

Abstract
Prior work proved a stateful NAT network function to be
semantically correct, crash-free, and memory safe [29]. Their
toolchain verifies the network function code while assuming
the underlying kernel-bypass framework, drivers, operating
system, and hardware to be correct. We extend the toolchain to
verify the kernel-bypass framework and a NIC driver in the
context of the NAT. We uncover bugs in both the framework
and the driver. Our code is publicly available [28].

CCS Concepts
• Software and its engineering → Formal software
verification • Networks → Middle boxes / network appliances

Keywords
Network Functions; Software Verification; Kernel Bypass

ACM Reference format:

Solal Pirelli, Arseniy Zaostrovnykh and George Candea. 2018.
A Formally Verified NAT Stack. In Proceedings of KBNets ’18,
Budapest, Hungary, August 20, 2018, 7 pages.
DOI: https://doi.org/10.1145/3229538.3229540

1 Introduction
Implementing network functions (NFs) in software offers

more flexibility at a lower cost than purpose-built hardware.
Frameworks such as the Data Plane Development Kit (DPDK)
[5] have recently lowered the performance overhead of
software NFs by bypassing the operating system kernel.

Zaostrovnykh et al. presented a formally verified Network
Address Translator (NAT) [29]. They prove the NAT to be
semantically correct, crash-free, and memory safe using a new
toolchain called Vigor. They implement the NF in C using
DPDK on Linux. We summarize their proof technique in §2.

Their proof applies to the application code and a library,
totaling 2K lines of code, but not the modules below. As Figure
1 shows, the NAT code and library are verified, while the other
modules are merely assumed to work correctly. This is not at
all unusual – most verification work assumes the underlying
modules to be correct. The problem is that the unverified
modules may have bugs that affect the NAT’s behavior.

Our main observation is that while DPDK and its network
interface controller (NIC) drivers, as employed by the NAT, are
large codebases (~90K lines of code), only a small fraction of
their code needs to be verified in order to prove correctness of
the entire NAT stack. This allows us to include the DPDK
framework and a NIC driver in the verification. The result is a
reduction of the trusted code base, as Figure 2 shows.

We model less modules from the stack and verify more.
Instead of modeling DPDK, we model the C library and the
hardware. This removes two large modules from the trusted
code base. We believe that our technique can generalize. We
discuss the background and our proof technique in §3.

During the proof effort, we discovered bugs in both DPDK
and the NIC driver. These findings confirm the risks that
software NFs take when assuming that the underlying modules
are correct. We present and discuss these bugs in §4.

Figure 1: State of the NAT stack [29] before our work.
Only hashed green modules are proven to not cause the
NAT to diverge from its specification.

Figure 2: Verification state of the NAT after our work.
(Diagram semantics are the same as in Figure 1)

A Formally Verified NAT Stack

Solal Pirelli
EPFL, Switzerland

Arseniy Zaostrovnykh
EPFL, Switzerland

George Candea
EPFL, Switzerland

NAT Network Function

DPDK Framework

Data
Structures

Library NIC
Driver

C Library

Linux Kernel

Hardware

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
KBNets '18, August 20, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5909-2/18/08…$15.00
https://doi.org/10.1145/3229538.3229540

NAT Network Function

DPDK Framework

Data
Structures

Library NIC
Driver

C Library

Linux Kernel

Hardware

KBNets ’18, August 20, 2018, Budapest, Hungary S. Pirelli, A. Zaostrovnykh, and G. Candea

We patch DPDK to fix some bugs and make verification
easier, but this does not affect the performance of the NAT. We
evaluate the resulting NAT end-to-end in §5.

We present limitations and ideas for future work in §6,
discuss related work in §7, and conclude in §8.

2 Proving NAT Correctness with Vigor
The NAT presented in [29] was the first stateful NF proven

to be semantically correct, using a toolchain called Vigor. The
proof not only shows that the NAT will never crash but also
that it always forwards or drops packets according to a
formalized version of RFC 3022 [24]. We summarize the Vigor
approach in this section.

The proof of correctness of the NAT combines theorem
proving for data structures code (stateful) and symbolic
execution for the rest of the code (stateless). Even though
theorem proving requires a lot of human effort, NF developers
can reuse the verified data structures for many NFs. Symbolic
execution is automated, and easy to run on a new NF.

