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Abstract
Datacenter applications expect microsecond-scale service
times and tightly bound tail latency, with future workloads
expected to be even more demanding. To address this chal-
lenge, state-of-the-art runtimes employ theoretically optimal
scheduling policies, namely a single request queue and strict
preemption.

We present Concord, a runtime that demonstrates how for-
going this design—while still closely approximating it—–
enables a significant improvement in application through-
put while maintaining tight tail-latency SLOs. We evaluate
Concord on microbenchmarks and Google’s LevelDB key-
value store; compared to the state of the art, Concord im-
proves application throughput by up to 52% on microbench-
marks and by up to 83% on LevelDB, while meeting the
same tail-latency SLOs. Unlike the state of the art, Con-
cord is application agnostic and does not rely on the non-
standard use of hardware, which makes it immediately de-
ployable in the public cloud. Concord is publicly available at
https://dslab.epfl.ch/research/concord.
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1 Introduction
Datacenter applications for web search, e-commerce, social
networking, etc. have strict microsecond-scale tail latency
service level objectives (SLOs) [7, 36, 43, 65]. Since every
user request is fanned out across thousands of servers with
the end-to-end response time being determined by the slowest
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response, bounding tail latency at each server is critical [18].
These strict tail-latency SLOs at individual servers are only
expected to get tighter over time [30, 37] as applications are
modularized into increasingly finer microservices [23, 41, 44,
56] and communication stacks are offloaded to specialized
hardware [5, 34, 38, 55, 64].

Since the tail latency of a request at individual servers is
dominated by its queueing delay (and not service time), state-
of-the-art schedulers are optimized based on queueing theory
results. Weirman and Zwart [61] show that there is no single
scheduling policy that minimizes tail latency across all pos-
sible workloads; the First Come, First Served (FCFS) policy
is optimal for light-tailed workloads, and Processor Sharing
(PS) is optimal for heavy-tailed workloads [26]. Additionally,
single-queue scheduling improves tail latency when compared
to multi-queue scheduling for both FCFS and PS policies.
Since both light- and heavy-tailed workloads are common in
production [19, 36], state-of-the-art microsecond-scale sched-
ulers need to support both (1) preemptive scheduling to imple-
ment PS for heavy-tailed workloads, and (2) a single queue.

However, optimizing systems for tail latency inevitably sac-
rifices the maximum throughput they can sustain, with the
sacrificed throughput only increasing as request service times
grow shorter. For example, single-queue systems such as Zy-
gOS [50] and Shinjuku [36] achieve lower maximum through-
put than IX [9], an earlier system that had no tail-latency
optimizations. Similarly, preemptive scheduling in Shinjuku
imposes a 20% throughput penalty at a scheduling quantum
of 5µs, and a 50% throughput penalty at a quantum of 2µs.
Fig. 1 conceptualizes the trade-off faced by tail-optimized
microsecond-scale systems: chasing tight bounds on tail la-
tency makes such systems move from the blue to the orange
curve, which results in them saturating sooner than their non-
tail-optimized counterparts.

Systems optimized for tail latency also frequently sacri-
fice deployability and generic support for applications. For
example, Shinjuku relies on non-standard use of virtualiza-
tion hardware to achieve microsecond-scale preemption, but
this precludes its deployment on VMs in public clouds. Simi-
larly, Persephone [19], another state-of-the-art system, relies
on non-blind scheduling, i.e., it requires prior knowledge of
the application’s service time distribution and is restricted to
applications with request classes that have disjoint service-
time distributions known a priori. However, this makes it ill-
suited for the datacenter where blind policies are required to
deal with heterogeneous applications [28].
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Figure 1. Abstract, comparative visualization of throughput over-
head in state-of-the-art datacenter systems.

This paper describes Concord, a scheduling runtime for
microsecond-scale applications that presents an improved
trade-off between tail latency and throughput without sacrific-
ing deployability or generality. Concord’s key insight is that
careful approximation (as opposed to canonical implementa-
tion) of optimal scheduling policies enables new microsecond-
scale mechanisms that provide significant throughput gains
at negligible tail-latency costs. Thus, Concord does not in-
troduce new scheduling policies. Instead, it introduces new
scheduling mechanisms that efficiently approximate existing
policies to increase application throughput while maintain-
ing similar tail latency. This enables existing systems opti-
mized for tail latency (orange curve in Fig. 1) get closer to
their ideal behavior (green curve).

Concord relies on three mechanisms to efficiently approxi-
mate the theoretically-optimal single queue and precise pre-
emption. First, Concord’s compiler-enforced cooperation ap-
proximates precise preemption using asynchronous commu-
nication between threads. While this asynchrony leads to
slightly imprecise scheduling quanta, it enables Concord to
eschew interrupts and reduce the preemption overhead by
4× without significantly impacting tail latency. Second, Con-
cord leverages Join-Bounded Shortest Queue (JBSQ) sched-
uling [40] and approximates a single queue with bounded
core-local queues. This design eliminates cache-coherence-
induced stalls in worker threads and reduces the throughput
overhead of single queue scheduling by 9−13× without signif-
icantly impacting tail latency. Finally, the Concord dispatcher
—a thread normally dedicated to enqueueing requests—is
work-conserving and runs application logic when all worker
threads are busy. While this work conservation approximates
both a single queue and precise preemption, it enables the dis-
patcher to contribute to application throughput, which is not
the case in existing systems. All three of Concord’s mecha-
nisms eschew reliance on non-standard use of hardware or
application-level assumptions, making Concord immediately
deployable in the public cloud.

To evaluate Concord, we compare it to Shinjuku [36] and
Persephone [19] across several service time distributions from
both academic and industrial sources. We observe that Con-
cord not only outperforms these systems at the scheduling
quanta they were designed for (5 − 15µs), but provides even
larger improvements at the smaller timescales which will
likely be required in the future [30, 37]. For the synthetic

workloads used by Shinjuku and Persephone, Concord sus-
tains up to 52% greater application throughput for a schedul-
ing quantum of 2µs, and up to 18% greater throughput for a
quantum of 5µs, while meeting identical tail-latency SLOs.
For Google’s LevelDB, Concord sustains up to 83% greater
throughput for a 2µs quantum and up to 52% greater through-
put for a 5µs quantum, while once again meeting identical tail-
latency SLOs. Finally, we demonstrate that Concord’s mecha-
nisms will remain useful even as datacenter hardware evolves
to provide increased support for microsecond-scale schedul-
ing by showing how Concord enables preemptive schedul-
ing at 2× lower overhead than Intel’s recently launched user-
space interrupts [62].

In the rest of the paper, we first perform a quantitative analy-
sis of the throughput overheads in existing systems optimized
for tail latency (§2), before using the results of the analysis
to design (§3) and implement (§4) Concord. We then eval-
uate Concord and demonstrate its throughput benefits (§5),
discuss its limitations and broader applicability (§6), present
related work (§7), and conclude (§8).

2 Throughput Overheads at µs Scale
In this section, we analyze the throughput overheads that arise
from implementing preemptive and single queue scheduling
at microsecond scale.

Schedulers that implement a single queue fall in two cat-
egories: those that maintain a physical and logical single
queue, respectively. In the former [19, 36], one thread (the
dispatcher) is dedicated to maintaining the queue and send-
ing requests to the others, while in the latter [46, 50] there
is no dedicated thread and idle threads steal requests from
other threads to mitigate load imbalance. In this section, we
focus on single physical queue systems. We do so for two
reasons: (1) the only prior work [36] that implements both a
single queue and preemption—and is thus the most relevant
baseline—employs such a queue, and (2) having a dedicated
thread with global visibility of the entire system allows pro-
vides the flexibility to implement arbitrary queueing policies.
We defer a detailed discussion of systems that maintain a sin-
gle logical queue to §6.

