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Abstract
This paper presents NFOS, a programming model, runtime,
and profiler for productively developing software network
functions (NFs) that scale on multicore machines. Writing
shared-state concurrent systems that are both correct and
scalable is still a serious challenge, which is why NFOS in-
sulates developers from writing concurrent code.
In the NFOS programming model, developers write their

NF as a sequential program, concerning themselves with
the NF logic instead of parallelism and shared-state synchro-
nization. The NFOS abstractions are both familiar to the NF
programmer and convey to the NFOS runtime crucial infor-
mation that enables it to correctly execute the NF’s packet
processing in parallel on multiple cores. Paired with NFOS’s
domain-specific concurrent data structures, this parallelism
scales the NF transparently, obviating the need for develop-
ers to write concurrent code. We show that serial, stateful
NFs run atop NFOS achieve scalability on par with their
concurrent, hand-optimized counterparts in Cisco VPP [8].
Some scalability bottlenecks are inherent to the NF’s se-

mantics, and thus cannot be resolved while preserving those
semantics. NFOS identifies the root causes of such bottle-
necks and provides scalability recipes that guide developers
in relaxing the NF’s semantics to eliminate these bottlenecks.
We present examples where such NFOS-guided relaxation
of NF semantics further improves scalability by 2× to 91×.

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; • Networks→Middle boxes / net-
work appliances; • Software and its engineering→Mul-
tithreading.

Keywords: Network functions, Transparent scaling, Concur-
rency, Performance profiling and debugging
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1 Introduction
The performance of software network functions (NFs) [13]
is essential to today’s Internet and data center networks,
because NFs perform tasks that are on the critical path, such
as firewalling, NAT, load balancing [22], or mobile core func-
tions [29]. As user demand drives the line rate of modern
NICs to hundreds of Gbps [9, 66], processing the network
packets at these rates is challenging. For example, with a
packet size of 64 bytes, to saturate a 100Gbps network port,
an NF would have to process 1 packet every 6.7ns on average.
NFs that aim to scale to such workloads must process

packets in parallel on many cores, because nanosecond-scale
average processing rates with a single core are not feasible
for real NFs on present or foreseeable CPUs. Not surprisingly,
multicore parallelism has become the preferred architecture
for both industrial NFs [5, 6, 8, 22] and academic ones [20, 30].
Unfortunately, despite decades of research, developing

correct (i.e., free of concurrency bugs) and scalable (i.e., hav-
ing a throughput that increases with the number of cores)
concurrent programs remains a challenge [41, 55, 58], even
for developers with extensive expertise. NFs turn out to be
no exception. We conduct what is, to the best of our knowl-
edge, the first study of NF concurrency bugs; we choose
for our analysis the open source version of Cisco’s Vector
Packet Processing framework (VPP) [8], a mature and widely
used, high-performance packet-processing stack that runs
on commodity CPUs. We find that both scalability issues and
concurrency bugs often affect the VPP NFs. Furthermore,
identifying and fixing these bugs is non-trivial, usually taking
months. Interestingly, VPP developers try to avoid writing
concurrent code by partitioning the NF state among threads
so as to form a shared-nothing architecture that is easier to
reason about. Ironically, for several NFs, this approach re-
quires surprisingly complicated coordination among threads,
leading to bugs. Plus, the expected functionality of several
NFs make it such that they cannot be implemented in a
shared-nothing manner, because it imposes the need to share
state between the cores that process packets.
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Further work is needed to improve the productivity of de-
veloping scalable single-machine NFs. Most NF frameworks
help developers scale NFs across different machines [24,
33, 49, 61] and/or simplify the programming of sequential
NFs [21, 31, 37, 43, 47]. To our knowledge, the only frame-
work forwriting single-machinemulticore NFs isMaestro [48],
developed concurrently with NFOS. Maestro is limited to
NFs that are amenable to exhaustive symbolic execution; for
such NFs, Maestro produces shared-nothing parallel imple-
mentations when possible. Many NFs, however, impose the
use of shared state as the price for preserving their expected
semantics. In such cases, solutions that use coarse-grained
locks to synchronize updates to shared state do not scale.

Generic techniques for making concurrent programming
easier have serious limitations when applied to the NF do-
main (§2.1). Notably, automated loop parallelization tech-
niques depend heavily on the independence of each loop
iteration, which is uncommon in NFs. Concurrency bug de-
tectors [14, 46, 57] do not address the challenge of fixing the
found bugs. Systems that mask concurrency bugs during ex-
ecution [38, 39, 42] suffer from high overhead and can only
offer (partial) protection against specific types of concur-
rency bugs. Finally, current profilers cannot reveal the root
causes of scalability bottlenecks [18, 19, 55, 60] nor provide
effective and actionable suggestions to improve scalability.
We present NFOS, a programming framework that helps

NF-domain experts develop scalable NFs without having to
think about concurrency and parallelism. Our goal is to im-
prove their productivity. The NFOS runtime and toolchain pro-
vide complete support for the programming, profiling, and
optimizing of NFs. We address the challenges mentioned ear-
lier by exploiting the domain-specific characteristics of NFs.
In the NFOS programming model, developers write their

NFs as sequential programs. They get to use intuitive ab-
stractions that hide concurrency, thus avoiding from the
start the introduction of concurrency bugs. We expect this
to improve productivity, shorten testing cycles, and speed
up delivery of features and bug fixes. Unlike related work
on automatic parallelization, discussed above and in §2.1,
NFOS parallelizes not the program but its processing of packets.
As an example of domain specificity, NFOS generalizes the
notion of packet flows into the packet set abstraction, with
which the developer groups logically connected packets.

The NFOS runtime parallelizes a sequential NF across
available CPU cores transparently by leveraging the knowl-
edge conveyed through the packet set abstraction. NFOS per-
forms the processing of all packets in a packet set on the same
core, exploiting the observation that NFs typically process
packets by using state specific to those packets’ flows [49].
For accessing shared state, NFOS does not use lock-based
pessimistic synchronization but rather processes each packet
in a memory transaction [28, 42], despite related work that
claims such an approach to be unsuitable [48].

Processing packets inmemory transactions is a good choice,
beyond enabling transparent parallelization: First, process-
ing a packet in the critical path is by necessity swift, leading
to short critical sections that are a good match for transac-
tional memory. Second, NFs employ a small, common set of
data structures [64], with most concurrent accesses occur-
ring in these structures. As a result, NFOS can tailor their
implementation to be efficient in the context of transactional
memory and to encapsulate common concurrency wisdom,
such as fine-grained synchronization. Third, combined with
the sequential programming model, NFOS can now elimi-
nate altogether the possibility of NF developers introducing
concurrency bugs like data races or atomicity violations.
Even though most NFs parallelized by NFOS achieve ex-

cellent scalability (as we show later), some NFs are inher-
ently challenging, because their semantics impose frequent
updates to state shared across all packets (e.g., NAT, MAC-
learning bridge). To aid developers in quickly optimizing
such NFs, NFOS includes a profiler and a set of scalability
recipes. The profiler reports the number of transaction aborts
caused by memory accesses on specific lines of code, which
acts as a proxy metric for assessing the impact on scalability.