During symbolic execution of the NF, Vigor replaces the
data structures code and the DPDK framework with models
that return symbolic data. For instance, Vigor models DPDK’s
packet-receive function by a function that returns either one or
no packet. Symbolic execution explores both possibilities. The
packet itself, if there is one, has symbolic contents as well. If
the NF has different behavior depending on a property of the
packet, such as whether it is UDP or TCP, symbolic execution
explores both options. The symbolic execution engine tracks
constraints when exploring each possibility to remember the
choices that it made, such as “there is a packet, and it is UDP”.

The main loop of an NF is infinite and thus cannot be
verified by merely executing it symbolically, since this would
not terminate. To verify the loop, Vigor uses havocing [2, 29].
The symbolic execution engine remembers which sections of
memory the NF writes to during a loop iteration, and replaces
them with symbolic values in the next loop iteration. This
continues until the engine finds a fixed point (i.e., further
iterations do not expand the amount of symbolic memory), at
which point it knows exactly which parts of memory can
change during an iteration. Vigor proves that every iteration is
correct by the following logic: if all memory that can change is
symbolic, the symbolic execution engine explores all paths that
result from iterating through the loop. If all such paths are
correct, then all possible iterations are correct.

After running symbolic execution, Vigor verifies that the
NF uses the data structures correctly, and that the models are
correct approximations of the data structures code. This
ensures that in the context of the NF, the models exhibit all
possible behaviors of the real code.

The Vigor toolchain relies on VeriFast [17] for theorem
proving, a modified version of KLEE [4] for symbolic
execution, and a custom “validator” to stitch the two together.

3 Extending the Proof
Our objective is an NF that is formally proven to conform to

its specification. A bug at any level of the stack may
compromise this objective.

Since we cannot verify the entire stack at once, we must
prioritize the choice of code to verify. We use two axes: code
that is immature (and thus likely to have bugs) and code that
has high potential for reuse in future NFs.

While hardware can also have bugs, we do not consider it a
priority for NF verification. We only use basic packet
send/receive features, not complex NIC features such as packet
filtering or checksum offloading. While hardware may have
undiscovered bugs, they are unlikely to be in the basic features.

Unlike the C library and the Linux kernel, which are mature
and “battle-tested”, DPDK is a large body of new code. Intel
released the first public version, 1.8, in December 2014. New
versions are released every few months [22]. Thus, we
hypothesize that DPDK and its drivers are likely to have bugs.

Another reason to verify DPDK and its driver is reusability.
Our approach generalizes to any network function that follows
the design advocated in [29]: use the verified data structures,
implement the Vigor NF interface (one method that takes in a
packet and returns a forwarding decision), and avoid pointer
arithmetic or similar “dangerous” C constructs.

Vigor employs exhaustive symbolic execution to verify
stateless code, and theorem proving to verify data structures.
We cannot use exhaustive symbolic execution to verify all the
remaining unverified parts of the NAT stack because of the
traditional problem of path explosion [3]. Faced with an
exponential number of paths (or worse), exhaustive symbolic
execution may not terminate in reasonable time.

The other tool used by Vigor, VeriFast [17], requires lots of
annotations in the code. The libVig library [29] contains about
10 lines of annotations (pre-conditions, post-conditions and
proofs) for each line of code. Using VeriFast to verify DPDK
and its NIC drivers would require a lot of human effort.
Furthermore, much of the work would have to be redone every
time a new version of DPDK is released.

Our observation is that, while kernel-bypass frameworks
such as DPDK may be large, writing a basic NF requires only a
small subset of DPDK: initialization, receiving packets, and
sending packets. This subset contains a lot of code, but it has
simple control flow and almost all of it is simple operations
such as reading or writing to device registers. There are few
branches in the framework itself; most of those branches cause
the execution to terminate early, such as not being able to
initialize some subsystem. Thus, the symbolic execution engine
does not encounter the path explosion problem at scale. Some
parts of the framework may be difficult to symbolically
execute, such as data structures with pointers, but those parts
are not necessary to write an NF. Thus, we hypothesize that it
is possible to symbolically execute the DPDK framework as
used by NFs, with minor potential modifications.

The way we use symbolic execution implies that we only
analyze code that is reachable in the NF under verification. Our
approach therefore does not prove DPDK to be correct in an
absolute sense. We only prove that the parts of DPDK used in
the NF do not cause the NF to violate its specification.

