
The Case for Energy Clarity
Fan Chung, Henry Kuo, George Candea

EPFL, Switzerland

ABSTRACT
The rapid expansion of cloud computing, especially machine

learning, is leading to a significant increase in the global

energy footprint of computing. Improvements in the energy

efficiency of hardware and infrastructure are nearing the

point of diminishing returns, and system developers will

soon be compelled to drastically improve the energy effi-

ciency of their software. For that, it is essential to have energy
clarity: developers/operators must be able to accurately and

productively understand how the energy usage of their hard-

ware and software is influenced by workload, configuration,

and other factors. We propose energy interfaces as a way to

achieve that clarity: an energy interface provides concise,

accurate, actionable information about the “energy behavior”

of a system, much like a functional interface does for its

semantic behavior. Preliminary experimentation suggests

that obtaining and using such energy interfaces is feasible.

We believe that some form of energy interfaces will one day

become as central to system building as functional interfaces.

ACM Reference Format:
Fan Chung, Henry Kuo, George Candea. 2025. The Case for Energy

Clarity. In Workshop on Hot Topics in Operating Systems (HOTOS
’25), May 14–16, 2025, Banff, AB, Canada. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3713082.3730370

1 MOTIVATION
The energy efficiency of computing has become a signifi-

cant global challenge, with data centers and computer net-

works already accounting for 2-3% of the world’s energy

consumption [27]. Energy use of the data centers powering

the cloud has been growing 20-40% annually over the past

several years [27], and there is no expectation of slowdown

in the near future, owing mostly to the rise of machine learn-

ing [43, 47, 54]. Increased energy consumption comes with

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1475-7/2025/05. . . $15.00

https://doi.org/10.1145/3713082.3730370

an increase in need for cooling, which additionally increases

water demand and, ultimately, total cost of ownership (TCO).

Finally, devices that rely on batteries—ranging from tiny

cyber-physical systems to electric vehicles and drones—are

playing an increasingly central role in modern life.

It is therefore essential that future systems become bet-

ter at processing workloads using less energy per unit of

work. Hardware has made significant progress in energy

efficiency, but we are nearing diminishing returns, and the

responsibility for further improvements will rest with soft-

ware. The good news is that, when engineers understand

the “energy behavior” of software—i.e., how the energy con-

sumption of executing that software varies with inputs,

configuration, and deployment specifics—it is possible to

make drastic reductions in energy consumption. For exam-

ple, Ethereum recently reduced its energy consumption by

an impressive 99.95% by transitioning from proof-of-work to

proof-of-stake consensus [17]. Inside the data center, better

scheduling of existing workloads can reduce peak energy us-

age significantly [20]. The bad news is that reasoning about

a system’s energy behavior in general is very hard [8].

A key problem is that engineers lack visibility intowhat in-
fluences a system’s energy behavior and exactly how it does

so—this opaqueness makes it hard to optimize the energy us-

age. Researchers have explored, for instance, reducing the en-

ergy consumption of ML models by minimizing the number

of multiplication-and-accumulation (MAC) operations [64]

and by considering the number of zeros in the inputs [33, 63].

But many other aspects affect the energy consumption of

an ML model, ranging from the low-level (e.g., using 16-bit

vs. 32-bit floats [40]) to the high-level (e.g., how model code

influences the pipelining of tasks on a GPU [12, 13]). With-

out a clear view of the role that each layer of hardware and

software plays in overall energy consumption, engineers

optimizing a system’s energy usage engage in an after-the-

fact game of whack-a-mole: benchmark, change the system,

observe and re-measure, change again, and so on.

To illustrate this challenge, imagine you’re an infrastruc-

ture engineer responsible for ClusterFuzz [21], a large-scale

fuzz-testing cluster system. You ask yourself What is the
optimal number of machines to deploy to minimize energy
consumption while achieving 95% testing coverage? Or How
much additional energy is required to increase coverage from
90% to 95% using the same number of machines? Answering
such questions today involves iteratively modifying the in-

frastructure configuration (e.g., via Infrastructure-as-Code,

1

https://doi.org/10.1145/3713082.3730370
https://doi.org/10.1145/3713082.3730370

or IaC, files) deploying, measuring energy usage, revising

the configuration, and repeating. Ironically, this trial-and-

error process could consumemore energy than it saves. With

better insight into how energy is used, engineers could get

these answers directly from the IaC files and application

code, before deploying anything.

A similar challenge is faced by resource managers, like

operating systems or cluster schedulers. They allocate re-

sources (e.g., CPU cores or nodes) to tasks, but can only

guesstimate the energy characteristics of applications [44,

48]. Consider the Linux Energy-Aware Scheduler [55], which

aims to minimize energy consumption by scheduling tasks

across CPUs in asymmetric architectures, such as those

found in big.LITTLE systems. It cannot accurately estimate

a task’s future energy consumption, because it does not take

into account task specifics [44]. Instead, it uses core uti-

lization as a proxy for energy consumption: for any given

task, it looks at its past core utilization, and uses the av-

erage to predict how much energy it will consume in the

next scheduling quantum. However, this is inaccurate for

many applications. For example, real-time video transcod-

ing can exhibit a bi-modal behavior, with compute peaks

during active transcoding and troughs when doing I/O. A

cluster scheduler like Kubernetes [3] faces similar difficulties:

a memory-intensive application might consume less energy

on a big-memory node than on a compute node, but Kuber-

netes wouldn’t know ahead of time what the application

will do. With deeper visibility into future energy behavior,

resource managers could make better decisions.

