
   

Abstract 
Prior work proved a stateful NAT network function to be 
semantically correct, crash-free, and memory safe [29]. Their 
toolchain verifies the network function code while assuming 
the underlying kernel-bypass framework, drivers, operating 
system, and hardware to be correct. We extend the toolchain to 
verify the kernel-bypass framework and a NIC driver in the 
context of the NAT. We uncover bugs in both the framework 
and the driver. Our code is publicly available [28]. 
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1 Introduction 
Implementing network functions (NFs) in software offers 

more flexibility at a lower cost than purpose-built hardware. 
Frameworks such as the Data Plane Development Kit (DPDK) 
[5] have recently lowered the performance overhead of 
software NFs by bypassing the operating system kernel. 

Zaostrovnykh et al. presented a formally verified Network 
Address Translator (NAT) [29]. They prove the NAT to be 
semantically correct, crash-free, and memory safe using a new 
toolchain called Vigor. They implement the NF in C using 
DPDK on Linux. We summarize their proof technique in §2. 

Their proof applies to the application code and a library, 
totaling 2K lines of code, but not the modules below. As Figure 
1 shows, the NAT code and library are verified, while the other 
modules are merely assumed to work correctly. This is not at 
all unusual – most verification work assumes the underlying 
modules to be correct. The problem is that the unverified 
modules may have bugs that affect the NAT’s behavior. 

Our main observation is that while DPDK and its network 
interface controller (NIC) drivers, as employed by the NAT, are 
large codebases (~90K lines of code), only a small fraction of 
their code needs to be verified in order to prove correctness of 
the entire NAT stack. This allows us to include the DPDK 
framework and a NIC driver in the verification. The result is a 
reduction of the trusted code base, as Figure 2 shows. 

We model less modules from the stack and verify more. 
Instead of modeling DPDK, we model the C library and the 
hardware. This removes two large modules from the trusted 
code base. We believe that our technique can generalize. We 
discuss the background and our proof technique in §3. 

During the proof effort, we discovered bugs in both DPDK 
and the NIC driver. These findings confirm the risks that 
software NFs take when assuming that the underlying modules 
are correct. We present and discuss these bugs in §4.  

Figure 1: State of the NAT stack [29] before our work. 
Only hashed green modules are proven to not cause the 
NAT to diverge from its specification.  

 

Figure 2: Verification state of the NAT after our work. 
(Diagram semantics are the same as in Figure 1) 
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We patch DPDK to fix some bugs and make verification 
easier, but this does not affect the performance of the NAT. We 
evaluate the resulting NAT end-to-end in §5. 

We present limitations and ideas for future work in §6, 
discuss related work in §7, and conclude in §8. 

2 Proving NAT Correctness with Vigor 
The NAT presented in [29] was the first stateful NF proven 

to be semantically correct, using a toolchain called Vigor. The 
proof not only shows that the NAT will never crash but also 
that it always forwards or drops packets according to a 
formalized version of RFC 3022 [24]. We summarize the Vigor 
approach in this section. 

The proof of correctness of the NAT combines theorem 
proving for data structures code (stateful) and symbolic 
execution for the rest of the code (stateless). Even though 
theorem proving requires a lot of human effort, NF developers 
can reuse the verified data structures for many NFs. Symbolic 
execution is automated, and easy to run on a new NF. 

During symbolic execution of the NF, Vigor replaces the 
data structures code and the DPDK framework with models 
that return symbolic data. For instance, Vigor models DPDK’s 
packet-receive function by a function that returns either one or 
no packet. Symbolic execution explores both possibilities. The 
packet itself, if there is one, has symbolic contents as well. If 
the NF has different behavior depending on a property of the 
packet, such as whether it is UDP or TCP, symbolic execution 
explores both options. The symbolic execution engine tracks 
constraints when exploring each possibility to remember the 
choices that it made, such as “there is a packet, and it is UDP”. 