We present the fundamental challenges we encountered,
along with the insights that underlie our solutions, in §3.1. We
present our implementation of the solutions for DPDK in §3.2,
for the NIC driver in §3.3, and for the C library in §3.4.

A Formally Verified NAT Stack KBNets ’18, August 20, 2018, Budapest, Hungary

3.1 Challenges
We now describe the challenges that we consider to be

inherent to any proof of correctness of a kernel-bypass
framework such as DPDK. We discuss the problems specific to
our implementation in subsequent subsections.

A key challenge is that frameworks such as DPDK have no
formal specification. For instance, there is no indication of
which operations (start, configure, etc.) are valid in which state
(started, stopped, etc.) of a driver. Instead, frameworks tend to
evolve organically based on requests from developers.

A challenge specific to using exhaustive symbolic execution
is path explosion [3]. While the loop havocing mentioned in §2
is convenient, it can also introduce problems when not done
carefully. Havocing replaces all memory that can change
during an iteration of the NF’s main loop with unconstrained
symbolic memory. If havocing makes pointers symbolic,
symbolic execution becomes ineffective, because an
unconstrained symbolic pointer could point to anywhere in the
address space, thus the symbolic execution engine must
explore a large number of alternatives. The same problem
arises in data structures that use an index into an array, since
the index effectively is a pointer.

Another form of path explosion comes from multithreading.
In a multithreaded environment in which threads can influence
each other’s control flow (e.g., via shared memory), every
possible interleaving of operations (e.g., the order in which two
threads access a shared variable) is a new path.

A less difficult but still time-consuming challenge is
modeling. To verify DPDK and the NIC driver, we need models
of every layer immediately below them. We therefore have to
model the C standard library and the hardware in a detailed
way according to the available specifications and manuals. For
the NIC we used Intel’s official data sheet [15], while for the C
standard library we relied on the man pages.

A related challenge is to “future-proof” the models. Our
proof of correctness holds for the revisions of the hardware
and driver we use. However, if the driver were to write to
memory locations that current revisions of the hardware do
not use, this could impact the validity of the proof on future
hardware. This can happen in two ways: writing to registers
that do not exist (since the hardware does not use all of its
memory space) or writing to registers that the specification
marks as reserved. A future version of the hardware could add
registers, or use registers previously marked as reserved. To
make sure our proof holds even in future revisions of the
hardware, we explicitly model reserved and non-existent
registers. Thus, we are confident that the code we proved
correct will keep on working correctly on future hardware
revisions. It is still possible for future hardware to change in a
backwards-incompatible manner, but since this would break
existing code, it is unlikely that a hardware manufacturer
would make incompatible changes.

3.2 DPDK
The DPDK framework poses specific challenges to symbolic

execution. We mitigated some of them by simplifying or

reconfiguring DPDK, and addressed the rest by suitably
augmenting the symbolic execution engine.

An example of the problems caused by loop havocing is in
DPDK’s ring buffers. DPDK uses ring buffers to implement
memory pools by default. The ring holds an array of items and
indices to the start and end of the ring in the array. Adding an
element to the ring increments the end index, while removing
an element increments the start index. Adding then removing
an element causes a change in the ring’s internals: both indices
change. When this occurs in a loop, havocing the indices
during symbolic execution causes path explosion. To address
this, we replace the rings with one-item structures: the driver
takes the item when receiving a packet, and puts it back after
having sent the modified packet. This avoids changing memory
during an iteration, thus solving the havoc-induced problem.

Another challenge is DPDK’s advanced use of low-level
features, such as inline assembly and single instruction,
multiple data (SIMD) instructions. The KLEE symbolic
execution engine does not support these. We configure DPDK
to avoid the use of assembly (theoretically at the expense of
performance, but as we show later this is not the case). We add
support for basic SIMD instructions to KLEE, such as moving a
vector from one memory location to another. We replace the
remaining uses by equivalent simpler code.

Finally, DPDK provides utilities for multithreaded NFs such
as locks, timers, and thread-local storage. Since our toolchain
cannot deal with multithreading, we implement our NF in a
single thread and do not use DPDK’s thread-related features.

3.3 The NIC Driver
DPDK comes with multiple drivers; we verify the one for

Intel’s 82599ES, as it is the NIC used for benchmarking in [29].
Its driver, named ixgbe, is a generic driver for multiple Intel
NICs, with some functions customized for specific models.