2 ENERGY CLARITY AND INTERFACES
We argue that energy clarity is essential to increasing energy

efficiency in systems. A system, or a module within a sys-

tem, that posesses energy clarity is one that enables humans

(e.g., developers or operators) and programs (e.g., resource

managers or compilers) to understand how its energy usage

is influenced by workload, configuration, and other factors.

It does so accurately and at the right level of abstraction.

Energy clarity is about clearly conveying where and how

energy is consumed in the system, before actually running

the system.

Energy clarity is not the same as power modeling [15,

20, 46, 56]. The latter involves predictive models that esti-

mate energy consumption based on profiling, data collection,

and statistical or learned inference. As a result, they can

miss important details that did not manifest during profil-

ing or training. These models also do not necessarily show

why energy is consumed in a particular way, nor how that

consumption is influenced by specific design or operational

decisions. Such models are often domain-specific, and they

rarely provide a systematic basis for composing the mod-

eled module together with other modules into higher-level

systems [34]. Finally, as a system evolves, the energy model

must be updated promptly and accurately, something that is

hard to do based on observations and benchmarking alone.

Achieving energy clarity is not a panacea. First, energy

consumption behavior is complex, non-modular, and often

non-intuitive. For example, scheduling a task to a core that

is already highly utilized may actually be energy-optimal,

due to lower marginal energy cost [9]. Representing behav-

iors that are complex and non-obvious requires a rich and

expressive language. Second, energy clarity requires that

its beneficiaries (i.e., both humans and machines) be able to

quickly and intuitively understand the represented behavior,

so the language must be both natural for programmers and

machine-interpretable. Third, to work for systems ranging

from tiny to huge, energy clarity must fundamentally ac-

commodate multiple layers of abstraction, with each layer

representing its energy behavior as a composition of the

behaviors of underlying layers with that layer’s own logic.

We propose the notion of energy interfaces by analogy

to functional interfaces, as a way to achieve energy clarity.

Functional interfaces, found in header files or service API

documentation, provide a concise summary of the semantics

of any implementation of that interface. Interfaces are ac-

curate and complete constructs, i.e., they cover all possible

inputs. Thus, they enable productive reuse of the implementa-

tions, without requiring an understanding of implementation

details. By abstracting semantics in this way, interfaces are

essential to composing modules into higher-level subsystems

and systems.

In essence, we want to make energy programmable,
in the same way that functionality is programmable.
An energy interface provides an explanation of the energy

behavior of a “resource” (i.e., of a system, a subsystem, or

a module of a subsystem) that is both concise and accurate.

The interface takes the form of a little program (see Fig. 1)

that “computes” energy usage by “calling into” the energy

interfaces of resources used by this resource and combin-

ing the results according to the logic of the summarized

resource. A developer can read this program to understand

and reason about the energy behavior of the resource. A

resource manager can execute the interface to know a priori

the energy that the resource would consume if run with a

particular workload, in a particular configuration. A system’s

energy interface therefore becomes a nested composition of

lower-level interfaces, with the base case being hardware-

level energy interfaces. A Turing-complete programming

language can represent arbitrary behaviors, is understand-

able by both programmers and programs, and is well suited

to representing different layers of abstraction. It also makes

it possible to reuse a rich body of existing program analysis

and verification techniques to reason about energy.

We do not have yet concrete answers, but we think this is a

2

problem worth pursuing. In the rest of the paper we present

some initial thoughts that suggest a research direction, and

we solicit the community’s feedback on these thoughts. Pre-

liminary experimentation suggests that it is feasible to obtain

energy interfaces for real systems (e.g., those running ML

models) that explain energy behavior to a good degree of

precision (e.g., less than 10% error, see §5). These prelimi-

nary efforts are still manual, but we believe that they can be

automated using techniques similar to CFAR [30]. In fact, in

proposing energy interfaces we were inspired by the related

work that proposed performance interfaces [29, 37].

3 DEFINITIONS
The energy interface of a module is an abstraction of that

module’s energy usage: it is a program that takes in the

same input as the implementation (module) and returns the

amount of energy the implementation would consume to

process that input. Fig. 1 shows a hypothetical, simplified

energy interface for an ML-model web service. The model is

a convolutional neural network (CNN) that takes in an image

and outputs the objects it identifies in the image (cars, chairs,

etc.). The energy interface takes in the same request data as

the service. The service checks if the request that just arrived

is in the request cache (e.g., because some other user had

uploaded the same image before) and, if not, performs the

costly inference operation. The energy interface is valid for

all possible inputs, previously seen or unseen—as mentioned

in §1, this is unlike energy profiling or empirical modeling,

which relies on sampling only some of the possible inputs.

In some cases it may be necessary to have a special input to

the interface corresponding to a module’s idle state (i.e., no

input), in which it still consumes energy even if it does no

work—the special input would likely be a time duration.

