables features of an application. If a certain feature

needs some code to execute concurrently, that feature would

no longer be available, if Dimmunix makes the code execute

sequentially. This undesired effect can be caused also by

real deadlock signatures; some concurrent code may be

deadlock-prone, and execute most of the time without dead-

locking. To prevent such situations, we use Dimmunix’ false

positive detection mechanism. If after 100 instantiations of a

signature S there was no true positive, and there was at least

one interval of 1 second having more than 10 instantiations

of S, Dimmunix decides to warn the user about signature S;

the user can decide to keep S, if he/she notices no change

in the behavior of the application.

Attackers may attempt to put pressure on the Communix

server by sending bursts of fake signatures to the server. The

server processes only up to 10 signatures per day from one

user; beyond this threshold, the signatures from that user are

ignored by the server. This restriction usually does not affect

honest users, since it is unlikely that a user would experience

so many different deadlocks (or different manifestations of a

deadlock) in 1 day. However, the wrongly rejected signatures

can be provided by other users.

In the remainder of this section, we describe in detail the

server-side and client-side signature validation.

2) Server-side Signature Validation: The Communix

server requires each user to accompany the signatures he/she

sends with an encrypted user id that the server provides.

The server provides a unique id to each user; the id is

encrypted, in order to prevent users from manufacturing their

own ids. To be able to share its signatures, each user has

to previously obtain the encrypted id from the Communix

server. The server uses AES encryption, with a predefined

128-bit key, to produce the encrypted user ids. We did not

implement the service for issuing the encrypted user ids;

such a service exceeds the scope of this work. The problem

of preventing attackers from impersonating multiple users
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has been extensively studied.

Upon receiving a signature S accompanied by an en-

crypted id I, the Communix server decrypts I to obtain the

id of the user that sent the signature. After retrieving the

sender id, the server checks whether the same user already

sent a signature S′ which is adjacent to S, i.e., S and S′ have

some (but not all) top frames in common. If the user already

sent a signature adjacent to S, the server refuses to add S to

its database.

Rejecting adjacent signatures from the same user con-

siderably reduces the capability of an attacker to provide

fake signatures. Assume there are N synchronized blocks

(methods) in an application, and there are Nd possible call

stack suffixes of depth d, for each synchronized block

(method). Without this restriction, the attacker can man-

ufacture (N ·Nd)
4 signatures of two-thread deadlocks that

pass the validation, for each depth d ≥ 5; this gives a total

of N4 ·
∞

∑
d=5

N4
d possible signatures. With this restriction, the

attacker can provide only N signatures.

3) Client-side Signature Validation: For each new signa-

ture S, the Communix agent checks whether S matches the

running Java application, then it checks whether the outer

call stacks of S end in nested synchronized blocks/methods.

For each call stack of signature S, the Communix agent

checks whether the hashes it carries match the running

application A. Each call stack of signature S is encoded as a

sequence of frames [c1.m1 : l1 : h1, ...,cn.mn : ln : hn], where

ci are class names, mi are method names, li are line numbers,

and hi is the hash of class ci’s bytecode. The hashes are

attached by the Communix plugin when Dimmunix produces

signature S. The hash value hk matches application A if and

only if class ck’s bytecode from application A has the hash

hk. The hash check starts from the top frame, i.e., frame

n; if hn does not match A, signature S is rejected. If hk

(1 ≤ k < n) is the first hash value that does not match A, the

frames 1, ...,k are removed from the call stack; if all hashes

match, the call stack remains unchanged. For efficiency, the

Communix agent computes the hash of a class first time the

class is loaded, then it reuses the computed hash value.

The hash checking covers also the inner call stacks, even

though they are not used by Dimmunix for deadlock avoid-

ance. The signature may correspond to an earlier version

of the application, where the code between the outer and

inner lock statements was deadlock-prone. That code might

have been fixed in a newer version of the application. If the

Communix agent would check only the hashes of the outer

call stacks, these code changes would be missed, and the

false positive signature would pass the validation.

We describe now the algorithm for checking whether

a synchronized block B is nested. Given the control flow

graph (CFG) of an application binary, and the monitorenter
statement s corresponding to a synchronized block, the Com-

munix agent inspects the CFG, starting from the successor

of s. As soon as a monitorenter (monitorexit) statement is

encountered, the algorithm returns that B is nested (non-

nested). If a method call statement scall is met, the algorithm

returns that B is nested, if any method that may be called

(directly on indirectly) by scall is either synchronized or

contains a synchronized block.

Since a synchronized method is semantically equivalent

to a synchronized(this) block that wraps the method body,

the algorithm for checking whether synchronized methods

are nested is similar. In fact, the AspectJ instrumentation

framework [2] that Dimmunix uses transforms the synchro-

nized methods into synchronized blocks.

