
Automated Verification of Network Function Binaries

Solal Pirelli+ Akvilė Valentukonytė°* Katerina Argyraki+ George Candea+
+EPFL °Citrix Systems

Abstract

Formally verifying the correctness of software network func-
tions (NFs) is necessary for network reliability, yet existing
techniques require full source code and mandate the use of
specific data structures.

We describe an automated technique to verify NF binaries,
making verification usable by network operators even on
proprietary code. To solve the key challenge of bridging the
abstraction levels of NF implementations and specifications
without special-casing a set of data structures, we observe
that data structures used by NFs can be modeled as maps,
and introduce a universal type to specify both NFs and their
data structures, the “ghost map”. In addition, we observe
that the interactions between an NF and its environment
are sufficient to infer control flow and types, removing the
requirement for source code.

We implement our technique in Klint, a tool with which
we verify, inminutes, that 7 NF binaries satisfy their specifica-
tions, without limiting developers’ choices of data structures.
The specifications are written in Python and use maps to
model state. Klint can also verify an entire NF binary stack,
all the way down to the NIC driver, using a minimal operat-
ing system. Operators can thus verify NF binaries, without
source code or debug symbols, without requiring developers
to use specific programming languages or data structures,
and without trusting any software except Klint.

1 Introduction

Network operators are moving from hardware network func-
tions to software ones for flexibility, but still deploying them
as black boxes. Historically, network functions such as fire-
walls, NATs, and load balancers used special-purpose hard-
ware for performance at the cost of flexibility, but this trade-
off does not always make sense any more thanks to the per-
formance of modern general-purpose hardware. Developers
write software network functions using programming lan-
guages such as C or Rust and frameworks such as DPDK [15]
or BPF [11, 33]. Marketplaces for distribution of software
network functions are emerging [18], andmost network func-
tions on these marketplaces are proprietary and distributed
in binary form.

Developers and operators currently test network functions
hoping to catch bugs, but this is not enough especially in light
of frequent software updates. For instance, network address
translators from Microsoft [36], Linux [37], and Cisco [38]
have had headline-causing bugs and vulnerabilities.

*Work done while at EPFL

function Firewall_Check(packet, flow_table)
if packet.device.is_internal then

assert packet.is_forwarded
if packet.flow not in flow_table then

assert flow_table.was_full
else

if packet.is_forwarded then

assert packet.flow in flow_table
Algorithm 1: Specification for a firewall. The firewall
must remember flows exiting the network and must only
allow packets in an existing flow to enter the network.

Operators need guarantees that the software network
functions they deploy conform to specifications, instead of
relying on tests. Consider the specification for a firewall in
Algorithm 1, which will be our running example. This spec-
ification restricts what a firewall can do but does not state
exactly how a firewall should be implemented. It also hides
details irrelevant to operators such as packet parsers and
policies to expire old flows. If an implementation could be
verified to conform to this specification no matter what, an
operator could deploy that implementation with confidence.
Developers need to provide proofs of functional correct-

ness but do not always want to disclose their source code,
meaning verification must be done on binaries. This require-
ment is driven by theway software is distributed to operators,
but it also means developers do not need to restrict which
programming languages they use nor worry about latent
bugs in the tools they use such as compilers. A tool that
can verify binaries can be used by operators regardless of
whether they have access to source code and regardless of
which language and toolchain developers used. Thus, even
for open-source code, verifying binaries helps developers by
enabling them to use any language and toolchain, even those
considered experimental, since they can provide guarantees
about the compiled binary to operators.
Developers currently cannot provide proofs (1) of func-

tional correctness, (2) without source code, and (3) without
verification expertise. They can use the Linux kernel’s auto-
mated BPF verifier, but only for low-level properties such as
memory safety. They can use Vigor [53] or Gravel [55] to
automatically prove functional specifications, but both rely
on typing information and thus require source code or an
intermediate representation that can be reverse-engineered.
Vigor and Gravel also limit developers to specific data struc-
tures; while developers could add new ones to the tools, they
generally lack the verification expertise to do so. What re-
mains is conventional testing, which can only show that a
binary works in specific cases, not provide guarantees.

Appears in the 19th Usenix Symposium on Networked Systems Design and Implementation (NSDI), 2022



Verification of data structures is out of scope for this pa-
per. We assume that data structure code in binaries is clearly
delineated and that it correctly implements its API and spec-
ification. Developers should then be able to write code using
any data structure they want. A verification tool for network
functions must understand the semantics of data structures
through some form of contract, and automatically reason
about their contents without requiring proof annotations.
Developers who wish to provide maximal guarantees can
manually verify their data structures, or use existing verified
ones, but this should not be required for network function
code to be automatically verifiable.
Our goal is to design a tool to automatically prove that a

network function binary conforms to a specification, given
data structures assumed to be correct. The inputs to this tool
are a binary with explicit calls to data structure operations,
contracts for these operations, and a specification such as a
formalization of an RFC or IEEE standard. The output is a
proof that the binary refines the specification or a counter-
example that demonstrates otherwise.

Verifying arbitrary binaries is hard since type and control
flow information are critical to verification but hard to obtain
without debug symbols. However, network functions are
not arbitrary. They commonly confine complex code to well-
defined data structures, such as BPFmaps [2], and only have a
handful of well-defined interactions with their environment,
such as transmitting packets and reading system time. These
two observations lead to two ideas enabling us to verify
network function binaries.

First, we use maps as a “universal” data structure to spec-
ify network functions and data structures. We define the
abstract state of both network function specifications and
data structure contracts in terms of maps from keys to values
using a programming language such as Python. We call these
maps ghost maps by analogy to “ghost variables” that exist
only in proofs, not in implementations. Contracts can be
written even for data structures that cannot be implemented
in terms of maps, by using “for all” quantifiers to describe
an operation’s effects on the data structure in a declarative
manner without describing its implementation. Verification
is thus proving that the binary manipulates concrete data
structures in a way that conforms to the manipulation of
abstract maps in the specification, using contracts to match
concrete operations with abstract ones.

Ghost maps enable efficient and automated invariant infer-
ence. Inferring invariants ensures automated analysis does
not explore impossible program states, which would cause
spurious verification failures. The sweeping simplification
of maps enables our tool to reason about invariants across
any data structures instead of limiting itself to specific ones.
It also leads to the tool being simpler, as there is only one
kind of data structure to reason about, the map. The tool
translates data structure operations into map operations and
infers invariants on the resulting maps.

Second, we infer typing and control flow information from
environment interactions. Modeling network functions’ envi-
ronment precisely is feasible since it is small andwell-defined.
Typing information at the boundaries between a binary and
its environment is enough, since specifications are defined in
terms of environment interactions: maps and fundamental
operations such as packet transmission.

We have built Klint, a prototype of our technique. It takes
in a binary without debug symbols, a Python specification
of its semantics, and Python contracts for its data structures.
The contracts only need to be written once per data structure
implementation, as a more precise form of the documenta-
tion developers currently write. Klint always terminates
with either a proof or a counter-example, unless the pro-
cessing of a single packet does not terminate, in which case
Klint fails after a user-defined limit. Klint can verify an
entire software stack using a minimal operating system if
needed. Klint can verify code written in different languages,
such as C or Rust, on different frameworks, such as DPDK
or BPF, and deployed in different contexts, such as virtual
machines, containers, or raw hardware. Developers can use
any data structure as long as it has Python contracts, even if
the data structure implementation is not verified. The code of
the verified network functions is verification-agnostic: only
the standard programming practice of separating data struc-
tures from other code and documenting their specifications
is necessary.

We use Klint to verify network functions we write based
on those from Vigor [53] and to verify existing BPF net-
work functions such as Facebook’s Katran [47]. Klint can
prove a range of properties, from full functional correctness
according to a specification, to memory safety and crash free-
dom for functions without a high-level specification such as
Katran. For instance, we extract a specification from IEEE
802.1D [30] for a bridge we write. We provide a detailed list
of properties we verify using Klint in Appendix A. Using
Klint gives operators guarantees about the correctness of
any binary they deploy: either Klint finds bugs, which can
be reported to developers, or it finds no bugs, providing a
guarantee the binary conforms to its specification.
In summary, our contributions are (1) a technique to rea-

son about data structures and infer invariants based on the
idea of “ghost maps” and (2) Klint, a prototype that uses
map-based reasoning to automatically and efficiently verify
network function binaries that use trusted data structures
with map-based contracts. We use Klint to verify the func-
tional correctness of 7 binaries, 6 written in C and 1 in Rust,
in minutes. These verified binaries run faster than previous
verified ones thanks to relaxing restrictions imposed by pre-
vious work. We also verify the memory safety and crash
freedom of 5 existing BPF network functions using Klint,
though we have no specifications for them.

The code for Klint and our network functions is publicly
available at https://github.com/dslab-epfl/klint.

https://github.com/dslab-epfl/klint


2 Design Insights

We formalize what we mean by a “network function” in §2.1,
explain how environment interactions are enough to infer
typing and control flow information of binaries in §2.2, and
describe how we bridge the gap between implementations
and specifications through the indirection of maps in §2.3.

2.1 Network functions we target

We restrict ourselves to network functions that use mutable
state to process packets and contain two phases: initialization
and packet processing. When processing a packet, network
functions decide whether to transmit packets in response
and what data to transmit based on state and on the packet’s
contents and metadata, such as its length. We assume that
network functions are single-threaded, and that they only
execute code when initializing and receiving packets. We do
not support timers as triggers to run code; they must instead
be checked during packet processing.
To create, read, and update state, network functions ac-

quire and use data structure capabilities through an environ-
ment, such as the DPDK [15] framework. These capabilities
correspond to opaque pointers in C, preventing network
functions from directly accessing data structure internals.

Acquiring capabilities is only allowed during initialization,
and may fail due to external factors, for instance running
out of memory. Using capabilities is allowed at any time, and
may only fail through incorrect use, for instance indexing
arrays out of bounds. Packet processing may also use other
environment calls that cannot fail from external factors, such
as obtaining the current time.