The existing tools were not enough to model hardware. The
KLEE symbolic execution engine views memory (and thus
memory-mapped devices) as an array of bytes with standard
read/write semantics. However, while NIC registers are multi-
byte words, they hold individual flags and counters of less than
a byte each. Furthermore, reads and writes may have side-
effects. For instance, the hardware automatically clears some
bits after a read operation. Thus, we cannot model registers as
simple sequences of bytes in memory. We must emulate
hardware behavior precisely, and detect bugs such as a driver
trying to write to a read-only hardware bit. To support detailed
modeling of registers, we extend KLEE. We add intrinsic
functions that replace memory accesses to hardware memory
by function calls. This allows us to model bit-level read/write
permissions and to execute code on specific reads or writes.

Most registers are storage cells, but some are low-level
interfaces to NIC internals. For instance, the 82599 NIC holds
an enhanced small form-factor pluggable (SFP+) module
accessed through an Inter-Integrated Circuit (I2C) bus. Thus,
the NIC has a register with “data in”, “data out”, “clock in”, and
“clock out” bits corresponding to the physical data/clock wires
on the bus. We thus model an SFP+ module acting as an I2C
slave as part of the NIC model.

KBNets ’18, August 20, 2018, Budapest, Hungary S. Pirelli, A. Zaostrovnykh, and G. Candea

3.4 The C Library
During verification of the NAT in Zaostrovnykh et al. [29],

symbolic execution accesses the real, i.e., not modeled,
environment. This is problematic because the verification
implicitly depends on the specific environment behavior from
the machine that ran the verification.

To strengthen our verification claim, we disable calls to the
environment during symbolic execution. During verification,
we link our NF to the KLEE-uClibc library, which is a small C
library customized for verification purposes. We configure the
library to disable all environment-related features such as I/O.
The remaining functions, such as string comparisons, are pure.

Our models need to cover a wide range of calls, but most of
the models are simple. This is because DPDK initializes all
subsystems, such as interrupts or timers, even if the NF will
not use them. Thus, we can model many operations as no-ops,
because they do nothing from the NF’s point of view

4 Bugs
One of our hypotheses was that unverified modules of the

stack may cause NFs to fail to satisfy their specification. We
did find bugs while verifying modules, which we present here
as confirmation of our hypothesis. We discuss bugs in DPDK’s
main library in §4.1, and in its ixgbe driver in §4.2.

We found these bugs when we ran the verification after
having written our models as described in §3. We reported the
bugs to the DPDK maintainers, and wrote simple patches to
work around them for our proof.

Replacing code and hardware by models allows us to
simulate error cases, no matter how rare, and perform checks
for undefined behavior. Thus, we can find failures that happen
only rarely in a real environment, and thus are either poorly
handled or not handled at all. Such bugs are otherwise hard to
reproduce, either because they require complex combinations
of circumstances or are outright non-deterministic (such as in
code that uses randomness), which delays their fixing.

4.1 Bugs in DPDK
We found one potential crash in DPDK, which we describe

below. We also found two cases of undefined behavior, related
to memory-mapped files [6] and non-uniform memory access
(NUMA) [8].

At initialization time, DPDK may crash if the first 128 CPU
cores are all disabled [7]. It looks for the first enabled core, but
does not check for the case where it does not find any enabled
core before giving up, with a default limit of 128. If no core is
available, DPDK performs an out-of-bounds memory access,
which is likely to cause a crash. While this scenario is unlikely,
it would be hard to understand and debug such behavior,
because an environment triggering this bug would likely be
perfectly functional in other aspects, and the list of disabled
CPU cores is not commonly included in a bug report.

4.2 Bugs in the ixgbe driver
We found five instances of problematic behavior in the

ixgbe driver, which we describe below. This is surprising given

that the code path we explored is straightforward: the NF
receives one packet and sends one packet.

We also found issues that are almost certainly omissions
from the data sheet. The driver uses register addresses that the
data sheet does not document, but the registers are
fundamental to receiving packets; since the driver works with
a real NIC, those addresses must exist on the NIC.

The most severe bug we found is an incorrect order of
operations [13]. The 82599 chip’s data sheet states that the
driver must configure transmit descriptors before enabling
transmission. The ixgbe driver does the exact opposite: it first
enables transmission, then performs careful checks to make
sure transmission is properly enabled, then configures transmit
descriptors. This could confuse the NIC hardware in undefined
ways, breaking the NAT’s specification by arbitrarily dropping
or modifying packets.