We use an analytical model to describe the sources of
throughput overhead in single physical queue systems. Our
model does not focus on particular prior implementations;
instead, we reason abstractly about the trade-offs of multiple
implementations. We first introduce our system model (§2.1),
and then use it to show how existing systems suffer from
double-digit overheads at today’s 5µs timescales and triple-
digit overheads at tomorrow’s 1µs timescales (§2.2).

2.1 System Model
We consider a system with 1 dedicated dispatcher thread and
𝑛 worker threads, all of which are pinned to individual CPU
cores. The dedicated dispatcher maintains the single queue.



This model reflects how many state-of-the-art microsecond-
scale systems are built [19, 36, 39, 43].

We define the system throughput overhead (Overheadsys)
as the fraction of CPU cycles that do not contribute towards
application goodput. Eq. 1 describes the overall overhead for
a system with 𝑛 workers and 1 dispatcher. We separate the
overhead based on the types of threads, i.e., Overheadw and
Overheadd denote the per-worker and dispatcher overheads,
respectively. Since the dispatcher does not run application
logic, Overheadd = 1.

To define Overheadw , we consider the CPU cycles wasted
during the lifetime of a request with a service time of 𝑆 CPU
cycles and summarize it in Eq. 2. Intuitively, for every re-
quest there are some cycles lost during processing (cproc) be-
yond the application logic. These include overheads of the
underlying runtime, such as for logging, and are proportional
to the service time. Further, in a system that supports pre-
emptive scheduling, there are also lost cycles associated with
each preemption (cpre) that include context switch and inter-
thread communication costs. Finally, after the completion of
a request, the worker will need to communicate with the dis-
patcher and wait for the next request, which will incur further
wasted cycles (cfin).

We now further break down these costs: cproc is a fixed frac-
tion of the service time (𝑆) and depends on the implementa-
tion of the underlying runtime. cpre is a cost paid on every
preemption event, so ⌊𝑆/𝑞⌋ times for every request, where 𝑞
is the scheduling quantum; it includes the cost of receiving
the preemption notification (cnotif ), the context-switch cost
(cswitch), and the cost of waiting for the next request (cnext), as
seen in Eq. 3. Finally, cfin consists of the context switch cost
and the cost to fetch the next request (shown in Eq. 4).

Overheadsys =
𝑛 × Overheadw + Overheadd

𝑛 + 1
(1)

Overheadw =
cproc + cpre + cfin

𝑆
(2)

cpre =
⌊
𝑆

𝑞

⌋
× (cnotif + cswitch + cnext) (3)

cfin = cswitch + cnext (4)

2.2 Sources of Throughput Overhead
We now use this model to analyze throughput overheads in
state of-the-art microsecond-scale schedulers. Later, in §3,
we introduce new mechanisms that address each of these
overheads.

2.2.1 Preemptive Scheduling (cnotif or cproc)
Today, there exist two approaches for implementing preemp-
tion at the microsecond scale—interrupts and code instrumen-
tation —that introduce significant overheads via the compo-
nents cnotif and cproc , respectively. We describe each approach
using the corresponding state of the art—Shinjuku [36] and
Compiler Interrupts [8], respectively—as canonical examples.
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Figure 2. Overhead of preemption mechanisms as a function of the
scheduling quantum. This overhead excludes the time required to
context switch and receive a new request.

In interrupt-based systems, the dispatcher sends an inter-
processor interrupt (IPI) to a worker whenever it has reached
the desired scheduling quantum. The benefit of IPIs is that
the preemption is precise; the worker promptly stops process-
ing the current request and moves on to the next one. The
drawback is the large cost of receiving IPIs (cnotif ). Since this
cost results in an overhead that is inversely proportional to the
quantum size 𝑞, namely Overhead ∝ cnotif

𝑞
(Eq. 3), interrupt-

based approaches lead to prohibitive throughput overheads
at microsecond timescales. For instance, receiving an IPI in
Shinjuku costs ≈1200 cycles which results in an ≈12% over-
head for 𝑞 = 5µs, and an ≈30% overhead for 𝑞 = 2µs, assum-
ing a 2GHz clock. Note, Shinjuku’s IPIs rely on non-standard
use of virtualization hardware and cannot be deployed in the
public cloud. The corresponding overhead for Linux’s easily-
deployable IPIs is double [10, 36].

Instrumentation-based approaches forgo the dispatcher and
rely solely on compile-time instrumentation of the code. The
compiler inserts bookkeeping probes (e.g., rdtsc() calls) at
regular intervals in the application code, enabling the worker
to track how long it has been executing for and yield the CPU
when the quantum has elapsed. This approach offers the ben-
efit of avoiding IPIs, thus eliminating cnotif . However, book-
keeping probes are expensive (e.g., calling rdtsc() costs
≈30 cycles) and so inserting them frequently leads to prohibi-
tively high overheads, while inserting them infrequently leads
to poor preemption timeliness. In our model, the total cycles
lost to bookkeeping is represented by cproc. Since the book-
keeping is typically performed at significantly smaller granu-
larities than microsecond-scale scheduling quanta [8], cproc is
a fixed fraction of the service time and leads to a throughput
overhead independent of the scheduling quantum.

Fig. 2 provides empirical evidence for our model’s analy-
sis of the two preemption mechanisms. We measure the time
it takes Shinjuku and Compiler Interrupts to service 1𝑀 re-
quests, each running for 500µs, while handling preemption
notifications with scheduler quanta from 1µs to 100µs. We
compare to a baseline where each request runs to completion,
without interruption. To isolate the preemption overhead, we
run both systems with no-op preemption handlers.



As predicted by our model, IPIs in Shinjuku lead to an over-
head that grows linearly as the scheduling quantum decreases:
33% at 2µs and 6% at 10µs. On the other hand, the rdtsc()
probes used by compiler interrupts lead to a uniform ≈ 21%
overhead across all scheduling quanta, since the probes are
inserted approximately every 200 instructions, which is sub-
stantially smaller than 1µs.

2.2.2 Synchronous Inter-Thread Communication (cnext)
Maintaining a single physical queue mandates synchronous
communication between the dispatcher and worker threads.
To ensure optimal load balancing in such systems, each worker
thread must first finish processing the current request before
it can pull the next request from the dispatcher. To avoid con-
currency issues due to multiple workers pulling from the dis-
patcher, state-of-the-art systems [19, 36] implement a single
queue as follows: (1) workers set a flag upon finishing a re-
quest and then poll a dedicated cache line for a new request;
(2) the dispatcher continuously polls the workers’ flags and
sends a new request as soon as a flag is set.

This synchronous communication directly results in wasted
CPU cycles (cnext), since workers sit idle until the dispatcher
sends them a new request. In particular, cnext subsumes at
least two cache coherence misses, which add up to ≈400 cy-
cles in total [17]. These misses occur when (1) the dispatcher
reads the flag previously written by the worker (Read after
Write miss) and (2) the dispatcher writes into the worker’s re-
quest queue that was last read by the worker when processing
the previous request (Write after Read miss). Note, 400 cy-
cles provides a lower bound on cnext since this assumes that
the dispatcher sends a new request to the worker instantly. In
practice, the dispatcher may be busy preempting or dispatch-
ing requests to any of the other 𝑛 cores, so in the worst case,
the worker thread might have to wait as long as 400×𝑛 cy-
cles. For short requests, this idle time can lead to significant
throughput overheads since the component of system over-
head induced by cnext is inversely proportional to the service
time: Overhead ∝ cnext

𝑆
.