Unlike existing profilers, the NFOS profiler also identifies
the root causes of scalability bottlenecks. Since NFOS directly
manages concurrency, it can bridge the semantic gap be-
tween low-level aborts and application-level behavior, and
can provide the profiler with a set of conflict causes. These
encode the exact reasons for why transactions abort in the
built-in concurrent data structures. For each conflict cause,
NFOS provides recipes for improving scalability through re-
laxation of the NF’s semantics, such as allowing for a read to
have bounded staleness. Developers can easily follow these
recipes without thinking of the intricacies of concurrency.
Our experimental evaluation shows that NFs developed

with NFOS achieve scalability on par with functionally equiv-
alent but manually parallelized and heavily optimized NFs
from Cisco VPP [8]. The VPP optimizations include various
lock-free algorithms and hardware-specific optimizations
like prefetching. To illustrate the use of scalability recipes,
we present three case studies of how, under the guidance of
NFOS, one can productively identify and remove the root
causes of scalability bottlenecks in NFs by relaxing semantics,
with NF throughput improvement ranging from 2× to 91×.

In summary, this paper makes the following contributions:
•NFOS abstractions and runtime including domain-specific
data structures that encapsulate concurrency best practices.
We expect NFOS to improve NF developers’ productivity by
simultaneously freeing them from writing concurrent code
and delivering competitive multicore performance.
• Scalability recipes that guide developers in quantitatively
and systematically trading NF semantics for scalability. The
NFOS profiler bridges the gap between low-level events and
NF logic via conflict causes and the abort-rate proxy metric.
• Study of NF concurrency bugs, focused on VPP [59].
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In the rest of the paper, we provide further background
and motivation (§2), describe the target audience for NFOS
and define a general model of NFs and their properties (§3),
present the design and implementation of the NFOS frame-
work (§4), conduct an experimental evaluation of NFOS (§5),
and conclude with a discussion of limitations (§6).

2 Background and Motivation
Developing concurrent software—that is, software with mul-
tiple threads that access shared state—is challenging. In this
section, we first discuss state-of-the-art techniques for mak-
ing it easier to write concurrent code (§2.1). Then we present
the state of practice in developing multithreaded NFs (§2.2).
Finally, our study on concurrency issues in VPP NFs (§2.3)
finds that, while some bug characteristics are similar to those
in general server applications, others are specific to NFs.

2.1 Related work

NF programming frameworks. Existing NF program-
ming frameworks provide abstractions to hide low-level de-
tails from programmers [31, 37, 43, 47]. For example, mOS [31]
provides abstractions to hide flow processing. There are
frameworks that help scale NFs across multiple machines
in a distributed system setup [24, 33, 49, 61]. None of these
are directly applicable to developing multithreaded single-
machine shared-state NFs.
Automatic parallelization. Generic approaches for paral-
lelizing sequential programs focus on extracting parallelism
from loops and/or function calls [10, 26, 56]. These tech-
niques depend on the independence of each loop iteration
or function call, making them unsuitable for many NFs. For
instance, in stateful NFs, processing of one packet depends
on state changes resulting from processing previous pack-
ets. There exists work that converts sequentially accessed
data structures into concurrent ones [16, 52, 62]. These ap-
proaches depend heavily on the semantics of the data struc-
tures being converted, and do not readily carry over to NFs.
Maestro [48], developed concurrently with NFOS, auto-

matically generates a parallel version of an NF from its cor-
responding sequential code. Unlike NFOS, Maestro requires
the NF code to be amenable to exhaustive symbolic execu-
tion. This requires that all loop bounds be static and that no
pointer arithmetic be done outside certain data structures.
For NFs whose semantics impose the use of shared state,
such as a load balancer, Maestro pessimistically synchro-
nizes access to all NF state using a global read-write lock, so
every packet that triggers an update to NF state must wait
to obtain exclusive access. Such coarse-grained synchroniza-
tion hurts scalability of stateful NFs that perform updates
frequently. For example, many NFs update packet counters
on every packet arrival, and others update state for every
new flow, which can happen frequently in the real world,
where average flow size can be <20 packets [1].

Concurrency bug detection andmasking. Prior research
helps programmers find concurrency bugs [14, 46, 57]. This
is valuable and practical, but does not offer NF developers
a complete solution: even with effective detection, fixing
concurrency bugs is still challenging [41]. There also exist
approaches to masking concurrency bugs during program
execution [38, 39, 42], but they only target a specific type
of bugs and introduce non-trivial overhead, while not guar-
anteeing the absence of bugs. We do not expect developers
of high-performance NFs to favor these approaches—they
likely would prefer to not have concurrency bugs at all.
Identifying and fixing scalability bottlenecks. Besides
correctness bugs, concurrent programming can also intro-
duce performance bugs that lead to scalability bottlenecks.
Existing profilers [18, 19, 60] identify the symptoms but not
the root cause, which is what’s ultimately needed for fixing
the problem. For example, profilers can reveal symptoms
like high contention on critical sections. Yet, such symptoms
can be due to a variety of reasons: incorrect use of synchro-
nization mechanisms (e.g., using exclusive locks instead of
read-write locks for read-mostly data), improper synchro-
nization granularity (e.g., coarse-grained locks to protect all
shared state), etc. Existing profilers cannot tell which one
is the root cause. Some recent work aims to provide guide-
lines for fixing scalability bottlenecks [55, 63], but they are
typically too generic to be actionable for NF developers.

2.2 Current practice of developing concurrent NFs
We study the current practice of concurrent NF development
by analyzing the source code, bug database, and mailing
list for the NFs that form the Cisco VPP family [59], an
open source yet commercial grade networking framework.
While we cannot generalize beyond VPP, it does represent
the most compelling group of high-performance NFs that we
are aware of. We find that programmers employ multicore
concurrency to make NFs scale, and they still use low-level
synchronization primitives, such as atomic instructions and
locks. This suggests that the limitations of existing program-
ming frameworks and techniques discourage NF developers
from adopting them. They may use certain tools, such as
perf, to spot scalability bottlenecks and other concurrency
bugs, but often fix them through trial and error. This appoach
is error-prone, allows bugs to escape, and hurts productivity.
We describe our findings in more detail below.

2.3 NF concurrency problems

Methodology. VPP [59] is a mature networking framework,
developed over the course of 7 years. It is widely used and
considered proven technology, as it helped ship over $1B
of Cisco products [59]. We employ a methodology similar
to prior work [41]: search the bug database for relevant
keywords (e.g., “deadlock”, “atomicity”) and then manually
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analyze randomly chosen bugs, to confirm that they are
indeed concurrency bugs that manifested in NFs.
We formulate below four findings based on reading and

analyzing these bugs. The first two match bug studies of
generic server applications [41], while the last two are spe-
cific to NFs.

Bug type Number of bugs

Data race 16
Atomicity violation 8
Deadlock 4

Total 28
Table 1. Concurrency bugs in VPP NFs.