Undefined behavior may result from copy-paste errors
during development. For instance, the ixgbe driver uses the
name SW_MNG_SM for bit 10 of the software-firmware
synchronization register [12]. This bit exists, under that name,
in other Intel hardware such as the I350 [16], but not in the
82599, thus the driver should not use it. The NIC uses that
register for synchronization. If the driver sets a bit that the
firmware does not expect, concurrency issues could arise.

Other problems we found are writing to a register at the
wrong time [9], incorrectly writing 0 to reserved bits [10],
incorrectly writing 1 to a reserved bit [11], and not checking
that a register is valid before using it [14].

5 Evaluation
We discuss three metrics: how fast verification runs in §5.1,

how much code we verify in §5.2, and the impact of
verification on run-time performance in §5.3.

5.1 Verification Time
The verification time for the NF alone on an AMD Opteron

6172 with 48 logical cores at 2.1 GHz is about 5 minutes. This
time includes the symbolic execution of the NF code and the
validation of the generated files by the Vigor validator.

After expanding the scope of verification to include DPDK
and the driver, the time rises to about 75 minutes, a 15×
increase. This increase is mainly due to the NIC hardware
models: when the driver accesses a register, the symbolic
execution engine intercepts the access and calls a function
instead. Thus, an otherwise cheap operation becomes
expensive. However, we believe this time is reasonable:
verification can be run once per release cycle and results in
strong guarantees of correctness.

5.2 Verification Coverage
To quantify the additional work done by including DPDK

and the NIC driver in the scope of verification, we report in
Figure 3 the number of source lines of code (LOC) in each
module, as well as its verification coverage. We express the
verification coverage as a fraction of LLVM [20] instructions
that KLEE executes symbolically, or as 100% for the theorem-
proved data structures.

A Formally Verified NAT Stack KBNets ’18, August 20, 2018, Budapest, Hungary

Even though all possible execution paths in the NAT are
verified, line coverage is not 100%. The reason for this is that
some functions only return an error if their parameters are
invalid, and our toolchain proves that the parameters we
provide are always valid. Thus, the assertions that check for
error values are never triggered, and their associated exit() is
not reachable.

Most of the code in DPDK and the NIC driver is not
reachable from the NF, and thus does not merit verification –
as described in §3, this is one of the reasons why our approach
can scale. Thus, not surprisingly, our verification covers less
than 100% of DPDK and the NIC driver. However, there may be
some code in DPDK or the driver that could be reached with
more complete models, but those models may cause symbolic
execution to not terminate in reasonable time.

Figure 3: Software lines of code (LOC) and fraction of
code that is symbolically executed (SE) or proven using a
theorem prover (THP) per module in the NAT stack.

5.3 Performance
To measure performance of the “fully verified” NF, we

follow the same methodology as the original benchmarks [29]:
measure latency and throughput with a varying number of
flows but a constant rate of packets.

Our results are simple: performance does not change
relative to the NF with an unpatched DPDK [29].
Benchmarking our modified code yields results that are well
within the jitter of the original measurements.

Since our bugfixes do not fundamentally alter DPDK, this is
not particularly surprising. We replace some high-performance
code with simpler, slower code, but this has a negligible effect
on the simple NAT. Performance might change for NFs that,
for instance, use concurrent packet handling or batching.

6 Discussion
Our extended proof of NF correctness gives NF developers

more confidence in the correctness of their code, even in the
presence of timing issues or unusual environments. It also
gives developers more confidence when using a new
framework such as DPDK, since the proof verifies the
framework as needed by the NF.

We believe that our method is reusable in other contexts.
Our main observation – that we can symbolically execute
DPDK and NIC drivers – can be applied to other kernel-bypass
or equivalent frameworks.

However, our proof does not cover the entire stack, nor
does it cover all cases in the modules it applies to. We state our
assumptions in §6.1, explain the applicability of our work to
real-world NFs in §6.2, discuss limitations of our approach in
§6.3, and propose solutions to mitigate these limitations in §6.4.

6.1 Assumptions
Our proof makes assumptions about the NF, DPDK, and the

software and hardware environment.
We assume the NF to be implemented as prescribed in [29].

Namely, it needs to adopt a stateless/stateful separation, use
the libVig library of verified data structures, and limit its use of
certain dangerous C operations such as pointer arithmetic. All
of these assumptions can be mechanically checked.

