
An Extensible Technique for High-Precision Testing of Recovery Code

Paul D. Marinescu, Radu Banabic, George Candea

School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
Thorough testing of software systems requires ways to

productively employ fault injection. We describe a tech-
nique for automatically identifying the errors exposed by
shared libraries, finding good injection targets in pro-
gram binaries, and producing corresponding injection
scenarios. We present a framework for writing precise
custom triggers that inject the desired faults—in the form
of error return codes and corresponding side effects—at
the boundary between shared libraries and applications.

We incorporated these ideas in the LFI tool chain [18].
With no developer assistance and no access to source
code, this new version of LFI found 11 serious, previ-
ously unreported bugs in the BIND name server, the Git
version control system, the MySQL database server, and
the PBFT replication system. LFI achieved entirely auto-
matically 35%-60% improvement in recovery-code cov-
erage, without requiring any new tests. LFI can be down-
loaded from http://lfi.epfl.ch.

1 Introduction

Most software interacts with its environment through li-
braries, and most environmental events, including fail-
ures, are exposed to applications through the APIs of
these libraries. Shared libraries, in particular, are widely
used, as they encapsulate frequently used functionality.
General-purpose applications frequently link to tens or
even hundreds of shared libraries [18].

As a result, the reliable functioning of programs is
tightly coupled to how well they handle the returns from
shared libraries. While most of the APIs are well docu-
mented, they can be quite complex, and they differ from
platform to platform in subtle enough ways to not be no-
ticed during porting, but in sufficiently important ways
to cause problems (e.g., errno values for the same libc
call can vary between Linux, Solaris, and Mac OS X).
Such corner cases are easy to miss and can lead to crashes
or more subtle errors. For example, a read() call may
not be retried after receiving an EINTR return code, caus-
ing the application to miss some data in its input stream.

These bugs are hard to find through input testing alone,
because they are triggered by low-probability events that
are typically input-independent and occur below the li-
brary layer. Yet there must be a way to ensure that pro-
grams with high reliability requirements, such as servers
or embedded applications, use these libraries consis-
tently with the libraries’ true behavior. In particular, it is
essential to verify that such software can correctly handle
faults at or below the library layer, faults that manifest as
errors returned through the shared libraries’ interface.

The program/library boundary is an appealing location
for injecting faults. First, it provides a well defined API
where realistic faults can be injected. Second, most er-
ror recovery code can be exercised directly or indirectly
via library-level fault injection. However, one must in-
telligently restrict the number of fault injections—an ex-
haustive injection campaign is infeasible, while a random
one is unlikely to find bugs in a reasonable amount of
time. One way to achieve this restriction is to target fault
injection to precisely the program conditions that are of
interest for testing, and none other.

This paper introduces a mechanism for high-precision
fault injection. We extend our LFI library-level fault in-
jector [18] with three new techniques: First, a fault injec-

tion triggering mechanism that allows testers to specify
conditions under which a given call to a given library
should be caused to fail. Triggers take the form of pred-
icates on program state—global and local variables, call
stack, etc.—which enable arbitrarily precise control over
the fault injection process. Second, we present a call site

analysis technique that aids in constructing these triggers
by automatically identifying potentially buggy recovery
code in program binaries, along with information on the
ways in which the library calls at those sites can fail. The
LFI analyzer automatically produces injection scenarios
to exercise these code areas. Finally, we present an ex-
panded fault injection language, which allows testers to
devise sophisticated fault injection scenarios, as well as
combine base triggers to form new triggers, without hav-
ing to write any new code.

Appears in Proceedings of the USENIX Annual Technical Conference, Boston, MA, June 2010

The rest of the paper provides an overview of LFI (§2),
describes the triggering mechanism (§3), fault injection
language (§4), and call site analysis (§5), after which we
present details of our implementation (§6), evaluate our
system (§7), survey related work (§8), and conclude (§9).

2 System Overview

We combine a library-level fault injector with three new
elements that turn it into a high-precision testing tool:
fault injection triggers, a fault injection language, and
call site analysis. A developer would employ call site
analysis to automatically identify good targets for test-
ing, then potentially refine the generated test scenarios
(written in the fault injection language), and finally pro-
vide all these to the fault injector. Below, we provide a
brief overview of the injector, along with the three main
contributions of this paper.

In order to make testing based on fault injection more
accessible to programmers, we developed LFI [18], a
tool for injecting faults at the boundary between pro-
grams and the shared libraries they use. LFI generates
shim libraries to intercept library calls; based on pred-
icates generated from user-provided configuration, they
decide to either pass control to the original function or
return an error value to the calling program (Figure 1).

The state of the art in testing software by injecting
high-level faults consists largely of hand-coding the tests
inside the product itself. For example, the MySQL server
code has occasional custom code that returns specific er-
rors when activated via a compile-time debug directives.
In contrast to this approach, LFI decouples the testing
from the target system’s code, thus enabling automation
and reuse of fault injection tests across many systems.

Using LFI involves two steps: First, a fault injection
scenario is developed either by hand or using one of the
automated techniques described later on. Second, the
scenario is provided to the LFI controller, which con-
ducts a suite of tests in which the described errors are
introduced in the library API. The output of these tests
can be used to diagnose and fix the identified bugs.

Underneath the covers, LFI uses the fault injection
scenario to synthesize custom interposition libraries. The
synthetic libraries have the same API as the original
ones, but underneath the API they encode the fault in-
jection logic. These libraries are shimmed between the
program being tested and the original library(ies); mul-
tiple such synthetic libraries can coexist simultaneously.
They intercept calls of interest, made from the program
to the shared libraries, and return erroneous results that
simulate faults in the libraries and the environment, as
required by the scenario. The shimming of the gener-
ated libraries is system-specific: on Linux and Solaris,
LFI uses the LD_PRELOAD mechanism to communicate

libc.profile

libssl.profile

...

 Application

(MySQL, BIND, ...)

LFI Controller

lib
c.so

lib
ssl

.so ...

Test workload

test log

failure replay scripts

 LFI

Profiler

fault scenario

Figure 1: Architecture of the LFI fault injector.

with the dynamic linker, while on Windows it uses the
Microsoft Detours framework [14].

The LFI controller coordinates the entire testing pro-
cess. It is responsible for interpreting the injection sce-
nario, generating the corresponding interception stubs,
and combining them with runtime code and triggers to
synthesize a new library. Once the stubs are gener-
ated and installed, the controller invokes a developer-
provided script that starts the program under test, exer-
cises it with the desired workload, and monitors its be-
havior to determine whether it terminates normally or
with an error exit code. This information is collected in a
log used by developers to diagnose and fix the program.

The LFI log records each error injection, the injected
side effects (e.g., errno), and the events that triggered
that injection (e.g., call count, stack trace). This informa-
tion can be used to match injections to observed program
behavior, as well as to refine the fault scenario. This also
helps pinpointing and fixing the bug that caused the fail-
ure. Third party systems, like R2 [13], can be used to
replay deterministically all program failures of interest.

In order to help with the generation of fault scenarios,
LFI provides an automated library profiler, which oper-
ates directly on the binaries of the shared libraries. It
performs two tasks: First, using static analysis of the bi-
naries, it infers the return codes of the functions exported
by a library (e.g., it determines that read() in libc can
return -1, 0, or a positive number). Second, it infers
side effects—besides error return values, library func-
tions may communicate to callers additional information
regarding the encountered error, via channels such as
output parameters, global variables, or thread local stor-
age (TLS) variables. For example, the profiler finds that,
when returning -1, read() could also set the TLS vari-
able errno to EAGAIN, EBADF, EINTR, etc. The results
of these analyses are output in an XML file representing
the so-called fault profile of the target library.