The main loop of an NF is infinite and thus cannot be 
verified by merely executing it symbolically, since this would 
not terminate. To verify the loop, Vigor uses havocing [2, 29]. 
The symbolic execution engine remembers which sections of 
memory the NF writes to during a loop iteration, and replaces 
them with symbolic values in the next loop iteration. This 
continues until the engine finds a fixed point (i.e., further 
iterations do not expand the amount of symbolic memory), at 
which point it knows exactly which parts of memory can 
change during an iteration. Vigor proves that every iteration is 
correct by the following logic: if all memory that can change is 
symbolic, the symbolic execution engine explores all paths that 
result from iterating through the loop. If all such paths are 
correct, then all possible iterations are correct. 

After running symbolic execution, Vigor verifies that the 
NF uses the data structures correctly, and that the models are 
correct approximations of the data structures code. This 
ensures that in the context of the NF, the models exhibit all 
possible behaviors of the real code. 

The Vigor toolchain relies on VeriFast [17] for theorem 
proving, a modified version of KLEE [4] for symbolic 
execution, and a custom “validator” to stitch the two together. 

3 Extending the Proof 
Our objective is an NF that is formally proven to conform to 

its specification. A bug at any level of the stack may 
compromise this objective. 

Since we cannot verify the entire stack at once, we must 
prioritize the choice of code to verify. We use two axes: code 
that is immature (and thus likely to have bugs) and code that 
has high potential for reuse in future NFs. 

While hardware can also have bugs, we do not consider it a 
priority for NF verification. We only use basic packet 
send/receive features, not complex NIC features such as packet 
filtering or checksum offloading. While hardware may have 
undiscovered bugs, they are unlikely to be in the basic features. 

Unlike the C library and the Linux kernel, which are mature 
and “battle-tested”, DPDK is a large body of new code. Intel 
released the first public version, 1.8, in December 2014. New 
versions are released every few months [22]. Thus, we 
hypothesize that DPDK and its drivers are likely to have bugs. 

Another reason to verify DPDK and its driver is reusability. 
Our approach generalizes to any network function that follows 
the design advocated in [29]: use the verified data structures, 
implement the Vigor NF interface (one method that takes in a 
packet and returns a forwarding decision), and avoid pointer 
arithmetic or similar “dangerous” C constructs.  

Vigor employs exhaustive symbolic execution to verify 
stateless code, and theorem proving to verify data structures. 
We cannot use exhaustive symbolic execution to verify all the 
remaining unverified parts of the NAT stack because of the 
traditional problem of path explosion [3]. Faced with an 
exponential number of paths (or worse), exhaustive symbolic 
execution may not terminate in reasonable time. 

The other tool used by Vigor, VeriFast [17], requires lots of 
annotations in the code. The libVig library [29] contains about 
10 lines of annotations (pre-conditions, post-conditions and 
proofs) for each line of code. Using VeriFast to verify DPDK 
and its NIC drivers would require a lot of human effort. 
Furthermore, much of the work would have to be redone every 
time a new version of DPDK is released.  

Our observation is that, while kernel-bypass frameworks 
such as DPDK may be large, writing a basic NF requires only a 
small subset of DPDK: initialization, receiving packets, and 
sending packets. This subset contains a lot of code, but it has 
simple control flow and almost all of it is simple operations 
such as reading or writing to device registers. There are few 
branches in the framework itself; most of those branches cause 
the execution to terminate early, such as not being able to 
initialize some subsystem. Thus, the symbolic execution engine 
does not encounter the path explosion problem at scale. Some 
parts of the framework may be difficult to symbolically 
execute, such as data structures with pointers, but those parts 
are not necessary to write an NF. Thus, we hypothesize that it 
is possible to symbolically execute the DPDK framework as 
used by NFs, with minor potential modifications.  

The way we use symbolic execution implies that we only 
analyze code that is reachable in the NF under verification. Our 
approach therefore does not prove DPDK to be correct in an 
absolute sense. We only prove that the parts of DPDK used in 
the NF do not cause the NF to violate its specification. 