Finding #1: Concurrency bugs are prevalent and harm-
ful. Table 1 summarizes the concurrency bugs we found. Of
the 30 concurrent NFs in VPP, our limited random bug search
finds that at least 14 NFs have had concurrency bugs. Fur-
thermore, all of the bugs we found are harmful: they cause
the NF to produce incorrect output, to crash, or to hang.
Finding #2:Debugging concurrency bugs inNFs remains
challenging. For the concurrency bugs we found, the time
between introducing a concurrency bug and fixing it ranges
from 1−75 months, with a median of 21 months.
Finding #3: Shared-nothing is not a panacea. To avoid
the complexity of concurrency, a common design in NFs is
to employ a shared-nothing architecture, where the NF state
is partitioned among threads.
One bug [3] we found was in NAT’s hairpinning mode,

where the address mappings are partitioned among cores,
and each thread owns a partition. The problem is that, when
a thread processes a packet, it reads the address mapping
of the packet’s destination endpoint without synchronizing
with the owner thread. Doing so leads to race conditions,
such as the owner thread freeing the address mapping while
another thread is still accessing it. The fix is to forward
the packet to the thread that owns the address mapping
of the packet’s destination endpoint. This fix results in a
massive 877 lines of changed code. Passing packets between
threads to achieve correct shared-nothing appears in both the
normal and hairpinning modes in VPP NAT. Unfortunately,
as detailed below, it causes a scalability bottleneck.
Finding #4: Scalability bottlenecks are caused by sim-
ple concurrency patterns. We configure and run four
VPP NFs: NAT, Firewall, and Load balancer on the CAIDA
trace [1], and Bridge on a trace synthesized based on univer-
sity data-center characteristics [12]. Of the four NFs, two do
not scale with the number of cores and are far from reaching
the 98 million-packets-per-second (mpps) limit of our traf-
fic generator with one NIC port, as shown in Figure 1. For
NAT, the scalability bottleneck turns out to be contention
on queues that forward packets between cores. For Firewall,
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Figure 1. Throughput scalability of VPP NAT and Firewall.

the scalability bottleneck is caused by an allocator that in-
efficiently manages session table entries.
Conclusion. We believe that VPP developers, at least some
of them, have extensive concurrency expertise—the code
contains complex concurrency-related optimizations across
many VPP NFs, including the use of lock-free algorithms.
However, writing concurrent systems code is hard [41], as it
requires non-intuitive, non-local reasoning about the inter-
action among threads. Concurrency bugs and scalability bot-
tlenecks are hard to reproduce, as they can only be triggered
by specific thread interleavings. Thus, even with concur-
rency expertise, NF developers can introduce concurrency
problems and find it difficult to fix them correctly.

3 Target Users and NF Model
NFOS exploits several properties specific to the NF domain in
order to overcome the challenges faced by related work (§2.1).
To characterize the aspects of this domain that NFOS takes
advantage of, we describe NFOS’s target audience (§3.1) and
present the model of NF operation assumed by NFOS (§3.2).

3.1 Target audience
NFOS targets developers with NF domain expertise. We as-
sume that these developers understand the NF at the seman-
tic level and, despite the subtleties of network protocols,
these developers understand very well what are the correct
outputs and state changes of an NF for given incoming pack-
ets. Furthermore, given the NF’s semantics, the developers
can implement such an NF, possibly using frameworks such
as DPDK [21]. The developers have knowledge useful for
optimizing NF performance, particularly which aspects of
the NF’s semantics are acceptable to trade for increased per-
formance (e.g., they know whether it is acceptable for an NF
to use specific stale data, if that improves scalability).
NFOS aims to help such NF domain experts, whether

they have concurrency expertise or not. For the domain
experts without concurrency expertise (that is, uncomfort-
able working with low-level synchronization primitives and
implementing high-level synchronization algorithms), NFOS
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enables them to develop functioning concurrent NFs with
competitive multicore performance. For domain experts with
concurrency expertise, NFOS helps quickly provide a base-
line implementation. Only in the event that NFOS cannot
provide satisfactory performance (this has not happened yet)
do the experts need to write concurrent code themselves.

3.2 Target NF model
NFOS assumes that an NF operates in three stages: initial-
ization, normal operation, and termination. During normal
operation, an NF runs in an event loop. In each iteration, it
receives a packet and refers to the NF’s state to decide how
to process that packet. To produce its output, an NF may
modify, drop, or preserve the received packet, or generate an
entirely new packet to send out. The NF also updates its state
according to what it did. In the initialization (termination)
stage, an NF creates (destroys) its state by allocating (freeing)
the corresponding resources, respectively.

NFOS also assumes that NFs have the following properties:
P1: Flowsmostly execute in isolated contexts. As noted
in prior work [49], often an NF classifies a group of logically
connected packets (e.g., packets belonging to the same TCP
stream) into a “flow.” When processing a packet, in the com-
mon case, an NF only reads or updates state that is exclusively
associated with the flow to which the packet belongs. When
state is semantically shared among flows, it is updated infre-
quently in the common case.
P2: Short packet-processing time. While a generic server
application may take arbitrarily long to produce a response,
NFs aim to process packets within a short amount of time,
ranging from nanoseconds to at most microseconds. This is
because delays in intermediate network nodes can signifi-
cantly affect the end-to-end performance of the network.
P3: No ordering requirement on processing packets in
different flows. An NF may require a specific packet pro-
cessing order within a single flow. For example, packets in
a TCP stream may need to be processed in their respective
order. However, an NF typically does not require an ordering
between processing packets in different flows. While differ-
ent orders may result in different outputs, they are all valid.
P4:Concurrent accesses hit (mostly) a small set ofwide-
ly used data structures. Most NFs maintain their state in
a common set of data structures, like arrays, key-value maps,
allocators, and/or counters [64]. For concurrent NFs, most
of their concurrent accesses occur in these data structures,
making their scalability critical to overall NF scalability.
P5: Limited use of the underlying system software. Sys-
tem software supporting generic applications offers a wide
spectrum of functionality. For example, Linux and glibc pro-
vide hundreds of system calls and library methods. However,
NFs use only a tiny fraction of this functionality.

We analyze the source code and descriptions of 14 widely
used NFs (Table 6) and confirm that they match the model
described here. 11 of the 14 NFs are organized around a cer-
tain type of flows. The reported average packet processing
time varies from 90ns to 3µs, with one exception being the
Web cache, which reports 50µs. We do not find any uses
of synchronization primitives (e.g., conditional variables or
barriers) for enforcing in-order packet processing across
flows, nor do we believe it necessary given the NFs’ seman-
tics. These NFs indeed perform all their concurrent accesses
inside the aforementioned data structures. Finally, they re-
quire from the underlying system only dynamic memory
management, the current time, and disk/networking I/O.

Having described our target audience and the key proper-
ties of NFs, we now present NFOS’s design.

4 The NFOS Framework
We now describe in detail how NFOS abstracts away concur-
rency and offers transparent scalability. We present NFOS’s
design goals (§4.1), an overview of the envisioned work-
flow (§4.2), the NFOS programming model (§4.3), the corre-
sponding runtime (§4.4), the built-in data structures (§4.5),
how the NFOS profiler and scalability recipes work (§4.6),
select implementation details (§4.7), and an illustrative exam-
ple of how to develop and optimize an NF with NFOS (§4.8).

4.1 Design goals (and non-goals)
The goal of NFOS is to help NF domain experts productively
develop scalable NFs. We divide this overarching goal into
the following four design objectives:

• Intuitive abstractions to hide concurrency. To enable
high development velocity without a steep learning curve,
the abstractions that NFOS uses to hide concurrency should
be easily understandable with NF domain knowledge.

• Encapsulated concurrency wisdom for competitive
performance. While we do not aim for concurrent NFs
running on NFOS to always outperform hand-parallelized
ones, we do want NFOS to be competitive for a wide range
of NFs. To achieve this, NFOS should encapsulate general
concurrency wisdom in its abstractions and runtime to
maximize scalability.

• Correct-by-construction concurrency. Finding and fix-
ing concurrency bugs is challenging, even for developers
with extensive concurrency expertise (§2.3). Instead of pro-
viding support for detecting and fixing concurrency bugs,
NFOS should eliminate the possibility of developers intro-
ducing concurrency bugs. However, preventing bugs that
occur in sequential programming (e.g., buffer overflows)
is out of scope.