The present paper shows how we extended LFI with
new techniques for writing and running sophisticated
tests with little effort. Some of the key questions we ad-
dress include: How to specify exactly at which point in
a program’s execution to inject errors? When testing a

2

large program, how to decide where to inject faults? Fig-
ure 2 illustrates the three new elements: a high-precision
triggering mechanism, along with an expanded fault in-
jection language and a call site analyzer.

 Application

(MySQL, BIND, ...)

Trigger Mechanism

Test workload

lib
c.so

lib
ssl

.so ...

FI Language

 Default Triggers
 (Callstack, Random, ...)

Custom Triggers

 LFI

Profiler

 Callsite

Analyzer

Figure 2: Architecture of the new injection framework.

A fault injection trigger is a way to specify which fault
(“what”) to inject at which point in a program’s exe-
cution (“when”) and in which call to the target library
(“where”). This trigger is a predicate that evaluates to
true when a fault should be injected and false otherwise.
The new LFI includes default stock triggers as well as an
API for writing custom triggers.

The fault injection language glues together triggers,
library functions, and their fault profiles into complete
fault injection scenarios. Every function which appears
in a scenario is intercepted by the LFI runtime, and the
associated triggers are called to decide (based on various
conditions) whether to inject a fault from the profile.

The call site analyzer uses a heuristic method to check
whether all error return values are checked by the callers
of library functions. In other words, it searches the target
program for “interesting” places to inject faults. For each
identified call site, it uses dataflow analysis to determine
against which error code values the return is checked.
An unchecked error value indicates a potential bug, to be
verified through testing. The analyzer runs on the binary,
so source code of the target program is not required.

Next we describe the fault injection triggers (§3), fault
injection language (§4), and call site analysis (§5).

3 Fault Injection Triggers

Triggers are invoked by the LFI runtime to decide
whether an intercepted library function should fail or not.
A trigger can inspect any part of system state to make
its decision. Triggers offer high precision and flexibility
to testers in choosing the exact conditions under which
a fault is to be injected. Testers can use stock triggers
with specific parameter values, they can customize exist-
ing trigger code, or write new triggers from scratch.

3.1 Trigger Interface

Triggers are pluggable modules, written as C++ classes
that implement the following Trigger interface:

class Trigger {

virtual void Init(xmlNodePtr initData) {}

virtual bool Eval(const string&

libFuncName, ...) = 0;

}

To add a new trigger to the framework, one writes a
class derived from this abstract base class and places the
corresponding source files in an LFI-specific location.
The new trigger can be referenced directly by class name
from any injection scenario provided to LFI. We used a
variant of the Registry design pattern and the Standard
Template Library to implement this behavior transpar-
ently for trigger writers.

The boilerplate code needed for a trigger is minimal—
usually less than 100 lines of code are needed to write a
useful custom trigger. One could forgo the interface and
implement triggers inside the LFI runtime, as we did in a
first prototype, but then they become hard to extend and
require intimate knowledge of LFI internals.

The Init method is optional and its default imple-
mentation is empty. It is called by the runtime after a
trigger instance is created and before its Eval function is
called for the first time. The main purpose of the Init

function is to provide support for trigger parametrization,
as we will show in §4.1. The trigger’s parameters are pro-
vided as an XMLNodePtr object, which can be processed
with a standard XML library.

The Eval method is where the main trigger logic re-
sides. It is called every time a function (associated with
an instance of this trigger by the injection scenario) is
intercepted. Its return value indicates to the runtime
whether to inject a fault or not. Since Eval can be called
quite frequently, its code must be efficient.
Eval is a variadic function in order to be capable of

receiving the original arguments of any intercepted li-
brary call. Its first argument indicates the name of the
intercepted function; based on this name, the trigger de-
cides how many actual arguments to expect and what
their meaning is. The number of arguments must be ex-
plicitly specified in the injection scenario; since LFI does
not look at source code or documentation, it cannot au-
tomatically infer the number of arguments to pass. It is
possible, though, to extend LFI with LibTrac’s heuristic
technique for inferring function arguments [5].

In addition to the arguments passed to Eval, a trigger
can directly obtain any other information normally ac-
cessible to a program. For example, it can use the GNU
libc backtrace() function to inspect the call stack and
determine whether the intercepted library call was made
by a program, by a function in the intercepted library, or
by some other shared library.

3

Below we illustrate trigger construction with a sketch
of one of our custom triggers. It is used in an injection
scenario where errors are to be injected in read when-
ever the corresponding file descriptor is a pipe, the num-
ber of bytes to be read is between 1 KB and 4 KB, and
the calling thread holds a POSIX mutex.

#include "Trigger.h"

DECLARE_TRIGGER (ReadPipe1K4KwithMutex)

{

private:

static __thread int lockCount;

public:

ReadPipe1K4KwithMutex() { }

bool Eval(const string& libFuncName, ...) {

pthread_t self = pthread_self();

if (libFuncName ==

"pthread_mutex_lock") {

++lockCount;

} else if (libFuncName ==

"pthread_mutex_unlock") {

--lockCount;

} else if (libFuncName ==

"read") {

if (lockCount > 0) {

va_list ap;

int fd;

size_t size;

struct stat st;

va_start(ap, libFuncName);

fd = va_arg(ap, int);

va_arg(ap, void*);

size = va_arg(ap, size_t);

va_end(ap);

fstat(fd, &st);

return (S_ISFIFO(st.st_mode) &&

size >= 1024 && size <= 4096);

}

}

return false;

}

};

Trigger.h contains all the required definitions for
the trigger mechanism, including the definition of the
Trigger interface. DECLARE_TRIGGER is a macro that
simplifies the class declaration by automatically creating
a properly derived class with the supplied name.

Triggers are not pure functions, but can also main-
tain state to inform their injection decisions. The
ReadPipe1K4KwithMutex trigger, for instance, checks
the name of the intercepted function and either updates
the lock holding status for the current thread (in the case
of a POSIX threads library call) or checks whether a fault
should be injected in the case of the read function.

3.2 Stock Triggers

In addition to the Trigger interface, which allows
testers to write their own custom triggers, LFI also pro-
vides a set of triggers that can be used out-of-the-box.
We found this set to offer sufficient precision for most

injection testing. Most of these triggers are generic, in
that they can be used for any intercepted function and
do not rely on the function’s arguments. Stock triggers
can easily be extended and specialized, as needed. LFI
provides by default the following six triggers:

Call stack-based triggers allow injecting faults based
on whether the current call stack (or part of it) matches
a user-defined set of stack frames. By looking at the call
stack, the trigger can learn from which particular loca-
tion in the program the call is being made, from which
program module (e.g., from Apache’s SSL module), etc.
User-provided stack frames can be identified by object
file name, offsets within the binary, file name/line num-
ber pairs, or combinations thereof. The LFI call site an-
alyzer automatically produces fault injection scenarios
that use call stack-based triggers to inject faults in the
locations where error checking is incomplete.

Program state-based triggers inject faults depending
on whether a given relationship between program vari-
ables holds (e.g., numConnections==maxConnections).
The stock trigger allows checking for equality between
both local and global variables, but it can be easily ex-
tended with other operators. Later in the paper, we show
how to specialize this trigger for data structures specific
to the Apache Web server.

Call count-based triggers allow specifying that an in-
jection should occur exactly on the n-th call to a function.
Besides their obvious use, such triggers can also be used
during debugging to replay observed failures in programs
that are driven deterministically by interactions with the
environment.