We present the fundamental challenges we encountered, 
along with the insights that underlie our solutions, in §3.1. We 
present our implementation of the solutions for DPDK in §3.2, 
for the NIC driver in §3.3, and for the C library in §3.4. 
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3.1 Challenges 
We now describe the challenges that we consider to be 

inherent to any proof of correctness of a kernel-bypass 
framework such as DPDK. We discuss the problems specific to 
our implementation in subsequent subsections. 

A key challenge is that frameworks such as DPDK have no 
formal specification. For instance, there is no indication of 
which operations (start, configure, etc.) are valid in which state 
(started, stopped, etc.) of a driver. Instead, frameworks tend to 
evolve organically based on requests from developers. 

A challenge specific to using exhaustive symbolic execution 
is path explosion [3]. While the loop havocing mentioned in §2 
is convenient, it can also introduce problems when not done 
carefully. Havocing replaces all memory that can change 
during an iteration of the NF’s main loop with unconstrained 
symbolic memory. If havocing makes pointers symbolic, 
symbolic execution becomes ineffective, because an 
unconstrained symbolic pointer could point to anywhere in the 
address space, thus the symbolic execution engine must 
explore a large number of alternatives. The same problem 
arises in data structures that use an index into an array, since 
the index effectively is a pointer. 

Another form of path explosion comes from multithreading. 
In a multithreaded environment in which threads can influence 
each other’s control flow (e.g., via shared memory), every 
possible interleaving of operations (e.g., the order in which two 
threads access a shared variable) is a new path. 

A less difficult but still time-consuming challenge is 
modeling. To verify DPDK and the NIC driver, we need models 
of every layer immediately below them. We therefore have to 
model the C standard library and the hardware in a detailed 
way according to the available specifications and manuals. For 
the NIC we used Intel’s official data sheet [15], while for the C 
standard library we relied on the man pages. 

A related challenge is to “future-proof” the models. Our 
proof of correctness holds for the revisions of the hardware 
and driver we use. However, if the driver were to write to 
memory locations that current revisions of the hardware do 
not use, this could impact the validity of the proof on future 
hardware. This can happen in two ways: writing to registers 
that do not exist (since the hardware does not use all of its 
memory space) or writing to registers that the specification 
marks as reserved. A future version of the hardware could add 
registers, or use registers previously marked as reserved. To 
make sure our proof holds even in future revisions of the 
hardware, we explicitly model reserved and non-existent 
registers. Thus, we are confident that the code we proved 
correct will keep on working correctly on future hardware 
revisions. It is still possible for future hardware to change in a 
backwards-incompatible manner, but since this would break 
existing code, it is unlikely that a hardware manufacturer 
would make incompatible changes. 

3.2 DPDK 
The DPDK framework poses specific challenges to symbolic 

execution. We mitigated some of them by simplifying or 

reconfiguring DPDK, and addressed the rest by suitably 
augmenting the symbolic execution engine. 

An example of the problems caused by loop havocing is in 
DPDK’s ring buffers. DPDK uses ring buffers to implement 
memory pools by default. The ring holds an array of items and 
indices to the start and end of the ring in the array. Adding an 
element to the ring increments the end index, while removing 
an element increments the start index. Adding then removing 
an element causes a change in the ring’s internals: both indices 
change. When this occurs in a loop, havocing the indices 
during symbolic execution causes path explosion. To address 
this, we replace the rings with one-item structures: the driver 
takes the item when receiving a packet, and puts it back after 
having sent the modified packet. This avoids changing memory 
during an iteration, thus solving the havoc-induced problem. 

Another challenge is DPDK’s advanced use of low-level 
features, such as inline assembly and single instruction, 
multiple data (SIMD) instructions. The KLEE symbolic 
execution engine does not support these. We configure DPDK 
to avoid the use of assembly (theoretically at the expense of 
performance, but as we show later this is not the case). We add 
support for basic SIMD instructions to KLEE, such as moving a 
vector from one memory location to another. We replace the 
remaining uses by equivalent simpler code. 

Finally, DPDK provides utilities for multithreaded NFs such 
as locks, timers, and thread-local storage. Since our toolchain 
cannot deal with multithreading, we implement our NF in a 
single thread and do not use DPDK’s thread-related features. 