1 def E_ml_webservice_handle(request):
2 # ECV: request_hit - request found in cache
3 max_response_len = 1024
4 if request_hit:
5 return E_cache_lookup(request.image, max_response_len)
6 else:
7 return E_cnn_forward(request.image)
8 def E_cache_lookup(key, response_len):
9 # ECV: local_cache_hit - cache hit in current node
10 return (5 if local_cache_hit else 100) * response_len # (Millijoules)
11 def E_cnn_forward(image):
12 n_embedding = 256
13 n_zeros = image.count(0)
14 return (8 * E_conv2d(image.size() - n_zeros) +
15 8 * E_relu(n_embedding) +
16 16 * E_mlp(n_embedding))

Figure 1: An example energy interface for an ML-model web
service. (ECVs are explained later)

An energy interface can return energy in Joules, Watt-

seconds, etc., or in abstract energy units, such as “energy for a
2D convolution” or “energy for a rectified linear unit (ReLU)”.

Abstract units are useful not only for composition but also

for relative comparisons: if a function consumes 2 ReLUs’

worth and another consumes 4 ReLUs’ worth, then the latter

consumes twice as much as the former, regardless of how

many Joules that is. One could imagine energy interfaces that

return power (i.e., energy per unit of time), or peak power,

which can be useful for resource managers to optimize power

provisioning and increase utilization of resources [20]. We

do not consider them further, in this paper.

Energy interfaces are programs that can be both read by

humans and executed by programs or tools. We expect this

to appeal to programmers’ intuition more than other formal

languages, while being more precise than natural language.

Our examples use Python, which is widely understood and

used by developers and is Turing-complete, so it can describe

any possible energy behavior.

The program in an energy interface can accept an abstrac-

tion of the input in lieu of the full input. For example, a

communication layer might care only about the number of

RPC calls and payload size to compute energy used, while

the specific content itself is largely irrelevant.

An energy interface must account for past inputs and

actions, if they influence future energy consumption. One

(non-workable) option is to have the energy interface take

as input an entire workload (i.e., a time series of inputs),

but that would render the interface an impractical construct,

of use only for theoretical reasoning. Instead, an energy

interface can utilize energy-critical variables (ECVs): these

are random variables that capture factors about the module

or subsystem that influence energy but are not directly re-

lated to the input of the interface. For example, in Fig. 1, the

cache state is dependent on whether the request has been

served before, as captured by the ECVs request_hit and

local_cache_hit. The return value of the energy interface

then is to be treated as a probability distribution. ECVs are

analogous to performance-critical variables [29, 31].

When building systems, we use layers of abstraction, and

energy interfaces must match them. The lowest layer in

the system stack would normally consist of energy inter-

faces provided by a hardware vendor. For instance, an RPC

hardware accelerator would come with an energy interface

capturing its idle state, the serialization function, transmis-

sion, etc. When hardware energy interfaces are not available,

one can approximate them with microbenchmarks, using a

variety of techniques [7, 25, 28, 49, 57], with the caveats men-

tioned earlier. Depending on the system, the bottom-most

layer might be a virtual machine, and the energy interface

would reflect the VM’s running state, its stopped state, its

in-migration state, etc. It can also be the service API that

a cloud app uses—cloud providers do not need to provide

their customers with energy interfaces at the level of the

hardware.

Abstractly speaking, the system stack consists of layers,

and each layer consists of resources (i.e., hardware or software
components) that perform energy-consuming work. They

can be a CPU core, a hardware accelerator, a library, an

3

application, etc. If we think of resources’ functional interfaces

as abstract classes in the object-oriented programming sense,

then the energy interface would be a class, with each public

method of the functional interface having a corresponding

method in the energy interface.

CPUOS DRAM GPU
HW accel

driver
NIC

Redissystemd

③

Developers

②

Django
web app

Python
runtime

PyTorch
ML model

Energy interface

Docker container

Functional interface
Resource
Resource manager

①

④

Figure 2: A system stackwith layers containing resources and
resource managers, with functional and energy interfaces.

Each layer in the system stack has at least one resource
manager that provisions and manages resources in that layer.

Examples include schedulers, thread pool managers, buffer

cache managers, application session managers, container or-

chestrators, VM monitors, load balancers, etc. Since resource

managers handle resource allocation and maintain bindings

between components at the different layers, they are the ones

that can combine the energy interfaces of the underlying

resources and expose the resulting energy interfaces of the

resources to the upper layer. A module’s energy behavior

is influenced by decisions made by the resource manager,

because they affect system state (e.g., cache contents or pro-

cessor frequency), and, for a given operation, that system

state can influence the energy cost of the operation.

Fig. 2 illustrates this abstract view of a system stack: 1○ A

resource manager administers the resources in that layer and

has visibility into their energy interfaces. Ideally, it leverages

this visibility to manage the resources in an energy-efficient

manner. Based on the resources’ energy interfaces and the

way in which it administers them, the resource manager

composes the energy interfaces for the layer above. These

new interfaces are provided 2○ to resource managers in the

next layer up, 3○ to developers, and possibly 4○ to resources

in the next layer up. Thus, resource managers are the main

agent of composition for energy interfaces.