Singleton triggers inject a fault exactly once. This
type of trigger is often combined with other triggers
in a conjunction. For example, combined with a pro-
gram state-based trigger, a singleton trigger can ensure
that a fault is injected only the first time numConnec-

tions==maxConnections holds, but not afterwards. Trig-
ger composition is described in more detail in §4.2.

Random triggers inject a fault with a configurable
probability. These triggers can also be augmented with
supplementary conditions, through composition.

Distributed triggers are used for testing distributed
systems. A central controller receives information on
intercepted calls (function name, arguments, and stack)
and, based on a global view of the system, decides
whether the remote trigger should fire or not. This al-
lows setting up distributed failure scenarios, such as the
ones we used for PBFT (see §7.1). In order to minimize
runtime overhead, distributed triggers must be carefully
composed with node-local triggers, so that the central
controller is invoked solely when the injection decision
can no longer be made locally.

In theory, one should write triggers that achieve per-
fect precision, i.e., they decide to inject a fault only in

4

the specific situation targeted by the tester. However, in
our experience, such high precision is not always ideal: it
takes longer to write an ultra-precise trigger, and the in-
duced runtime overhead can become non-negligible. In
most cases, we favor an approach where triggers are pre-

cise enough, i.e., inject in all targeted situations and per-
haps have a couple of false positives. In the context of
testing, the extra unintended fault instances might even
turn out to be useful, at little extra cost.

Care must be taken to not inject unrealistic faults, be-
cause these can result in wasted debugging time. For
example, injecting an error in an I/O call made with a
blocking file descriptor and setting errno to EAGAIN

is arguably unnecessarily paranoid testing, given that
EAGAIN should only occur on non-blocking file descrip-
tors. In LFI, this exception could be handled by compos-
ing with a trigger that evaluates to true only when the file
descriptor supplied to the I/O call is non-blocking (e.g.,
the trigger can check the file descriptor with fcntl).

4 Fault Injection Scenarios

An LFI test scenario is a declaration of triggers and
conditions under which these triggers should be evalu-
ated, i.e., it is a specification of what, when and where
to inject. We use an XML-based test specification lan-
guage (§4.1) to describe these scenarios, including var-
ious compositions of triggers (§4.2), which permit pro-
ductive reuse of fault injection scenarios. LFI employs
several optimizations in the evaluation of triggers, aimed
at reducing runtime overhead (§4.3).

4.1 Description Language

Fault injection scenarios can be written by hand, but we
believe practitioners also want to use automated tools for
generating and modifying these scenarios (such as the
call site analyzer described in §5). For scenarios to be
both human-readable and machine-readable, we chose an
XML-based language. Here we provide an overview of
the language, and direct the interested reader to the com-
plete DTD available at http://lfi.epfl.ch.

An injection scenario has two main constructs: trigger
declarations and associations between trigger instances
and intercepted library functions. A trigger declaration
makes a trigger class known to LFI and creates a named
trigger instance. An association links a trigger instance
to a library function that LFI intercepts, and specifies the
conditions under which the triggers should be evaluated.

Consider the earlier example, which aimed to inject
faults in read only when the corresponding file descrip-
tor is a pipe, the number of bytes requested is between
1 KB and 4 KB, and a mutex is held by the calling thread.

The ReadPipe1K4KwithMutex defined in §3.1 can be
associated with the relevant library calls as follows:

<!-- Make the trigger known to LFI -->

<trigger id="readTrig1"

class="ReadPipe1K4KwithMutex" />

<!-- Invoke the trigger for read() calls -->

<function name="read" argc="3"

return="-1" errno="EINVAL">

<reftrigger ref="readTrig1" />

</function>

<!-- Trigger needs to see the lock/unlock calls -->

<function name="pthread_mutex_lock"

return="unused" errno="unused">

<reftrigger ref="readTrig1" />

</function>

<function name="pthread_mutex_unlock"

return="unused" errno="unused">

<reftrigger ref="readTrig1" />

</function>

The <trigger> element declares a trigger instance

identified by the name readTrig1 and implemented by
the class ReadPipe1K4KwithMutex. This must either
be a C++ class written by the tester, or an LFI stock trig-
ger. The same trigger class can be used for multiple trig-
ger instances.

The <function> element creates an association be-
tween the read library function and the readTrig1 trig-
ger instance. Whenever read is called by the target
program, readTrig1 is asked for a yes/no answer re-
garding whether to inject a fault or not. To make this
decision, readTrig1 is given by LFI three arguments
from the original call stack (argc attribute); these ar-
guments correspond to the file descriptor, buffer pointer,
and number-of-bytes parameters of the intercepted read
call. The trigger uses the values of these arguments to de-
termine whether the file descriptor is a pipe and whether
the requested number of bytes falls in the target range. If
readTrig1 returns true, then LFI returns to the caller a
return value of -1 (return attribute) from read and sets
the errno variable to EINVAL.

The other two <function> associations serve the
purpose of informing the trigger about the corresponding
mutex lock/unlock calls, giving the trigger instance the
opportunity to update its state. Since these associations
will never result in injections, the return and errno

attributes are set to “unused.”
Triggers can also be parametrized, i.e., the test sce-

nario can specify arguments to be passed to the trigger
instance at initialization time. This means, for instance,
that one could replace the ReadPipe1K4KwithMutex

class with a new class that takes the upper and lower
bound of the number of bytes as arguments, instead of
them being hardcoded to 1 KB and 4 KB. An example
of such a class is the ReadPipe trigger class in the next
subsection.

5

4.2 Trigger Composition

Triggers can be composed, to form more complex trig-
gers. By default, associating multiple triggers within one
<function> declaration implies a conjunction of the
triggers: they all have to evaluate to true in order for a
fault to be injected.

Consider the earlier pipe read example: instead of
using the ReadPipe1K4KwithMutex class, we can use
a conjunction of two trigger classes, ReadPipe and
WithMutex. The first one handles injections in the read
function when the file descriptor is a pipe and the num-
ber of bytes requested is between a configurable mini-
mum and maximum. The second one injects a fault in
any function, as long as the caller holds a mutex.

Trigger composition allows wider reuse of triggers
and, together with parametrization, encourages writing
flexible, general triggers. The scenario below illus-
trates the composition of two triggers, readTrig2 and
mutexTrig. The first <trigger> declaration illustrates
the initialization of the parametrized ReadPipe trigger:
it allows the tester to specify the upper and lower bound
on the number of bytes, and these values are passed to
the Eval method of the ReadPipe trigger.

<!-- Declare & initialize a ReadPipe instance -->

<trigger id="readTrig2" class="ReadPipe">

<args>

<low>1024</low>

<high>4096</high>

</args>

</trigger>

<!-- Declare a WithMutex instance -->

<trigger id="mutexTrig" class="WithMutex" />

<!-- Invoke the composition for read() calls -->

<function name="read" argc="3"

return="-1" errno="EINVAL">

<reftrigger ref="readTrig2" />

<reftrigger ref="mutexTrig" />

</function>

<!-- Trigger needs to see the lock/unlock calls -->

<function name="pthread_mutex_lock"

return="unused" errno="unused">

<reftrigger ref="mutexTrig" />

</function>

<function name="pthread_mutex_unlock"

return="unused" errno="unused">

<reftrigger ref="mutexTrig" />

</function>

Triggers can also be composed into a disjunction,
whereby a fault is injected whenever any trigger in the
composition returns true; for this, one just adds multiple
<function> elements using the same function name,
each one associated with a different trigger. Besides
conjunctions and disjunctions, LFI can support negation,
whereby the result of a trigger is simply inverted. Using
disjunction, conjunction, and negation, one can assemble
a wide range of trigger combinations.