Fig. 3 illustrates the measured median overhead due to cnext
for Shinjuku and Persephone when running with 8 cores. As
predicted by the model, overhead is inversely proportional
to service time. However, overhead increases slightly faster
than 1

𝑆
because, with shorter request times, it becomes more

likely that multiple workers finish while the dispatcher is busy
sending a request to another worker.

2.2.3 Dedicated Dispatcher (Overheadd)
Since the dedicated dispatcher does not run application logic
even when idle, Overheadd = 1.

While dedicating 1 core does not significantly impact through-
put when running on a large server, it does have a serious im-
pact for smaller VMs in the cloud. For example, consider a
16-core server with 1 dispatcher and 15 worker threads, where
the dispatcher runs at full capacity to feed the 15 workers.
When serving the same workload from a 4-vCPU VM in the
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Figure 3. Time spent idle by a worker thread awaiting the next
request in Single Queue (SQ) and JBSQ systems.

cloud, the dedicated dispatcher only serves 3 workers (20% of
its capacity), and thus ends up being idle 80% of the time. As
a result, in this particular deployment, the system as a whole
sacrifices 80

4×100 = 20% of its potential maximum throughput.

To summarize, state-of-the-art microsecond-scale sched-
ulers suffer from three main sources of throughput overhead:
preemptive scheduling, synchronous inter-thread communica-
tion between the dispatcher and workers to maintain the single
queue, and the dedicated dispatcher that runs no application
logic. In the next section, we describe how Concord, our pro-
posed scheduling runtime, addresses each source of overhead.

3 Design
Concord’s design is driven by the insight that careful approxi-
mation (as opposed to canonical implementation) of optimal
scheduling policies enables efficient, low-overhead mecha-
nisms that lead to significant throughput benefits at negligible
tail-latency costs.

Concord relies on three key mechanisms to efficiently ap-
proximate the optimal single queue and precise preemption
policies and mitigate the sources of throughput overhead de-
scribed in §2. First, compiler-enforced cooperation (§3.1) ap-
proximates precise preemption using asynchronous commu-
nication between the dispatcher and worker threads. While
this asynchrony leads to slightly imprecise scheduling quanta,
it does not significantly impact tail latency. Instead, it enables
Concord to reduce the preemption overhead by 4× by mini-
mizing cnotif while keeping cproc low. Second, Join-Bounded
Shortest Queue (JBSQ) scheduling (§3.2) adds bounded core-
local queues to approximate a single queue; this enables
Concord to reduce cache-coherence stalls in worker threads
by 9−13× by nearly eliminating cnext . Finally, the Concord-
dispatcher (§3.3) is work-conserving and steals work from the
global single queue when all worker threads are busy. This
approximates both the single queue and precise preemption—
the dispatcher sends preemption notifications late when busy—
but ensures Overheadd < 1 which significantly improves ap-
plication throughput at low core counts. Fig. 4 provides an
architectural diagram of Concord that we gradually explain
throughout the section.



Figure 4. The Concord architecture. Concord’s compiler-enforced
cooperation relies on communicating via a dedicated cache line,
JBSQ(𝑘) employs bounded core-local queues to eliminate coherence
stalls, and the Concord dispatcher steals work at high load to con-
tribute to application throughput.

Concord uses an asymmetric threading model with a dis-
patcher thread 𝐷 and worker threads 𝑊1, ...,𝑊𝑛; in §3.1 we
describe how this design enables Concord to enables low-
overhead preemption while retaining the flexibility to support
arbitrary scheduling policies. Each worker thread is pinned to
a CPU core, to ensure maximum locality. This architecture
is consistent with §2.1 and how state-of-the-art microsecond-
scale systems are built today [16, 19, 36, 39, 43, 46].

3.1 Compiler-Enforced Cooperation
We now describe how Concord’s compiler-enforced cooper-
ative scheduling provides an alternative to IPIs that: (1) en-
ables preemption at lower overhead for microsecond-scale
tasks, (2) does not require non-standard use of hardware and
can be deployed in the public cloud, and (3) makes it easier
to port applications and preempt safely.

In Concord, scheduling decisions are communicated be-
tween workers 𝑊𝑖 and the dispatcher 𝐷 via a per-core ded-
icated cache line 𝐿𝑖 , instead of IPIs. The Concord runtime
enforces this communication for arbitrary applications using
automated compiler instrumentation. The dispatcher moni-
tors how long each request has been executing and writes
to 𝐿𝑖 when the request has reached the end of its schedul-
ing quantum. Concord’s compiler instrumentation ensures
application code running on 𝑊𝑖 periodically checks cache
line 𝐿𝑖 for a preemption signal from the dispatcher. When
the signal is received, the worker thread writes to 𝐿𝑖 indicat-
ing to 𝐷 that preemption has taken place, and yields. Yield-
ing consists of saving the context corresponding to the cur-
rent request, and then switching to the default worker con-
text, which awaits the next request. The dispatcher re-places
the preempted request on the main queue. Thus, Concord au-
tomatically converts worker threads from being “interrupt-
driven CPU drivers” to “poll-mode CPU drivers”. This is con-
sistent with how the majority of low-latency systems today
eschew interrupts in favor of polling due to the associated
overheads [20, 32, 33, 36, 40, 47, 50, 63].

Concord deliberately separates scheduling concerns be-
tween 𝐷 , in charge of signaling the end of a quantum, and𝑊𝑖 ,

in charge of yielding.𝐷 has global visibility of the system, and
so it is best positioned to decide when𝑊𝑖 should stop process-
ing a request and which request it should begin processing in-
stead. On the other hand, cooperative yielding allows worker
threads to switch between requests within ≈ 100𝑛𝑠, and avoids
expensive preemptive context switches. Delegating the pre-
emption notifications to the dispatcher ensures that Concord
can support scheduling algorithms beyond First Come, First
Served (FCFS) and Processor Sharing (PS). For instance,
Concord can easily be extended to support algorithms such as
Shortest Remaining Processing Time [52] or ones that takes
locality into account and prioritize scheduling preempted re-
quests back on to the core they were last processed by. Imple-
menting such algorithms in single logical queue systems is
hard, since they do not have a dispatcher, and thus have no
core that possesses visibility of all the requests in the system.

Communicating scheduling decisions via shared cache
lines enables Concord to minimize cnotif (cost of preemp-
tion notification), while keeping cproc (instrumentation over-
head) low. cnotif is minimized since a shared cache line is
the fastest way for two cores to communicate in commodity
shared-memory processors. This minimization does not sig-
nificantly increase cproc because, unlike an rdtsc call, which
always costs ≈30 cycles, the cache line 𝐿𝑖 is in the L1 cache
of worker𝑊𝑖 for all but the final check, so most checks con-
sist of an L1 cache hit plus a compare, i.e., 2 cycles. The fi-
nal check (after which the request yields), incurs a Read after
Write cache-coherence miss since it is the first check after the
dispatcher writes to 𝐿𝑖 . However, this miss only costs ≈150
cycles leading to a cnotif that is 1

8
th the cost of a Shinjuku IPI

(which costs ≈1200 cycles), while eschewing reliance on the
non-standard use of virtualization hardware.

Fig. 2 shows this overhead, for scheduling quanta from 1-
100µs. We see that Concord’s overhead is near-constant at
around 1-1.5%, mainly coming from the instrumentation and
not the notification itself, which is consistently 16× cheaper
than invoking rdtsc(). Concord’s overhead is also 12×
lower than that of Shinjuku’s IPIs at a scheduling quantum
of 2µs and 10× lower at a quantum of 5µs. As the quantum
increases further, the percentage overhead of an IPI decreases
until the two become roughly equal (≈ 0.7%) at around 25µs.
Note, 25µs refers to the scheduling quantum and not the ser-
vice time, so even datacenter applications that have some long
requests (e.g., 100µs to 10ms) will benefit from Concord, as
long as there are also many short requests (1-10µs) for which
we would like to preempt the long-running requests. Many
real-world applications have such distributions e.g., search en-
gines, microservices and function-as-a-service (FaaS) frame-
works, and in-memory stores or databases such as RocksDB,
LevelDB, and Redis that support both point and range queries.