3.3 The NIC Driver 
DPDK comes with multiple drivers; we verify the one for 

Intel’s 82599ES, as it is the NIC used for benchmarking in [29]. 
Its driver, named ixgbe, is a generic driver for multiple Intel 
NICs, with some functions customized for specific models. 

The existing tools were not enough to model hardware. The 
KLEE symbolic execution engine views memory (and thus 
memory-mapped devices) as an array of bytes with standard 
read/write semantics. However, while NIC registers are multi-
byte words, they hold individual flags and counters of less than 
a byte each. Furthermore, reads and writes may have side-
effects. For instance, the hardware automatically clears some 
bits after a read operation. Thus, we cannot model registers as 
simple sequences of bytes in memory. We must emulate 
hardware behavior precisely, and detect bugs such as a driver 
trying to write to a read-only hardware bit. To support detailed 
modeling of registers, we extend KLEE. We add intrinsic 
functions that replace memory accesses to hardware memory 
by function calls. This allows us to model bit-level read/write 
permissions and to execute code on specific reads or writes. 

Most registers are storage cells, but some are low-level 
interfaces to NIC internals. For instance, the 82599 NIC holds 
an enhanced small form-factor pluggable (SFP+) module 
accessed through an Inter-Integrated Circuit (I2C) bus. Thus, 
the NIC has a register with “data in”, “data out”, “clock in”, and 
“clock out” bits corresponding to the physical data/clock wires 
on the bus. We thus model an SFP+ module acting as an I2C 
slave as part of the NIC model. 
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3.4 The C Library 
During verification of the NAT in Zaostrovnykh et al. [29], 

symbolic execution accesses the real, i.e., not modeled, 
environment. This is problematic because the verification 
implicitly depends on the specific environment behavior from 
the machine that ran the verification. 

To strengthen our verification claim, we disable calls to the 
environment during symbolic execution. During verification, 
we link our NF to the KLEE-uClibc library, which is a small C 
library customized for verification purposes. We configure the 
library to disable all environment-related features such as I/O. 
The remaining functions, such as string comparisons, are pure. 

Our models need to cover a wide range of calls, but most of 
the models are simple. This is because DPDK initializes all 
subsystems, such as interrupts or timers, even if the NF will 
not use them. Thus, we can model many operations as no-ops, 
because they do nothing from the NF’s point of view 

4 Bugs 
One of our hypotheses was that unverified modules of the 

stack may cause NFs to fail to satisfy their specification. We 
did find bugs while verifying modules, which we present here 
as confirmation of our hypothesis. We discuss bugs in DPDK’s 
main library in §4.1, and in its ixgbe driver in §4.2. 

We found these bugs when we ran the verification after 
having written our models as described in §3. We reported the 
bugs to the DPDK maintainers, and wrote simple patches to 
work around them for our proof. 

Replacing code and hardware by models allows us to 
simulate error cases, no matter how rare, and perform checks 
for undefined behavior. Thus, we can find failures that happen 
only rarely in a real environment, and thus are either poorly 
handled or not handled at all. Such bugs are otherwise hard to 
reproduce, either because they require complex combinations 
of circumstances or are outright non-deterministic (such as in 
code that uses randomness), which delays their fixing. 

4.1 Bugs in DPDK 
We found one potential crash in DPDK, which we describe 

below. We also found two cases of undefined behavior, related 
to memory-mapped files [6] and non-uniform memory access 
(NUMA) [8]. 

At initialization time, DPDK may crash if the first 128 CPU 
cores are all disabled [7]. It looks for the first enabled core, but 
does not check for the case where it does not find any enabled 
core before giving up, with a default limit of 128. If no core is 
available, DPDK performs an out-of-bounds memory access, 
which is likely to cause a crash. While this scenario is unlikely, 
it would be hard to understand and debug such behavior, 
because an environment triggering this bug would likely be 
perfectly functional in other aspects, and the list of disabled 
CPU cores is not commonly included in a bug report. 

4.2 Bugs in the ixgbe driver 
We found five instances of problematic behavior in the 

ixgbe driver, which we describe below. This is surprising given 

that the code path we explored is straightforward: the NF 
receives one packet and sends one packet. 