We assume that the few DPDK methods which we replace
for verification purposes are correct. These are low-level
methods, such as a “memory copy” method that uses SIMD
instructions to copy large blocks of memory at a time. They are
so commonly used in DPDK that we believe any bugs would
have been noticed.

Our environment model includes errors and unusual values,
but it is not exhaustive in that respect. We do not return
symbolic data for all environment properties. For instance, if
the memory page size returned by getpagesize() was symbolic,
memory-related operations would have too many paths for
symbolic execution to finish in reasonable time, so we assume
that the page size is always 4 KB.

Our NIC hardware model is not exhaustive. If the hardware
malfunctions, reads could produce arbitrary data, which we do
not model. Normal NIC operation causes the driver to read
registers hundreds of times. If each read could return any
value, the number of resulting paths would cripple our
toolchain – even if we limited the symbolic execution engine’s
running time, it would be unlikely to explore interesting paths
such as correct hardware initialization. To avoid this problem,
we assume the hardware behaves correctly.

We believe these assumptions are reasonable even though
they weaken our claim. Because of the path explosion problem,
our models cannot be as precise as we would like them to be.

We believe our assumptions to be reasonable for virtually
all environments that would want to run a verified NF, even
though they do weaken the proof.

The assumption that is most likely to break is the one
concerning the hardware, since NICs are complex pieces of
hardware, with lots of features. Nevertheless, informal
discussion with network operators indicate that software
reliability is much further up their list of concerns than
hardware reliability.

6.2 Applicability to Real-World NFs
There are three main issues when applying our work to

existing real-world NFs: data structure complexity,
unsupported low-level code, and multithreading.

NAT Network Function

DPDK

Data
Structures

Driver

C Library

Linux Kernel

Hardware

1.2K LOC
93.2% SE

0.75K LOC
100% THP

65K LOC
3.5% SE

24K LOC
17.7% SE

KBNets ’18, August 20, 2018, Budapest, Hungary S. Pirelli, A. Zaostrovnykh, and G. Candea

Existing NFs use their own data structures, which are not
verified. Our approach requires that the NFs use verified data
structures provided by libVig. This library contains a map, a
port allocator and a flow lifetime manager, which are enough
for many basic NFs (e.g., NATs and firewalls), but not all (e.g.,
an IP router requires a longest-prefix-match table). However,
this is not a fundamental limitation: writing new verified data
structures for libVig can be done with some human effort.

Kernel-bypass frameworks and tools such as Snort [26],
netmap [25] and SoftNIC [27] use low-level code and inline
assembly for performance-sensitive operations (e.g., computing
hashes or reading hardware timestamps). Our toolchain does
not support symbolically executing such low-level code. This is
not a fundamental limitation either, although the breadth of
possible low-level features may require significant engineering
effort to support.

Finally, many modern NFs are multithreaded. This is a more
fundamental limitation of our approach because symbolic
execution is hard to apply directly to multithreaded code. We
plan to work on this aspect in the future.

6.3 Limitations
There are three remaining unverified modules in the NF

stack, and the Vigor toolchain is not verified either.
We do not verify the C library, the Linux kernel, and the

hardware. A failure in any of those may compromise either the
safety or the liveness of the NF; that is, cause the NF to break
its semantic properties (e.g. send an incorrect packet), or to
stop working (e.g. enter an infinite loop), respectively.

We can protect the NF against some issues, but not all.
Since the environment model returns symbolic data, we can
prove that the NF will behave correctly even if its software
environment returns nonsensical values. However, if the Linux
kernel were to take over the NIC and instruct it to send an
incorrect packet (e.g. due to a bug in the kernel or an exploited
security vulnerability), the NF code would not even see the
problem, let alone prevent it. Similarly, we cannot prove that
the Linux scheduler will not put the NF to sleep and never
wake it up, or that the hardware will not halt and catch fire.

Proving Linux kernel correctness is currently infeasible, as
its contributors did not write its millions of lines of code with
ease of verification in mind.

Proving hardware correctness may be possible, but would
need a different toolchain from ours. Even if we formally
verified the hardware, problems such as random bit flips from
cosmic rays would still exist.

We do not verify the Vigor toolchain. Neither KLEE, nor
VeriFast, nor the validator are verified. Clang [20], the C
compiler we use both for verification (by translating C code to
a format KLEE understands) and execution (by translating C
code to executable machine code), is not verified either.