Our assumptions about data structures correspond to good
programming practices: developers should use data struc-
tures in a modular fashion for maintainability, and network
functions should not allocate memory while processing pack-
ets, to avoid performance issues and out-of-memory errors
that could allow for denial-of-service attacks.

We represent our model of a network function in Figure 1.
This is only a formalization of what developers already do,
not a proposal of a new model.

Init Processing

ClockData struct 3Data struct 2Data struct 1

Read Write

Data struct 3Data struct 2Data struct 1

Create
Config

…

St
at

el
es

s
co

de
En

vi
ro

nm
en

t

Figure 1. Network function components: initialization al-
locates state, packet processing reads and writes state and
may also use other utilities. Arrows represent control flow.

2.2 Information from environment interactions

The first limitation of previous work that we overcome is the
need for source code, thanks to the insight that environment
interactions are sufficient to infer all necessary information
about network function code, i.e., types and control flow.
As we described in §2.1, the only way for a program to

hold state and interact with the external world is through its
environment, such as displaying information or receiving a
packet from the network. That is, we define the environment
to be low-level enough that programs can be modeled as
pure functions that compose environment interactions.
A tool can precisely infer all possible behaviors of a pro-

gram by replacing the program’s environment with one that
can exhibit any allowed environment behavior, not a specific
one. This verification-only environment can be written by
hand or inferred from machine-readable documentation.
Writing an exhaustive model of the environment is not

feasible for general-purpose software because its environ-
ment is large and ill-defined. There is no formal definition
of large environments such as operating systems, and docu-
mentation often omits implementation details of high-level
operations that programs may rely on in practice.

However, a complete environment description is feasible
for network functions, because their environments are small
and well-defined. Formally defining all environment inter-
actions is manual work but must only be done once by an
environment’s developers, and the operations are low-level
enough that emulating all possible implementation-specific
behaviors is feasible. Having a small and well-defined envi-
ronment also means that its modules can be formally verified
manually if its developers choose to do so, enabling verifica-
tion of the entire software stack.
For instance, our example firewall calls a data structure

library to perform a lookup in its flow table and calls a net-
working framework such as DPDK to forward or drop the
packet based on the lookup result. Both the data structures
and the networking framework are part of the environment,
and both can be precisely replaced by a tool as long as the
network function uses dynamic linking.
Environment interactions can be observed on binaries

without loss of information, since the tool knows the num-
ber of parameters and their types. For instance, when a bi-
nary calls DPDK’s packet transmission function, the tool
uses the current architecture’s calling convention, which is
known, and the data types in DPDK’s headers, which are pub-
licly available, to extract the arguments to the transmission
function from the current machine state, such as the packet
buffer and metadata. Thus, source code is not necessary for
automated software network function verification.
The control flow information necessary for verification

can be similarly extracted by observing which branches are
taken or not between environment interactions, which pro-
duces an “unrolled” version of the true control flow graph.



2.3 Using maps to bridge the gap

Verifying the correctness of a network function that satisfies
the definition in §2.1 consists of showing that the seman-
tics of the code, obtained from environment interactions
as described in §2.2, match the semantics of the specifica-
tion. However, there is a gap between the variety of data
structures that exist in the code and the restricted set of
abstractions that any given tool can reason about, as we
illustrate in Figure 2.
For instance, our firewall may use a “least recently used”

data structure to keep track of which packet flows should be
expired due to a lack of activity, with operations such as “add
a new item” and “remove and return the oldest item”. The
firewall may also combine the use of this data structure with
other structures, such as a map tracking per-flow statistics
or a configurable set of ports that are open to the external
world at all times.

Previous work proposed two ways to bridge the gap be-
tween implementation and specification: Vigor [53] requires
the use of specific data structures in both implementation
and specification, while Gravel [55] requires the use of spe-
cific data structures that it knows how to model in terms of
high-level operations that can be used in specifications.

Vigor imposes two constraints to verify our firewall. First,
the firewall must be written using data structures that Vigor
knows about, either by modifying the firewall’s code to only
use Vigor data structures or by modifying Vigor itself to
handle new data structures, including proof annotations for
invariants that can hold across these data structures such as
“all flows in the LRU are also in the map”. Second, the fire-
wall specification must be written in terms of the same data
structures used in the implementation. These two constraints
limit both developers and operators. Developers must restrict
themselves to specific data structures or learn verification
techniques to add new ones, and operators must learn the
semantics of the data structures used in an implementation
to understand its specification.
Gravel removes the second limitation: it translates data

structure operations to a small set of high-level operations
for use in specifications, thus operators do not need to learn
all data structure semantics.

map->get(pkt->flow, &v)

if packet.flow in table:
assert sent == [packet]

lru->update(v, time())

transmit(pkt)

?

Implementation Specification

Figure 2. There is a gap between the abstractions used in
the implementation and the specification.

However, the restriction on developers remains. Develop-
ers must either modify the firewall’s code to only use existing
Gravel data structures or modify Gravel itself to handle new
data structures.
Fundamentally, tools that handle a specific set of data

structures do not scale. Adding support for a new data struc-
ture requires not only encoding the data structure’s oper-
ations, but also its interactions with other data structures,
such as invariants that can exist across structures. Even if a
tool is limited to invariants across two data structures, adding
the Nth structure requires adding N kinds of invariants, one
for each data structure including the new one.

We introduce a level of conceptual indirection: we express
the semantics of both data structures and specifications in
terms of one data structure, the map. Operations on data
structures such as arrays, hash tables, longest-prefix-match
tables, and port allocators can be defined in terms of map
operations, regardless of how they are implemented. Verifi-
cation tools can use contracts to translate any data structure
operation into map operations, which become the only kind
of operation the tool needs to reason about for invariant
inference and verification.

We refer to such maps as ghost maps, by analogy to “ghost
variables” which are variables only used in proofs.We present
an example of contracts for a “least recently used” data
structure in Listing 1. Using this contract, a verification
tool can translate the LRU semantics into maps, and thus
does not need special knowledge of what an LRU data struc-
ture is, only knowledge of maps. Importantly, contracts can
be declarative, not just imperative. Ghost maps can define
even data structures that cannot be implemented using maps
thanks to the “for all” quantifier. LRU_expire’s contract only
describes what it does, not how: the returned value is the old-
est, but the contract does not need to explain how this value
is found. We explain how a verification tool can efficiently
reason with maps in §3.
This sweeping simplification also makes invariant infer-

ence easier since there is only one kind of data structure, as
we show in §4.

1 # struct LRU;

2 LRU = namedtuple('LRU', ['items '])

3 # void LRU_add(struct LRU* lru ,

4 # void* item , int age);

5 assert item not in lru.items

6 lru.items[item] = age

7 # void* LRU_expire(struct LRU* lru);

8 age = lru.items[result]

9 assume(lru.items.forall(lambda k, v: v <= age))

10 lru.items.remove(result)

Listing 1. Contracts defined using maps, in Python, for a
“least recently used” data structure, in C. result is the return
value from LRU_expire.



3 Ghost Maps

To verify network functions automatically, we use symbolic
execution to analyze all their paths, which we summarize in
§3.1. Since data structure implementations have too many
paths to enumerate, we abstract them using contracts instead,
to obtain paths such as “key found” and “key not found”
instead of one path per cell in which a key might be.
We introduce ghost maps as a “vocabulary” in contracts

to describe the semantics of data structures and network
functions to both verification tools and human readers. Ghost
maps only exist within contracts, not implementations.

We describe our goals for ghost maps in §3.2, our proposed
representation of ghost maps in §3.3, and our proposed trans-
lation of their operations into logical formulas in §3.4.

3.1 Symbolic execution background

A symbolic execution engine executes code with symbols as
inputs instead of concrete values. Whenever it encounters a
branch on a symbolic condition, it explores both alternatives,
remembering the choices it made in a path constraint. This
leads to a set of paths, which are sequences of choices that
each represent one possible program execution. For instance,
instead of executing an “absolute value” operation on −5 and
obtaining 5, a symbolic execution engine will execute it on
𝛼 and obtain two paths: one with path constraint 𝛼 ≥ 0 and
result 𝛼 , and one with path constraint 𝛼 < 0 and result −𝛼 .
Some code has too many paths to explore in reasonable

time. For instance, consider looking for a value in an array.
The value could be in the first position, or the second, or
the third, and so on, until the array length. The number of
paths is limited by the array length, which could be, e.g.,
232. If the code which looked up the value then looks up
another value, each path resulting from the first lookup will
lead to new paths for the second lookup, squaring the total
number of paths. This problem is known as path explosion.
While the number of paths can sometimes be reduced by
merging related paths at the expense of producing more
complex constraints [29], the paths to be merged must still
be partially explored, which does not solve path explosion.

If the number of paths in a program is “reasonably” small,
a symbolic execution engine can exhaustively enumerate
them and verify the program by verifying that each path
satisfies the program’s specification.

Decidability ceiling

Ghost 
Maps

Arrays
+ 

quantifiersBit vectors

Expressive power

Figure 3. Ghost maps are more expressive than bitvectors
while remaining decidable, unlike more powerful theories
such as arrays with universal quantifiers.

length(𝑀) → Int

get (𝑀,𝐾) → 𝑉 | None
set (𝑀,𝐾,𝑉 ) → 𝑀 ′

remove(𝑀,𝐾) → 𝑀 ′

forall
(
𝑀, 𝜆(𝑘, 𝑣) → Bool

)
→ Bool

Listing 1. Ghost map operations.𝑀 and𝑀 ′ are maps; 𝐾,𝑉
are keys and values. Int denotes bitvector-based integers,
and Bool Booleans. None is the lack of value.