We also found issues that are almost certainly omissions 
from the data sheet. The driver uses register addresses that the 
data sheet does not document, but the registers are 
fundamental to receiving packets; since the driver works with 
a real NIC, those addresses must exist on the NIC. 

The most severe bug we found is an incorrect order of 
operations [13]. The 82599 chip’s data sheet states that the 
driver must configure transmit descriptors before enabling 
transmission. The ixgbe driver does the exact opposite: it first 
enables transmission, then performs careful checks to make 
sure transmission is properly enabled, then configures transmit 
descriptors. This could confuse the NIC hardware in undefined 
ways, breaking the NAT’s specification by arbitrarily dropping 
or modifying packets. 

Undefined behavior may result from copy-paste errors 
during development. For instance, the ixgbe driver uses the 
name SW_MNG_SM for bit 10 of the software-firmware 
synchronization register [12]. This bit exists, under that name, 
in other Intel hardware such as the I350 [16], but not in the 
82599, thus the driver should not use it. The NIC uses that 
register for synchronization. If the driver sets a bit that the 
firmware does not expect, concurrency issues could arise. 

Other problems we found are writing to a register at the 
wrong time [9], incorrectly writing 0 to reserved bits [10], 
incorrectly writing 1 to a reserved bit [11], and not checking 
that a register is valid before using it [14]. 

5 Evaluation 
We discuss three metrics: how fast verification runs in §5.1, 

how much code we verify in §5.2, and the impact of 
verification on run-time performance in §5.3. 

5.1 Verification Time 
The verification time for the NF alone on an AMD Opteron 

6172 with 48 logical cores at 2.1 GHz is about 5 minutes. This 
time includes the symbolic execution of the NF code and the 
validation of the generated files by the Vigor validator. 

After expanding the scope of verification to include DPDK 
and the driver, the time rises to about 75 minutes, a 15× 
increase. This increase is mainly due to the NIC hardware 
models: when the driver accesses a register, the symbolic 
execution engine intercepts the access and calls a function 
instead. Thus, an otherwise cheap operation becomes 
expensive. However, we believe this time is reasonable: 
verification can be run once per release cycle and results in 
strong guarantees of correctness. 

5.2 Verification Coverage 
To quantify the additional work done by including DPDK 

and the NIC driver in the scope of verification, we report in 
Figure 3 the number of source lines of code (LOC) in each 
module, as well as its verification coverage. We express the 
verification coverage as a fraction of LLVM [20] instructions 
that KLEE executes symbolically, or as 100% for the theorem-
proved data structures.  
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Even though all possible execution paths in the NAT are 
verified, line coverage is not 100%. The reason for this is that 
some functions only return an error if their parameters are 
invalid, and our toolchain proves that the parameters we 
provide are always valid. Thus, the assertions that check for 
error values are never triggered, and their associated exit() is 
not reachable. 

Most of the code in DPDK and the NIC driver is not 
reachable from the NF, and thus does not merit verification – 
as described in §3, this is one of the reasons why our approach 
can scale. Thus, not surprisingly, our verification covers less 
than 100% of DPDK and the NIC driver. However, there may be 
some code in DPDK or the driver that could be reached with 
more complete models, but those models may cause symbolic 
execution to not terminate in reasonable time. 

 

 

Figure 3: Software lines of code (LOC) and fraction of 
code that is symbolically executed (SE) or proven using a 
theorem prover (THP) per module in the NAT stack.  

5.3 Performance 
To measure performance of the “fully verified” NF, we 

follow the same methodology as the original benchmarks [29]: 
measure latency and throughput with a varying number of 
flows  but a constant rate of packets.  

Our results are simple: performance does not change 
relative to the NF with an unpatched DPDK [29]. 
Benchmarking our modified code yields results that are well 
within the jitter of the original measurements. 

Since our bugfixes do not fundamentally alter DPDK, this is 
not particularly surprising. We replace some high-performance 
code with simpler, slower code, but this has a negligible effect 
on the simple NAT. Performance might change for NFs that, 
for instance, use concurrent packet handling or batching. 