Consider the correspondence between Fig. 2 and Fig. 1:

The web app is a Django [1] application, thus a resource

managed by the Python runtime. It is in the same layer as

the PyTorch [4] ML model, which shares the same Python

resource manager. Beneath the web app and ML model, the

web server uses Redis [5] to cache requests, which is man-

aged by systemd. Both the web server and ML model run in a

Docker [2] container. In Fig. 1, the energy-interface methods

E_ml_webservice_handle and E_cnn_forward come from

the energy interface exported by the Python runtime, and

E_cache_lookup from the one exported by systemd [6]. The

E_cnn_forward, E_conv2d, E_mlp, and E_relu methods are

exported from the accelerator driver, passed through Docker.

This layered view of energy interfaces offers at least two

advantages. First, an interface can be adapted naturally when

the execution environment of the application changes. For

example, running the same neural network (NN) on different

machines will consume different amounts of energy, even

if the NN itself and the workload do not change. To obtain

the new end-to-end energy interface of the NN on a differ-

ent machine, nothing needs to change in the software stack

but only some of the energy interfaces in the bottom layer

need to be replaced, corresponding to the specific execution

environment. Second, the energy behavior of the same appli-

cation can be expressed using energy interfaces at different

granularity. This means that the interface can be tailored

to different users of the interface. The example interface

in Fig. 1, even though it is a service-level interface, suggests

that increasing local cache hits may be a more productive

way of reducing energy footprint than by optimizing the ML

model itself.

4 PRODUCING AND USING ENERGY
INTERFACES

In general, the functional interface of a module starts out as a

preliminary draft produced before an implementation exists,

and is then refined as the module’s implementation matures.

Once it is reasonably stable, other modules can rely on the

interface to reuse the module’s functionality. We envision a

similar workflow for energy interfaces as well.

4.1 Energy Interface→ Implementation
A system developer would prototype energy interfaces,

alongside functional interfaces, for the various modules in

her system. She could do this in Python.

At this stage in the workflow, a module’s energy interface

provides upper-bound requirements on energy consumption,

i.e., for each path through the interface, the interface’s return

value represents the worst-case energy consumption for all

module executions that correspond to that path. There might

be situations in which additional constraints would need to

be expressed, such as constant-energy execution for crypto

code, to explicitly disallow energy side-channels—a mere

upper bound is not sufficient for this. Some of the modules

might already have implementations, in which case a tool

would derive energy interfaces for them (see below).

The resulting energy interface is an abstract composition

of the energy used by resources this module would rely on,

with no details about how the actual resources operate.

A tool then combines the energy interfaces of the system’s

4

modules and provide a first-cut answer on whether they are

compatible with each other, i.e., whether the composition of

lower-level modules satisfies the energy constraints present

in the upper-level energy interfaces. If everything checks

out, a developer (either human or AI) can produce the im-

plementations of the modules, aiming to respect both the

energy and functional interfaces.

At every stage of development, a tool/compiler toolchain

verifies that indeed the code written thus far satisfies the

worst-case energy interface—if not, then either the imple-

mentation or the interface needs to be modified. Note that

resource managers need to derive from these energy inter-

faces some constraints on how to schedule/allocate/manage

the various resources (modules) in order to keep their energy

behaviors within the indicated envelopes.

4.2 Implementation→ Energy Interface
The main goal of this second workflow is to obtain an ac-
curate (not worst-case) representation of every module’s or

subsystem’s energy behavior. The outcome of the workflow

can be used to further compose modules in order to derive

higher-level energy interfaces, or used for purposes of for-

mal verification. This implementation→interface workflow

would follow after the interface→implementation workflow

described above, but could additionally be part of that work-

flow and used for already-existing module implementations.

For each module implementation, a program analysis tool

derives an intermediate representation (IR) that captures how

that module combines lower-level resources to implement

its own logic. This IR is a combination of calls to lower-level

resources and the actual instructions that the module ex-

ecutes (i.e., the logic), along with a representation of side

effects. The latter is important: for example, if an app causes

a smartphone’s WiFi radio to turn on, subsequent apps using

WiFi will consume less energy than if it had been them turn-

ing the radio on—this is a side effect. The program analysis

tool has to perform a combination of per-path analysis (e.g.,

using symbolic execution) with side-effects analysis (e.g., as

done for cache usage in [30]).

The IR for each module is then combined by the toolchain

with the implementation of the resource’s corresponding

manager. This entails reasoning about the composition of the

various resources’ energy interfaces under the constraints

imposed by how the resource manager would manage those

resources. The result is an energy interface that describes

the entire layer’s energy behavior in an accurate manner,

not just as an upper bound.

The outcome can then be used for further composition

up the system stack, or be used for testing or formal energy

verification. One way to do testing is by running the layer

(or the entire stack) with well chosen inputs, measuring the

consumed energy (e.g., with Intel RAPL [23]), and comparing

it to the interface’s prediction; divergences would then be

flagged as energy bugs. Formal energy verification can use

existing formal methods applied to the programs that express

the energy interfaces, or novel approaches.

There can be cases in which neither the source code of

a module nor an energy interface is available, such as for

proprietary modules whose vendors have not yet adopted

energy interfaces. In such situations, the fallback approach

can be to use microbenchmarks, measurements, and tracing

of calls to other modules to obtain a statistical or learned

model of its energy behavior. The resulting interfaces would

be suitable for testing but likely not for formal verification.