4.3 Trigger Evaluation

LFI evaluates triggers in the order in which they appear
in the injection scenario. However, in the case of trigger
compositions, LFI invokes the smallest number of trig-
gers needed to determine the result of the composition.
For example, in the case of conjunctions (i.e., multiple
trigger instances referenced in the same <function> el-
ement), if the first trigger returns false, then the remain-
ing triggers are not invoked at all. This optimization re-
duces runtime overhead and is similar to the short-circuit
evaluation used in C/C++ logical expressions. This fea-
ture can be leveraged when composing with the stock
singleton trigger: if added to the end of a conjunction,
it ensures that a fault is injected once when all the other
triggers in the composition return true.

LFI’s internal data structures ensure that the list of
triggers for the currently intercepted function is obtained
in O(1) time, i.e., it is independent of the size of the fault
injection scenario. To eliminate runtime overhead during
program startup, LFI uses lazy initialization: each trigger
is initialized right before it is invoked for the first time.

5 Call Site Analysis

The call site analyzer helps developers find “interesting”
places to inject faults, i.e., parts of the target system
that are likely to be buggy. The analyzer runs entirely
autonomously and looks for call sites where the return
values or error side effects of the call are not properly
checked. An example is the following code snippet:

dir = opendir(pathToDir);

while (ent = readdir(dir)) {

...

}

The code works properly most of the time, when
pathToDir points to an existing directory, but crashes if
the directory does not exist or opendir cannot allocate
sufficient memory. Since the return value of opendir
is not checked, readdir could be passed a null pointer.
Although a rather obvious bug, we found similar bugs in
widely used software like BIND and Git.

The call site analyzer combs the target program bi-
nary for places where a library function is called, and
then uses dataflow analysis to determine whether the
program checks for all possible errors that the function
could return (as indicated by the corresponding library’s
fault profile, described in §2). The analyzer’s method
is heuristic, but we found it to be highly accurate, even
if not perfect (an occasional false positive is acceptable,
given that the potential bug sites can easily be verified
through fault injection). While, in theory, disassem-
bling binaries cannot be completely accurate, it has been
shown that in commercial-grade applications over 99%
disassembly accuracy can be achieved [22].

6

Once the analysis is complete, the analyzer gener-
ates a fault injection scenario targeted at the vulnerable
sites with the missing errors; these scenarios employ the
generic call stack trigger. The tester would then run a test
based on the injection scenarios. The workload for exer-
cising the specific call must be provided by the tester;
LFI can help, by analyzing code coverage information
from previous executions and indicating whether previ-
ously used workloads exercised the target call sites.

Algorithm 1 describes a simplified version of the gen-
eral workflow for the analysis. The algorithm takes in
the executable X , the function of interest F (e.g., read),
and the set of error codes E , based on the library fault
profile. It produces three sets of call sites: the set Cyes of
sites where the return of F is checked for all error codes,
Cpart where it is checked for only some of the errors in
E , and Cnot where is is not checked for any errors in E .

Lines 1-2 initialize these sets and find the set
callSitesF of places in the target binary where F is called.

For each such call site (line 3), we construct a par-
tial control flow graph for the instructions that follow

the call to F (line 4), in order to determine how the re-
turn value and side effects are handled. We empirically
found 100 post-call instructions to be sufficient for build-
ing the CFG we require. Indirect branches can make the
CFG inaccurate, and the current LFI prototype ignores
them. This is not a major issue: our analysis of over
9,000 library calls in real-world software revealed that
only 0.13% (104 out of 78,292) were indirect branches.

We then perform dataflow analysis (line 5), to follow
the propagation of the function’s return value through
the program. We look at all targets to which the return
value is copied and look at all literals to which this return
value (or a copy of it) is compared. We iterate through
any loops that may occur, as long as the set of copies of
the return value increases. In practice, this set typically
stabilizes after a few iterations. Our dataflow analysis
is intra-procedural; even though other functions may be
called to handle errors, the real systems we analyzed al-
ways did this after a local check for error conditions.

The result of the dataflow analysis for each call to F

consists of sets Chkeq and Chkineq, corresponding to error
codes checked via equality (as in if (retval==-1))
and those that are checked via inequality (as in
if (retval<0)). If all error codes in E are checked
by equality, then the call site goes into the set of fully
checked calls (lines 6-7). If error codes are checked via
inequality, we assume the entire range of error codes is
covered (hence the disjunction in line 6). If only some
of the error codes in E are checked by equality, then the
call site goes into the set of partially checked calls (lines
8-9). If no error codes in E are checked, the site goes
into the set of completely unchecked calls, even if error
codes outside E are checked (lines 10-11).

Algorithm 1: Call site analysis (simplified)

Input: Target executable X , target function
name F , target function error codes E

Output: Set Cyes of fully checked calls,
Set Cpart of partially checked calls,
Set Cnot of completely unchecked calls

Cyes := Cpart := Cnot := /01

callSitesF := parse all calls to F in X2

foreach site ∈ callSitesF do3

cfg := construct partial CFG after site4

<Chkeq,Chkineq>:=dataflow analysis on cfg5

if Chkeq ⊇ E ∨ Chkineq 6= /0 then6

Cyes := Cyes ∪{site}7

else if Chkeq 6= /0 ∧ Chkeq ⊂ E then8

Cpart := Cpart ∪{site}9

else10

Cnot := Cnot ∪{site}11

return <Cyes,Cpart ,Cnot >12

Due to space constraints, we omit the side-effect anal-
ysis done by LFI, which is responsible for verifying
whether side effects shown in the fault profile (such as
the errno variable) are properly checked. The analysis
for errno checking is virtually identical to the one used
for return values. Failing to check particular values of
errno (e.g., not restarting a system call interrupted with
EINTR) can compromise the application’s robustness.

The call site analyzer produces two sets of fault injec-
tion scenarios, one for Cnot and one for Cpart. Testers are
probably most interested in the former, but after exhaust-
ing the bug vulnerabilities related to Cnot, they can make
use of the latter as well. Note that the call site analyzer
does not check the correctness of the error handling code,
it just relieves humans of some of the burden involved in
testing.

6 Implementation

At the heart of LFI is a library call interception mech-
anism described in more detail in the original LFI pa-
per [18]. LFI creates a shim library that exports stub
functions with the same name as the ones being in-
tercepted. On UNIX platforms, we take advantage of
the dynamic linker (using the LD_PRELOADmechanism),
and on Windows we use Microsoft Detours [14].

A stub function determines the address of the original
function and evaluates the triggers provided in the fault
injection scenario. If an injection is to be done, the stub
gets the return value and side effect to be injected from
the injection scenario and injects them. If no injection is
to be done, the stub cleans up the stack and jumps to the
original function. A stub looks approximately as follows:

7

int LIB_FUNC_NAME(void) {

static void * (*original_fn_ptr)();

if (!original_fn_ptr)

original_fn_ptr = (void* (*)())

dlsym(RTLD_NEXT, LIB_FUNC_NAME);

if (eval_triggers(LIB_FUNC_NAME_triggers,

lib_function_args)) {

/* determine return_code, side_effects */

/* apply side_effects */

return return_code;

} else {

/* return stack and registers to original values */

__asm__("jmp [original_fn_ptr]");

/* original function will return to caller */

}

}

Since LFI has no access to source code or documen-
tation to get the prototypes of intercepted functions, the
stub functions do not have any arguments. When call-
ing the original function (i.e., no fault injected), the stub
merely removes the current frame from the stack (i.e.,
the one corresponding to the stub) and passes control di-
rectly to the original. This has the advantage of not re-
quiring any information about the number of arguments
and their type. When having to pass arguments to a trig-
ger, LFI relies on the injection scenario to specify how
many arguments are expected on the stack. In our cur-
rent prototype, we assume all arguments are word-sized.