6 Discussion 
Our extended proof of NF correctness gives NF developers 

more confidence in the correctness of their code, even in the 
presence of timing issues or unusual environments. It also 
gives developers more confidence when using a new 
framework such as DPDK, since the proof verifies the 
framework as needed by the NF. 

We believe that our method is reusable in other contexts. 
Our main observation – that we can symbolically execute 
DPDK and NIC drivers – can be applied to other kernel-bypass 
or equivalent frameworks. 

However, our proof does not cover the entire stack, nor 
does it cover all cases in the modules it applies to. We state our 
assumptions in §6.1, explain the applicability of our work to 
real-world NFs in §6.2, discuss limitations of our approach in 
§6.3, and propose solutions to mitigate these limitations in §6.4. 

6.1 Assumptions 
Our proof makes assumptions about the NF, DPDK, and the 

software and hardware environment. 
We assume the NF to be implemented as prescribed in [29]. 

Namely, it needs to adopt a stateless/stateful separation, use 
the libVig library of verified data structures, and limit its use of 
certain dangerous C operations such as pointer arithmetic. All 
of these assumptions can be mechanically checked. 

We assume that the few DPDK methods which we replace 
for verification purposes are correct. These are low-level 
methods, such as a “memory copy” method that uses SIMD 
instructions to copy large blocks of memory at a time. They are 
so commonly used in DPDK that we believe any bugs would 
have been noticed. 

Our environment model includes errors and unusual values, 
but it is not exhaustive in that respect. We do not return 
symbolic data for all environment properties. For instance, if 
the memory page size returned by getpagesize() was symbolic, 
memory-related operations would have too many paths for 
symbolic execution to finish in reasonable time, so we assume 
that the page size is always 4 KB. 

Our NIC hardware model is not exhaustive. If the hardware 
malfunctions, reads could produce arbitrary data, which we do 
not model. Normal NIC operation causes the driver to read 
registers hundreds of times. If each read could return any 
value, the number of resulting paths would cripple our 
toolchain – even if we limited the symbolic execution engine’s 
running time, it would be unlikely to explore interesting paths 
such as correct hardware initialization. To avoid this problem, 
we assume the hardware behaves correctly. 

We believe these assumptions are reasonable even though 
they weaken our claim. Because of the path explosion problem, 
our models cannot be as precise as we would like them to be. 

We believe our assumptions to be reasonable for virtually 
all environments that would want to run a verified NF, even 
though they do weaken the proof. 

The assumption that is most likely to break is the one 
concerning the hardware, since NICs are complex pieces of 
hardware, with lots of features. Nevertheless, informal 
discussion with network operators indicate that software 
reliability is much further up their list of concerns than 
hardware reliability. 

6.2 Applicability to Real-World NFs 
There are three main issues when applying our work to 

existing real-world NFs: data structure complexity, 
unsupported low-level code, and multithreading. 

NAT Network Function 

DPDK 

Data 
Structures  

Driver 

C Library 

Linux Kernel 

Hardware 

1.2K LOC 
93.2% SE 

0.75K LOC 
100% THP 

65K LOC 
3.5% SE 

24K LOC 
17.7% SE 
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Existing NFs use their own data structures, which are not 
verified. Our approach requires that the NFs use verified data 
structures provided by libVig. This library contains a map, a 
port allocator and a flow lifetime manager, which are enough 
for many basic NFs (e.g., NATs and firewalls), but not all (e.g., 
an IP router requires a longest-prefix-match table). However, 
this is not a fundamental limitation: writing new verified data 
structures for libVig can be done with some human effort. 

Kernel-bypass frameworks and tools such as Snort [26], 
netmap [25] and SoftNIC [27] use low-level code and inline 
assembly for performance-sensitive operations (e.g., computing 
hashes or reading hardware timestamps). Our toolchain does 
not support symbolically executing such low-level code. This is 
not a fundamental limitation either, although the breadth of 
possible low-level features may require significant engineering 
effort to support. 