5 PRELIMINARY EXPERIMENTS
We performed an initial set of experiments using the GPT-2

large language model [42]. We chose LLM inference as a

first target because, as a class of applications, it is among the

largest energy consumers today.

We manually derived hardware energy interfaces for two

GPUs, and a high-level energy interface for GPT-2 inference.

The latter computed energy consumed in terms of static

power, VRAM sector reads/writes, L2 sector reads/writes, L1

wavefront reads/writes, and instruction executions.

We then used the energy interface to predict the LLM’s

energy consumption on autoregressive text generation for

up to 200 tokens, and compared it to the actual energy con-

sumption, measured with NVML [41]. We ran the GPU-cache

microbenchmark [16] with Nvidia Nsight Compute CLI to

measure the energy for the individual metrics, to obtain

absolute energy measures.

GPU Average error Max error

Nvidia RTX4090 0.70% 0.93%

Nvidia RTX3070 6.06% 8.11%

Table 1: Relative energy prediction error for single GPT-2
inference (generating up to 200 tokens).

Table 1 shows the results. While not a proof of feasibil-

ity, these experiments suggest that achieving energy clarity

through energy interfaces is conceivable.

6 OPEN QUESTIONS
Perhaps the biggest threat to being able to obtain energy

interfaces is the lack of “energy modularity.” Functional in-

terfaces require semantic modularity, i.e., independent mod-

ules that encapsulate behavior and interact with one another

through interfaces—this is the opposite of spaghetti code.

Similarly, energy interfaces require some level of “energy

modularity” that would allow reasoning about components

in isolation. However, given how hardware is built today,

5

and given the constraints imposed by physics, energy modu-

larity cannot be achieved in the classical sense. For example,

running a process on a core produces heat that in turn can

affect the energy consumption of a nearby circuit. Thinking

about this is an important part of future work and something

we would like to discuss with the community.

Reasoning about energy is fundamentally more challeng-

ing than performance because resources perform work that

converts usable energy to unusable energy. On the other

hand, time is usually defined as “what the clock reads,” which

is independent of the resources that are used to perform the

work. Having to reason about what resources consume en-

ergy makes analyzing the energy consumption of a program

typically more difficult than analyzing the performance of

a program. For example, the energy consumption of a web

request from Switzerland to a server in Taiwan consists of

the energy consumption at all layers of the software stack

and all machines that processed the request along the way. In

contrast, the latency of the request can be measured directly

from the client side, hiding the complexity of the network.

A technical related challenge is the lack of mechanisms for

fine-grained energy measurement. Today, Intel’s RAPL [23]

and Nvidia’s NVML [41] are among the most sophisticated,

yet are still too coarse-grained for detailed and meaning-

ful energy measurements. We hope that the increase in the

importance of energy efficiency will encourage hardware

vendors to expose better mechanisms to software.

An open question is how well can energy interfaces com-

pose? In §5 we found that energy interfaces can quite accu-

rately abstract the energy behavior of a program, but com-

bining these energy interfaces to form higher-level energy

interfaces could be a challenge. An important question in

composition is how the lack of accuracy in different lower-

level interfaces influences the accuracy of a higher-level

interface.

We have not yet built an automated toolchain to extract

energy interfaces directly from code. The results we reported

were based on manually produced interfaces, microbench-

marks, and direct use of hardware-provided energy metrics.

However, we do expect that this can be automated and done

statically, as there is existing work on statically understand-

ing program energy consumption [22, 36, 58].

Our preliminary experiments were run on easy use cases.

While we have shown accurate energy estimation results for

GPT-2 on a couple of GPUs, ML applications often follow

a direct input-to-output flow with minimal branching and

flow control. Branching is generally discouraged on GPUs,

because it can degrade performance [38]. We plan to try our

approach on more complex systems (e.g., database and web

server applications) which involve more branching state-

ments and memory irregularities.

7 RELATEDWORK
Energy and power measurement and modeling. Exist-
ing tools, such as RAPL [23] for CPUs and NVML [41] for

Nvidia GPUs, enable on-device energy measurement. More-

over, plenty of research has focused on developing more

accurate models for energy estimation across various scopes,

including applications [20, 56, 59], CPUs [11, 25, 28, 35, 49,

57, 66], GPUs [7, 32, 67], whole machines [15, 39], and data-

centers [19, 45]. However, as noted in §2, they offer limited

insight into why energy is consumed in specific ways or

how it can be optimized. While [46] purposes a novel power

modeling technique that enhances logical explainability by

leveraging runtime events within the Java Virtual Machine,

it does not clarify the relationship between these runtime

events and energy consumption.

Energy efficiency in software systems. This topic has

been explored at various levels, including energy-efficient

algorithms [14, 18, 26], compiler optimizations for energy-

efficient code [60–62], and schedulers for balancing work-

loads and energy use [51, 53, 55]. However, most of these

methods rely on energy measurement tools which cannot

express the energy consumption behavior across all possible

inputs or reflect all possible hardware features that could

affect energy consumption (as explained in §2 and §3). They

also do not look at the specifics of an application to predict

energy consumption. We believe that energy interfaces for

software and hardware, once realized in practice, can help de-

velopers and resource managers go beyond these approaches

to understand energy even deeeper and thus achieve greater

efficiency.