Compiler-enforced cooperation approximates precise pre-
emption since workers do not yield instantaneously: the ap-
plication code must first reach the cache-line check to see the
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Figure 5. The impact of non-instantaneous preemption on 99.9th
percentile request slowdown. 𝑁 (𝑥,𝑦) represents a normal variable
with mean 𝑥 and standard-deviation 𝑦

preemption notification. In practice though, we observed that
as long as preemption occurs within a “small” interval around
the desired quantum, tail latency is not significantly affected.
This ensures that compiler-enforced cooperation outperforms
IPIs by achieving greater throughput while meeting the same
tail-latency SLO.

Fig. 5 demonstrates the impact of non-instantaneous pre-
emption using a queueing simulation for a bimodal service
time distribution from prior work [19, 36]. In this distribution,
99.5% of requests take 0.5µs, and 0.5% of requests take 500µs.
We model Concord’s preemption as a one-sided Normal ran-
dom variable1 with a mean of 5µs and different standard devi-
ations. We also plot the simulation results for precise preemp-
tion (red line), which is the optimal behavior, and no preemp-
tion (blue line), which serves as a lower bound. We observe
that for small standard deviations, the latency behavior of im-
precise preemption is almost identical to that of precise pre-
emption, indicating that approximating the preemption quan-
tum does not significantly affect tail latency. In §5.4, we show
that for a 5µs quantum, Concord’s instrumentation keeps the
standard deviation within 2µs across 25 benchmarks from
standard benchmark suites.

Safety-first preemption: Concord takes a safety-first ap-
proach to preemption that we believe is particularly suited
to microsecond-scale applications. Concord ensures safety
by not preempting worker threads when they are either per-
forming external calls that might acquire locks (e.g., system
calls) or holding a lock in the application code. While such
an approach can (in theory) lead to tail-latency spikes due to
long-running critical sections or system calls, in our experi-
ence this is rarely the case in practice because such calls are
infrequent in microsecond-scale application code.

Concord guarantees that preemption is avoided within ex-
ternal calls by construction, since the compiler has full control
over the portions of code it instruments. This has the added
benefit of ensuring that widely-used libraries (e.g., libc) can
be used in Concord without modification. In contrast, such li-
braries must be modified to ensure safety in systems that rely

1One-sided because Concord never preempts before the quantum

on IPIs (e.g., Shinjuku) since the worker thread has no con-
trol over what code it will be executing when it receives an
IPI from the dispatcher.

To avoid preemption while holding application locks de-
velopers must modify their code; however, in our experience,
this takes negligible effort. For example, to achieve safety in
LevelDB we only had to add a total of 4 lines of code that
incremented/decremented a counter whenever a mutex was
locked/unlocked in the application code. By only preempt-
ing if the counter was zero, Concord ensured that it would
never preempt a worker thread while it held a lock. On the
other hand, the Shinjuku prototype avoids this issue by dis-
abling preemption during entire LevelDB API calls. However,
this approach can lead to significant tail-latency spikes since
entire LevelDB API calls can run for significantly longer
than just their critical sections. It was easy for us to create a
microbenchmark where the worker thread in Shinjuku was
not preempted until 100µs due to a long-running LevelDB
GET API call. For this microbenchmark, Concord improved
throughput by 4× in comparison to Shinjuku while meeting
the same tail-latency SLO.

3.2 Stall-Free Workers
To eliminate the overhead due to worker threads being idle,
Concord carefully trades the optimal single queue policy
in favor of the Join-Bounded-Shortest-Queue policy [40],
abbreviated JBSQ(𝑘). JBSQ(𝑘) approximates an ideal, work-
conserving single queue by combining a single, central queue
with short, bounded per-worker queues, each with a maximum
depth of 𝑘 messages. JBSQ(1) is therefore equivalent to a
single queue.

JBSQ enables Concord to forego the purely pull-based sin-
gle queue and adopt a controlled push-based policy: When-
ever there is a pending request in the main queue, and one
or more per-worker queues have empty slots, the dispatcher
pushes the request to the shortest per-worker queue. This en-
sures that, upon completing a request, worker threads can im-
mediately begin processing a new request from their local
queue, thus eliminating the idle time spent waiting for the
next request.

To ensure that the per-worker queues do not significantly
impair load balancing (and hence tail latency), 𝑘 must be just
large enough to ensure that a worker is never idle during the
dispatcher-worker communication. Any larger value of 𝑘 only
hurts tail latency without improving throughput. While the
exact communication delay is a complex function of the num-
ber of workers and the service time distribution, we found
𝑘 = 2 to be sufficient for service times above 1µs. Approxi-
mately, a value of 𝑘 =

⌈ cnext
𝑆

⌉
+ 1, where 𝑆 is the service time,

should ensure zero idle time. Prior work [40] has shown that
𝑘 = 2 imposes a negligible tail-latency penalty over the opti-
mal single queue.



Fig. 3 compares the throughput overhead due to idling in
state-of-the-art systems implementing a single queue and Con-
cord, which uses JBSQ(2). We observe that using JBSQ(2) re-
sults in an overhead that is 9−13× lower. Of course, JBSQ(2)
does not make cnext zero. This is because the asynchronous
dispatching and processing of requests requires the worker to
start a timer denoting the scheduling quantum; in a synchro-
nous single queue, this can be done by the dispatcher.

Concord is the first to make the observation that JBSQ(𝑘)
is necessary to mask cache-coherence latencies during inter-
thread communication. In fact, JBSQ(𝑘) is the accepted policy
when the communication delay between the dispatcher and
workers approaches the average service time [15, 27, 30, 40,
54]. This is because it enables explicit control of the trade-off
between tail latency and throughput, through the choice of 𝑘 ,
thus making it possible to pick an optimal queue depth. Prior
work has already explored the use of JBSQ(𝑘) in scenarios
where the dispatcher was located on either a programmable
switch [40] or a smartNIC [27, 30].

3.3 Work-Conserving Dispatcher
To reduce Overheadd (=1 for a dedicated dispatcher) the Con-
cord dispatcher contributes to application goodput by process-
ing user requests for one quantum, whenever it notices that
all per-worker queues are full.

Concord leverages rdtsc()-based code instrumentation
for the dispatcher to ensure that it can process user requests
while continuing to respond to network and worker events in a
timely manner. rdtsc()-based instrumentation is necessary
since there is no external agent to send preemption signals
to the dispatcher and so it must be able to self-preempt. The
automatically inserted rdtsc() probes periodically check
whether it is time for the dispatcher to switch from applica-
tion requests to dispatching. As a result, Concord has two dif-
ferently instrumented versions of the application code. The
expensive, rdtsc()-based instrumentation is only used for
the dispatcher thread, while the cache-line polling is used
on the worker threads. Since all threads are pinned to CPU
cores, the second version does not cause I-cache pressure at
the workers; these instructions are limited to the dispatcher’s
private I-cache.

Having two versions of the code requires a slight modifi-
cation to the single queue. This is because requests that have
been processed by a worker cannot be processed by the dis-
patcher and vice versa, since the instruction pointers are differ-
ent due to the different instrumentation. Hence, the dispatcher
can only pick up non-started requests from the central queue,
and, once it starts processing a request, it is solely responsible
for completing that request. So, whenever 𝐷 is idle, it picks
the first non-started request from the central queue. If it needs
to preempt itself before completing the request, it saves the
context to a dedicated buffer. The next time 𝐷 is idle, it picks
up the request from this buffer and continues processing it.