Designing an extensible trigger system was difficult.
Our goal was to allow developers to simply drop the trig-
ger classes in a particular location and then be able to
refer to the triggers by their class name in injection sce-
narios. In other words, we wanted a mechanism similar
to Java’s Class.forName(). We used a variation of the
Registry pattern, where each trigger class automatically
inherits a factory method and a static member variable
whose initialization causes the class name along with the
associated factory method to be added to a global map.
Instantiating a trigger is done by searching in the map
and using the corresponding factory method.

To maximize ease of use, we added to LFI the ability
to directly handle DWARF debug information [17]. For
example, the call stack trigger allows testers to specify
that injections should be done only if execution passes
through certain filename/linenumber locations. Another
example is the call site analyzer, which can provide the
exact source code location of a particularly “suspicious”
call, whenever debug symbols are available.

7 Evaluation

LFI’s main strength is precision—it allows testers to
specify exactly what fault to inject, where to do so, and
when to inject. This can be used to selectively inject
faults on a particular call when servicing a specific work-
load, when the program enters a particular state, or when
control flow passes through a specific set of points. It
is fairly obvious how, combined with knowledge of the
system being tested, LFI can be a tester’s “power tool.”

However, such knowledge may not always available,
so we focus our evaluation on how LFI can be used pro-
ductively even without knowledge of the code. We in-
ject faults in several real systems (§7.1) and find several
previously unknown bugs; we also measure the improve-
ment in recovery-code coverage. We measure the accu-
racy and efficiency of automated injection site identifica-
tion (§7.2). We then show how LFI can be used to study
the behavior of distributed systems and find interesting
vulnerabilities (§7.3). Finally, we measure the overhead
introduced by LFI triggers and find that their interference
with the tested system is negligible (§7.4).

We evaluated LFI on four systems representing four
different classes of applications: BIND 9.6.1, MySQL
5.1.44, Git 1.6.5.4 and PBFT 2008-12-09. BIND is per-
haps the most popular Domain Name System (DNS)
server used in the Internet, being the de facto standard for
most UNIX-based network infrastructures. Git is a mod-
ern distributed version control system that was initially
designed and developed for Linux kernel development,
and has experienced tremendous popularity since then.
MySQL is a well known and widely used open-source
database management system. PBFT [7] is a practical
replicated Byzantine fault tolerance system, designed to
correctly serve requests in the face of f Byzantine replica
failures, as long as there are at least 3 f + 1 total repli-
cas. All experiments were run on a 4-core 2 GHz In-
tel Xeon CPU with 4 GB of RAM, running Ubuntu 9.04
with Linux kernel 2.6.28.

We used the binary distributions of the systems listed
above. We resorted to source code only when needed to
manually confirm LFI’s results.

7.1 Effectiveness of Testing: Bugs and

Coverage

When assessing an automated testing tool, there are gen-
erally two measures of interest: how many high-impact
bugs it finds, and to what extent it improves code cov-
erage. For this section, we run the call site analyzer on
the target binaries and directly apply, with no modifica-
tions, the injection scenario it generates. Of course, the
deeper the knowledge one has of the system being tested,
the more effectively LFI’s injection triggers can be used.
However, here we focus mainly on what can be done en-
tirely automatically, using only stock triggers. We briefly
show how human intervention is useful in connecting in-
jected faults to bugs and in writing custom triggers for
particular bug categories.

As a first measure of effectiveness, Table 1 lists the 11
previously unknown bugs found by LFI entirely on its
own. We expect that, in the hands of a human tester, LFI
could find substantially more bugs.

We use the last bug in Table 1 to illustrate the pro-

8

System Bug

BIND Crash if call to xmlNewTextWriterDoc

fails while a user is retrieving statistics via
HTTP [4]

BIND Abort due to incorrectly handled malloc re-
turn value in method dst_lib_init [3]

MySQL Abort after a double mutex unlock, due to a
failed close [19]

MySQL Crash due to a failed read (error code EIO)
while processing errmsg.sys [20]

Git Data loss caused by running an external com-
mand with an incomplete environment, due to
failed setenv [11]

Git Crash due to calling readdir with a
NULL pointer returned by a previously failed
opendir call [9]

Git Crash due to unhandled malloc return value
on line 567 in xdiff/xmerge.c [10]

Git Crash due to unhandled malloc return value
on line 571 in xdiff/xmerge.c [10]

Git Crash due to unhandled malloc return value
on line 191 in xdiff/xpatience.c [10]

PBFT Crash caused by a failed recvfrom call
PBFT Crash due to calling fwrite with a NULL

pointer returned by a previously failed fopen

call (see below for details)

Table 1: Bugs found automatically by LFI (more details
can be found in the referenced bug reports).

cess followed in these experiments. After running on the
PBFT binary, the call site analyzer generates an injection
scenario, of which we show a fragment below. We then
passed this scenario to the LFI injector. Upon inspecting
the report of the test, we found that a replica had crashed
due to a segmentation fault; the log indicated the id of the
trigger that fired in that particular test case. Based on the
trigger and an inspection of the source code, we immedi-
ately found that the replica’s shutdown code attempts to
write a checkpoint to a file, without checking that the file
has been properly opened.
<trigger id="8054a69" class="CallStackTrigger">

<args>

<frame>

<module>

bft/bft-simple/simple-server

</module>

<offset>

8054a69

</offset>

</frame>

</args>

</trigger>

<function name="fopen"

retval="0" errno="EINVAL">

<reftrigger ref="8054a69" />

</function>

The other PBFT bug is interesting, as it does not man-
ifest in the debug build, but only in the release build.

Faults were injected in sendto and recvfrom (simu-
lating deteriorated network conditions), successively in
calls made by different replicas (i.e., inject in a call made
by replica R1, then in a call made by replica R2, etc.).
This type of network behavior results in a segmentation
fault in the view change phase of PBFT, when the replica
tries to access a previously committed message. The rea-
son this bug does not manifest in the debug build is be-
cause, when the debug flag is on, the PBFT implemen-
tation checks to see if messages were sent correctly and
halts with an error code as soon as a problem occurs. The
release (i.e., non-debug) build skips this check.

The malloc bug in BIND and the close bug in
MySQL represent interesting cases of buggy recovery
code. In BIND, the dst_lib_init method checks the
return value of malloc calls, and runs recovery code if
any such call fails. The recovery code destroys the cre-
ated data structures, by calling dst_lib_destroy. The
first statement in this method is an assertion, checking
that the dst data structures have been initialized. How-
ever, the call from dst_lib_init is made before the
dst_initialized flag is set, therefore triggering the
assertion. In MySQL, the mi_create method has error
handling code that releases resources, including a partic-
ular mutex. However, a failed close call can trigger this
code after the mutex has already been released by the
“normal” program flow, leading to a double unlock and
an application crash.

These scenarios illustrate the importance of tools tar-
geted at testing recovery code: such code is hard to exer-
cise in the testing lab without LFI-like tools, and it rarely
gets exercised in the field. Yet, whenever it runs, it is
expected to run flawlessly.