Energy and carbon accounting. There has also been sig-

nificant prior work on accurately accounting for energy con-

sumption and carbon emissions across various components

in commodity systems [10, 24, 50, 65] and networks [68].

While they can accurately capture the energy consumption

of a single application, as noted earlier, they alone do not

achieve full energy clarity. [52] introduces a virtualized en-

ergy system that exposes software-defined energy controls

to applications, but its interface only provides real-time en-

ergy information. In contrast, our proposed energy interfaces

could take the application workload into account to predict

future energy behavior.

8 CONCLUSION
With pressure to reduce energy consumption and meet sus-

tainability goals, energy can no longer be an afterthought

in system development. We make the case for energy clar-

ity, and propose energy interfaces as a way to achieve such

clarity. Preliminary experimentation suggests that we can

be optimistic about obtaining and using energy interfaces.

6

REFERENCES
[1] Django. https://www.djangoproject.com/. Accessed on 20-Apr-2025.

[2] Docker: Accelerated Container Application Development. https://

www.docker.com/. Accessed on 20-Apr-2025.

[3] Kubernetes: Production-grade container orchestration. https://

kubernetes.io. Accessed on 20-Apr-2025.

[4] PyTorch. https://pytorch.org/. Accessed on 20-Apr-2025.

[5] Redis - The Real-time Data Platform. https://redis.io/. Accessed on

20-Apr-2025.

[6] System and Service Manager. https://systemd.io/. Accessed on 20-

Apr-2025.

[7] Understanding the future of energy efficiency in multi-module gpus.

In Intl. Symp. on High-Performance Computer Architecture (2019).
[8] Anand, V., Xie, Z., Stolet, M., De Viti, R., Davidson, T., Karimipour,

R., Alzayat, S., and Mace, J. The odd one out: Energy is not like other

metrics. ACM SIGENERGY Energy Informatics Review (2023).

[9] Barroso, L. A., and Hölzle, U. The case for energy-proportional

computing. IEEE Computer (2007).
[10] Bellosa, F. The benefits of event: driven energy accounting in power-

sensitive systems. In ACM SIGOPS European Workshop (2000).

[11] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: A framework for

Architectural-Level power analysis and optimizations. In Intl. Symp.
on Computer Architecture (2000).

[12] Choi, S., Koo, I., Ahn, J., Jeon, M., and Kwon, Y. EnvPipe:

Performance-preserving DNN training framework for saving energy.

In USENIX Annual Technical Conf. (2023).
[13] Chung, J.-W., Gu, Y., Jang, I., Meng, L., Bansal, N., and Chowdhury,

M. Reducing Energy Bloat in Large Model Training. In Symp. on
Operating Systems Principles (2024).

[14] David, T., Guerraoui, R., and Trigonakis, V. Asynchronized concur-

rency: The secret to scaling concurrent search data structures. ACM
SIGARCH Computer Architecture News (2015).

[15] Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P., and

Labs, H.-P. Full-System Power Analysis and Modeling for Server

Environments, 2006.

[16] Erlangen National High Performance Computing Center

(NHR@FAU). gpu-cache. https://github.com/RRZE-HPC/gpu-

benches/tree/master/gpu-cache. Accessed on 20-Apr-2025.

[17] ethereum.org. The merge. https://ethereum.org/en/roadmap/merge/.

Accessed on 14-Dec-2024.

[18] Falsafi, B., Guerraoui, R., Picorel, J., and Trigonakis, V. Unlocking

energy. In USENIX Annual Technical Conf. (2016).
[19] Fan, X., Weber, W.-D., and Barroso, L. A. Power provisioning for

a warehouse-sized computer. ACM SIGARCH computer architecture
news (2007).

[20] Gilgur, A., Coutinho, B., Narayanan, I., and Malani, P. Transitive

power modeling for improving resource efficiency in a hyperscale

datacenter. In Companion Proceedings of the Web Conference (WWW)
(2021).

[21] Google. ClusterFuzz: Scalable fuzzing infrastructure. https://github.

com/google/clusterfuzz. Accessed on 20-Apr-2025.

[22] Grech, N., Georgiou, K., Pallister, J., Kerrison, S., Morse, J., and

Eder, K. Static analysis of energy consumption for LLVM IR programs.

In Proceedings of the 18th International Workshop on Software and
Compilers for Embedded Systems (2015).

[23] Guide, P. Intel® 64 and ia-32 architectures software developer’s man-

ual. Volume 3B: System programming Guide, Part (2011).
[24] Guo, L., Xu, T., Xu, M., Liu, X., and Lin, F. X. Power sandbox: Power

awareness redefined. In ACM EuroSys European Conf. on Computer
Systems (2018).

[25] Hirki, M., Ou, Z., Khan, K. N., Nurminen, J. K., and Niemi, T. Empir-

ical Study of Power Consumption of x86-64 Instruction Decoder. In

USENIX Workshop on Cool Topics on Sustainable Data Centers (CoolDC
16) (2016).

[26] Hunt, N., Sandhu, P. S., and Ceze, L. Characterizing the perfor-

mance and energy efficiency of lock-free data structures. In 2011 15th
Workshop on Interaction between Compilers and Computer Architectures
(2011).