In summary, our trusted code base (TCB) is made up of the
C library, the Linux kernel, the hardware, the Vigor proof
toolchain, and the C compiler.

6.4 Proposed Solutions
We could verify the C library in the same way we verify

DPDK, by modeling the Linux kernel and including the C
library in the proof.

Then, the NF could be run on an OS kernel stripped down
to the minimal subset needed to start up DPDK. This would
perhaps enable us to symbolically execute the OS kernel as
well. Such an approach would mimic what we did for DPDK:
only prove correctness for code that the NF actually uses. This
stripped-down OS kernel could use the environment models
we wrote as actual implementations, such as having a single
user instead of supporting multiple users.

An alternative would be to adapt DPDK to use an already
verified special-purpose kernel such as seL4 [18]. Since DPDK
bypasses the kernel already, it is not too dependent on Linux.
However, the result would be a merge of two different
approaches to verification, which might cause problems when
stitching the two together.

7 Related Work
SLAM [1] analyzes Windows drivers based on specific rules,

with such a low false positive rate that it is mandatory for
driver certification. Post and Küchlin [21] adapted it to Linux
drivers. These projects have a wider applicability than ours, but
check specific rules for code correctness, such as proper lock
usage; they do not prove that a driver satisfies a specification.

DDT [19] and SymDrive [23] test drivers using symbolic
execution with symbolic hardware models. A developer can
use those tools to check for basic correctness properties such as
crash-freedom, but not semantic properties. Their models are
more thorough than ours: they implement fully symbolic
hardware, including a limited version of symbolic interrupts.
This does not allow them to prove the drivers correct, but it is
efficient at finding bugs.

8 Conclusion
We extend the correctness proof of an existing formally

verified NAT to include its kernel-bypass framework it uses,
and the NIC driver. We used the DPDK framework and its
driver for the Intel 82599ES NIC, but we believe that our
approach can generalize to other frameworks and drivers.

Our contribution is a formal proof of correctness for DPDK
and a driver in the context of a given NF. We do not make
claims about other drivers, but we guarantee the driver we
verified to be correct in the context of the NAT we verified.

Compared to the original proof, we offer a stronger
guarantee of correctness as we move code out of the trusted
base. We confirm the usefulness of our proof by finding bugs
in both DPDK and the NIC driver.

Acknowledgements
We thank Katerina Argyraki, Rishabh Iyer, Viktor Kunčak, Luis
Pedrosa, Betty Pirelli, and the anonymous reviewers for their
helpful comments and suggestions.

A Formally Verified NAT Stack KBNets ’18, August 20, 2018, Budapest, Hungary

References
[1] Ball, T., Bounimova, E., Kumar, R. and Levin, V. 2010.

SLAM2: Static driver verification with under 4% false
alarms. Formal Methods in Computer Aided Design
(FMCAD ’10) (Austin, TX, 2010), 35–42.

[2] Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B. and
Leino, K.R.M. 2005. Boogie: A Modular Reusable
Verifier for Object-Oriented Programs. International
Symposium on Formal Methods for Components and
Objects (FMCO ’05) (Nov. 2005), 364–387.

[3] Boonstoppel, P., Cadar, C. and Engler, D. 2008. RWset:
Attacking Path Explosion in Constraint-Based Test
Generation. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’08) (Berlin,
Heidelberg, 2008), 351–366.

[4] Cadar, C., Dunbar, D. and Engler, D.R. 2008. KLEE:
Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. 8th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’08) (Berkeley, CA, USA, 2008),
209–224.

[5] DPDK: Data Plane Development Kit: 2018.
http://dpdk.org/. Accessed: 2018-02-12.

[6] DPDK bug 18: mmap with MAP_ANONYMOUS
should have fd == -1:
https://dpdk.org/tracker/show_bug.cgi?id=18.
Accessed: 2018-04-01.

[7] DPDK bug 19: Crash on initialization if first
RTE_MAX_LCORE cores are disabled:
https://dpdk.org/tracker/show_bug.cgi?id=19.
Accessed: 2018-04-01.

[8] DPDK bug 20: Undefined behavior caused by NUMA
function in eal_memory:
https://dpdk.org/tracker/show_bug.cgi?id=20.
Accessed: 2018-04-01.