3.2 Expressivity, decidability, and completeness

We propose the ghost map abstraction in Listing 1 which
is expressive enough to define data structures and network
functions, while still enabling a tool to reason in a decidable,
sound, and “complete enough” manner. We describe each of
these properties next.
Ghost maps are expressive enough to abstract the data

structures we care about. Simpler abstractions require too
much detail in contracts to be practical for either humans or
tools. For instance, representing a hash table as a sequence
of 0s and 1s is possible but impractical. We are concerned
with data structures used in network functions, such as hash
tables and port allocators, thus we limit our vocabulary to
what they need, not to all possible code.

However, expressiveness is at odds with decidability. Sym-
bolic execution engines use a solver to tell whether a logical
formula is satisfiable, i.e., whether there exists an assign-
ment of variables such that the formula holds. For instance,
if “the firewall’s variables, given the firewall’s constraints,
violate its specification” is satisfiable, then the assignment of
variables is a counter-example to the firewall’s correctness.
Logical formulas are written using theories, which are the
“vocabulary” of solvers. Some theories are decidable, mean-
ing that a correct solver will always return a correct answer.
Some are not, meaning that the answer may be “unknown”
instead of yes or no. Evenwith decidable theories, “unknown”
may be returned if the solver is given a timeout and cannot
find an answer in time.
Verification tools must be sound and as complete as pos-

sible. A tool is sound if it verifies only correct programs. A
tool is complete if it verifies all correct programs. Due to
the Halting Problem [49], verification of general-purpose
programming languages must be incomplete, thus the goal
is to verify “interesting” correct programs, i.e., those that
humans actually write, even if some contrived theoretical
examples cannot be verified.
Ghost maps are an intermediate step between quantifier-

free bit vectors, which are decidable due to their finite size but
not expressive enough, and arrays with universal quantifiers,
which are more than expressive enough but undecidable, as
we illustrate in Figure 3.



3.3 Representing ghost maps

To remain as decidable as the theory of bit vectors while
offering more expressivity, we present a translation of ghost
maps to bit vectors in the context of symbolic execution.
Notably, ghost maps’ “for all” quantifier, which enables non-
imperative contracts for data structures that cannot be imple-
mented with maps, can be translated without using universal
quantifiers. Ghost maps can be more expressive despite be-
ing translated to bit vectors because the symbolic execution
engine internally uses data structures, such as lists, to build
the logical formulas it sends to the solver.

We expect the code to manipulate maps of large size, but
to only interact with a small number of items in any given
map. This is true of network functions, which by nature only
perform a small number of operations for each packet to
remain within their performance budget.

Tracking known and unknown items separately is
our key insight to handle maps of arbitrary size. That is,
none of the map operations require “forking” the current
path, and the engine handles map operations in a time linear
in the number of known items, not total items.

Thus, instead of keeping track of every item in every map,
the engine only needs to track the specific items that are
explicitly used in one iteration of the network function’s
packet-processing loop. Other items are “summarized” into
a single pseudo-item that tracks their constraints, such as
“all unknown values are non-zero”.

This scheme naturally enables ghost map lengths to be
symbolic, since their actual size does not matter as much
as the number of known items. A verification tool can thus
represent maps whose length is determined by configuration
parameters using a symbolic configuration, instead of verify-
ing only one specific configuration as is for instance done in
Vigor [53]. The tool can thus catch all bugs that only occur in
specific configurations, such as the maximum capacity of the
firewall’s flow table being zero, without requiring developers
to think of which configurations to try.
Counter-intuitively, the engine must mutate its internal

representation of maps during read-only operations on maps.
Known items must include those that have been retrieved
from the map, even if they have not explicitly been set before.
For instance, consider the following:

get (𝑀,𝐾1) → 𝑉1
get (𝑀,𝐾2) → 𝑉2

If 𝐾1 = 𝐾2, then 𝑉1 = 𝑉2 by definition. But the engine must
remember the first get in some way in order to guarantee
the implication, and it cannot store high-level map opera-
tions in the path constraint, thus it must modify its internal
representation of𝑀 . From an outside perspective,𝑀 has not
changed, but internally the engine must remember this get.
We informally describe each operation first, then add ad-

ditional details to handle subtleties, then provide a formal
algorithm for the core get operation.

The engine tracks each map’s length explicitly.
Known items are triples: (key, value, presence bit). If

the presence bit is false, the value is ignored and the key is
considered absent from the map. None only exists conceptu-
ally; the theory of bit vectors cannot represent it.
Known items may be redundant, but their values and

presence bits must match if their keys match. This is because
their keys may be symbolic, thus the engine cannot know
for sure whether two items have equal keys.

Unknown items are represented by an invariant that
they all satisfy. The unknown items invariant only concerns
unknown items. Known items need not satisfy it. For in-
stance, a map may have as invariant “all unknown values are
non-zero” and two known items, (𝐾1, 0, true) , (𝐾2, 1, 𝛼). The
first known item is definitely present, whereas the second
may or may not be present depending on the value of 𝛼 .

The unknown items invariant is represented as a formula
on a special unknown item, unique to each map. For instance,
the non-zero invariant example is represented as UP𝑀 ⇒
UV𝑀 ≠ 0, where UP𝑀 and UV𝑀 are the presence bit and
value of 𝑀’s unknown item. Including the presence bit in
the invariant allows it to be constrained for cases such as
arrays. For instance, a zero-based array of length 𝐿 described
using a ghost map 𝐴 would have UP𝐴 = (0 ≤ UK𝐴 < 𝐿) as
part of its unknown items invariant, indicating that keys are
in 𝐴 if and only if they are between 0 and 𝐿, matching the
semantics of array indexing in languages such as C.

3.4 Translating ghost map operations

We use ITE(𝑐, 𝑡, 𝑓 ) to denote “if 𝑐 then 𝑡 else 𝑓 ”, and fresh
to mean a symbol that was not used before, i.e., that is not
constrained in any way. “Applying” the unknown invariant
of a map to an item means substituting the map’s unknown
item for the item.

𝑙𝑒𝑛𝑔𝑡ℎ(𝑀): Return the map’s length, which the engine
tracks explicitly.

𝑔𝑒𝑡(𝑀,𝐾): Create a fresh tuple (𝑉 , 𝑃). Add (𝐾,𝑉 , 𝑃) to
the map’s known items. Add constraints to the current path
to encode that, within the map, (1) if 𝐾 matches a known
item then so do 𝑉 and 𝑃 , (2) if 𝐾 does not match any known
item then the unknown items invariant applies on (𝐾,𝑉 , 𝑃),
and (3) the number of unique known items cannot exceed its
length. Return (𝑉 , 𝑃), which encodes “if 𝑃 then𝑉 else None”.

𝑠𝑒𝑡(𝑀,𝐾,𝑉 ): Let (_, 𝑃) = get (𝑀,𝐾). Return a new map
whose length is length(𝑀) + ITE(𝑃, 0, 1), whose known items
are

(
𝐾 ′, 𝐼𝑇𝐸 (𝐾 = 𝐾 ′,𝑉 ,𝑉 ′), 𝑃 ′ ∨ (𝐾 = 𝐾 ′)

)
for each known

item (𝐾 ′,𝑉 ′, 𝑃 ′) in𝑀 , plus (𝐾,𝑉 , true), and whose unknown
items invariant is the same. That is, (1) the length only grows
if 𝐾 was not in𝑀 , and (2) known items must match if they
are redundant.

𝑟𝑒𝑚𝑜𝑣𝑒(𝑀,𝐾): The opposite of set, i.e., the length change
is ITE(𝑃,−1, 0), the new known item is (𝐾,𝑉 , false), where
𝑉 is any arbitrary value, and the known items are changed
to

(
𝐾 ′, 𝐼𝑇𝐸 (𝐾 = 𝐾 ′,𝑉 ,𝑉 ′), 𝑃 ′ ∧ (𝐾 ≠ 𝐾 ′)

)
.



𝑓𝑜𝑟𝑎𝑙𝑙(𝑀, 𝐹 ): The result is true iff 𝑃 ⇒ 𝐹 (𝐾,𝑉 ) for each
known item (𝐾,𝑉 , 𝑃) in the map andUP𝑀 ⇒ 𝐹 (UK𝑀 ,UV𝑀 )
for the unknown item of the map. That is, the result indi-
cates whether the predicate holds on known items and on
unknown items. Add to the map’s invariant that if the re-
sult of this operation is true, then the predicate holds on
unknown items if their presence bit is true, ensuring that
even if the result is not yet known, it will be consistently
applied in the future. If the result is false, future items are
not constrained, which is sound but not complete.

Layers are necessary to handle dependencies that arise
when code uses multiple versions of a map at once. Consider:

set (𝑀,𝐾,𝑉 ) → 𝑀 ′ get (𝑀,𝐾 ′) → 𝑉 ′

get (𝑀 ′, 𝐾 ′) → 𝑉 ′′

If 𝐾 ≠ 𝐾 ′, then 𝑉 ′ and 𝑉 ′′ must be the same, since only
the value associated with 𝐾 is affected by the set. However,
the representation described earlier cannot guarantee this,
because the known items of𝑀 and𝑀 ′ are independent.

To handle this issue, set and remove return layers instead
of entirely new maps, as the example in Figure 4 illustrates.
That is, they return a map which includes the newly added or
removed item among its known items, but which links to the
previous map for the other known items, transforming them
when necessary, instead of evaluating the new known items
at creation time. Items and invariants created by get and
forall are always added to the bottom-most layer. Map layers
also share the unknown items invariant, and the associated
“unknown item”, of their base map.