• Quick and easy scalability optimization. It often takes
many iterations of identifying and fixing scalability bot-
tlenecks to achieve the desired performance. Thus, NFOS
should include support for speeding up this process.
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4.2 NFOS overview and workflow
NFOS exposes an event-driven, sequential programming
model to NF developers. Figure 2 shows the workflow and
key components, and Table 2 lists the event handlers that
form the programming model. 1 Developers program NFs
by writing sequential NF code within these handlers (§4.3).
2 The NFOS runtime then takes the sequential code and
transparentlymakes it process packets onmultiple cores (§4.4-
§4.5). We describe later howwe co-design the NFOS program-
ming model and the runtime (i) to ensure that programmers
cannot introduce concurrency bugs; and (ii) to extract fine-
grained parallelism from the NF code to maximize scalability.

Write NF as sequential code 

Scale to multicore

Report root causes of 
bottlenecks and recipes 

NFOS Profile the NF 

Scalability 
profiler

Apply recipes to 
resolve bottlenecks 

Packet 
set cfg

Handlers

1

2 3

5 4

Runtime

Figure 2. Typical workflow when using NFOS.

In most cases, NFs parallelized by NFOS achieve good
scalability. However, NF semantics may impose inherent
scalability bottlenecks, such as heavy contention on (im-
plicitly) shared state. 3 In this case, the developer uses the
NFOS profiler (§4.6). 4 The profiler directly reveals to the
programmer the scalability bottleneck with an explanation
of its root cause. For each possible root cause, NFOS pro-
vides the developer with one or several actionable scalability
recipes to remove the bottleneck. The recipes are easy to
apply, typically require changing at most a few lines of NF
code, and guide the developer in making well thought-out
and quantitative trade-offs between the NF’s semantics and
scalability (§4.6). 5 The profiler and recipes help the devel-
oper productively optimize the NF’s scalability (§4.6).

Figure 3 shows the NFOS system architecture:

Figure 3. NFOS system architecture. Packets of the same color are
logically related and belong to the same packet set.

Handler When it is invoked

init_NF_handler NF starts
exit_NF_handler NF terminates
init_pkt_set_handler The first packet of a packet set arrives
pkt_handler A packet of a live packet set arrives
expired_pkt_set_handler The packet set has expired
orphan_pkt_handler An orphan packet arrives
periodic_handler The recurring timer fires

Table 2. Handlers in the NFOS programming model.

4.3 NFOS programming model

The packet set is the unit of parallelism. NFOS must
automatically identify any parallelism that exists in the se-
quential processing of packets, in order to transparently scale
it. To do so, NFOS exploits NF property P1 (§3.2) to schedule
the processing of different packets across multiple cores.
NFOS introduces the packet set abstraction to generalize

the concept of network flow (§3.2). A packet set is a group
of packets that are logically connected. Leveraging the ob-
servation that each flow forms an execution context (P1),
NFOS minimizes synchronization overhead by processing all
packets in a packet set on the same core, as further detailed
below. Packets that do not belong to any packet set (which
we call orphan packets) get evenly distributed across cores.
Programming with NFOS. A programmer using NFOS
first defines packet sets in a configuration file by specify-
ing the network protocols and the packet header fields that
uniquely map a packet to a packet set (see Listing 1 for
an example). The programmer then fills in the event han-
dlers (Table 2), to implement the NF logic in plain C. Event
handlers that the developer does not fill in remain no-ops.
We design the handlers to be generic enough to express

most NFs. The first two handlers are used to initialize and
clean up the NF, respectively. Similarly, there are handlers
to initialize a packet set and clean it up. The initialization
handler is invoked when the first packet of a packet set ar-
rives. After the initialization, the packet set is “live,” and
pkt_handler() is invoked to process subsequent packets.
The cleanup handler is invokedwhen a packet set expires (i.e.,
has not received any packet for a certain amount of time,
specified during initialization). NFOS also has dedicated han-
dlers for processing orphan packets and periodic events (e.g.,
to monitor the health of load balancer backends).

Programmers can use all of the standard C language when
filling in the handlers. In addition, NFOS provides users
with a set of library calls to support the basic NF function-
ality discussed in §3.2 and common data structures used by
NFs (§4.5). However, using any concurrency-related variable
types (e.g., atomic) or library calls (e.g., pthread_*) in the
single-threaded NF is prohibited, to prevent the introduction
of concurrency bugs.
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Local vs. global state. In NFOS, NF state can be only of
two kinds: (i) packet-set state, which is associated exclusively
with a packet set and thus is only accessed by the NF when
it processes packets in that packet set; or (ii) aggregate state,
which is shared across packet sets, and thus may be accessed
by the NF when it processes any packet. NFOS processes all
packets in a packet set on the same core, so there is no need
to synchronize access to the packet-set state—only access to
the aggregate state needs to be synchronized.
To classify these two types of state, NFOS currently re-

quires developers to annotate their variable definitions with
two new types (pkt_set_state and aggregate_state),
but in future versions we expect manual annotations to be
obviated by tools like StateAlyzer [35]. The NFOS runtime
instruments all accesses to the aggregate state so as to ensure
correct and scalable parallelization, as detailed next.

4.4 Automatic scaling with NFOS runtime

Efficient and generic concurrency control with trans-
actions. The mechanism that NFOS uses to synchronize
access to aggregate state needs to be scalable. In addition,
it needs to ensure that the concurrent NF performs as the
developer expects, i.e., as in the sequential implementation,
where each packet is processed atomically.

To that end, we chose transactional memory [28, 53] as
the synchronization mechanism, from among several op-
tions that included lock inferences [40] and RCU [44]. While
transactional memory cannot always achieve the best per-
formance, it can achieve good performance under most sce-
narios by exploiting fine-grained parallelism. Specifically,
two transactions can execute concurrently as long as they
do not make conflicting accesses to the same object (i.e., no
concurrent read-write or write-write accesses). More impor-
tantly, the behavior of transactional memory is simple and
well understood: concurrent computation instances appear
to execute sequentially and atomically, i.e., all-or-nothing
semantics for operations within each instance. We defer the
discussion of how NFOS ensures atomicity in the presence
of events like I/O to the end of this subsection.
Following this design choice, NFOS executes each of its

handlers in a transaction; the transaction starts at the begin-
ning of a handler and commits when the handler returns.
During the execution of the handler, NFOS tracks the ac-
cesses to aggregate state so that it can abort the transaction
if there is a conflicting access to that aggregate state. In
such a case, NFOS retries the aborted transaction (we dis-
cuss liveness in §6). We implement the NFOS transactions in
software based on MVRLU [36], which is a synchronization
framework with efficient multi-versioning. Multi-versioning
allows concurrent accesses to different versions of the same
object between read-only and read-write transactions with-
out causing aborts.

Avoiding concurrency bugs. With NFOS, the sequential
programming model paired with transactional access to
shared state eliminates all developer-introduced concurrency
bugs. NFs on NFOS will not experience deadlocks or order
violations, because no locks or ordering primitives are re-
quired (P3 in §3.2) or allowed in NF code. Low-level data
races and atomicity violations lead to a transaction abort;
upon re-execution and commit, they will have been func-
tionally masked. As shown in Table 1, all of the 28 bugs we
found in VPP belong to the four bug types mentioned here.
Overcoming challenges in applying transactionalmem-
ory. Transactional memory simplifies concurrent program-
ming [28, 42] but faces several challenges in real-world ap-
plications [41, 58]. We describe how NFOS addresses these
challenges below.
Synchronization mechanisms and I/O operations are ill-

suited to transactional memory. The former pessimistically
avoids conflicting accesses, but doing so manually is unnec-
essary for correctness: a transaction automatically aborts on
such conflicts. The latter requires complicated mechanisms
for undoing its effects upon transaction abort. To resolve this
issue, our programming model prevents the use of synchro-
nization primitives and uses buffered I/O: all the I/O requests
in transactions are buffered in memory and are discarded
(or performed) when the transaction aborts (or commits),
respectively. NFOS ensures that all the code of an NF han-
dler is inside one and only one transaction, because nested
transactions and the interaction between code in and outside
transactions leads to complexity and non-intuitive semantics.