[9] DPDK bug 21: Ixgbe driver changes FCTRL without
first disabling RXCTRL.RXEN:
https://dpdk.org/tracker/show_bug.cgi?id=21.
Accessed: 2018-04-01.

[10] DPDK bug 22: Ixgbe driver sets RDRXCTL with the
wrong RSCACKC and FCOE_WRFIX values:
https://dpdk.org/tracker/show_bug.cgi?id=22.
Accessed: 2018-04-01.

[11] DPDK bug 23: Ixgbe driver writes to reserved bit in
the EIMC register:
https://dpdk.org/tracker/show_bug.cgi?id=23.
Accessed: 2018-04-01.

[12] DPDK bug 24: Ixgbe driver sets unknown bit of the
82599’s SW_FW_SYNC register:
https://dpdk.org/tracker/show_bug.cgi?id=24.
Accessed: 2018-04-01.

[13] DPDK bug 25: Ixgbe driver sets TDH register after
TXDCTL.ENABLE is set:
https://dpdk.org/tracker/show_bug.cgi?id=25.
Accessed: 2018-04-01.

[14] DPDK bug 26: Ixgbe driver does not ensure FWSM
firmware mode is valid before using it:
https://dpdk.org/tracker/show_bug.cgi?id=26.
Accessed: 2018-04-01.

[15] Intel® 82599 10 GbE Controller Datasheet: 2016.

https://www.intel.com/content/dam/www/public/us/en/d
ocuments/datasheets/82599-10-gbe-controller-
datasheet.pdf. Accessed: 2018-02-12.

[16] Intel® Ethernet Controller I350 Datasheet: 2017.
https://www.intel.com/content/dam/www/public/us/en/d
ocuments/datasheets/ethernet-controller-i350-
datasheet.pdf. Accessed: 2018-02-12.

[17] Jacobs, B., Smans, J., Philippaerts, P., Vogels, F.,
Penninckx, W. and Piessens, F. 2011. VeriFast: A
Powerful, Sound, Predictable, Fast Verifier for C and
Java. Third International Conference on NASA Formal
Methods (Berlin, Heidelberg, 2011), 41–55.

[18] Klein, G., Norrish, M., Sewell, T., Tuch, H., Winwood,
S., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.,
Derrin, P., Elkaduwe, D., Engelhardt, K. and Kolanski,
R. 2009. seL4: Formal Verification of an OS Kernel.
22nd ACM symposium on operating systems principles
(SOSP ’09) (New York, NY, USA, 2009), 207.

[19] Kuznetsov, V., Chipounov, V. and Candea, G. 2010.
Testing Closed-Source Binary Device Drivers with
DDT. 2010 USENIX Annual Technical Conference
(Berkeley, CA, USA, 2010), 12.

[20] Lattner, C. 2008. LLVM and Clang: Next Generation
Compiler Technology LLVM: Low Level Virtual
Machine. The BSD Conference (2008).

[21] Post, H. and Küchlin, W. 2007. Integrated Static
Analysis for Linux Device Driver Verification.
Integrated Formal Methods (Berlin, Heidelberg, 2007),
518–537.

[22] Release Notes - Data Plane Development Kit: 2018.
https://dpdk.org/doc/guides/rel_notes/. Accessed: 2018-
02-12.

[23] Renzelmann, M.J., Kadav, A. and Swift, M.M. 2012.
SymDrive : Testing Drivers without Devices. 10th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’12) (Hollywood, CA, 2012),
279–292.

[24] RFC 3022: Traditional IP Network Address Translator
(Traditional NAT): 2001.
https://www.ietf.org/rfc/rfc3022.txt.
Accessed: 2018-02-12.

[25] Rizzo, L. 2012. NetMap: A novel framework for fast
packet I/ O. 21st USENIX Security Symposium (USENIX
Security ’12) (2012), 101--112.

[26] Roesch, M. 1999. Snort: Lightweight Intrusion
Detection for Networks. 13th Systems Administration
Conference (LISA ’99) (1999), 229–238.

[27] SoftNIC: A Software NIC to Augment Hardware: 2015.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-155.html.

[28] VigNAT home repository - GitHub:
https://github.com/vignat/vignat.

[29] Zaostrovnykh, A., Pirelli, S., Pedrosa, L., Argyraki, K.
and Candea, G. 2017. A Formally Verified NAT.
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’17) (New York, New York,
USA, 2017), 141–154.