[27] IEA. Data centres and data transmission networks. https:

//www.iea.org/energy-system/buildings/data-centres-and-data-

transmission-networks. Accessed on 14-Jan-2024.

[28] Isci, C., and Martonosi, M. Runtime power monitoring in high-end

processors: Methodology and empirical data. In IEEE/ACM Intl. Symp.
on Microarchitecture (2003).

[29] Iyer, R., Argyraki, K., and Candea, G. Performance Interfaces for

Network Functions. In Symp. on Networked Systems Design and Implem.
(2022).

[30] Iyer, R., Argyraki, K., and Candea, G. Automatically Reasoning

About How Systems Code Uses the CPU Cache. In Symp. on Operating
Sys. Design and Implem. (2024).

[31] Iyer, R., Pedrosa, L., Zaostrovnykh, A., Pirelli, S., Argyraki, K.,

and Candea, G. Performance contracts for software network func-

tions. In Symp. on Networked Systems Design and Implem. (2019).
[32] Kandiah, V., Peverelle, S., Khairy, M., Pan, J., Manjunath, A.,

Rogers, T. G., Aamodt, T. M., and Hardavellas, N. AccelWattch:

A Power Modeling Framework for Modern GPUs. In IEEE/ACM Intl.
Symp. on Microarchitecture (2021).

[33] Lazzaro, D., Cinà, A. E., Pintor, M., Demontis, A., Biggio, B., Roli, F.,

and Pelillo, M. Minimizing Energy Consumption of Deep Learning

Models by Energy-Aware Training. In Intl. Conf. on Image Analysis
and Processing (ICIAP) (2023).

[34] Li, H., Li, J., and Kaufmann, A. SimBricks: End-to-end network system

evaluation with modular simulation. In ACM SIGCOMM Conf. (2022).
[35] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and

Jouppi, N. P. McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures. In IEEE/ACM
Intl. Symp. on Microarchitecture (2009).

[36] Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P.,

Grech, N., Hermenegildo, M. V., and Eder, K. Energy consumption

analysis of programs based on XMOS ISA-level models. In Logic-Based
Program Synthesis and Transformation: 23rd International Symposium,
LOPSTR 2013, Madrid, Spain, September 18-19, 2013, Revised Selected
Papers 23 (2014).

[37] Ma, J., Iyer, R., Kashani, S., Emami, M., Bourgeat, T., and Candea,

G. Performance Interfaces for Hardware Accelerators. In Symp. on
Operating Sys. Design and Implem. (2024).

[38] Mark Harris, I. B. GPU Gems 2. https://developer.nvidia.com/

gpugems/gpugems2/part-iv-general-purpose-computation-gpus-

primer/chapter-34-gpu-flow-control-idioms, 2024. Chapter 34. GPU

Flow-Control Idioms.

[39] McCullough, J. C., Agarwal, Y., Chandrashekar, J., Kuppuswamy,

S., Snoeren, A. C., Gupta, R. K., et al. Evaluating the effectiveness

of model-based power characterization. In USENIX Annual Technical
Conf. (2011).

[40] Moons, B., Goetschalckx, K., Van Berckelaer, N., and Verhelst,

M. Minimum energy quantized neural networks. In 2017 51st Asilomar
Conference on Signals, Systems, and Computers (2017).

[41] Nvidia. NVIDIA management library (NVML). https://developer.

nvidia.com/management-library-nvml. Accessed on 20-Apr-2025.

[42] OpenAI. GPT-2 model on huggingface. https://huggingface.co/openai-

community/gpt2. Accessed on 20-Apr-2025.

[43] Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M.,

7

https://www.djangoproject.com/
https://www.docker.com/
https://www.docker.com/
https://kubernetes.io
https://kubernetes.io
https://pytorch.org/
https://redis.io/
https://systemd.io/
https://github.com/RRZE-HPC/gpu-benches/tree/master/gpu-cache
https://github.com/RRZE-HPC/gpu-benches/tree/master/gpu-cache
https://ethereum.org/en/roadmap/merge/
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer/chapter-34-gpu-flow-control-idioms
https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer/chapter-34-gpu-flow-control-idioms
https://developer.nvidia.com/gpugems/gpugems2/part-iv-general-purpose-computation-gpus-primer/chapter-34-gpu-flow-control-idioms
https://developer.nvidia.com/management-library-nvml
https://developer.nvidia.com/management-library-nvml
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2

Rothchild, D., So, D., Texier, M., and Dean, J. Carbon Emissions

and Large Neural Network Training. https://arxiv.org/pdf/2104.10350,

2021.

[44] Qiao, F., Fang, Y., and Cidon, A. Energy-Aware process scheduling

in Linux. InWorkshop on Sustainable Computer Systems (HotCarbon)
(2024).

[45] Radovanovic, A., Chen, B., Talukdar, S., Roy, B., Duarte, A., and

Shahbazi, M. Power modeling for effective datacenter planning and

compute management. IEEE Transactions on Smart Grid (2021).

[46] Raskind, J., Babakol, T., Mahmoud, K., and Liu, Y. D. VESTA: Power

Modeling with Language Runtime Events. In Intl. Conf. on Program-
ming Language Design and Implem. (2024).

[47] Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green AI.

Communications of the ACM (2020).