Thus, in our example above, the known items “seen” by
the second get operation include the result of the first one,
and thus the second get will return a result that lets a tool
prove 𝐾 ≠ 𝐾 ′ ⇒ 𝑉 ′ = 𝑉 ′′.
Invariant recursion must be explicitly handled to

avoid infinite recursion when two maps’ invariants refer
to each other. For instance, a bi-directional map may be rep-
resented as two maps whose contents are inverses: for each
key-value pair (𝐾,𝑉 ) in map 𝑀1, there is a pair (𝑉 , 𝐾) in
map𝑀2, and vice versa. The invariants are:

forall
(
𝑀1, 𝜆(𝑘, 𝑣). get (𝑀2, 𝑣) = 𝑘

)
forall

(
𝑀2, 𝜆(𝑘, 𝑣). get (𝑀1, 𝑣) = 𝑘

)
Consider what would happen using the representation de-

scribed earlier when the engine handles get (𝑀1, 𝐾) for some
𝐾 . As part of adding the invariant on the newly-known item
of𝑀1 to the path constraint, the engine will call get (𝑀2,𝑉 )
with the fresh 𝑉 from the original get. As part of adding
the invariant on the newly-known item of 𝑀2 to the path
constraint, the engine will call get (𝑀1,𝑉

′) with the fresh 𝑉 ′

from the second get. The engine then calls get on𝑀2, and so
on, leading to infinite recursion.
Solving this issue requires the engine to recognize that

in the third get call, the 𝑉 ′ argument is equal to 𝐾 , which it
knows from the first get call. The result should thus be the
existing 𝑉 , not some fresh 𝑉 ′′.

M [(K’, V’, P’)]

M’
λ(k,v,p). (k, ITE(K=k,V,v), p ∨ K=k)

[(K, V, true)]

[(K, V, true), (K’, ITE(K=K’,V,V’), P’ ∨ K=K’)]

Figure 4. Example of a set layer𝑀 ′ on top of a map𝑀 , and
the resulting known items of𝑀 ′.

The engine thus tracks a condition and a value hint during
ghost map operations, which are set when handling invari-
ants and used to stop recursion when handling get.
When handling a map invariant of the form get (...) = ...,

the engine adds to the condition the presence bit given as
argument to the invariant and sets the value hint to the value
expected by the invariant. These changes are reverted when
the engine is finished handling the invariant.

get (𝑀,𝐾) needs two changes at the start: First, if𝐾 cannot
be different from an existing item’s key assuming the condi-
tion holds, return that item’s value and presence bit. Second,
after creating the fresh 𝑉 , if there is a condition, add “the
condition implies 𝑉 = 𝑣𝑎𝑙𝑢𝑒_ℎ𝑖𝑛𝑡” to the path constraint.

Applying this logic to our example solves the issue. When
handling get (𝑀2,𝑉 ), the value hint is 𝐾 and the condition
is 𝑃 , both from the newly-known item of 𝑀1. When 𝑀2’s
invariant calls get (𝑀1,𝑉

′), the path constraint contains 𝑃 ⇒
𝑉 ′ = 𝐾 , thus the get on𝑀1 will start by checking whether its
known item (𝐾,𝑉 , 𝑃)’s key is equal to𝑉 ′ assuming 𝑃 , which
it is, and return (𝑉 , 𝑃), ending the recursion.
This strategy avoids recursion in common cases such as

our example of maps with reciprocal keys and values, but
it is not complete, as the engine may recurse infinitely. For
instance, “𝑀1 has min(𝐾 − 1, 0) for all 𝐾 in𝑀2, and𝑀2 has
min(𝐾 − 1, 0) for all 𝐾 in 𝑀1” could hold, but will lead to
infinite recursion in the engine given our implementation.
We present the final get algorithm, which is the core of

our ghost map technique, in Appendix B. Our technique is
decidable and expressive but not complete, unlike prior work
that focused on completeness at the expense of expressive-
ness [3, 13]. Our technique enables a symbolic execution
engine to translate ghost map operations into formulas on
quantifier-free bit vectors. This enables the engine to by-
pass the path explosion caused by data structure code by
executing the code’s contract instead.

The universal “forall” quantifier on ghost maps allows con-
tracts even for operations that cannot be implemented using
maps by describing what they do instead of how. However,
we believe some data structures are not a good fit for ghost
maps, specifically ordered ones. While queues and stacks can
be viewed as maps from indexes to elements, the resulting
contracts are unlikely to be conducive to invariant inference.



4 Invariant inference

Handling data structures by translating them to ghost maps
is not sufficient for automated verification. Developers use
data structures in well-defined patterns, named invariants,
but these patterns are not always explicit in the code.

Verification tools must infer such invariants to avoid fail-
ures. When executing a contract instead of an implementa-
tion, the tool must have enough information to prove the
contract’s precondition. Previous tools bypassed this prob-
lem by special-casing data structures and their invariants.

The ghost maps representation we proposed in §3 enables
tools to infer invariants without special-casing templates.

Consider these motivating examples in pseudo-code:
if packet.flow in table:

statistics.increment(packet.flow)

If increment’s contract requires the item to be in statistics,
symbolic execution will fail if it cannot prove this fact.

device = destinations.get(packet.flow)

transmit_packet(packet , device)

If transmit_packet’s contract requires the device to exist, sym-
bolic execution will fail if it cannot prove this fact.

if not items.full:

items.add(x)

metadata.add(x, y)

If add’s contract requires free space, symbolic execution will
fail if it cannot prove not metadata.full in the second add call.
All three examples could be bugs depending on how the

data structures they deal with are updated. If the first exam-
ple is in code that always adds packet.flow to both statistics

and table, the code is valid. If the second example always
puts a device known to be valid in devices, such as the incom-
ing device of a packet, the code is valid. If the third example
is the only occurrence of add in the code and both structures
have the same length, the code is valid.

To infer invariants, our algorithm starts from the strongest
possible ones then iterates by relaxing them as needed until
it finds a fixed point, as we illustrate in Algorithm 2. The
starting point is the program states resulting from symboli-
cally executing the network function’s initialization code. At
this point, the invariants are the strongest possible ones: “all
maps will always be exactly as they are after initialization”.

function FindFixedPoint(code)
𝑖𝑛𝑣𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 (𝑐𝑜𝑑𝑒)
𝑠𝑡𝑎𝑡𝑒𝑠 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒𝑠 (𝑐𝑜𝑑𝑒)
do

𝑖𝑛𝑣𝑠 = 𝑅𝑒𝑙𝑎𝑥 (𝑖𝑛𝑣𝑠, 𝑠𝑡𝑎𝑡𝑒𝑠)
𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑎𝑙𝑙𝑦𝐸𝑥𝑒𝑐𝑢𝑡𝑒 (𝑠𝑡𝑎𝑡𝑒𝑠, 𝑖𝑛𝑣𝑠)

while 𝑖𝑛𝑣𝑠 do not hold on 𝑠𝑡𝑎𝑡𝑒𝑠
return 𝑖𝑛𝑣𝑠

Algorithm 2: Core of the invariant inference algorithm.

The initial invariants are unlikely to hold on the packet
processing code, unless the code does nothing. After symbol-
ically executing the packet processing code for one iteration
of the network function’s infinite packet-processing loop, the
engine relaxes the invariants to match the program states
that result from the iteration. For instance, the initial in-
variant “the firewall’s flow_table is always empty” could be
relaxed into “the flow_table may have items, and its length
is always the same as the statistics”. The engine then sym-
bolically executes a packet-processing iteration again using
these new invariants, which may lead the engine to explore
new paths in the code such as a path in which the packet’s
flow is found in the flow_table, previously infeasible as the
table was assumed to be empty. The engine then relaxes
the invariants again, and executes an iteration with these
new invariants, until the invariants no longer need relaxing
after an iteration. By definition, the final relaxation yields
invariants that hold on the initial state as well, thus the result
is a correct set of invariants. The algorithm is guaranteed
to converge since the set of invariants can only shrink. It
may converge towards the empty set of invariants because
the code has no invariants or because the engine could not
infer any. The goal is not to find some “ideal” set of perfect
invariants, only enough invariants to be able to symbolically
execute and verify the code. If some properties happen to
hold but are not necessary, inference need not find them.

The key to inferring useful invariants is to use ghost maps’
known items to form invariant candidates, and then check
whether these candidates hold using the unknown items.
Thus, instead of using low-level invariant templates such
as “the value is nonzero” as in Houdini [20], the tool can
find invariants based on the constraints that hold on known
items. For instance, the tool does not need a definition of a
“device” to solve our second motivating example.

Besides finding invariants among map items and lengths,
tools can also find invariants acrossmaps. Such invariants are
of the form “if𝑀1 associates key𝐾 with value𝑉 , then𝑀2 has
some key and possibly value related to 𝐾,𝑉 ”. For instance,
in the first motivating example, finding the invariant “all
keys of table are also keys in statistics” enables the tool
to prove that the code uses increment correctly. Inferring
such invariants requires finding functions 𝐹𝐾 , 𝐹𝑉 , 𝐹𝑃 for two
maps 𝑀1, 𝑀2 such that ((get (𝑀1, 𝐾) = 𝑉 ) ∧ 𝐹𝑃 (𝐾,𝑉 )) ⇒
(get

(
𝑀2, 𝐹𝐾 (𝐾,𝑉 )

)
= 𝐹𝑉 (𝐾,𝑉 )), or alternatively find only

𝐹𝐾 , 𝐹𝑃 and merely infer that𝑀2 contains 𝐹𝐾 (𝐾,𝑉 ) without
inferring the associated value. Candidates for 𝐹∗ are found
using the known items and confirmed using the unknown
items invariant.

In summary, the representationwe propose for ghost maps
also enables an elegant invariant inference algorithm based
on finding candidate invariants and relaxing them as neces-
sary. Representing known items explicitly lets a verification
tool find useful candidates for invariants, instead of limiting
itself to special-cased low-level templates.



5 Implementation

We implement our technique in Klint, a tool which uses the
angr [48] symbolic execution engine and the Z3 [12] solver.