The second MySQL bug is caused by an uninitial-
ized data structure access after a failed read. A re-
lated bug, describing a silent failure of MySQL when the
errmsg.sys configuration file is not found [21], has
been acknowledged and fixed. However, if the file exists
but reading from it fails for a reason such as a low-level
I/O error, MySQL logs the error but nonetheless tries to
access an uninitialized data structure and crashes.

When testing MySQL, we started out by using random
injection, because MySQL routinely checks function re-
turn values, so we wanted to see how robustly it does
so. Yet, 1,000 random injection tests targeting different
functions caused 35 distinct crashes in MySQL. We ana-
lyzed the 35 core dumps and, in this way, found the two
bugs presented in Table 1. After writing a specific call
stack trigger to reproduce each one of them, we attached
a debugger and stepped through the code until the bug
manifested; in this way, we were able to connect the in-
jected fault to the bug manifestation.

Custom triggers: To show how triggers can increase
testing precision, compared to random injection, we eval-

9

uate in Table 2 the precision of three injection scenar-
ios. We report the number of times the close MySQL
bug presented in Table 1 was activated while running
100 times the merge-big MySQL test suite component.
This also illustrates step-by-step how to build a custom
trigger for a particular category of bugs:

1. The first attempt used random injection, with a 10%
injection probability in each close call. This ap-
proach triggered the bug 16 times. Bigger injection
probabilities lower the precision, because faults end
up being injected in other close calls, and execu-
tion does not reach the intended target.

2. In our second attempt, we took advantage of “do-
main knowledge” and used the call stack trigger to
inject faults with a 10% probability only in calls
issued from the code in the particular file where
the bug resides. This scenario triggered the bug 45
times.

3. For the final scenario, we took advantage of a pe-
culiarity of this bug: the close call happens after
a mutex unlock. Therefore, we injected faults in
close calls that happen shortly after a mutex un-
lock, in the hope that the fault will trigger cleanup
code that will cause a double unlock. We created a
parametrized trigger that allows specifying the max-
imum distance, in number of lines of code, between
the injection site and the last mutex unlock. This
trigger, with a distance of 2, reproduced the bug
100% of the time. This excellent precision illus-
trates our earlier point that triggers need only be
“precise enough.”

Trigger scenario Precision

Random (10%) 16%
Random (10%) within
bug’s file

45%

Close after mutex unlock 100%

Table 2: Precision of three triggers targeting the close

MySQL bug from Table 1.

Recovery-code coverage: Improving coverage of re-
covery code is notoriously hard, because exercising such
code typically requires errors that appear outside the
scope of the developed program and are hard to simulate.
Although scenarios that exercise recovery code are rarely
encountered in practice, programs that must operate re-
liably (e.g., servers) should be able to recover gracefully
from such faults without corrupting user data or crash-
ing. Since Git and BIND are mature, widely-used appli-
cations, we expect them to have recovery code for a large
set of possible environment errors.

To assess the coverage improvements that LFI can
achieve, we first used gcov and lcov to measure the level
of recovery-code coverage obtained by the test suite that
ships with each of the applications. We manually iden-
tified in the lcov results the recovery code blocks for the
functions we target for injection—a tedious job, but nec-
essary for an accurate comparison. We then ran the LFI
call analyzer on the two target applications; to be con-
servative, we trimmed the resulting injection scenarios
down to approximately 25 library function calls that are
known to fail on occasion (e.g., fopen, read, sendto,
fstat) and excluded all others. We re-ran the default
test suite and measured the new level of coverage. Ta-
ble 3 shows the results.

Git BIND

Additional recovery code covered ∼35% ∼60%
Additional LOC covered by LFI 429 560
Total coverage without LFI 78.7% 61.2%
Total coverage with LFI 79.6% 61.8%

Table 3: Automated improvement in code coverage.

The fact that, without any human assistance, LFI was
able to make the default test suite cover up to an addi-
tional 60% of the recovery code in mature applications
suggests LFI can offer substantial benefits to testers out-
of-the-box. The numbers reported in Table 3 are only a
conservative estimate of the improvement in testing, be-
cause (a) we did not write any new tests, rather relied on
the workload generated by the default test suite; (b) we
did not test any of the calls for which there was no re-
covery code at all, even if there should have been; and
(c) we injected faults in only a subset of the library calls
made by the applications. Note that the call site analyzer
can suggest targets for additional tests, thus helping test
developers write tests with less effort.

7.2 Injection Target Identification:

Accuracy and Efficiency

There are two ways to identify good injection targets:
manually or automatically. We believe the most practical
approach is one in which injection targets are first identi-
fied automatically, by tools like the LFI call site analyzer,
and then developers manually refine the generated injec-
tion scenarios. The refinement can be done either based
on knowledge of the target system or iteratively, by try-
ing out increasingly focused failure scenarios of interest.

To maximize usefulness of an automated injection tar-
get identifier, it must be accurate. The accuracy of injec-
tion target identification can be defined as:

Accuracy = T P+T N
T P+TN+FP+FN

10

where TP stands for the number of true positives, TN for
true negatives, FP for false positives, and FN for false
negatives. In the context of injection target identification,
these are defined by the following confusion matrix:

Actually Not actually

LFI says... checked checked

error return is checked TN FN
error return is not checked FP TP

We used the call site analyzer to identify places in the
target system where libc calls are made and the return
code is not checked. We then manually inspected the
code to cross-check the results (see Table 4). Note that
we did not specifically select the ones that are favorable
to LFI; we are showing here all the calls for which we
performed the manual inspection and validation.

System Function TP+TN FN FP Accuracy

BIND malloc 17 0 0 100%
BIND unlink 6 0 0 100%
BIND open 5 0 1 83%
BIND close 39 0 0 100%
Git malloc 25 0 0 100%
Git close 127 0 0 100%
Git readlink 7 0 0 100%
PBFT fopen 6 0 0 100%

Table 4: LFI’s call site analysis accuracy with no human
assistance, no documentation, and no source code.

Based on these results, we conclude that LFI’s call site
analysis is highly accurate for libc calls, even though it
is performed directly on x86 binaries; we expect this ac-
curacy to carry over to other libraries beyond libc. It is
therefore reasonable to expect that LFI can automatically
provide a good set of injection scenarios that developers
can then adjust as needed for their tests.

Efficiency: Besides accuracy, running time of the an-
alyzer is also an important factor, because testers are un-
willing to wait long for results. For example, it is fre-
quently said that the long running times of model check-
ers have discouraged their widespread use in testing.

The LFI call site analyzer is fast: in our experiments,
analysis time ranged from 1 second to a maximum of
10 seconds for BIND, in cases where there were more
than 100 call sites. Analysis time is only influenced by
program size (i.e., number of machine instructions) and
number of call sites that have to be analyzed.

Developers can process the results of the analyzer
fairly quickly. With each call site found, the details re-
garding file name and line number are provided, if debug
symbols are available; this information can guide the de-
veloper in inspecting the source code.

7.3 Studying System Behavior

Finding bugs is not the only objective of a tool like LFI—
it can also be used to study the behavior of systems un-
der various circumstances. For example, the users of a
distributed system may be interested in knowing how
it behaves in the face of network failures. We illus-
trate here the use of LFI for studying the behavior of
PBFT’s implementation, which is hard to reason about
based solely on the design, without experimental evalua-
tion. Our setup consisted of four replicas (i.e., f = 1) and
one client. We used the simple_client and simple_server

programs shipped with PBFT to generate test workload.
In our first experiment, we used LFI along with a

stock distributed trigger (§3.2) to see how PBFT’s per-
formance is affected by faults in inter-replica commu-
nication. We randomly injected faults in sendto and
recvfrom with a variable probability, simulating a de-
graded (but not malicious) network environment. Using
as a baseline PBFT’s performance without LFI’s interfer-
ence, we show in Figure 3 how the slowdown varies (av-
eraged over 7 trials) as network conditions worsen. The
performance of PBFT deteriorates gradually, reaching a
maximum of 4.17× slowdown for a 99% probability of
packet loss (i.e., when only one in every 100 network
messages make it to the receiver).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0 0.1 0.8 0.9 0.95 0.99

T
h

ro
u

g
h

p
u

t
s
lo

w
d

o
w

n
 f
a

c
to

r

Probability of packet loss

Figure 3: Slowdown in PBFT under progressively wors-
ening network conditions.