This approximation does not significantly impact tail la-
tency. We present an intuitive argument now, and demonstrate
it empirically in §5. First, at low loads it is unlikely that all
per-worker queues will be full, hence the dispatcher is un-
likely to have a request to pick up from the queue. To under-
stand the impact at high loads, assume that the dispatcher is
idle for 50% of each time quantum, and the rdtsc instrumen-
tation induces 20% overhead. This makes the dispatcher only
50% − 50 × 20% = 40% as effective as a typical worker, caus-
ing the request to take 2.5× the usual service time. In practice,
this overhead turns out to be far less than the time the request
would spend queueing or bouncing around different workers
at high load if the dispatcher hadn’t taken it over for process-
ing. Typical tail slowdown targets at high load are 20 − 50×
the service time (according to [19, 30]), and so we believe
that the 2.5× is acceptable.

To summarize, Concord efficiently approximates the op-
timal single queue and precise preemption to mitigate the
throughput overheads that plague state-of-the-art microsecond-
scale schedulers. To do so, Concord leverages three mechanisms—
compiler-enforced cooperation, JBSQ(𝑘) scheduling and a
work-conserving dispatcher—all of which eschew the non-
standard use of hardware and application-level assumptions.

4 Concord Prototype
In this section, we describe the key implementation details of
our Concord prototype.

4.1 API
Concord’s API comprises three callbacks:

• setup() initializes global application state
• setup_worker(int core_num) initializes applica-

tion state for each worker thread, such as local variables
or configuration options

• response_t* handle_request(request_t*) pro-
cesses a single application request and returns a pointer
to the response. At any particular point in time, a re-
quest is only processed by a single thread, although pre-
emption might cause it to be served by multiple threads
over its entire service time.

This simple event-driven API hides all of Concord’s underly-
ing complexity from application developers and enables Con-
cord to be easily integrated into existing dataplane OSes; we
now describe two integrations.

4.2 Concord Runtime
We integrate the Concord runtime into two state-of-the-art
microsecond-scale OSes, Shinjuku and Persephone.

The Concord-shinjuku implementation was straightforward,
since Shinjuku’s dispatcher already implements a preemp-
tive scheduling policy and there exists a userlevel threading
mechanism. We only had to change the preemption signal,



add per-core queues and add support for dispatcher work-
stealing. Concord-shinjuku only required adding 847 LOC to
Shinjuku’s initial codebase.

The Concord-persephone implementation required more ef-
fort since Persephone operates in a run-to-completion manner.
Thus, we had to implement userlevel threading and ported
Shinjuku’s implementation to Persephone for the same. JBSQ
was easier to implement here since Persephone already sup-
ports multi-request queues. In total, Concord-persphone adds
2358 LOC to Persephone.

4.3 Concord Compiler
We implemented Concord’s code instrumentation as two
LLVM passes; one each for polling a shared cache line and
checking rdtsc(), respectively. Both passes use LLVM ver-
sion 9 and comprise ≈ 350 LOC each.

The Concord compiler places probes at the beginning of
each function call, before and after any call to un-instrumented
code (e.g., syscalls) and at every loop back-edge. Placing
probes as such has been shown empirically to be sufficient
to yield on all long paths through code [8, 35]. For non-loop
code, this translates into a probe being placed approximately
once every 200 LLVM IR instructions [8], and so, to avoid pro-
hibitive overheads arising from tight program loops, we un-
roll each loop body until it has at least 200 LLVM IR instruc-
tions. With additional engineering effort, it should be feasi-
ble to place probes more infrequently for both loops and non-
loop code. We did not to pursue this goal in our work since
Concord’s instrumentation overhead is already low (≈1% on
average).

5 Evaluation
We evaluate Concord to answer the following questions:

• How does Concord perform across different service
time distributions for which different scheduling poli-
cies are optimal? (§5.2)

• How does Concord perform for a real, latency-sensitive
application? (§5.3)

• What is the contribution of each individual mechanism
to Concord’s performance benefits? (§5.4)

• What are the drawbacks of Concord’s design? (§5.5)
• Do Concord’s mechanisms remain useful as datacenter

server hardware evolves to provide increased support
for microsecond-scale scheduling? (§5.6)

5.1 Methodology

Baselines: We focus on blind policies, i.e. policies that do not
rely on application-level information, and pick two baselines
that represent the state of the art for workloads with high and
low service time dispersion, respectively. Shinjuku represents
the state of the art for workloads with high service time disper-
sion since it implements both a single queue and preemptive

scheduling. To compare against recent systems [19, 46] that
implement only an FCFS single queue for workloads with
low dispersion, we configure Persephone to use the C-FCFS
policy. We refer to this baseline as “Persephone-FCFS”.

For all experiments on our own cluster, we use the Con-
cord implementation that builds on top of Shinjuku. Since
Shinjuku is the best-performing baseline in this context, us-
ing this implementation enables an apples-to-apples compar-
ison between Concord and Shinjuku. As detailed in §4, the
performance differences between the two Concord implemen-
tations are minuscule.

Testbed: We use a testbed set up as per RFC 2544 [59] with
two directly connected machines—a server that runs Con-
cord or the baselines and a client that runs a load generator.
Both machines are identical Cloudlab [13] 𝑐6420 nodes with
a 32-core (64-thread) Intel Xeon Gold 6142 CPU running at
2.60GHz, with 376 GB of RAM, and an Intel X710 10 Gbps
NIC. The average network round trip time between the client
and server is 10µs. The server machine runs Ubuntu 18.04
with the 4.4.185 Linux Kernel since this is the version that
Shinjuku’s kernel module requires. We set up each system as
in prior work [19]: Shinjuku uses one hyperthread for the net-
worker and another for the dispatcher, co-located on the same
physical core. Persephone runs both its net worker and dis-
patcher on the same hardware thread. Unless otherwise speci-
fied, all systems use 14 worker threads running on dedicated
physical cores.

The client’s load generator sends requests according to
a Poisson process centered at the workloads’ mean service
time to mimic the bursty behavior of production traffic [6].
Unless specified, all measurements are performed at the client,
ensuring end-to-end evaluation of Concord. Each experiment
runs for 60 seconds and we discard the first 10% of samples
to remove warmup effects.

Workloads: We used one synthetic and one real application
to evaluate Concord across several service distributions from
both academic and industrial references. The synthetic work-
load is a server application that spins for the amount of time
specified by each request; this application allows us to evalu-
ate Concord across a variety of service time distributions. In
§5.2 we describe four such distributions, three of which are
based on workload A from the YCSB benchmark [14], Meta’s
USR workload [6] and TPCC running on an in-memory data-
base [19], respectively.

The real application is a server running LevelDB [42], a
popular and widely deployed key-value store developed by
Google that supports both point queries (put/get requests) and
range queries (scans). We evaluated LevelDB on two service
time distributions, one from Meta’s ZippyDB traces [11] and
the other from prior work [19, 36]. Unless otherwise specified,
we use two scheduling quanta—5µs and 2µs respectively—
for all workloads. Many of our workloads were also used by
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Figure 6. 99.9th percentile slowdown vs load for Bimodal(50 : 1, 50 : 100). Scheduling quantum is 5µs (left) and 2µs (right).
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Figure 7. 99.9th percentile slowdown vs load for Bimodal(99.5 : 0.5, 0.5 : 500). Scheduling quantum is 5µs (left) and 2µs (right).