Klint takes a network function binary and a Python
specification as inputs and proves that the binary satisfies
the specification or produces a counter-example. Klint can
also be used without a specification to check that no path in
the code crashes or accesses memory out of bounds.
Klint first identifies all environment interactions in the

binary, which correspond to data structure operations or
networking operations, using the symbols that the binary
must export since it dynamically links the environment code.
Then, Klint maps these operations to their contracts, pro-
vided by the developers of the data structures and of the net-
working environment. Data structure contracts are written
in terms of ghost maps, as defined in §3, while the handful of
fundamental networking operations such as transmitting a
packet have manually written contracts for Klint. When the
binary calls its environment, Klint symbolically executes
the corresponding contract instead of the implementation,
inferring types and control flow information as described in
§2.2: Klint knows the types of parameters to environment
interactions, and extracts control flow in the form of path
constraints. This enables Klint to understand the semantics
of the binary under verification in terms of its environment.
Klint symbolically executes the network function’s ini-

tialization code, as defined in §2.1, then infers invariants that
hold in all packet-processing paths by symbolically execut-
ing the packet-processing code until it finds a fixed point,
as described in §4. Klint then checks whether all packet-
processing paths satisfy the specification, which indicates
whether the network function binary as a whole does.

Specifications are Python programs that use ghost maps,
which Klint interprets using peer symbolic execution [6] on
each state resulting from symbolic execution of the binary.
The binary may abstractly manipulate more than one ghost
map, since it may use multiple data structures and individual
data structures may be modeled by contracts as multiple
maps. Thus, when the specification refers to a map, Klint
must infer which of the maps it is, using heuristics to try
likely candidates first, and only fail verification if the specifi-
cation is violated for all possibilities. For instance, a firewall
can track outgoing flows and maintain statistics per IP ad-
dress. Klint must infer that the flow table in Algorithm 1 is
the abstract form of the former data structure, not the latter.
Developers must comply with good programming prac-

tices such as state separation if they want verification to
succeed, and Klint enforces this during verification. If de-
velopers do not separate data structure code from the rest
of the network function, Klint will encounter too many
paths and fail once it has executed a configurable instruction
threshold. Developers already follow even stricter practices
to write BPF programs due to the strict Linux verifier [10].

Klint models heap memory with ghost maps, treat-
ing memory as just another kind of data structure and in-
cluding it in invariant inference. Developers use a standard
calloc-like interface to allocate memory. During symbolic
execution, memory allocations return symbolic pointers, en-
suring that Klint will explore all paths even if some paths
depend on the value of pointers. This is not the case in a tool
such as Vigor [53], which uses concrete pointers.
To ensure that developers cannot “hide” memory from

Klint, all memory outside of the stack and themaps-modeled
heap is read-only after initialization. This is not a limitation
on sensible developers, who allocate on the heap through
the environment and cleanly separate mutable state.

Our memory model is similar to Memsight [9] and KLEE’s
segmented memory [26], but it requires almost no effort to
implement thanks to the flexibility of ghost maps.

Klint can do full-stack verification, verifying the en-
tire software stack, including the network driver and most
of a minimal operating system.
To verify the network driver, Klint matches hardware

accesses to the actions they correspond to, using a hardware
description of the network card written in a domain-specific
language and based on publicly available data. Klint in-
tercepts reads and writes to network card registers, which
usually go through port- or memory-mapped I/O. When the
network driver writes a value to a register, Klint reverse-
engineers what the driver might be doing by finding all
actions that could match the write, and checking which ones
are feasible in the current hardware state. For instance, if
the driver sets the “enable promiscuous mode” flag in the
network card, Klint looks up the corresponding action and
checks its precondition, which states packet reception must
be disabled. If the precondition does not hold, or if no action
matches the write performed by hardware, Klint aborts ver-
ification. Actions can also have postconditions describing
what happens to the hardware as the result of an action, such
as a self-clearing bit in a register.
The only environment operations for which Klint uses

contracts instead of implementations during full-stack ver-
ification are the data structures and the memory allocator
due to their complexity. We verified that they obey their
contracts using machine-checked proofs.

Full-stack binary verification does impose one constraint:
while the network function and its network driver can be
compiled together, the environment has to be compiled sep-
arately and then linked together without link-time optimiza-
tions, ensuring the symbols corresponding to environment
operations exist and can be given as an input to Klint.

Our trusted computing base is made up of Klint itself,
including angr and Z3; the bootloader; the hardware; and the
VeriFast [25] theorem prover we use to verify the memory
allocator and data structures. Since VeriFast verifies source
code, we trust the C compiler for the data structures and
memory allocator, but this is not a fundamental limitation.



6 Evaluation

We evaluate Klint using the binaries, without debug sym-
bols, of 6 network functions: an Ethernet bridge with a span-
ning tree protocol, a firewall, an implementation of Google’s
Maglev [16], a network address translator, a traffic policer,
and an IPv4 router with longest prefix matching. The first
five are based on publicly available code from the Vigor [53]
project, which verified source code.
We show that Klint can quickly verify binaries in §6.1,

that it reduces the trusted base and enables developers to
write faster code in §6.2, and that it is applicable to real-world
code including BPF in §6.3.

6.1 Verifying network functions

We summarize the time it takes Klint to verify our network
functions in Table 1, split into the time to symbolically exe-
cute the code, infer invariants, and verify the resulting paths.
Klint runs multiple iterations of symbolic execution and
invariant inference to find a fixed point, thus we report the
total time spent in each category.
We measure all times on an Intel i7-7700HQ CPU run-

ning at 3.60GHz. Klint is single-threaded, though invariant
inference is embarrassingly parallelizable. We prototyped
parallelization but ran into a complex bug between angr
and Z3 due to garbage collection [1], and since Klint is fast
enough we did not investigate further.

Overall, even the most complex of our network functions,
the bridge, takes about 2 minutes to verify, which we believe
is reasonable. We could further reduce verification time by
reducing the redundancy in some invariants, and by using
less flexible tools than angr and Z3, since we do not use
their full power. The router uses a single data structure, the
longest-prefix-match table, thus it only has one invariant.

We caution against over-interpreting the exact results, as
most of the time is spent by the Z3 solver, and we noticed
that the time Z3 takes to solve queries can vary significantly
with small changes in queries, due to the heuristic-based
nature of solving. Thus, total verification time can vary by
dozens of seconds with minor changes in Klint or Z3.

Time (seconds)

#invs

Sym. ex. Inv. inf. Verif. Total

Bridge 82 18 19 119 32
Firewall 26 7 10 43 20
Maglev 36 11 10 57 25
NAT 43 7 8 58 20
Policer 53 10 6 69 25
Router 0 0 1 1 1

Table 1. Our network functions, the time Klint takes to
verify them, and the number of invariants it finds.

1 def spec(pkt , config , sent_pkt):

2 if pkt.ipv4 is None or pkt.tcpudp is None:

3 assert sent_pkt is None

4 return

5 if pkt.device == config["external device"]:

6 flow = {

7 'src_ip ': pkt.ipv4.dst ,

8 'dst_ip ': pkt.ipv4.src ,

9 'src_port ': pkt.tcpudp.dst ,

10 'dst_port ': pkt.tcpudp.src ,

11 'protocol ': pkt.ipv4.protocol

12 }

13 # there must exist a map that tracks flows ,

14 # regardless of what it maps them to

15 table = Map(typeof(flow), ...)

16 if sent_pkt is not None:

17 assert flow in table.old

18 assert sent_pkt.data == pkt.data

19 assert sent_pkt.device == 1 - pkt.device

Listing 2. Partial specification of a firewall with 2 devices.
This specification can be given to Klint unmodified.

We show the Klint equivalent of Algorithm 1, our run-
ning example of a specification, in Listing 2. The full speci-
fication is too long to show here, but Klint can also verify
this partial specification.
The specification abstracts away implementation details

such as the type of values in the firewall’s flow table, as
seen in line 15. This uses Python’s “ellipsis” literal, meant
for domain-specific languages.
This specification is actual Python code run in the stan-

dard Python interpreter by Klint, thus developers can write
specifications using their existing programming knowledge.
Klint currently requires the order of fields in specification
structures such as the flow declared in line 6 to match the or-
der in the corresponding implementation structure. Having
Klint try all possible orders would not finish in reasonable
time, but there may be better strategies.

We found and fixed two implementation bugs using spec-
ifications we wrote based on standards. First, section 7.8 of
the IEEE 802.1D standard [30] forbids adding Ethernet group
addresses to the filtering table, which we originally forgot to
implement. Second, our NAT originally misused its port allo-
cator if configured to use only a sub-range of ports. This was
already present in the Vigor NAT, because Vigor requires a
concrete size for data structures during verification, and its
authors only verified it for the full port range.
Verifying the entire stack requires an additional 15 min-

utes per network function, most of which is spent inferring
the network driver’s actions because the driver performs
thousands of writes to registers and each of these writes
requires work from Klint. This could be improved by rec-
ognizing simple loops, since most initialization operations
are performed in loops over categories of registers.



6.2 Faster verified network functions

Klint enables developers to write faster verified network
functions in two ways: developers can quickly prototype
changes to data structures without having to verify them
first, and they can use the abstractions they want instead of
verification-specific ones. In practice, we expect developers
to either use existing verified data structures or write con-
tracts for existing “trusted” data structures such as BPF maps.
Klint enables this workflow by only requiring contracts and
not proofs for these trusted data structures, whereas previous
tools required an all-or-nothing approach.

First, ghost maps and invariant inference enable quick pro-
totyping of new data structures. For instance, we rewrote our
port allocator to have different performance characteristics
with slightly different semantics, including stricter precon-
ditions as we believed our network functions did not need
the generality of the existing ones. Using an approach such
as Vigor or Gravel, even when prototyping, we would have
needed to add a model of the new port allocator to the veri-
fication tool, including annotations for invariants, to check
whether our network functions would still be correct when
using it. With Klint, we wrote new contracts, automati-
cally verified that our network functions already satisfied
the new stricter preconditions, then manually verified the
implementation once we finished prototyping.