For efficiency, the Communix agent precomputes the

locations of all the nested synchronized blocks/methods,

when the application runs for the first time. Checking if the

outer call stacks of a signature end in nested synchronized

blocks/methods consists of determining if the top frames

belong to this precomputed set of locations. To inspect the

application bytecode, the Communix agent uses the Soot

bytecode analysis framework [3].

Each time new classes are loaded, in addition to the ones

loaded in the previous runs, the Communix agent repeats the

nesting check for all the signatures from the local repository

that passed the hash check and failed the nesting check.

There is no need to recheck the nesting for the rest of the

signatures, because adding new classes to the CFG can only

uncover new nested synchronized blocks/methods.

D. Signature Generalization

The signature generalization consists of merging different

signatures corresponding to the same deadlock bug, i.e.,

that end in the same inner and outer lock statements. The

resulting signature consists of the longest common suffixes

of the call stacks forming these signatures.

It is important to generalize signatures for the following

reason. If the outer call stack suffixes are long, the signature

may not be able to always avoid the deadlock. In other

words, there may be false negatives, i.e., other signatures

of the same deadlock ending in different outer call stack

suffixes. If there are multiple manifestations of the deadlock

having different outer call stack suffixes, it may take a long

time until a single user experiences all these manifestations.

A trivial solution to avoid all the possible manifestations

of a deadlock would be to match only the top frames

of the signature’s outer call stacks. However, there is an

important drawback to this solution: having the outer call

stacks matched too shallowly introduces false positives [1]

and therefore reduces the parallelism, which may have a

negative impact on performance.

The generalization process is the following: When a

Java application starts, the Communix agent checks if new

signatures that passed the validation could be merged with

existing signatures from the deadlock history of the running

application. The signatures that cannot be merged are added

to the history.
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Two signatures S and S′ can be merged if and only if they

represent the same deadlock bug (i.e., the top frames of S
have to be identical to the top frames of S′), and either (1)

S and S′ were produced on the local machine, or (2) S/S′ is

a remote signature and the resulting signature has the outer

call stacks of depths ≥ 5.

Merging two signatures consists of finding the longest

common call stack suffixes of the two signatures.

Given two signatures S = {(CS1,out,CS1,in), ...} and

S′ = {(CS′1,out,CS′1,in), ...}, their generalization is the

signature Sg = {(CSg
1,out,CSg

1,in), ...}, where CSg is the

longest common suffix of call stacks CS and CS′.

IV. EVALUATION

In this section, we first evaluate the performance of Com-

munix (§IV-A), then we evaluate the impact DoS attacks

can have on Java applications running Dimmunix (§IV-B).

Finally, we estimate the time it takes for an application to

achieve full deadlock protection with Communix, compared

to using Dimmunix alone (§IV-C).

The experiments were run on machines with two 4-

core Intel Xeon 2GHz processors each, 20 GB of memory,

running Ubuntu Linux 10.04.

A. Communix’s Performance

In this section, we first evaluate the performance of

the Communix server, then the performance of the whole

signature distribution in an end-to-end setting. Then, we

evaluate the performance of the client-side signature vali-

dation plus the signature generalization. Since the signature

generalization and client-side signature validation are both

performed by the Communix agent at application startup,

we decided to evaluate them together. Finally, we measure

the time it takes for the Communix agent to find the nested

synchronized blocks/methods; the time it takes to compute

the hashes of the loaded classes is negligible compared to

the time it takes to perform the nesting analysis.

The server processes two types of requests: an ADD(sig)
request that means “add signature sig to the database”, and a

GET(k) request that means “send me the signatures from the

database starting from index k”. Normally, a client having a

local repository with n signatures sends GET(n+1) requests

to the server to retrieve the new signatures. We wanted to

evaluate worst case scenarios, therefore we use only GET(0)
requests in our measurements, which means that the server

is always asked to send all its signatures.

To evaluate the server’s performance, we invoke the

request processing routines from 1,000-100,000 simulta-

neous threads. This test measures the efficiency of the

server’s computations, i.e., adding new random signatures

to the database (including the server-side signature vali-

dation) and iterating through the entire database. Figure 2

shows that the server scales well up to 30,000 simultaneous
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Figure 3. The performance of the signature distribution.

“ADD(sig),GET(0)” sequences of requests. At its peak, the

server processes 63,000 requests per second.