Since NFOS’s transactional memory is based on automat-
ically instrumenting NF accesses to aggregate state, execut-
ing code outside the NF (e.g., making library or system calls)
could lead to problems: the NFOS runtime is not able to track
and thus revert such state changes (e.g., file descriptor state
changes due to seek()). Fortunately, unlike generic applica-
tions, NFs only require a few features from the underlying
system software (P5 in §3.2). NFOS thus implements the
necessary functionality in its runtime and integrates it with
transactional memory. Finally, generic applicationsmay have
long code regions that cannot be wrapped in a transaction,
but NFs normally do not have this challenge (P2 in §3.2).

4.5 Efficient scaling with built-in data structures
NFOS provides a set of built-in concurrent data structures,
leveraging the fact that most concurrent accesses in an NF
go to a small set of common data structures (P4 in §3.2).
NFOS embeds in them extensive expertise in writing high-
performance concurrent code, in the form of advanced opti-
mizations, including pre-allocation and replication.
Developers may use one or more built-in data structures

within a handler by invoking the corresponding APIs. Since
built-in data structures are called from a handler, transac-
tional memory ensures safe access. Within a handler (and
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thus within a transaction), operations across multiple data
structures execute atomically. Conflicting accesses performed
inside built-in data structures abort the transaction. We next
detail each of the built-in data structures, namely Vector,
Allocator, Map, and DistributedObj, focusing on their in-
terfaces and the enhancements to maximize scalability. The
library of built-in data structures can be easily extended by
concurrency experts, should the need arise.
Vector is an array of elements, with a read() / write() in-
terface. In a Vector, each element is aligned on the cache line
size, to prevent false sharing. To minimize memory overhead,
we keep memory-transaction metadata in the spare space
created by the alignment constraints. The same alignment
approach is used for the other data structures as well.
Allocator helps NFs allocate and manage resources. To
meet the common needs of NFs, the Allocator associates an
expiration time with each allocated object. The Allocator
frees an object after its time expires, thus making every allo-
cation be actually a lease [25]. In addition to an allocate()/
free() interface, the Allocator also provides a refresh()
function that the owner of an allocated object uses to reset
its expiration time.

To maximize scalability, our design makes each core main-
tain a local pool of free resources. When its local pool be-
comes exhausted, a core obtains free resources from another
core, whichever has the most free resources. To facilitate
object reclaim, each core maintains a list of allocated objects,
sorted by the remaining expiration time in descending order.
Each refresh() moves the object to the head of the list.
Map maintains a one-to-one key-value mapping, useful for
data structures like the MAC table in a network bridge. The
Map has a get() / set() interface. We implement the Map as
a bucket-based hash table, which allows concurrent accesses
to different buckets to proceed in parallel, and only conflict-
ing accesses within the same bucket abort the transaction.
During initialization, Map allows users to specify the hash
function that decides which bucket a key is mapped to.
DistributedObj is for objects with intensive concurrent
write and read accesses (e.g., global counters). A distributed
object has a read() / update() interface. The distributed ob-
ject stores a portion of the object in each core. update() di-
rectly modifies the local portion of the invoking core, thereby
avoiding the contention. read() requires iterating and merg-
ing the local portion of each core with a merging function
(provided by the NF developer during the initialization of
the distributed object) to obtain the final result. To mitigate
the read-write contention, we make the distributed object
store the last merged value, the current staleness (i.e., the
time elapsed since the last merge), and the maximum stale-
ness (specified by the NF developer during the initialization
of the distributed object). If the object’s staleness is smaller
than the maximum staleness, read() does not iterate but

directly returns the last returned value. Thus, developers can
reduce read-write contention by increasing the maximum
allowed staleness.

4.6 The NFOS profiler and scalability recipes
Existing profilers rarely reveal directly the root causes of
scalability bottlenecks, nor do they provide actionable guide-
lines to improve scalability (§2.1). This is due to the semantic
gap between what the profiler sees and what the application
does. The profiler can, at best, understand the semantics of
low-level synchronization primitives (e.g., locks and atomic
operations), but it cannot understand the high-level con-
current data structures and algorithms in the application,
thereby failing to identify the root cause behind the scalabil-
ity issue.

Since NFOS completely manages the NF’s concurrency, it
can bridge this semantic gap. It overcomes the challenge by
having the runtime, specifically the built-in concurrent data
structures, convey to the NFOS profiler key knowledge, such
as the intended behavior of each interface. This enables the
profiler to directly distill for developers the root causes and
the possible fixes of the scalability bottlenecks.
Bridging the semantic gap with conflict causes. NFOS
provides the conflict causes abstraction to bridge the profiler
with the built-in data structures. Each built-in data structure
comes with a set of conflict causes. A conflict cause specifies
the root cause of a transaction abort. It takes the form of a
condition between a pair of data-structure operations that, if
met, leads to conflicting concurrent accesses that will abort
the transaction. Table 3 shows the conflict causes for Map.

get(key2) set(key2)

get(key1) No conflict Conflict cause: key1 equals key2
Recipe: Use distributed objects

Conflict cause:
The two keys hash to the same bucket
Recipe:
Increase map size or change hash func

set(key1) Same as get(key1) and set(key2)

Table 3. Conflict causes and recipes for Map. A <row,col> cell indi-
cates the conflict causes and recipes in case of a conflict between
row and col. A diagonal line indicates an operation pair already
present in another cell.

Scalability recipes. Each conflict cause further comes with
one or more recipes that guide developers in mitigating
or eliminating the associated scalability bottleneck. The
recipes “translate” for the developer what a concurrency
expert would do to resolve that scalability bottleneck. Exam-
ples of recipes include over-provisioning resources, allowing
stale reads, or using alternate built-in data structures.

Conflict causes provide programmers with the precise rea-
son for a scalability bottleneck, and the associated recipes
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read() update()

read() No conflict Conflict cause:
Object exceeds maximum staleness (thus
read merges local portions)

Recipe:
Increase maximum allowed staleness

update() No conflict

Table 4. Conflict causes and recipes for DistributedObj.

allocate()

a
l
l
o
c
a
t
e
(
)

Conflict cause:
A local pool becomes ex-
hausted, causing contention
on another pool

Recipe:
Overprovision resource

refresh(res2)

r
e
f
r
e
s
h
(
r
e
s
1
) Conflict cause:

res1 and res2 placed on the
same allocated list

Recipe:
Increase refresh interval

Table 5. Conflict causes and recipes for Allocator (we show only
a subset, due to space limitations).

provide solutions for optimizing the bottleneck. Tables 3, 4,
and 5 show the conflict causes and recipes for Map, Distribu-
tedObj, and Allocator respectively. For Vector, the conflict
causes are justs concurrent read-write or write-write ac-
cesses to the same element, and the recipes are to replace
contended elements with distributed objects.