Second, verifying binaries enables simpler and faster code
by removing abstractions over low-level hardware features
that existed for the sake of verification. For instance, using a
tool such as Vigor, obtaining the time from the environment
requires calling a C function that the tool replaces with a
model at verification time. Unless the compiler can inline this
function, the developer will pay the performance cost at run
time. With Klint, the code can use inline assembly to read
the CPU’s time stamp counter, which Klint handles in the
same way as other assembly instructions. Furthermore, in
the Vigor model, the C function must be verified separately
using a different tool, a problem Klint does not have.

Vigor Klint

Tput Latency (us) Tput Latency (us)
(Gb/𝑠) 50% 99% (Gb/𝑠) 50% 99%

Bridge 5.54 3.98 4.25 10* 3.84 4.26
Firewall 7.77 3.92 4.26 10* 3.84 4.25
Maglev 6.34 3.96 4.28 10* 3.90 4.27
NAT 3.47 3.97 4.32 10* 3.87 4.27
Policer 9.12 3.87 4.25 10* 3.83 4.24

Table 2.Maximal single-link throughput without loss, and
latency with 1 Gb/s background load of the original Vigor
network functions and our versions. * = link saturated

0 2 4 6 8 10 12 14
Throughput (Gb/s)

0

2

4

6

8

10

12

M
ed

ia
n 

la
te

nc
y 

(μ
s)

Vigor on DPDK (verified source)
Vigor on TinyNF (verified source)
Click (unverified)
Klint on DPDK (unverified)
Klint on TinyNF (verified binary)

Figure 5. Throughput without loss vs. median latency of dif-
ferent bridges. Shaded areas delimit 5th and 95th percentiles.

We benchmark our network functions using the Vigor
ones as baselines, with the TinyNF [45] driver instead of the
original DPDK subset since it is faster and is the base for
our own network driver. We use the same setup as Vigor
to make the comparison useful: two machines as in RFC
2544 [4], one running a network function and one running
the MoonGen packet generator [17]. Both machines have
Intel Xeon E5-2667 v2 CPUs at 3.30GHz, Intel 82599ES NICs,
and run Ubuntu 18.04. These network cards are the ones
we modeled for Klint’s full-stack verification. We measure
throughput with minimally-sized packets, filling network
functions’ flow tables to 90% of their capacity.

We first run the same benchmark used in the Vigor paper:
find the maximum throughput the network functions can
sustain without dropping packets using one 10 Gb/s link and
measure their latency when fed 1 Gb/s of background load.
All our network functions can handle 10 Gb/s whereas the
Vigor ones cannot, as we show in Table 2.

Since the Ethernet link is a bottleneck in the Vigor bench-
marks, we use two links, for a theoretical maximal through-
put of 20 Gb/s. To obtain more details about performance, we
measure latency at increments of 1 Gb/s until the network
function drops packets. We focus on the bridge for lack of
space. We included the original Vigor bridge running on its
verified DPDK subset, the Vigor bridge running on the veri-
fied TinyNF driver, the Click [28] bridge originally used as a
baseline by Vigor, our bridge running on our verified driver,
and our bridge running on DPDK, which is not verified. We
do not know of any “standard” network functions we could
use as a baseline beyond Click.

Despite our bridge having extra features compared to the
Vigor one, such as support for a spanning tree protocol, it can
reach more throughput before dropping packets than any of
the other bridges, including the bridge from the widely used
Click toolchain, as we show in Figure 5.



Language Data structures Extra inputs Pointer arith. Unbounded loops Precise

Gravel [55] LLVM C++ STL Intermediate specs Limited No Yes

Prevail [21] BPF BPF maps No need If safe Yes No

Vigor [53] LLVM Custom “libVig” NF-specific models No No Yes

Klint x86_64 Any, w/ contracts No need If safe No Yes

Table 3. Comparison of this work with previous network function verification efforts.

6.3 Applicability

Klint is applicable to real-world network functions: it does
not require additional inputs from developers, it enables
operators to verify the entire stack of network functions, its
network function model is a superset of the widely used BPF,
and it enables developers to use any programming language
including those not considered mature enough to be trusted.
As we show in Table 3, Klint operates on binaries, can

handle any data structure for which map-based contracts
are provided, does not require intermediate inputs, does not
limit developers’ use of pointer arithmetic beyond memory
safety, and precisely tracks the contents of data structures
and packets enabling functional correctness proofs.

Previous work falls into two categories. Vigor and Gravel
prove functional correctness but require a typed interme-
diate language, extra inputs, and specific data structures.
Prevail [21] handles BPF bytecode and maps, which BPF de-
velopers must use anyway, and can even handle unbounded
loops, but can only prove memory safety and crash freedom.
Prevail can be viewed as a superset of the Linux BPF verifier.
Klint provides the best of both worlds: it requires neither
a typed intermediate representation nor extra inputs, and
it does not limit data structures, while also enabling proofs
of functional correctness. As an example of unnecessary in-
puts, we were able to remove around 3000 lines of proofs for
invariants when porting Vigor network functions to Klint.

Operators can verify the entire software stack, and
thus do not need to trust software such as network drivers,
using Klint’s full-stack verification. Developers can thus
tune the drivers for performance by removing features they
do not need, or even rewrite their own driver to suit it to
a specific usage pattern. PacketMill [19] showed that such
transformations can be done with developer hints to increase
network function performance.

Klint can be used to verify network functions in contain-
ers, i.e., statically linked with a Linux implementation of the
environment abstraction and running within Docker [34].
Containers are a convenient way to deploy and manage pro-
grams and have been proposed as a deployment model for
network functions [50]. Klint can verify such network func-
tions in the same way it verifies full-stack ones, although
the trusted code base is larger since operators need to trust
the container runtime as well as the Linux environment
implementation running inside the container.

Our network function model is a superset of BPF.

The Linux kernel verifies that BPF programs are memory
safe and have no unbounded loops. Klint verifies functional
correctness, though it also requires a lack of unbounded
loops. BPF requires developers to use a fixed set of data
structures, mostly maps. Klint enables developers to use
any data structure that has contracts based on ghost maps.
To show that Klint’s model is at least as expressive as

BPF’s, we use five existing BPF programs: Facebook’s Ka-
tran [47] load balancer, the CRAB [27] load balancer, a filter
from Suricata [44], a firewall from hXDP [5], and a bridge
from Polycube [35]. We extend Klint to analyze the assem-
bly code compiled by the kernel after dumping it through a
Linux debugging facility, using contracts we wrote for the
BPF maps. Since we have no specifications for these BPF pro-
grams, Klint only verifies memory safety and crash freedom.
Klint verifies the bridge and firewall in seconds, and CRAB
and the Suricata filter in less than 2 minutes, but Katran
requires almost 4 hours. This is due to our choice to model
packet contents with a ghost map for simplicity, even though
packet contents do not factor into invariant inference. Ka-
tran reads and writes to dozens of fields in the packet, which
means the ghost map representing the packet has too many
items to be efficient. This could be fixed by using a different
way to model packet memory, such as Z3 arrays.

Developers canuse anyprogramming language, even
if that language is considered too “exotic” or “immature” for
operators to blindly trust it, since Klint verifies binaries,
and thus can catch errors resulting from compiler bugs.
For instance, the Rust [39] programming language is a

promising direction for writing low-level systems code, in-
cluding networking, but a developer or an operator might be
concerned about its maturity level. Indeed, as of this writing
there are currently 69 issues in the Rust bug tracker [46]
marked with the “unsound” tag, meaning the compiler al-
lows code that violates Rust’s safety guarantees. Further-
more, some Rust features such as removing unused parts of
the standard library are currently experimental.
However, we are able to write a traffic policer in Rust,

compile it using these experimental features, and verify it
using Klint with the same specification as our C implemen-
tation. We can thus be confident that no matter what bugs
lie in the Rust compiler, our binary is correct.



7 Limitations

Klint’smain limitation is that it cannot handlemulti-threaded
network functions that share state across threads. As we
stated in §2, parallel code causes path explosion due to the
amount of possible interleavings among threads. Running
isolated instances of a network function in parallel can work
by steering flows to cores, in which case Klint can verify
the instances, but this has skew issues.
Klint imposes the following performance limitation on

network functions: data structures must be dynamically
linked so that Klint can identify their operations by map-
ping the symbols left undefined in the binary to the contracts
it is given as inputs. This can lead to slower function calls
and lost opportunities for inlining.
Klint also has the non-fundamental limitation of only

supporting packet arrival as a trigger to run code and not
timers or other events. Extending Klint to support this is
engineering work, replacing the restricted event handler
model of packet reception with a more general one that
branches on the event type.

Verifying network functions is only one part of the puzzle.
Klint can verify that a network function implements a pro-
tocol, but not that the protocol itself satisfies properties such
as avoiding infinite message loops. Specialized techniques
exist to verify protocols, such as IronFleet [22].
The remaining part of the puzzle is data structure imple-

mentations, for which manual verification tools currently
remain necessary. We used VeriFast [25], which uses anno-
tation for C, but other approaches exist such as Dafny [31],
a programming language designed for verification.