While the trend of the curve is not surprising, the exact
amount of slowdown experienced at every level of degra-
dation would be difficult to guess without direct mea-
surement.

In a second experiment, we used LFI to simulate a
denial-of-service (DoS) attack on PBFT’s replicas and
we measured again PBFT end-to-end performance, aver-
aged over 7 trials. The baseline for the experiment cor-
responds to LFI intercepting the calls but letting them all
succeed. By injecting consecutive faults in all communi-
cation of a specific replica (thus rendering it practically
inactive), we obtained an overall performance improve-

ment of 12%, possibly due to reduced communication
overhead. The third set of measurements corresponds to

11

an attack in which 500 consecutive faults were injected in
replica R1’s communication, then 500 in R2’s, then 500
in R3’s, then again 500 in R1’s, and so on. Such an attack
targets the reconfiguration protocol, aiming to confuse it.
PBFT’s throughput dropped by a factor of 2.2×.

The results indicate that the second DoS attack sce-
nario is more effective than the first. While this behavior
may not be necessarily surprising, the number of faults
and their impact on the overall performance cannot be
easily inferred from the design of the system.

As seen in this section, LFI can be used to study the
behavior of system implementations under various fail-
ure conditions. Since LFI works on binaries, we believe
this can be a useful tool for engineers who wish to evalu-
ate, for instance, closed-source third party software, such
as databases, load balancers, or application servers.

7.4 The Precision/Performance Tradeoff

It is obvious that LFI triggers can be designed at arbi-
trary levels of precision, using information in call stacks,
program variables, system state, etc. In the context of
fault injection, precision denotes the degree to which re-
peated runs of the target program trigger the same injec-
tions. For example, a precise injection would be one that
is made only when the system processes a specific re-
quest (e.g., a database answering a SQL query), but not
when it processes other queries, even if the same library
functions are called in the same conditions.

The question we wish to answer is: What is the cost of
this precision? If, for instance, the process of injecting
library-level faults via LFI slows down the system to the
point that its behavior is no longer representative, then
the value of testing is decreased (though not eliminated).

To analyze the performance of the trigger mecha-
nism, we measured two commercial-grade servers that
are highly performance-sensitive: the Apache 2.2.14
Web server and the MySQL 5.1.44 database server. We
computed the induced overhead as a function of number
of triggers, frequency of triggering, and type of triggers.
We used the Apache benchmark (AB) [1] on Apache and
the SysBench [25] Online Transaction Processing bench-
mark on MySQL.

In order to allow the benchmarks to proceed correctly,
we did not actually inject faults, but allowed the triggers
to pass the calls through to the real library functions. In
this way, we focus the measurement on the triggering
mechanism. Our purpose is not to measure how long
it takes the applications to recover after encountering a
fault, but rather what overhead is introduced by LFI’s
trigger mechanism.

We constructed injection scenarios with a variable
number of triggers and combinations thereof:

• Trigger 1: This trigger targeted apr_file_read

calls. We used it for targeting calls that have the file
descriptor pointing to a socket. The trigger uses the
apr_stat function on the received file descriptor
to check its type.

• Trigger 2: As we wanted to focus testing on
Apache’s core, and exclude dynamically loaded
modules, we also decided to check if the function
caller is Apache via the call stack trigger.

• Trigger 3: We further narrowed down our injection
target by requiring that the function call happens
while processing a request. We used a variation of
the stock call stack trigger to require the existence
of Apache’s ap_process_request_internal

function in the call stack.

• Trigger 4: We then adapted the stock applica-
tion state trigger in order to permit injections only
when the HTTP POST method is used to make
the request. To do so, the trigger had to analyze
the request_rec argument received by Apache’s
ap_process_request_internal function and
examine its method_number field.

• Trigger 5: We wrote a custom trigger in order to
intercept lock and unlock methods in order to target
only apr_file_read calls made while holding a
mutex.

Table 5 summarizes the results, obtained on two dif-
ferent benchmark workloads: static HTML and PHP re-
quests. The former, consisting of 1,000 requests of a
static HTML page, fires triggers 32,612 times (about
1.7× 105 triggerings/second) for the maximum number
of five triggers. The second workload is computation-
ally more demanding on Apache, resulting in fewer li-
brary calls per unit of time: a total of 45,228 triggerings
(about 2.8× 104 triggerings/second). In both cases, the
overheads introduced by trigger evaluation are negligi-
ble, suggesting that LFI can be used without affecting the
target system’s behavior other than through the injected
faults.

Static HTML PHP

Baseline (no LFI) 0.179 sec 1.562 sec
1 trigger 0.179 sec 1.564 sec

2 triggers 0.179 sec 1.574 sec
3 triggers 0.179 sec 1.577 sec
4 triggers 0.186 sec 1.585 sec
5 triggers 0.188 sec 1.589 sec

Table 5: Running time of the Apache Web server while
using LFI with 1-5 triggers. The baseline represents
Apache httpd without any interference from LFI.

12

We also ran the SysBench [25] Online Transaction
Processing (OLTP) benchmark on the MySQL RDBMS
with LFI applied to GNU libc. We devised injection sce-
narios with 1-4 triggers on the fcntl function:

• Trigger 1: Inject when the cmd argument is
F_GETLK.

• Trigger 2: Inject only when the thread count
is bigger than 64 (tests the global variable
thread_count with the application state trigger).

• Trigger 3: Inject only when the system is
shutting down (tests the global variable
shutdown_in_progress with the application
state trigger).

• Trigger 4: Inject when the call is made by the main
application module and not other libraries (uses the
call stack trigger).

Table 6 shows the results for random triggering
and two different workloads: read-only and read-write
queries. For the highest number of four triggers, there
were ∼14K triggerings/second.

Read-only Read/Write

Baseline (no LFI) 1076 txns/sec 326 txns/sec
1 triggers 1064 txns/sec 319 txns/sec
2 triggers 1060 txns/sec 318 txns/sec
3 triggers 1056 txns/sec 316 txns/sec
4 triggers 1056 txns/sec 316 txns/sec

Table 6: MySQL database server performance while ap-
plying LFI with 1-4 triggers (number of transactions per
second, as reported by the SysBench OLTP benchmark).

Even with complex combinations of conditions that
check various parts of the system state, LFI introduces
negligible overhead (consistently less than 5% in our
measurements). This offers an advantageous preci-
sion/performance tradeoff, meaning that testers can af-
ford to use sophisticated triggers without being con-
cerned that trigger evaluation will bias system behavior.

8 Related Work

Library-level fault injection is an inexpensive testing
method first proposed in the context of FIG [6], a tool
used to verify the error handling code responsible for
GNU libc errors. FIG has several important limitations,
in that it only allows injecting faults in GNU libc func-
tions, cannot select particular call sites in which to inject,
and requires hardcoding the injected error values.