Shinjuku and Persephone; in all such cases, we were able to
replicate their published results. When running on Shinjuku
and Persephone, the application code (both synthetic and
LevelDB) was not instrumented by the Concord compiler.

Metrics: For each workload, we primarily compare the through-
put that the two systems can sustain given a target 99.9th per-
centile Slowdown — which is the ratio of the total time the
request spends at the server to its un-instrumented service
time. Using tail Slowdown (instead of latency) allows us to
evaluate all workloads at a common Service Level Objective
(SLO), despite their absolute latencies varying significantly.
For all experiments, we set the slowdown SLO at 50× the ser-
vice time which is consistent with prior work [19, 36].

5.2 Synthetic Workload Comparison
Here we mimic four service time distributions, two each with
high and low dispersion respectively. The first two distribu-
tions stress Concord’s approximate preemption and its ap-
proximate single queue, while the last two only stress its sin-
gle queue.

Workloads with high dispersion that benefit from pre-
emption: Both high-dispersion workloads follow a bimodal
service-time distribution. In the first (Bimodal(50:1, 50:100)),
50% of the requests have a 1µs service time and the other
50%, 100µs. Such a distribution with an equal amount of short
and long requests is based on workload A from the YCSB
benchmark [14]. In the second (Bimodal(99.5:0.5, 0.5:500)),
99.5% of the requests have a 0.5µs service time and 0.5%, 500µs.
This distribution, with a majority of short requests and a few
very long requests, is based on Meta’s USR workload [6].

Fig. 6 and Fig. 7 illustrate the results for the two high-
dispersion distributions for scheduling quanta of 5µs and 2µs,
respectively. For a scheduling quantum of 5µs, Concord can
support 18% and 20% greater throughput than Shinjuku for
our 99.9th percentile slowdown SLO of 50×. Similarly, for a
scheduling quantum of 2µs, Concord supports 45% and 52%
greater throughput than Shinjuku. Due to its lack of preemp-
tive scheduling Persephone-FCFS crosses the slowdown SLO
much earlier than the other two systems for workloads with
high dispersion.

Workloads with low dispersion that do not benefit from
preemption: The first low-dispersion workload (Fixed(1))
uses a fixed service time of 1µs for all requests. The second
workload (TPCC) is based on the service time distribution
of TPCC [57] running on an in-memory database [58] and
is taken from prior work [19]. The distribution of request
types and service times is as follows: Payment (5.7µs) - 44%,
OrderStatus (6µs) - 4%, NewOrder (20µs) - 44%, Delivery
(88µs) - 4%, and StockLevel (100µs) - 4%. For Fixed(1), we
continue to use scheduling quanta of 5µs and 2µs. For TPCC,
we set the quantum to 10µs to avoid unnecessary preemptions,
since all requests run for longer than 5µs.

While such workloads do not benefit from preemption
(since there are too few long requests that block the shorter
requests), we observe that Concord still performs favorably
w.r.t the state-of-the-art; Fig. 8 illustrate the results. We see
that for the Fixed(1) workload (Fig. 8(a)), Concord achieves
effectively the same (2% less) throughput than Shinjuku and
Persephone. In such situations, the bottleneck is the dispatcher
thread—common to all three systems—which cannot deliver
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Figure 8. 99.9th percentile slowdown vs load for Fixed(1) (left) and TPCC (right) service time distributions.
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Figure 9. 99.9th percentile slowdown vs load for a LevelDB workload with 50% GETs, 50% SCANs. Quantum is 5µs (left) and 2µs (right).
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Figure 10. 99.9th percentile slowdown vs load for LevelDB work-
load based on ZippyDB production traces [11]. Quantum is 5µs.

requests to workers fast enough. Concord’s dispatcher incurs
the 2% penalty since it must calculate the “shortest queue”
for each incoming request to implement JBSQ(2). For the
TPCC workload (shown in Fig. 8(b)), which has low disper-
sion and the dispatcher is not the bottleneck, preemption over-
heads in Shinjuku and Concord harm throughput compared
to Persephone-FCFS, yet Concord still outperforms Shinjuku
given its low-overhead preemption mechanism.

5.3 LevelDB Server
We now compare Concord’s performance to Shinjuku’s and
Persephone’s for a LevelDB server that supports both point
and range queries. We set up LevelDB in a manner similar
to prior work [19, 36]. We populate the database with 15, 000
unique keys and use memory-mapped plain tables to keep
all data in memory. In this setup, GET requests take ≈ 600𝑛𝑠
each, PUT, DELETE requests take ≈ 2.3µs each and SCANs
take approximately 500µs.

We evaluate Concord’s throughput improvements for Lev-
elDB using two request distributions. The first distribution

consists of 50% GET requests for a single key and 50% SCAN
requests that scan the entire database. This workload strikes a
balance between the previous two Bimodal distributions and
was used by both Shinjuku and Persephone. The second dis-
tribution is based on recently published Meta traces [11] from
their ZippyDB service. This workload consists of 78% GETs,
13% PUTs, 6% DELETEs and 3% SCANs. We use scheduling
quanta of 5µs and 2µs for the first distribution. We use only a
5µs quantum for the second distribution since all requests in
the workload run for longer than 2µs and so a 2µs quantum
leads to unnecessary preemptions. Both distributions also al-
low us to evaluate how Concord performs for real applica-
tion code with locks since in LevelDB, both PUT and GET
requests acquire locks.

Fig. 9 illustrates the results for the first distribution. We ob-
serve that for our 99.9th percentile slowdown target of 50×,
Concord supports 52% greater throughput at a scheduling
quantum of 5µs and 83% greater throughput at a scheduling
quantum of 2µs. Concord’s throughput improvement over
prior work is larger for this workload because it has greater
dispersion (1000×) than the previous microbenchmarks. At
such dispersions—which are common in production work-
loads [3, 12, 45])—all three of Concord’s mechanisms shine.
JBSQ(2) ensures no worker thread is ever idle (minimizing
cnext), compiler-enforced cooperation ensures that long re-
quests do not suffer prohibitive overheads due to frequent
preemption (eliminating cnotif ) and the incoming requests per
second is low enough for the Concord dispatcher to frequently
remain idle and thus contribute to application goodput (im-
proving Overheadd). In §5.4, we provide a quantitative break-
down for this improvement.



Fig. 10 illustrates the results for the second distribution,
which is based on Meta’s production traces from their Zip-
pyDB service. We see that Concord supports 19% greater
throughput than Shinjuku for the target 50× slowdown. This
improvement is in line with Concord’s results for Bimodal(99.5 :
0.5, 0.5 : 500), shown in Fig. 7(a). This is unsurprising, since
the two service time distributions are similar.

5.4 Deep-Dive Into Concord’s Mechanisms
We now evaluate each of Concord’s key mechanisms—compiler-
enforced cooperation, JBSQ(2) scheduling, and the work-
conserving dispatcher—individually.

Overhead and timeliness of compiler-enforced coopera-
tion across applications: Since compiler instrumentation
rarely produces uniform slowdowns, we evaluated the over-
head and timeliness of Concord’s instrumentation across 24
benchmarks from the Phoenix [49], Parsec [48] and Splash-
2 [53] benchmark suites. We compared Concord’s instrumen-
tation overheads to published numbers from prior work [8]
that uses rdtsc()-based instrumentation. We used their pub-
lished numbers because we were unable to accurately repli-
cate their results. To obtain optimal overhead numbers, their
LLVM pass must be differently configured with 8 parameters
for each application and naive configurations lead to signifi-
cant overheads. They do not publish numbers for preemption
timeliness.

Table 1 presents the results across the 24 benchmarks. We
observe that Concord’s average instrumentation overhead is
not only low enough to be acceptable (≈1.04% on average) but
also 13.1× lower than the state of the art, with the maximum
overhead being 5.5× lower.