8 Related work

Runtime verification is a related but distinct area of work,
focusing on checking behavior at runtime. This catches bugs
even in code currently beyond the reach of formal verifica-
tion, for instance due to complex parallelism. Tools such as
Aragog [52] trade completeness and performance for appli-
cability. They only look at input and output packets and view
network functions as “black boxes”, thus they impose no con-
straints on code. But they cannot guarantee the absence of
bugs, and in distributed environments cannot prevent bugs
that can only be detected after compiling information from
different machines. They also impose runtime overheads,
unlike Klint, due to the runtime nature of checks.
Symbolic execution is themain techniquewe build upon,

and ghost maps may be useful beyond network functions.
Symbolic execution is often used for bug finding instead
of verification because of path explosion, but it can be aug-
mented with techniques to bypass path explosion. Indeed,
KLEE [7] and angr [48] were both designed primarily to
find bugs, yet Vigor [53] and Klint show that they can be
used for verification. S2E [8] was also designed to find bugs
but reused for network function verification by Dobrescu

and Argyraki [14]. Serval [40] is a symbolic execution en-
gine enhanced with verification techniques and can prove
systems such as a security monitor, at the cost of requiring
some human annotations. Klint could have used Serval as a
base; we chose angr mostly because it is designed for quick
prototyping. Path explosion can also be bypassed by writing
code with few paths, as in the Hyperkernel [42].
Using maps as part of analyzing programs has been pro-

posed before, though previous approaches were not aimed
at functional verification, such as the Memsight [9] memory
model for symbolic execution, or the technique proposed by
Dillig et al. [13] to verify memory safety.

Network function verification tools such as Vigor [53],
Gravel [55], and Prevail [21], which require source code, all
inspired our design. Bolt [24] and Pix [23] verify performance
instead of correctness, and require source code, though we
believe they could use our techniques to only require binaries.
While verifying binaries provides key advantages, verifying
source code makes debugging failed verification easier since
compiler optimizations can make it hard to match what the
binary does wrong to what the code does wrong.

BPF is a more applicable but weaker form of network
function verification: an in-kernel “verifier” checks memory
safety and crash freedom, allowing untrusted code to run
in kernel mode for performance without safety risks. BPF
verifiers are fast, at the cost of restricting the code developers
may write. BPF code cannot contain unbounded loops, must
use specific data structures, and must include explicit checks
for out-of-bounds memory accesses, even if a “smarter” and
slower verifier might not need these checks. Internet infras-
tructure companies such as Cloudflare [32] use BPF as a
core part of their infrastructure. Prevail [21] showed that
formal methods can help BPF verification scale. Verified in-
terpreters [51] and just-in-time compilers [41] for BPF exist,
but they make no promises about functional correctness.

9 Conclusion

We presented Klint, an automated tool to formally verify
that network function binaries satisfy specifications with nei-
ther source code nor debugging symbols, given contracts for
trusted data structures. This enables developers to provide
guarantees about proprietary code to operators, removing a
key barrier for adoption of formally verified network func-
tions. Klint uses maps as “universal” data structures for
both specifications and contracts, enabling a sweeping sim-
plification in reasoning including invariant inference. Using
Klint, we verified the functional correctness of 6 network
function binaries written in C and 1 in Rust, and the memory
safety and crash freedom of 5 existing BPF programs.

Acknowledgments

We thank the anonymous reviewers and our shepherd Jay
Lorch for improving this paper, and angrmaintainer Audrey
Dutcher for her quick fixes to the few issues we encountered.



References

[1] Angr contributors. angr issue 938: SEGFAULT libz3. https://github.
com/angr/angr/issues/938.

[2] BPF authors and contributors. bpf-helpers(7) Linux manual page.
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html.

[3] Bradley, A. R., Manna, Z., and Sipma, H. B. What’s decidable about
arrays? In Intl. Conf. on Verification, Model Checking, and Abstract
Interpretation (2006).

[4] Bradner, S., and McQuaid, J. Benchmarking methodology for net-
work interconnect devices. RFC 2544, RFC Editor, 1999.

[5] Brunella, M. S., Belocchi, G., Bonola, M., Pontarelli, S., Siracu-
sano, G., Bianchi, G., Cammarano, A., Palumbo, A., Petrucci, L.,
and Bifulco, R. hxdp: Efficient software packet processing on FPGA
NICs. In Symp. on Operating Systems Design and Implementation (OSDI)
(2020).

[6] Bruni, A., Disney, T., and Flanagan, C. A peer architecture for
lightweight symbolic execution. http://hoheinzollern.files.wordpress.
com/2008/04/seer1.pdf, Unpublished.

[7] Cadar, C., Dunbar, D., and Engler, D. R. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems pro-
grams. In Symp. on Operating Systems Design and Implementation
(OSDI) (2008).

[8] Chipounov, V., Georgescu, V., Zamfir, C., and Candea, G. Selective
symbolic execution. In Workshop on Hot Topics in Dependable Systems
(HOTDEP) (2009).

[9] Coppa, E., D’Elia, D. C., and Demetrescu, C. Rethinking pointer
reasoning in symbolic execution. In ACM Intl. Conf. on Automated
Software Engineering (ASE) (2017).

[10] Corbet, J. Bounded loops in BPF programs. https://lwn.net/Articles/
773605/.

[11] Corbet, J. The BPF system call API, version 14. https://lwn.net/
Articles/612878/.

[12] de Moura, L. M., and Bjørner, N. Z3: An efficient SMT solver. In
Intl. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) (2008).

[13] Dillig, I., Dillig, T., and Aiken, A. Precise reasoning for programs
using containers. In ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL) (2011).

[14] Dobrescu, M., and Argyraki, K. Software dataplane verification. In
Symp. on Networked Systems Design and Implementation (NSDI) (2014).

[15] DPDK: Data plane development kit. https://dpdk.org.
[16] Eisenbud, D. E., Yi, C., Contavalli, C., Smith, C., Kononov, R., Mann-

Hielscher, E., Cilingiroglu, A., Cheyney, B., Shang, W., and Ho-
sein, J. D. Maglev: A fast and reliable software network load balancer.
In Symp. on Networked Systems Design and Implementation (NSDI)
(2016).

[17] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and
Carle, G. MoonGen: A scriptable high-speed packet generator. In
Internet Measurement Conf. (IMC) (2015).

[18] Eqinix. Network edge | Equinix edge services. https://www.equinix.
se/services/edge-services/network-edge.

[19] Farshin, A., Barbette, T., Roozbeh, A., Maguire Jr., G. Q., and
Kostić, D. PacketMill: Toward per-core 100-Gbps networking. In
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2021).

[20] Flanagan, C., and Leino, K. R. M. Houdini, an annotation assistant
for ESC/Java. In Intl. Symp. on Formal Methods Europe (2001).

[21] Gershuni, E., Amit, N., Gurfinkel, A., Narodytska, N., Navas, J. A.,
Rinetzky, N., Ryzhyk, L., and Sagiv, M. Simple and precise static
analysis of untrusted Linux kernel extensions. In Intl. Conf. on Pro-
gramming Language Design and Implementation (PLDI) (2019).

[22] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J., Parno, B.,
Roberts, M. L., Setty, S., and Zill, B. IronFleet: Proving practical
distributed systems correct. In ACM Symp. on Operating Systems

Principles (SOSP) (October 2015), ACM.
[23] Iyer, R., Argyraki, K., and Candea, G. Performance interfaces for

network functions. In Symp. on Networked Systems Design and Imple-
mentation (NSDI) (2022).

[24] Iyer, R., Pedrosa, L., Zaostrovnykh, A., Pirelli, S., Argyraki, K.,
and Candea, G. Performance contracts for software network func-
tions. In Symp. on Networked Systems Design and Implementation
(NSDI) (2019).

[25] Jacobs, B., and Piessens, F. The VeriFast program verifier, 2008.
[26] Kapus, T., and Cadar, C. A segmented memory model for symbolic

execution. In ACM SIGSOFT Intl. Symp. on the Foundations of Software
Engineering (FSE) (2019).

[27] Kogias, M., Iyer, R., and Bugnion, E. Bypassing the load balancer
without regrets. In Symp. on Cloud Computing (SOCC) (2020).

[28] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F.
The Click modular router. ACM Transactions on Computer Systems
(TOCS) 18, 3 (2000).

[29] Kuznetsov, V., Kinder, J., Bucur, S., and Candea, G. Efficient state
merging in symbolic execution. In Intl. Conf. on Programming Language
Design and Implementation (PLDI) (2012).

[30] LAN/MAN Standards Committee. IEEE standard for local and met-
ropolitan area networks: Media access control (MAC) bridges. Tech.
rep., IEEE Standards Association, 2014. IEEE Std 802.1D-2004.

[31] Leino, K. R. M. Dafny: An automatic program verifier for functional
correctness. In Intl. Conf. on Logic for Programming Artificial Intelli-
gence and Reasoning (LPAR) (2010).

[32] Majkowski, M. Cloudflare architecture and how BPF eats the
world. https://blog.cloudflare.com/cloudflare-architecture-and-how-
bpf-eats-the-world/.

[33] McCanne, S., and Jacobson, V. The BSD packet filter: A new architec-
ture for user-level packet capture. In USENIX Winter 1993 Conference
(San Diego, CA, Jan. 1993), USENIX Association.

[34] Merkel, D. Docker: Lightweight Linux containers for consistent
development and deployment. Linux Journal (2014).

[35] Miano, S., Bertrone, M., Risso, F., Bernal, M. V., Lu, Y., Pi, J., and
Shaikh, A. A service-agnostic software framework for fast and effi-
cient in-kernel network services. In ACM/IEEE Symp. on Architectures
for Networking and Communications Systems (2019).

[36] MITRE Corporation. MS13-064. Available from CVE Details, CVE-ID
MS13-064., 2013.

[37] MITRE Corporation. CVE-2014-9715. Available from CVE Details,
CVE-ID CVE-2014-9715., 2014.

[38] MITRE Corporation. CVE-2015-6271. Available from CVE Details,
CVE-ID CVE-2015-6271., 2015.

[39] Mozilla Research. Rust programming language. https://www.rust-
lang.org/.

[40] Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., andWang,
X. Scaling symbolic evaluation for automated verification of systems
code with Serval. In ACM Symp. on Operating Systems Principles (SOSP)
(2019).

[41] Nelson, L., Geffen, J. V., Torlak, E., and Wang, X. Specification and
verification in the field: Applying formal methods to BPF just-in-time
compilers in the Linux kernel. In Symp. on Operating Systems Design
and Implementation (OSDI) (2020).