The developer of a built-in concurrent data structure spec-
ifies its conflict causes and the recipes based on the specifics
of its implementation. For example, since Map is a bucket-
based hash table (§4.5), one conflict cause is that two set()
calls contend on the same bucket. A recipe is thus either to
increase the map size or to specify a different hash function
for load balancing when initializing the Map.
We design the interfaces of built-in data structures so

that most recipes can be applied by simply changing the
parameters in the initialization function. Scalability recipes
often involve relaxing the NF’s semantics, i.e., relative to
the NF’s specification, they introduce additional behavior.
Applying the recipe thus involves a trade-off between NF
scalability and semantics. With NFOS, developers can use
their domain-specific knowledge to identify the sweet spot.
NFOS scalability profiler. The profiler reports two kinds
of information. First is the number of transaction aborts
(and the fraction of total transaction aborts it represents)
caused by each line of the serial NF code. The number of
transaction aborts serves as a proxy metric for the scalability
cost of shared-state contention. Second, the profiler provides
a ranked list of conflict causes and recipes when transaction
aborts occur inside built-in data structures. In this case, the
profiler first collects which conflict causes are responsible for
each of the aborts. Then it ranks conflict causes based on the

number of transaction aborts they cause. For each conflict
cause, the profiler also reports the corresponding recipe(s).

4.7 Implementation
We prototyped NFOS as a user-space C library on top of
the DPDK kernel bypass [21], which NFOS uses for network
I/O. Inside each transaction, to minimize overhead while cor-
rectly detecting conflicting accesses, NFOS tracks memory
accesses at the object granularity (instead of, say, at the byte
granularity). This NFOS implementation is publicly available
at https://github.com/dslab-epfl/nfos.
Distributing packets withRSS. Tominimize synchroniza-
tion overhead, NFOS distributes packet sets among cores and
achieves load balancing by leveraging the Receive-Side Scal-
ing (RSS) feature [50] of network interface cards (NICs). RSS
distributes packets among NIC receive queues, which are
pinned 1:1 to the CPU cores, based on the value of a set
of packet header fields. By configuring RSS to use all or a
subset of the packet header fields specified in the packet set
definition, NFOS guarantees that all packets of a packet set
are directed by RSS to the same core at line rate.

NFOS includes an automated checker that tells developers
whether their packet set definitions are compatible with the
NIC’s RSS. The RSS checker is meant to be part of the NF
developers’ toolchain, to be used both during design and dur-
ing compilation. In the case of incompatibility, the checker
reports the unsupported packet header fields. Developers
can then choose to change the definition to avoid the unsup-
ported header fields or not define packet sets at all. However,
we have yet to encounter an incompatibility—the packet set
definitions of all NFs in Table 6 are supported by mainstream
100Gbps NICs like Mellanox Connectx5 and Intel E810.

RSS does not guarantee optimal load balancing [11]. Nev-
ertheless, for our workloads, we did not observe any impact
on NF performance resulting from imbalance. If necessary,
NFOS could adopt RSS++ [11] for better load balancing.
Transaction batching. Many NFs process individual pack-
ets quickly (e.g., 90ns in §5.3). Therefore, NFOS amortizes
the overhead of starting and committing transactions by
batching the NF handlers of multiple packets in a single
transaction. The batch size equals the number of packets the
DPDK device driver polls from the NIC in a single recv()
operation, which is at most 32. Since a transaction aborts
immediately upon encountering the first conflicting access
in a packet batch, the profiler will not account for potential
conflicting accesses caused by processing later packets in the
batch. The profiler effectively samples conflicting accesses.
However, this does not affect the accuracy of the profiler in
identifying and ranking conflict causes, because the number
of conflicting accesses seen by the profiler will still be signif-
icantly higher (in the millions) than the number of possible
conflict causes.
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NFOS profiler. For each invocation of the built-in data
structure operations, the profiler keeps the arguments, the
data structure’s internal state, and the thread ID. Upon trans-
action abort, the profiler records the conflicting data struc-
ture operations. In our current implementation, after the NF
finishes execution, the profiler invokes a function provided
by the corresponding built-in data structure to map each
abort into its conflict cause. To prevent results from being
skewed by profiling, we minimize the profiler overhead with
several optimizations. Most importantly, since NFOS’s trans-
actional memory is based on object multi-versioning [36], the
profiler records only the timestamps of the conflicting data
structure operations in the critical path, and then obtains
the data structures’ internal state off the critical path.

4.8 Developing scalable NFs with NFOS
We use a DDoS attack detector NF (Anti-DDoS) adapted from
NFF-Go [7] to illustrate the process of developing scalable
NFs with NFOS. Anti-DDoS checks whether >=80% of the
incoming TCP flows have only one packet, in order to detect
SYN flooding and similar attacks.
A packet set in Anti-DDoS consists of all TCP packets

with the same source and destination IP and port (i.e., each
TCP flow); the definition is shown in Listing 1.

/* Each TCP flow is a packet set.
* NIC 0 receives the packets. */
[{nic: 0,
pattern: {"ipv4": [src_ip, dst_ip],

"tcp": [src_port, dst_port]}
}]

Listing 1. Packet set definition of Anti-DDoS.

Listing 2 shows the code for Anti-DDoS. The aggregate
state is a distributed object struct (cntrs) with two mem-
bers (lines 4–6): flows records the total number of flows,
and onePktFlow records the number of flows with only one
packet. The init_pkt_set_handler (lines 13–24) handles the
first packet of a TCP flow. It increments flows, temporar-
ily counts the flow as a one-packet flow by incrementing
onePktFlows, and then checks for a DDoS attack. Upon re-
ceiving subsequent packets of a flow, NFOS invokes the
pkt_handler (lines 26–32) to decrement onePktFlows. Fi-
nally, when a flow expires, the expired_pkt_set_handler
(lines 33–37) decrements flows and then checks if the flow
had only one packet and, if so, decrements onePktFlows.
With the default semantics, Anti-DDoS always reads the

latest value of the flow counters when checking for DDoS
attacks. This does not scale well under a simulated attack
with many small flows—see the green series in Figure 4(a).

Therefore, the developer uses theNFOS profiler and recipes
to figure out how to fixAnti-DDoS’s scalability. The profiler’s
output (Figure 4(b)) shows that 97.5% of the transactions
abort. 100% of the aborts are due to the first conflict cause

1 #define CNTR_STALENESS_MS 0 // flow cntr staleness in ms
2 /* NF state definitons */
3 pkt_set_state bool isOnePktFlow;
4 aggregate_state distr_obj_t (CNTR_STALENESS_MS) cntrs {
5 int flows, onePktFlows;
6 };
7 /* Callbacks for merging flow counter partitions */
8 void cntrs_merge(merged, partition) {
9 merged->flows += partition->flows;
10 merged->onePktFlows += partition->onePktFlows;
11 }
12 /* Handle first packet of a flow */
13 int init_pkt_set_handler(pkt) {
14 isOnePktFlow = true;
15 distr_obj_update(cntrs, flows++, onePktFlows++);
16 // register the packet set to finish init
17 register_pkt_set();
18 // read flow counters and detect DDoS
19 cntrs_l = distr_obj_read(cntrs, cntrs_merge);
20 if (cntrs_l->onePktFlows > 0.8 * cntrs_l->flows)
21 handle_ddos(); // take whatever action is needed
22 else
23 send_pkt(pkt);
24 }
25 /* Handle subsequent packets of a flow */
26 int pkt_handler(pkt) {
27 if (isOnePktFlow) {
28 isOnePktFlow = false;
29 distr_obj_update(cntrs, onePktFlows--);
30 }
31 send_pkt(pkt);
32 }
33 int expired_pkt_set_handler() {
34 distr_obj_update(cntrs, flows--);
35 if (isOnePktFlow)
36 distr_obj_update(cntrs, onePktFlows--);
37 }

Listing 2. Anti-DDoS network function written with NFOS. Some
obvious types and parameters are omitted for clarity.
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Figure 4. (a) Anti-DDoS throughput (max 0.1% packet loss) with
default semantics (read latest flow counter value) vs. relaxed seman-
tics (allowing for stale read with a maximum staleness of 0.1ms).
(b) Profile of Anti-DDoS with default semantics.

of the concurrent read and update operations of distributed
object cntrs. The profiler suggests increasing the maximum
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allowed staleness of the distributed object. The developer
applies this recipe by increasing CNTR_STALENESS_MS on line
1 from 0 to 0.1ms. The outcome is a negligible delay in de-
tecting a DDoS attack, in exchange for improved scaling:
semantic relaxation increases throughput by 18× at 23 cores,
from 4.5 to 79 mpps—see Figure 4(a).
To summarize, motivated by the challenges of building

concurrent NFs that scale onmulticoremachines, we propose
the NFOS runtime and built-in data structures that offer NF
developers a simple programming model. On top of that,
NFOS also helps developers profile the scalability of their NF
and offers actionable suggestions for how to improve it. We
now present an experimental evaluation of our proposal.