To evaluate Concord’s preemption timeliness, we set a
quantum of 5µs and measured the standard deviation from the
target quantum for the same set of applications (last column
of Table 1). Across all benchmarks, we see that the standard
deviation is smaller than 2µs and so well within the tolerable
imprecision (§3.1). Further, the 99th percentile of the achieved
scheduling quanta was always within 3 standard deviations
ensuring that Concord’s imprecise scheduling quanta do not
significantly impact tail latency.

Breaking down throughput improvements: We evaluated
the contribution of each of Concord’s mechanisms to its
throughput improvement by measuring the throughput sus-
tained by a system that cumulatively employs Concord’s key
mechanisms for a LevelDB workload consisting of 50% GETs
and 50% SCANs.

Fig. 11 illustrates the results. We observe that in compar-
ison to the ≈ 19kRps sustained by Shinjuku at the target
50× slowdown, systems that cumulatively employ compiler-
enforced cooperation, JBSQ(2) scheduling and a work-conserving
dispatcher sustain a throughput of ≈ 22.5 kRps, ≈ 32 kRps,
and ≈35 kRps, respectively.

Program Benchmark Concord CI Concord
name Suite overhead overhead std.dev

water-nsquared Splash-2 -0.3% 3% 0.24µs
water-spatial Splash-2 -0.6% 4% 0.23µs
ocean-cp Splash-2 0.1% 10% 1.8µs
ocean-ncp Splash-2 1% 6% 1.1µs
volrend Splash-2 0.5% 13% 0.47µs
fmm Splash-2 0.4% -2% 0.11µs
raytrace Splash-2 -0.2% 4% 0.03µs
radix Splash-2 0.9% 4% 0.56µs
fft Splash-2 1.2% 1% 0.63µs
lu-c Splash-2 4.6% 13% 0.63µs
lu-nc Splash-2 -3.7% 23% 0.58µs
cholesky Splash-2 -2.9% 29% 0.86µs
histogram Phoenix 1.6% 20% 0.57µs
kmeans Phoenix -0.3% 3% 1µs
pca Phoenix -2.7% 25% 0.06µs
string_match Phoenix 2% 18% 0.86µs
linear_regression Phoenix 6.7% 37% 0.78µs
word_count Phoenix 2.4% 30% 1.11µs
blackscholes Parsec 4% 10% 1.14µs
fluidanimate Parsec 1.3% 2% 0.04µs
swapoptions Parsec 2.2% 24% 0.86µs
canneal Parsec 1.5% 34% 0.02µs
streamcluster Parsec -2.1% 6% 0.08µs
dedup Parsec 0.4% 4% 1.2µs

Average - 1.04% 13.7% 0.29µs
Maximum - 6.7% 37% 1.8µs

Table 1. Overhead and timeliness of Concord’s instrumentation com-
pared to Compiler-Interrupts (CI) [8]. The baseline (0% overhead)
corresponds to un-instrumented code. Concord’s overhead is often
negative due to its loop unrolling.
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Figure 11. Contribution of each Concord mechanism towards
throughput improvement for the LevelDB server in Fig. 9(b). SQ
refers to the single queue scheduling policy.

We now provide an intuitive argument for these improve-
ments. First, the 3.5kRps improvement due to cooperation can
be seen as nearly eliminating the 20% cost of interrupt-based
preemptions (3.5 ≈ 0.2 ∗ 19). Second, JBSQ(2) eliminates
≈ 400𝑛𝑠 of idle time per request; this time is used to effec-
tively double the number of GET requests processed which
leads to an additional 9.5 kRps (0.5 × 19) in throughput. Fi-
nally, since the absolute load (in kRps) is ≈ 100× lower than
the maximum throughput the dispatcher can sustain (Fig. 8),
the dispatcher spends most of its time idle, allowing it to also
contribute to application throughput.

Reduction in preemption overhead: Next, we demonstrate
how Concord reduces the throughput overhead of preemptive
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Figure 12. Contribution of each Concord mechanism towards its
overall reduction in preemption overhead.

scheduling, and break down the contributing factors. To do
so, we measure the time it takes to service 1𝑀 requests, each
running for 500µs, while handling preemption notifications
and yielding. Since the preemption overhead (Eq. 3) includes
both the cost of the preemption notification (addressed by
compiler-enforced cooperation) and the time spent waiting
for the next request to arrive (addressed by JBSQ(2) schedul-
ing), we break down the contribution of each mechanism by
evaluating the overhead of systems that cumulatively use the
above two mechanisms. We use the state-of-the-art interrupt-
based approach (Shinjuku) as a baseline and perform this ex-
periment for scheduling quanta ranging from 1-100µs.

Fig. 12 illustrates the results. We observe that Concord re-
duces the overhead of preemptive scheduling by 4× in com-
parison to Shinjuku. In this setting (unlike Fig. 11), we ob-
serve that compiler-enforced cooperation is the mechanism
that contributes the most towards Concord’s improvements.
This is because unlike the workload in Fig. 11, every request
must be preempted, and so reductions in the cost of the pre-
emption notification dominate.

Does the dispatcher do useful work? Finally, we demon-
strate the benefit of running application logic on the dispatcher
thread in resource-constrained environments (e.g., smaller
VMs in the public cloud).

Fig. 13 illustrates our results. We ran the same LevelDB
workload on 4 cores—1 dispatcher, 1 networker, two workers—
to simulate smaller VMs in the public cloud. In such situa-
tions, particularly with the low incoming load (in absolute
kRps), the dispatcher is almost entirely idle. Hence, running
application logic on the dispatcher thread improves applica-
tion throughput by 33%.

5.5 The Drawback of Approximate Scheduling
While approximating optimal scheduling enables Concord to
sustain higher application throughput for the same tail laten-
cy/slowdown SLO, it comes with the drawback of slightly
increasing tail latency (and hence slowdown) at lower loads.

Fig. 14 illustrates this increased slowdown for the work-
load used in Fig. 6 (Bimodal(50 :1, 50 : 100)); we observed
similar results across all workloads. We observe that Concord
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Figure 13. Application throughput for dedicated dispatcher vs. Con-
cord dispatcher in a 4-core configuration.
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Figure 14. Zoomed-in version of Fig. 6(a) to show Concord’s in-
creased slowdown at low loads. We observed similar increases across
all other workloads.

increases the 99.9th percentile slowdown by ≈3 in compari-
son to Shinjuku at lower loads. This increase in tail slowdown
occurs when the Concord dispatcher steals requests during oc-
casional bursts even at low loads. Since these requests cannot
be migrated to worker cores once the dispatcher has started
processing them due to the different code instrumentation
(§3.3), they run slower than ones processed by worker cores,
which leads to this additional slowdown. That said, we believe
that this increase in slowdown is acceptable since it is much
smaller than typical SLOs, which are usually 10 − 50× the
service time to account for queueing and network round trip
times. Users unwilling to tolerate even this slight increase in
slowdown at low loads can disable the Concord dispatcher’s
work-stealing mechanism and retain the throughput benefits
of Concord’s compiler-enforced cooperation and JBSQ(2)
scheduling.

5.6 Is Concord Future-Proof?
Finally, we evaluate whether Concord’s mechanisms will re-
main useful as datacenter server hardware evolves and pro-
vides increasing support for microsecond-scale scheduling.