[42] Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt,
J., Torlak, E., and Wang, X. Hyperkernel: Push-button verification
of an OS kernel. In ACM Symp. on Operating Systems Principles (SOSP)
(2017).

[43] Network Working Group. RFC 1812, requirements for IP version 4
routers. https://www.rfc-editor.org/rfc/rfc1812.txt, 1995.

[44] Open Information Security Foundation. Suricata website. https:
//suricata.io/.

[45] Pirelli, S., and Candea, G. A simpler and faster NIC driver model
for network functions. In Symp. on Operating Systems Design and

https://github.com/angr/angr/issues/938
https://github.com/angr/angr/issues/938
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
http://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf
http://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf
https://lwn.net/Articles/773605/
https://lwn.net/Articles/773605/
https://lwn.net/Articles/612878/
https://lwn.net/Articles/612878/
https://www.equinix.se/services/edge-services/network-edge
https://www.equinix.se/services/edge-services/network-edge
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rfc-editor.org/rfc/rfc1812.txt
https://suricata.io/
https://suricata.io/


Implementation (OSDI) (2020).
[46] Rust authors and collaborators. Issues - rust-lang/rust. https:

//github.com/rust-lang/rust/issues.
[47] Shirokov, N., and Dasineni, R. Open-sourcing Katran, a scalable

network load balancer. https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-network-load-balancer,
May 2018.

[48] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M.,
Dutcher, A., Grosen, J., Feng, S., Hauser, C., Kruegel, C., and
Vigna, G. SOK: (state of) the art of war: Offensive techniques in
binary analysis. In IEEE Symp. on Security and Privacy (S&P) (2016).

[49] Turing, A. M. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the LondonMathematical Society
(01 1937).

[50] Wang, J., Lévai, T., Li, Z., Vieira, M. A. M., Govindan, R., and Ragha-
van, B. Galleon: Reshaping the square peg of NFV, 2021.

[51] Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., and Tatlock, Z.
Jitk: A trustworthy in-kernel interpreter infrastructure. In Symp. on
Operating Systems Design and Implementation (OSDI) (2014).

[52] Yaseen, N., Arzani, B., Beckett, R., Ciraci, S., and Liu, V. Aragog:
Scalable runtime verification of shardable networked systems. In Symp.
on Operating Systems Design and Implementation (OSDI) (2020).

[53] Zaostrovnykh, A., Pirelli, S., Iyer, R. R., Rizzo, M., Pedrosa, L.,
Argyraki, K. J., and Candea, G. Verifying software network functions
with no verification expertise. In ACM Symp. on Operating Systems
Principles (SOSP) (2019).

[54] Zaostrovnykh, A., Pirelli, S., Pedrosa, L., Argyraki, K., and Can-
dea, G. A formally verified NAT. In ACM SIGCOMM Conf. (SIGCOMM)
(2017).

[55] Zhang, K., Zhuo, D., Akella, A., Krishnamurthy, A., and Wang,
X. Automated verification of customizable middlebox properties with
Gravel. In Symp. on Networked Systems Design and Implementation
(NSDI) (2020).

Appendix A Verified properties

We used Klint to verify both network functions we wrote
and existing BPF network functions. We summarize the prop-
erties we proved for our network functions in this appendix.
The BPF network functions have no formal specification and
writing one would require a discussion with their authors
to understand which edge cases are intended and which are
not, so we instead chose to only verify that they are memory
safe and free of crashes.
The full specifications are available on our repository:

https://github.com/dslab-epfl/klint.
Bridge: we wrote a specification by manually extracting

properties from the IEEE 802.1D [30] standard. For instance,
section 7.7.1 of the standard, “Active topology enforcement”,
states that “Each Port is selected as a potential transmission
Port if, and only if [...] The Port considered for transmission
is not the Port on which the frame was received [...]”, thus
our specification checks that if the packet was transmitted,
the transmission port must not be the reception port. As
we explain in Section 6.1, we found a bug after translating
section 7.8 of the standard, “The Learning Process”, which
states a condition for learning an address in the filtering
database: “the source address field of the frame denotes a
specific end station (i.e., is not a group address)”.

Klint helps us write this specification by allowing us
to write properties that must hold on packets and on state
without having to explicitly depend on the bridge’s internals.
For instance, we do not need to specify the data type that
the bridge uses to store metadata about Ethernet addresses,
only that the bridge conceptually has a map with Ethernet
addresses as keys, and that the source address of an incoming
packet is or is not added depending on specification-related
factors.

Firewall: beyond the partial specification of Listing 2, we
wrote a full specification that is an evolution of the one from
Vigor [53]. We model the firewall’s state as a map from flows
to last update time and ensure that the firewall (1) adds flows
from the internal network to the state if possible, refreshing
their last update time if necessary, and (2) only lets packets
from the external network through if their flow belongs to
the state. The specification also ensures that the firewall
does not modify packet contents and does not drop packets
unless they are incoming packets with no matching flow in
the state.
Our specification is not concerned with how the firewall

“remembers” flows, nor with when exactly this happens in
packet processing, only that outgoing packets flows must
be remembered if there is space and that incoming packets
must be of a known flow if they are forwarded.

As we show in §6.1, Klint can also verify a more restricted
specification that is only concerned with what happens when
a packet is transmitted, including the fact that its flow must
have been known previously.

Maglev: while we do not know of a formal specification
for Maglev, our specification is an evolution of the one from
Vigor [53], which was written according to the behavior
described by the Google paper [16]. We model the state
as two maps, one from flows to backends and one from
backends to last heartbeat time. Packets from backends are
heartbeats and must update the corresponding last heartbeat
time and then be dropped. Packets from clients must be
routed to a backend and must not be dropped unless there
are no available backends.

NAT: our specification is an evolution of the one from
VigNAT [54], which fully describes the behavior of the NAT.
We model the state as a map from flows to last update time,
in a similar fashion to the firewall specification. Packets must
only be dropped if they are not IP or TCP/UDP, as the NAT
does not support other protocols (for now), or if they come
from the external network but do not belong to a known
flow. Packet headers must be updated according to the state,
and packets from the internal network must trigger state
updates.

One interesting aspect of Klint with regards to the NAT
is invariant inference: Vigor’s original NAT required about
3000 lines of manually written proof annotations for the
invariants between the three data structures the NAT uses
internally, and the Vigor specification was dependent on

https://github.com/rust-lang/rust/issues
https://github.com/rust-lang/rust/issues
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer
https://github.com/dslab-epfl/klint


these data structures. Klint instead infers these invariants
automatically, and our specification defines the NAT in terms
of maps.

Policer: our specification is an evolution of the one from
Vigor [53], which fully describes the behavior of the policer.
We model the state as one map from buckets to tokens, and
one map from IP addresses to buckets. The specification then
enforces that the policer must update the state according
to incoming packets and their size and drop packets if their
bucket is too full.

Router: we wrote a specification based on RFC 1812 [43],
“Requirements for IP Version 4 Routers”. We model the state
as a map from CIDR blocks to devices. We enforce the header
validation requirements from section 5.2.2 of the RFC, the
time to live requirements from section 4.9.9.2, and most im-
portantly the longest-prefix-match property to find the next
hop address from section 5.2.4.3.

Appendix B Ghost maps get algorithm
We present here the algorithm for the get operation on ghost
maps. PC is the Path Constraint. UK𝑀 , UV𝑀 , and UP𝑀 are
the triple forming map 𝑀’s unknown item, as we explain
in §3.3. The condition and value_hint are those required to
handle invariant recursion, as we explain in §3.4.

function KnownSize(M)
𝑟𝑒𝑠𝑢𝑙𝑡 = 0, 𝑘𝑛𝑜𝑤𝑛 = ∅
for (𝑘, 𝑣, 𝑝) in𝑀’s known items do

𝑟𝑒𝑠𝑢𝑙𝑡 += ITE(𝑘 ∉ 𝑘𝑛𝑜𝑤𝑛 ∧ 𝑝, 1, 0)
𝑘𝑛𝑜𝑤𝑛 += 𝑘

return 𝑟𝑒𝑠𝑢𝑙𝑡

function Get(M, K)
for (𝑘, 𝑣, 𝑝) in𝑀’s known items do

if unsatisfiable(condition ∧ 𝐾 ≠ 𝑘) then
return (𝑣, 𝑝)

if unsatisfiable(condition ∧ 𝐾 ≠ UK𝑀 ) then
return (UV𝑀 ,UP𝑀 )

Let (𝑉 , 𝑃) be a fresh value and presence bit
if condition is set then

Add condition ⇒ 𝑉 = value_hint to the PC
Let U =

∧(𝐾 ≠ 𝐾 ′) for each known key 𝐾 ′ in𝑀
Add (𝐾,𝑉 , 𝑃) to𝑀’s known items
for (𝑘, 𝑣, 𝑝) in𝑀’s items do

Add 𝐾 = 𝑘 ⇒
(
(𝑉 = 𝑣) ∧ (𝑃 = 𝑝)

)
to the PC

Add𝑈 ⇒ invariant𝑀 (𝐾,𝑉 , 𝑃) to the PC
Add 𝐾𝑛𝑜𝑤𝑛𝑆𝑖𝑧𝑒 (𝑀) ≤ length(𝑀) to the PC
return (𝑉 , 𝑃)


	Abstract
	1 Introduction
	2 Design Insights
	2.1 Network functions we target
	2.2 Information from environment interactions
	2.3 Using maps to bridge the gap

	3 Ghost Maps
	3.1 Symbolic execution background
	3.2 Expressivity, decidability, and completeness
	3.3 Representing ghost maps
	3.4 Translating ghost map operations

	4 Invariant inference
	5 Implementation
	6 Evaluation
	6.1 Verifying network functions
	6.2 Faster verified network functions
	6.3 Applicability

	7 Limitations
	8 Related work
	9 Conclusion
	References
	A Verified properties
	B Ghost maps get algorithm