[48] Scordino, C., Abeni, L., and Lelli, J. Energy-Aware real-time sched-

uling in the Linux Kernel. In Symp. on Applied Computing (2018).

[49] Shao, Y. S., and Brooks, D. Energy characterization and instruction-

level energy model of Intel’s Xeon Phi processor. In International
Symposium on Low Power Electronics and Design (ISLPED) (2013).

[50] Shen, K., Shriraman, A., Dwarkadas, S., Zhang, X., and Chen, Z.

Power containers: An OS facility for fine-grained power and energy

management on multicore servers. ACM SIGARCH Computer Architec-
ture News (2013).

[51] Somu Muthukaruppan, T., Pathania, A., and Mitra, T. Price the-

ory based power management for heterogeneous multi-cores. ACM
SIGPLAN Notices (2014).

[52] Souza, A., Bashir, N., Murillo, J., Hanafy, W., Liang, Q., Irwin, D.,

and Shenoy, P. Ecovisor: A virtual energy system for carbon-efficient

applications. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (2023).

[53] Stojkovic, J., Iliakopoulou, N., Xu, T., Franke, H., and Torrellas,

J. EcoFaaS: Rethinking the Design of Serverless Environments for

Energy Efficiency. In Intl. Symp. on Computer Architecture (2024).
[54] Strubell, E., Ganesh, A., and McCallum, A. Energy and Policy

Considerations for Deep Learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics (2019).

[55] The Linux Kernel 6.13.0-rc7. Energy aware scheduling. https://docs.

kernel.org/scheduler/sched-energy.html. Accessed on 20-Apr-2025.

[56] Tripp, C. E., Perr-Sauer, J., Gafur, J., Nag, A., Purkayastha, A.,

Zisman, S., and Bensen, E. A. Measuring the Energy Consumption

and Efficiency of Deep Neural Networks: An Empirical Analysis and

Design Recommendations. http://arxiv.org/abs/2403.08151, 2024.

[57] Walker, M., Bischoff, S., Diestelhorst, S., Merrett, G., and Al-

Hashimi, B. Hardware-Validated CPU Performance and Energy Mod-

elling. In IEEE Intl. Symp. on Performance Analysis of Systems and
Software (2018).

[58] Wegener, S., Nikov, K. K., Nunez-Yanez, J., and Eder, K. Energyan-

alyzer: Using static wcet analysis techniques to estimate the energy

consumption of embedded applications, 2023.

[59] Wilkins, G., Keshav, S., and Mortier, R. Offline energy-optimal

llm serving: Workload-based energy models for llm inference on het-

erogeneous systems. ACM SIGENERGY Energy Informatics Review
(2024).

[60] Wu, Q., Reddi, V. J., Wu, Y., Lee, J., Connors, D., Brooks, D.,

Martonosi, M., and Clark, D. W. A dynamic compilation framework

for controlling microprocessor energy and performance. In IEEE/ACM
Intl. Symp. on Microarchitecture (2005).

[61] Xie, F., Martonosi, M., and Malik, S. Compile-time dynamic voltage

scaling settings: Opportunities and limits. In Intl. Conf. on Programming
Language Design and Implem. (2003).

[62] Xu, C., Lin, F. X., Wang, Y., and Zhong, L. Automated OS-level device

runtime power management. ACM SIGPLAN Notices (2015).

[63] Yang, H., Zhu, Y., and Liu, J. Energy-constrained compression for

deep neural networks via weighted sparse projection and layer input

masking. In Intl. Conf. on Learning Representations (ICLR) (2019).
[64] Yang, T.-J., Chen, Y.-H., Emer, J., and Sze, V. A method to estimate the

energy consumption of deep neural networks. In Asilomar Conference
on Signals, Systems, and Computers (2017).

[65] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A. ECOSystem:

Managing energy as a first class operating system resource. In ACM
SIGOPS Operating Systems Review (2002).

[66] Zhai, Y., Zhang, X., Eranian, S., Tang, L., and Mars, J. HaPPy:

Hyperthread-aware Power Profiling Dynamically. In USENIX Annual
Technical Conf. (2014).

[67] Zhao, Q., Yang, H., Luan, Z., and Qian, D. POIGEM: A programming-

oriented instruction level GPU energy model for CUDA program. In

Algorithms and Architectures for Parallel Processing: 13th International
Conference, ICA3PP 2013, Vietri sul Mare, Italy, December 18-20, 2013,
Proceedings, Part I 13 (2013).

[68] Zilberman, N., Schooler, E. M., Cummings, U., Manohar, R., Nafus,

D., Soulé, R., and Taylor, R. Toward carbon-aware networking. ACM
SIGENERGY Energy Informatics Review (2023).

8

https://arxiv.org/pdf/2104.10350
https://docs.kernel.org/scheduler/sched-energy.html
https://docs.kernel.org/scheduler/sched-energy.html
http://arxiv.org/abs/2403.08151

	Abstract
	1 Motivation
	2 Energy Clarity and Interfaces
	3 Definitions
	4 Producing and Using Energy Interfaces
	4.1 Energy Interface Implementation
	4.2 Implementation Energy Interface

	5 Preliminary Experiments
	6 Open Questions
	7 Related Work
	8 Conclusion
	References