5 Evaluation
We evaluate NFOS by answering the following questions:

• Does NFOS generalize to handle a wide range of NFs? Does
it suitably abstract concurrency for all of them? (§5.2)

• How does the scalability of NFs written with NFOS com-
pare to that of hand-parallelized NFs? (§5.3)

• Can developers easily improve the scalability of NFs using
NFOS’s profiler and recipes? (§5.4)

5.1 Evaluation setup
We use five NFs for our evaluation. We port to NFOS three
NFs from Cisco’s VPP [8] family of NFs: a MAC-learning
bridge (Bridge), a load balancer (LB), and a network address
translator (NAT). We compare the ported versions to the
original, hand-parallelized versions. Bridge [17] forwards
packets to a destination network based on the packet’s MAC
address and learns MAC-to-network mappings from each
packet. LB implements the Maglev [22] algorithm. NAT is
endpoint-independent [32, 54] and translates a LAN end-
point’s IP and TCP/UDP port to the same public <IP:port>
pair independently of the connecting WAN endpoint. We
further implement with NFOS a stateful firewall (FW) that
blocks external connections and a traffic policer (Policer)
that rate-limits traffic by destination IP.
Our servers have two sockets equipped with 24-core In-

tel Xeon 6248R processors, 256 GB DRAM, and Intel E810
100Gbps NICs. All the NFs use DPDK 20.11, andwe tune them
for the best performance following DPDK’s official sugges-
tions [2]. We use MoonGen [23] to generate workload traffic;
it transmits up to 98 million packets per second (mpps) per
NIC port. The generator sends packets to the NFs on a differ-
ent server and receives the processed packets from the NFs.
We stress the NFs using real Internet traffic from the

CAIDA trace [1] and, for Bridge, using traffic synthesized
based on a data-center trace [12]. The average TCP/UDP
flow size for the CAIDA trace is 21 packets. For NAT and
FW, we simulate LAN-to-WAN traffic with the CAIDA trace.
For LB, since it only handles HTTP(S) connections, we mod-
ify the CAIDA trace to keep only the HTTP(S) packets and

rewrite the destination IP of packets to LB’s virtual IP. The
synthetic trace for Bridge simulates two networks connect-
ing through the NF. The trace has, for each pair of MACs
and each direction, one flow with 10,000 packets, the same
as the data-center average MAC flow size reported in [12].

5.2 Generality and ability to abstract concurrency

Generality. To assess whether NFOS’s programming model
is general enough to develop a wide range of NFs, we analyze
14 NFs used in industry and academia, shown in Table 6. We
look at the code and semantics of each NF "by hand" and
conclude that NFOS’s programming model can express all
the NFs. Defining packet sets is straightforward, as most of
them end up being regular flows or sessions.

NF Packet set Packet-set
state

Aggregate state

Endpoint-
independent
NAT [32, 54]

none none Public <IP:port>
allocator; address
mappings

Load
balancer [22]

Incoming
TCP flows

Flow-to-server
mapping

Server health
status

Bridge [17] none none MAC-to-port
mappings

DNStunnel
detector [15]

none none Orphan DNS
response counters

Sidejacking
detector [15]

TCP session Session context Client IPs of each
HTTP session

DDoS
detector [7]

TCP/UDP
flow

Flow size Flow statistics

PRADS network
monitor [61]

TCP/UDP
session

Session context Host info; traffic
statistics

Web cache [4] TCP session Session context Cached responses

Stateful
firewall [64]

TCP/UDP
session

Session firewall
policy

none

Policer [45] Packets to a
LAN host

Incoming packet
rate of the host

none

Portscan
detector [51]

Packets
from a host

Maliciousness
probability

none

IPSec
tunnel [34]

Tunnel
session

Encryption key none

nDPI deep
packet
inspector [31]

TCP/UDP
session

Application
protocol

none

Abacus [31] TCP session Data buffer none

Table 6. Popular NFs used in industry and academia.
Abstracting away concurrency. We use the three concur-
rent NFs we ported to NFOS from VPP (Bridge, LB, NAT) to
study whether NFOS can suitably mask concurrency from
developers. The concurrency patterns in the VPP NFs are:
(i) state partitioning among cores (flow–server mappings in
LB, address mappings and public <IP:port> pairs in NAT)
and (ii) concurrent data structures (lock-free MAC table in
Bridge, server table in LB, and lock-free queues in NAT).
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For all the ported NFs, NFOS completely elliminates the
need to handle the above concurrency patterns. Instead, de-
velopers only need to add, in total, 35–58 lines of code to:
specify packet sets (0–5 LOC), categorize state (7–15 LOC),
use NFOS built-in data structures (21–40 LOC), and fill in the
handlers (7–16 LOC). The added code represents, at most, a
few percentage points of the LOC implementing the NF logic.
We conclude that the NFOS programming model is suf-

ficiently general to express the semantics of widely used
NFs, is sufficiently familiar to NF developers to be used pro-
ductively (e.g., packet sets are easy to define), and can fully
abstract away the concurrency of the NF.

5.3 NF scalability, overhead, and latency
Figure 5 shows the throughput of five NFs written in NFOS.
For the three we ported from VPP (Bridge, LB, and NAT), the
semantics of the NFOS versions is the same as their original
counterparts, so we can fairly compare to the original VPP
NFs’ throughput. The MAC table entry in Bridge uses a re-
fresh interval of 1 minute, and NAT uses 57 public IPs. With
our traces and NF setup, NAT and Bridge update aggregate
state every 10 and 5,000 packets, respectively, while the other
NFs have rare or no updates to aggregate state.
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Figure 5. Throughput scalability with <0.1% packet loss. The max-
imum number of worker cores is 23 because both VPP and NFOS
dedicate 1 core to auxiliary tasks (e.g., monitoring). Bridge, LB, and
NAT were ported from VPP; Firewall and Policer are NFOS-only.

The NFOS NFs scale linearly, and three of the five reach
the limit of the traffic generator or the servers’ network I/O:
98 mpps for Firewall and Policer using one NIC port, and
188.8 mpps for Bridge using two NIC ports. The NFOS NFs’
linear scalability is on-par with or better than the VPP NFs’.
In terms of absolute throughput, the NFOS NAT outper-

forms its VPP counterpart by up to 2.5×, NFOS Bridge trails
VPP at low core counts but catches up at 23 cores, and the
NFOS LB trails VPP by up to 25.88%, but would still saturate
the network if it had a few extra cores. VPP NAT cannot scale
because it suffers from contention on the shared queues for
forwarding packets of a LAN endpoint to the core that needs
to process them, which is a cost imposed by the partitioning
of address mappings across cores. The NFOS NAT does not
partition address mappings. For Bridge, the use of transac-
tional memory accounts for all the overhead relative to VPP.
For LB, it accounts for almost half. The rest of NFOS LB’s
overhead is due to cache misses: it uses a <src IP, src port,
dst IP, dst port, L4 proto> 5-tuple as a key in flow-to-server
mappings, while VPP LB uses a 32-bit hash, which saves 9
bytes per mapping. Given that the table has 5.8M entries, the
space savings give VPP a higher cache hit rate.