We evaluate the performance of the signature distribution

in an end-to-end setting. On one machine we ran the

Communix server, and on another machine we ran 10-200

client threads that send 10 “ADD(sig),GET(0)” sequences of

requests each. Figure 3 shows that the signature distribution

scales well up to 30 client threads, i.e., 300 simultaneous

“ADD(sig),GET(0)” sequences of requests. However, the

throughput (i.e., requests served per second) is up to two

orders of magnitude lower compared to Figure 2. The

explanation is that the network communication between the

server and the client threads becomes a bottleneck. The

size of a signature is 1.7 KB. If there are N client threads

and each thread sent on average k “ADD(sig),GET(0)”
request sequences to the server, the server has to send

(k+1/2)×N2×1.7 KB of data to the N clients, on average,

to serve the next round of GET(0) requests. If N = 200,

the server has to send in the 10th round approximately 630

MB of data to the 200 clients. To summarize, a server with

one network card cannot distribute signatures fast if multiple

clients ask simultaneously for a large number of signatures.

As shown in Figure 3, a client thread receives 20-110

replies per second to “ADD(sig),GET(0)” request sequences,

from the Communix server. Therefore, it takes 9-50 mil-

liseconds to send the two requests to the server and get the

replies. However, the latency of the signature distribution is

up to 1 day, because the Communix client downloads the

new signatures from the Communix server only once a day.

We evaluate the Communix agent on large Java appli-

cations, i.e., JBoss, Limewire, and Vuze. JBoss is a well-

known Java application server, while Limewire and Vuze

are well-known peer-to-peer file sharing applications. For

each application, we measure the time it takes to start

and immediately shut down. In Figure 4, we show the

performance of the computations performed at startup by

the agent, i.e., client-side signature validation and signature

generalization. For up to 1,000 new signatures in the local

repository, the Communix agent incurs a startup delay of up

to 2-3 seconds, i.e., 11-16% startup slowdown.

In Table I, we show the efficiency of the static detection
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Figure 4. The performance of client-side computations, i.e., client-side signature validation and signature generalization.

Table I
STATISTICS ABOUT VARIOUS JAVA APPLICATIONS, AND THE

PERFORMANCE OF THE NESTING ANALYSIS.
App Size(LOC) Sync

bl/meths

Explicit

sync ops

Nested

(Analyzed)

Nesting

check(sec)

JBoss 636,895 1,898 104 249 (844) 114

Limewire 595,623 1,435 189 277 (781) 122

Vuze 476,702 3,653 14 120 (432) 50

of nested synchronized blocks/methods and some statistics

we collected about the three applications, i.e., size in lines

of code (LOC), number of synchronized blocks/methods,

number of explicit lock/unlock operations (i.e., calls to

ReentrantLock.lock/unlock()), and the number of nested syn-

chronized blocks/methods that the nesting analysis reports.

The Communix agent could analyze only 11-54% of the syn-

chronized blocks/methods. For the rest of the synchronized

blocks/methods, the Soot static analysis framework could not

retrieve enough information for the nesting analysis (i.e.,

it could not retrieve the CFGs of some of the methods).

Table I shows that it takes 50-122 seconds to analyze

432-844 synchronized blocks/methods. The nesting analysis

is performed at shutdown, first time the application runs,

and each time new classes (w.r.t. the previous run) are

loaded. Therefore, the analysis is performed only for the first

couple of runs. Moreover, since the analysis is performed at

shutdown, the delay is not bothersome for the user, if the

user does not intend to restart the application soon.

B. The Impact of DoS Attacks

The attackers have only one way to exploit Dimmunix,

to slow down a Java application: they can send signatures

with outer call stacks of depth 5 which cover all the nested

synchronized blocks/methods that are on the critical path,

in order to maximize the amount of thread serialization

in applications running Dimmunix. If there is already a

signature S in the deadlock history that can be merged with

a malicious signature S′, signature S′ will replace S in the

history, by exploiting the generalization mechanism.

Table II shows that attackers providing malicious deadlock

signatures can cause only 8-40% performance overhead in

the studied real applications running with Dimmunix. The

tests run with 20 deadlock signatures in the history, with

outer call stacks of depth 5. These outer calls are on the

critical path, i.e., more than 99% of the nested synchronized

blocks/methods are executed with these call stacks. In this

worst case scenario, the performance overhead incurred

by Dimmunix is 8-40%, which is acceptable for general-

purpose applications. If none of the signatures is on the crit-

ical path, the performance overhead incurred by Dimmunix

is negligible (i.e., < 2%). For outer call stacks of depth 1,

the performance overhead is considerable (i.e., > 100%), for

some of the applications we studied. However, this situation

is avoided, because the Communix agent does not accept

incoming signatures with outer call stacks of depth < 5.

Therefore, Communix successfully contains DoS attacks.

Table II
WORST CASE OVERHEAD INCURRED WHILE UNDER A DOS ATTACK.