A refinement was presented by Süßkraut & Fetzer [24]
in the form of a system that finds bugs via library-level

fault injection and then patches the vulnerable applica-
tions to protect against these bugs. Still, this system
is limited to GNU libc functions and does not have the
means to automatically search for vulnerable call sites,
nor to specify complex injection conditions.

This paper continues our previous work on LFI [18], a
tool that enables a more general approach to library-level
fault injection, by automatically determining meaningful
faults to inject and by supporting the interception of arbi-
trary library functions without the need for source code.
To our knowledge, this was the first library-level fault in-
jector practical enough for real-world use. Its main dis-
advantage, however, proved to be the lack of a mecha-
nism for specifying precise injection conditions, leaving
the tester able to only do random or exhaustive explo-
ration of the fault space. The work presented here ad-
dresses this shortcoming.

Ideas similar to call site analysis have been previ-
ously proposed in [12], where the authors targeted Linux
file system implementations at the source-code level and
used block-level fault injection to confirm certain cate-
gories of bugs. Java exception propagation and handling
has been analyzed by Weimer and Necula [27] and Fu
et al. [8], using functional specifications and compile-
time fault injection, respectively, for discovering bugs.
Our approach is complementary, since we target different
types of systems, use fault injection at a different level,
and operate on binaries.

Other fault injection systems, like G-SWFIT [2], fol-
low another approach to testing: they mutate the target
binary code according to statistical bug rules. Different
tools operate at even lower levels: FTAPE [26] is de-
signed to inject faults in memory, registers, and disk ac-
cesses. NFTAPE [23] can use different low-level fault
injectors to test the robustness of systems. Using these
systems for testing general-purpose software faces two
challenges: it is not clear whether it is reasonable to ex-
pect an application to handle such low-level fault (e.g.,
disk failure), and the large number of layers that separate
the low-level injection point from the application level
makes pinpointing the location of a possible bug tedious.

The application-library boundary does not suffer from
these shortcomings: programs are expected to react prop-
erly to error conditions signaled by components with
which they interact, and determining the point where a
fault transformed into an error is easier, albeit not trivial.

The concept of injection triggers was used by FER-
RARI [16] and other tools for OS robustness evalua-
tion [15]. These early trigger mechanisms could only
specify a predefined set of conditions, like injecting af-
ter the n-th function call or after a determined amount of
time. The LFI stock triggers and the Trigger interface,
however, allow testers to achieve a level of precision in
recovery-code testing that was previously not available.

13

9 Conclusion

This paper described a new and improved version of LFI,
a library-level fault injection framework that is able to
automatically identify errors externalized by shared li-
braries, identify potentially vulnerable injection targets
in application binaries, and produce injection scenarios
that exercise such vulnerabilities. The new LFI offers
an injection triggering mechanism that allows testers to
specify with high precision the conditions under which
a fault is to be injected. We presented the stock triggers
provided by LFI and the mechanism through which they
can be extended to fit practitioners’ needs.

LFI was successfully used in testing real systems, and
it found 11 new bugs in the BIND name server, the Git
version control system, the MySQL database server, and
the PBFT replication system. LFI achieved 35%-60%
recovery-code coverage entirely on its own, with no hu-
man involvement. We have also shown that LFI intro-
duces only negligible runtime overhead during testing.

LFI can be downloaded at http://lfi.epfl.ch/.

Acknowledgments

We wish to thank our shepherd, Andrew Baumann,
the USENIX anonymous reviewers, and our EPFL col-
leagues for their valuable help in improving our paper.

References

[1] Apache Benchmark (AB). http://httpd.apache.
org/docs/2.0/programs/ab.html.

[2] R. Barbosa, N. Silva, J. Duraes, and H. Madeira. Verifi-
cation and validation of (real time) COTS products using
fault injection techniques. Intl. Conf. on Commercial-off-

the-Shelf (COTS)-Based Software Systems, 2007.
[3] BIND - [BUG] BIND abort in dst_api.c.

https://lists.isc.org/pipermail/

bind-users/2010-January/078493.html.
[4] BIND - [BUG] BIND crash in statschannel.c.

https://lists.isc.org/pipermail/

bind-users/2010-January/078428.html.
[5] E. Bisolfati, P. D. Marinescu, and G. Candea. Studying

application–library interaction and behavior with Lib-
Trac. In Intl. Conf. on Dependable Systems and Net-

works, 2010.
[6] P. A. Broadwell, N. Sastry, and J. Traupman. FIG: A

prototype tool for online verification of recovery mecha-
nisms. In Workshop on Self-Healing, Adaptive and Self-

Managed Systems, 2002.
[7] M. Castro and B. Liskov. Practical Byzantine fault toler-

ance. In Symp. on Operating Systems Design and Imple-

mentation, 1999.
[8] C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott.

Testing of Java web services for robustness. In ACM

SIGSOFT Intl. Symp. on Software Testing and Analysis,
2004.

[9] Git - [BUG] crash on make test. http://marc.

info/?l=git&m=125985479417107.
[10] Git - Git unchecked mallocs. http://marc.info/

?l=git&m=126298802319662.
[11] Git - Running commands in wrong environment. http:

//marc.info/?l=git&m=125986795807036.
[12] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-

Dusseau, R. H. Arpaci-Dusseau, and B. Liblit. EIO: er-
ror handling is occasionally correct. In USENIX Conf. on

File and Storage Technologies, 2008.
[13] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.

Kaashoek, and Z. Zhang. R2: An application-level kernel
for record and replay. In Symp. on Operating Systems

Design and Implementation, 2008.
[14] G. Hunt and D. Brubacher. Detours: Binary Interception

of Win32 Functions. In USENIX Windows NT Symp.,
1999.

[15] A. Johansson, N. Suri, and B. Murphy. On the impact of
injection triggers for OS robustness evaluation. In Intl.

Symp. on Software Reliability Engineering, 2007.
[16] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham.

FERRARI: A flexible software-based fault and error in-
jection system. IEEE Transactions on Computers, 44(2),
1995.

[17] libdwarf. http://reality.sgiweb.org/

davea/dwarf.html.
[18] P. D. Marinescu and G. Candea. LFI: A practical and

general library-level fault injector. In Intl. Conf. on De-

pendable Systems and Networks, 2009.
[19] MySQL - [BUG] MySQL crash due to double un-

lock. http://bugs.mysql.com/bug.php?id=

53268.
[20] MySQL - [BUG] MySQL crash due to error while read-

ing errmsg.sys. http://bugs.mysql.com/bug.

php?id=53393.
[21] MySQL - [BUG] MySQL crash due to missing er-

rmsg.sys. http://bugs.mysql.com/bug.php?

id=25097.
[22] M. Prasad and T. Chiueh. A binary rewriting defense

against stack-based buffer overflow attacks. In USENIX

Annual Technical Conf., 2003.
[23] D. T. Stott, B. Floering, Z. Kalbarczyk, and R. K. Iyer. A

framework for assessing dependability in distributed sys-
tems with lightweight fault injectors. In Intl. Computer

Performance and Dependability Symp., 2000.
[24] M. Süßkraut and C. Fetzer. Automatically finding and

patching bad error handling. In European Dependable

Computing Conference, 2006.
[25] Sysbench. http://sysbench.sourceforge.

net.
[26] T. K. Tsai and R. K. Iyer. Measuring fault tolerance with

the FTAPE fault injection tool. In Intl. Conf. on Mod-

elling Techniques and Tools for Computer Performance

Evaluation, 1995.
[27] W. Weimer and G. C. Necula. Exceptional situations and

program reliability. ACM Transactions on Programming

Languages and Systems, 30(2), 2008.

14