Finally, many modern NFs are multithreaded. This is a more 
fundamental limitation of our approach because symbolic 
execution is hard to apply directly to multithreaded code. We 
plan to work on this aspect in the future. 

6.3 Limitations 
There are three remaining unverified modules in the NF 

stack, and the Vigor toolchain is not verified either. 
We do not verify the C library, the Linux kernel, and the 

hardware. A failure in any of those may compromise either the 
safety or the liveness of the NF; that is, cause the NF to break 
its semantic properties (e.g. send an incorrect packet), or to 
stop working (e.g. enter an infinite loop), respectively. 

We can protect the NF against some issues, but not all. 
Since the environment model returns symbolic data, we can 
prove that the NF will behave correctly even if its software 
environment returns nonsensical values. However, if the Linux 
kernel were to take over the NIC and instruct it to send an 
incorrect packet (e.g. due to a bug in the kernel or an exploited 
security vulnerability), the NF code would not even see the 
problem, let alone prevent it. Similarly, we cannot prove that 
the Linux scheduler will not put the NF to sleep and never 
wake it up, or that the hardware will not halt and catch fire. 

Proving Linux kernel correctness is currently infeasible, as 
its contributors did not write its millions of lines of code with 
ease of verification in mind. 

Proving hardware correctness may be possible, but would 
need a different toolchain from ours. Even if we formally 
verified the hardware, problems such as random bit flips from 
cosmic rays would still exist. 

We do not verify the Vigor toolchain. Neither KLEE, nor 
VeriFast, nor the validator are verified. Clang [20], the C 
compiler we use both for verification (by translating C code to 
a format KLEE understands) and execution (by translating C 
code to executable machine code), is not verified either. 

In summary, our trusted code base (TCB) is made up of the 
C library, the Linux kernel, the hardware, the Vigor proof 
toolchain, and the C compiler. 

6.4 Proposed Solutions 
We could verify the C library in the same way we verify 

DPDK, by modeling the Linux kernel and including the C 
library in the proof. 

Then, the NF could be run on an OS kernel stripped down 
to the minimal subset needed to start up DPDK. This would 
perhaps enable us to symbolically execute the OS kernel as 
well. Such an approach would mimic what we did for DPDK: 
only prove correctness for code that the NF actually uses. This 
stripped-down OS kernel could use the environment models 
we wrote as actual implementations, such as having a single 
user instead of supporting multiple users. 

An alternative would be to adapt DPDK to use an already 
verified special-purpose kernel such as seL4 [18]. Since DPDK 
bypasses the kernel already, it is not too dependent on Linux. 
However, the result would be a merge of two different 
approaches to verification, which might cause problems when 
stitching the two together. 

7 Related Work 
SLAM [1] analyzes Windows drivers based on specific rules, 

with such a low false positive rate that it is mandatory for 
driver certification.  Post and Küchlin [21] adapted it to Linux 
drivers. These projects have a wider applicability than ours, but 
check specific rules for code correctness, such as proper lock 
usage; they do not prove that a driver satisfies a specification. 

DDT [19] and SymDrive [23] test drivers using symbolic 
execution with symbolic hardware models. A developer can 
use those tools to check for basic correctness properties such as 
crash-freedom, but not semantic properties. Their models are 
more thorough than ours: they implement fully symbolic 
hardware, including a limited version of symbolic interrupts. 
This does not allow them to prove the drivers correct, but it is 
efficient at finding bugs. 

8 Conclusion 
We extend the correctness proof of an existing formally 

verified NAT to include its kernel-bypass framework it uses, 
and the NIC driver. We used the DPDK framework and its 
driver for the Intel 82599ES NIC, but we believe that our 
approach can generalize to other frameworks and drivers. 

Our contribution is a formal proof of correctness for DPDK 
and a driver in the context of a given NF. We do not make 
claims about other drivers, but we guarantee the driver we 
verified to be correct in the context of the NAT we verified. 

Compared to the original proof, we offer a stronger 
guarantee of correctness as we move code out of the trusted 
base. We confirm the usefulness of our proof by finding bugs 
in both DPDK and the NIC driver. 
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