Application Benchmark/Test Overhead

JBoss RUBiS 40%

MySQL JDBC JDBCBench 38%

Eclipse Startup + Shutdown 33%

Limewire Upload test 10%

Vuze Startup + Shutdown 8%

Making it hard for a user to obtain multiple encrypted

ids from the Communix server, together with restricting the

server to process only up to 10 signatures per day for the

same user id, protects the server and the clients against

flooding with fake signatures. Assuming 100 attackers man-

age to obtain 5 ids each from the server, and they keep

sending fake signatures to the server, the attackers could

make the server process and add to its database only up

to 100 ∗ 5 ∗ 10 = 5,000 signatures in 1 day. Assuming the

worst case, i.e., the 5,000 signatures are sent simultaneously

by the 100 attackers, the server can process the signatures in

1 second, the Communix client can download them in a few

minutes, and the agent can process them in 10-15 seconds.

C. Time to Achieve Full Protection Against Deadlocks

As we mentioned in §III-D, it may take a long time for a

single user to experience all the deadlocks of an application

and all the manifestations of these deadlocks. Therefore, it

may take a long time until Dimmunix alone can provide full

protection against deadlocks.

If there are many users of an application A, Communix

can considerably reduce the time it takes for A to be

deadlock-free. The time it takes for Communix to provide

full protection against deadlocks for application A is in-

versely proportional to the number Nu of users that run

A in different ways. If there are Nd possible deadlock

manifestations in A and it takes on average t days for a

user to experience one manifestation, A will be deadlock-

free in roughly t ∗Nd days, if Dimmunix alone is used. If

Communix is used, all the users of A will have A deadlock-

free in roughly t ∗Nd/Nu days. The larger Nu, the higher the
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gain that Communix brings.

The estimate we made here is purely theoretical. A real

evaluation is possible only if Communix is deployed in the

field and statistics are collected after a considerable period

of usage (e.g., months) from many (e.g., thousands) users.

V. RELATED WORK

In this section, we review the literature on approaches to

avoiding application failures.

Static analysis tools look for bugs at compile time, helping

programmers remove them. ESC [4] uses a theorem prover

and relies on knowledge from annotations generated by

Houdini [5]. Larochelle et al. [6] presents an approach

to detect vulnerabilities through a source code analysis.

Relay [7] and KLEE [8] use symbolic execution to statically

detect bugs in applications; however, exponential growth of

execution paths limits scalability of the symbolic execution.

RacerX [9] provides a static flow-sensitive, interprocedural

analysis to detect deadlocks. Static analysis tools can run

fast, avoid runtime overhead, and help prevent deadlocks.

However, they produce false positives, and it is ultimately

the programmers’ burden to find the true positives.

Dynamic bug detection is conceptually observing the pro-

gram execution to extract various kinds of information. Nir-

Buchbinder et al. [10] dynamically discover deadlocks and

instrument the code using a “gate lock” to prevent similar

deadlocks in the future. [11] serializes threads’ access to

lock sets that could induce deadlocks. GoodLock [12], [13]

detects deadlocks by recording the nested locking pattern for

each thread. Rx [14] rolls back to a checkpoint upon dead-

lock and retries the execution in a modified environment.

Machine learning techniques are also used for dynamic bug

detection. ClearView [15] instruments the applications to

dynamically profile the execution flows. ClearView employs

the profiles to distinguish erroneous executions later.

Fingerprinting the anomalous execution signatures en-

ables applications to avoid reoccurrences of bugs in the

future. Bouncer [16], using DFI [17] for dynamic bug detec-

tion, generates signatures to block exploits before they get

processed by the program. Snort [18] provides a signature-

based exploit detection, saving attack signatures once a new

attack is detected. The manual generation of the signatures

limits Snort’s scalability.

Finally, there exist approaches addressing cooperative

security (dependability). In particular, once a bad execution

pattern is detected and its corresponding signature is gen-

erated, the application helps its peers by broadcasting the

signature to its neighbors. Vigilante [19] proposes an end-

to-end approach to contain worms automatically. It relies

on collaborative worm detection at end hosts, but does not

require hosts to trust each other. Communix differs from

Vigilante in the validation of the received bug signatures:

Vigilante uses replay to validate a new signature, while

Communix efficiently checks deadlock signatures statically.

VI. CONCLUSION

We have presented Communix, a collaborative deadlock

immunity framework that targets deadlock bugs in general-

purpose Java applications. Communix complements Dimmu-

nix [1]. Dimmunix fingerprints the execution flows leading

to deadlocks, then Communix sends these fingerprints (sig-

natures) to a deadlock immunity server that makes them

available to all nodes in the Internet. A Communix agent

running within Dimmunix selects the new signatures that

match the running Java application. The accepted signatures

are stored and used to prevent deadlocks. An important

contribution of Communix is that it uses the collective

knowledge of all nodes in the Internet running the same

application, to improve the protection against deadlocks for

each individual node running that application. Communix is

efficient and scalable: the server can process up to 63,000

requests per second, and the agent can validate 1,000 new

signatures in 2-3 seconds, while managing to contain DoS

attacks. This makes Communix an attractive framework for

providing collaborative immunity against deadlock bugs.
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