To do so, we compare the throughput overhead of Con-
cord’s preemption mechanism (compiler-enforced coopera-
tion) with that of user-space IPIs (UIPIs), a feature recently in-
troduced by Intel on their new Sapphire Rapid servers. UIPIs
reduce the overhead of traditional IPIs by allowing applica-
tion threads to directly send each other interrupts while by-
passing the kernel [62]. We set up our experiment just like the
one in Fig. 2; we measure the time it takes to service 1𝑀 re-
quests, each running for 500µs and isolate the overhead of the
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Figure 15. Comparing the overhead of Concord’s compiler-enforced
cooperation to Intel’s new user-space IPIs.

preemption mechanism by running the application with no-op
preemption handlers. We use a 192-core Intel Xeon Platinum
8648 Sapphire Rapid server to compare the mechanisms.

Fig. 15 demonstrates the results. We observe that Concord’s
compiler-enforced cooperation outperforms even the most
recent hardware support and imposes a throughput overhead
that is ≈ 2× lower. This is unsurprising, since no matter how
fast interrupts get, they will always be slower than Concord’s
reads and writes to a shared cache line which will remain the
fastest way for two cores to communicate on shared memory
hardware. Note, the absolute value of Concord’s overhead is
slightly higher on this machine as compared to the machines
we used in our evaluation and for Fig. 2. This is because of the
large number of cores, which makes cache coherence misses
approximately 1.5× more expensive. That said, the relative
overhead of Concord with respect to UIPIs will remain the
same even on Sapphire Rapid machines with fewer cores,
since sending an interrupt also requires writing to memory-
mapped registers and thus relies on the same cache coherence
mechanisms as Concord’s compiler-enforced cooperation.

To summarize, our evaluation demonstrates that Concord
improves application throughput while preserving the tail-
latency properties of the state of the art for a wide range
of service time distributions. While Concord is particularly
effective—18-83% higher throughput than the state of the
art—for service time distributions that benefit from preemp-
tive scheduling (Figures 6, 7, 9, 10) it continues to perform
favorably even for service times that only require single
queue scheduling (Fig. 8). Finally, each of Concord’s mech-
anisms contributes to its overall throughput improvements
(Figures 11, 12) and will remain useful even as datacenter
servers provide increasing hardware support for microsecond-
scale scheduling (Fig. 15).

6 Discussion
Limitations: Concord has two main limitations:
First, it requires the application source code to be available
and written in a compiled language with an LLVM backend.
We believe that access to source code should not be an is-
sue for developers deploying Concord on bare metal, or for
tenants deploying their low-latency systems on VMs in the

public cloud. That said, the current Concord prototype is ill-
suited to being a runtime provided by public cloud providers
for their tenants since this would require that all tenants share
their code with the cloud provider. We plan to explore replac-
ing Concord’s source code instrumentation with approaches
that directly instrument the binary to overcome this limitation.

Second, the current Concord prototype is restricted to
single-dispatcher systems. This will not be a limitation for
low CPU count, e.g. small VMs, but the single dispatcher
can become a bottleneck as the number of CPUs increases
and the service time (as well as service time variability) de-
creases. In such cases, replication, i.e. creating multiple single-
dispatcher instances that feed disjoint sets of cores, or trading
off throughput for tail-latency, e.g. using batching, can help
improve scalability [36].

How Concord extends to single-logical-queue systems:
Concord’s compiler-enforced cooperation and work conserv-
ing dispatcher can enable low-overhead preemption even
in systems that implement a single logical queue such as
Shenango [46] and Caladan [22]. This is because compiler-
enforced cooperation only requires the dispatcher to monitor
the elapsed time and does not require it to maintain the single
queue. Such a system would also overcome the throughput
bottleneck of a single dispatcher.

Incorporating the above mechanisms will require a ded-
icated hyperthread (referred to as the “scheduler” hence-
forth) that only monitors whether a worker thread has been
processing a request for longer than the scheduling quan-
tum. Some single-logical-queue systems (e.g., Caladan [22])
already have such a scheduler thread. When the quantum
has elapsed, the scheduler writes to the cache line, and the
worker—instrumented to poll for it—stops processing the cur-
rent request. Since the dispatch of a request is not synchro-
nous with when a worker begins processing it, the worker
must start the timer at the beginning of the quantum, but this
is already the case with Concord’s asynchronous dispatch for
JBSQ (§3.2). Finally, the scheduler can steal requests safely
using rdtsc() instrumentation (§3.3) since it is likely to be
idle for extended periods.

Broader use of cooperative preemption: We believe Con-
cord’s compiler-enforced cooperation mechanism can be used
as a replacement for IPIs in many settings beyond schedul-
ing. For instance, any periodic event, such as garbage collec-
tion and timer management or Unix signals and global syn-
chronization mechanisms, implemented through membar-
rier() on Linux or FlushProcessWriteBuffers on
Windows, can eschew IPIs in favor of compiler-enforced pre-
emption. Compiler-enforced preemption can also be used in
deployments where IPIs are not available or untrusted. This
is the case for confidential VMs [2, 31] in which the hypervi-
sor is considered potentially malicious and can inject virtual
interrupts at any point in time.



7 Related Work
Having already discussed the closest related work—Shinjuku,
Persephone, Compiler Interrupts—in detail, we do not do so
again here.

Microsecond-scale schedulers deployed by major cloud
providers (e.g., ghOSt from Google [28]) typically have lower
raw performance than academic ones (e.g., ghOSt aims to be
within 5% of Shinjuku’s maximum sustainable throughput).
However this is because they prioritize requirements that
academic schedulers (including Concord) do not; for instance,
the ability to simultaneously support multiple tenants with
different scheduling policies and the ability to provide fault
isolation. In this work, we focused on extracting maximum
raw performance from a single application with Concord.
We plan to pursue extending Concord to support the above
constraints as immediate future work.

The key ideas underlying Concord’s compiler-enforced co-
operation, namely cooperative scheduling and inter-core com-
munication using dedicated cache lines, are well known. For
instance, cooperative scheduling and user-level threading go
back to the seminal paper on Scheduler Activations [4] and
are widely used in different contexts such as language run-
times, e.g. goroutines [25], and modern thread library imple-
mentation for the datacenter, e.g. Arachne [51]. Similarly, us-
ing dedicated cache lines instead of interrupts or barriers to
enable low-overhead core-to-core communication is widely
used for high-performance computing [1, 24]. That said, the
key difference between such prior work and Concord is that
the former relies on the programmer to correctly insert both
yield points and reads/writes to cache lines, while Concord
does so automatically using a compiler pass.

While programming language approaches have been used
extensively in the context of memory isolation [29, 47], split-
ting CPU time using such approaches is more challenging.
Lilt [60] introduces a new language to statically enforce tim-
ing policies and the Erlang scheduler [21] depends on the un-
derlying language virtual machine implementation to count
the number of executed instructions and preempt Erlang pro-
cesses in a timely manner. Finally, Libringer [10] introduces
the abstraction of a preemptible function but depends on Unix
signals to implement it, thus incurring high overheads for µs-
scale tasks.

8 Conclusion
We presented Concord: a runtime that demonstrates that ap-
proximating tail-optimal scheduling policies can lead to sig-
nificant throughput benefits for µs-scale applications with
negligible tail-latency penalties. Concord relies on three key
mechanisms to reduce overhead—co-operative preemption in-
stead of interrupts, JBSQ(2) scheduling to eliminate idle time
and automatic code instrumentation to safely run application
logic on the dispatcher thread. We evaluated Concord using

microbenchmarks and Google’s LevelDB key-value store on a
wide variety of service time distributions from academia and
industry. Compared to the state of the art, Concord improves
application throughput by up to 52% on microbenchmarks and
by up to 83% on LevelDB, with the same tail-latency charac-
teristics. Unlike the state of the art, Concord does not rely on
custom hardware or application-level assumptions, so it can
be deployed today in the public cloud for a wide range of ap-
plications.
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