These results confirm the benefit of the NFOS design that
emphasizes linear scaling over absolute throughput: should
the need for more throughput arise, instead of spending
months optimizing performance in an NF-specific way, one
can simply add a few more cores. As we will see shortly, this
ease of developing and operating a scalable NFOS NF does
not come at the price of higher latency.
Microbenchmarks. We use microbenchmarks to study
how NFOS behaves under more targeted workloads. We
develop a dummy NF in NFOS, whose aggregate state is an
array with 10,000 elements. We simulate different workloads
by varying the access type (RO=read-only, RW=read and
write for each packet) and the skewness of accesses to the
array (Zipfian values of 0 and 0.99).
Figure 6(a) shows the result. As expected, NFOS scales

linearly with read-only workloads and reaches the limit of
the traffic generator at 20 cores. This is because concurrent
reads do not abort transactions. For the RW workload, NFOS
scales well as long as the contention on the aggregate state is
relatively low. The worst case for NFOS is the RW workload
with high skewness. Fortunately, our experience with real-
world NFs suggests that this situation is not at all common.
Furthermore, in such a case, as detailed in §5.4, NFOS can
guide developers to identify opportunities for improving
scalability through semantic relaxation.
Handler batching. As mentioned in §4.7, NFOS batches
the handlers of multiple packets into the same transaction,
to amortize the overhead of transaction start and commit.
Figure 6(b) shows the average speedup of batching over no-
batching, varying the number of worker cores from 4 to 23.
On average, batching improves the NF throughput by 34%.
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Figure 7. End-to-end packet latency for the five NFs.

Cost of using transactional memory to abstract away
concurrency. We quantify this cost as the percentage of to-
tal CPU cycles spent in the transactional memory runtime, as
reported by perf—see Figure 6(c). The transaction overheads
are nearly independent of the number of cores, explaining
the linear scalability of the evaluated NFs. Bridge’s observed
transaction overhead reduces after 12 cores because the NF
reaches the limit of the testing server and is thus under-
loaded. Transactions do not add overhead to the Firewall
and Policer, because these NFs do not have aggregate state.
The synchronization overhead in hand-optimized concurrent
NFs can be better or (a lot) worse, as shown in Figure 5.

Figure 6(d) shows the breakdown of the transaction over-
heads with 12 cores. Since NFOS’s transactional memory
is based on multi-versioning, most of the overhead comes
from object dereferencing (i.e., obtaining the right version
of objects) and detecting conflicting accesses.
Latency. Figure 7 shows the end-to-end packet latency (i.e.,
the latency between when the NF receives a packet at the
NIC and when it sends the packet out on the wire) for the
evaluated NFs with 23 worker cores. All NFs operate at the
maximum throughput they can reach with less than 0.1%
packet loss. VPP NFs have higher latencies in general due to
aggressive packet batching.
Memory overhead. We analyze the memory footprint of
NFOS NFs by measuring the maximum resident set size dur-
ing execution. We find that the memory footprint of NFOS
NFs increases only slightly as the number of cores increases
from 1 to 23, with the maximum increase being 19% (Bridge:

39.5 to 47.1 MB; LB: 27 to 28.4 MB; NAT: 3,713.9 to 3,726.2
MB; Firewall: 25.5 to 26.1 MB; Policer: 24.8 to 25.6 MB). This
modest increase comes from the per-core logs used in the
NFOS transactional memory framework.

In summary, the throughput and latency of NFs developed
with NFOS is on par with production-grade hand-parallelized
NFs. We conclude that the ease of development, improved
productivity, and avoidance of concurrency bugs offered by
NFOS do not come at the price of seriously reduced perfor-
mance.

5.4 Improving NF scalability with NFOS
Subsection 4.8 already presented one case study of improving
NF scalability with NFOS. This subsection presents two more
case studies with NAT and Bridge. EachMAC table entry (i.e.,
MAC-to-network mapping) in Bridge has a validity duration
of 2 minutes, after which Bridge deletes the entry. Bridge can
refresh a MAC table entry to reset its validity countdown.

We refer to the semantics of a sequential implementation
of these NFs as the “default semantics”: NAT uses 53 public
IPs, and Bridge removes a MAC table entry only if it has not
received a packet from the corresponding MAC for longer
than the validity time interval. While such semantics are
fine for a single-core execution, they make NFs inherently
difficult to scale to multicore execution, as explained below.
NAT. Figure 8(a) shows that NATwith the default semantics
stops scaling after 16 cores. We profile NAT with the NFOS
profiler at 23 cores. The profiler shows that 99.4% of the
transaction aborts are due to concurrent allocations (Table 5)
made by an allocator that manages free public <IP:port>
pairs. The profiler’s recipe suggests overprovisioning the
number of public <IP:port> pairs. We follow the recipe. As
shown in Figure 8(a), NAT scales linearly with 55 public IPs,
increasing throughput by 2× at 23 cores. Although public
IPs are precious resources, under performance-critical sce-
narios, we believe that overprovisioning by <4% would be
worthwhile given the significant scalability improvement.
Bridge. Figure 8(b) shows that Bridge cannot scale with
the default semantics, because it has to refresh a MAC table
entry each time it receives a packet from the corresponding
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MAC address. The NFOS profiler shows that, with 23 cores,
63.5% of the transactions abort. Furthermore, almost all the
aborts are due to concurrent refreshing of MAC table entries.
We follow the NFOS-suggested recipe and increase the re-
fresh interval from 0 to 1 sec (i.e., Bridge will only refresh a
MAC table entry if it has not been refreshed for more than 1
sec). Figure 8(b) shows that this change makes Bridge scale
linearly until it hits the network I/O limit. At 23 cores, its
throughput increases by 91× (from 2.04 to 186 mpps).

Increasing the refresh interval relaxes Bridge’s semantics
in the sense that the MAC table entries could be removed (up
to 1 sec) earlier than expected, potentially leading to some
extra packet floods. For most cases this would be acceptable,
given the improvement in common-case scalability and the
infrequent packet flooding. The new refresh interval (1 sec)
is still much smaller than the validity duration (2 minutes).
Summary. Our evaluation shows that NFOS can help de-
velopers easily write scalable NFs, even when the seman-
tics pose inherent scalability challenges. The NFOS profiler
shows the root causes of scalability bottlenecks, and then sug-
gests to NF developers corresponding scalability recipes. Ap-
plying recipes requires changing only a few lines of NF code.
Under NFOS’s guidance, developers can use their domain-
specific knowledge to make the right trade-off between scal-
ability and NF semantics.

6 Discussion

Packet set definition. The packet set abstraction intro-
duces a trade-off between load balancing and shared-state
contention. Fine-grained packet sets (i.e., consisting of a
small number of packets) can achieve good load balancing
among cores but may require large amounts of aggregate
state. This, in turn, may increase the contention on the ag-
gregate state and thus limit NF scalability. Coarser-grained
packet sets minimize the aggregate state but may incur load
imbalance. This is because the number of packets in each
packet set may differ substantially, so a few large packet sets
could saturate a core while the other cores are left idle. Such
a load imbalance may again limit performance.

For the NFs we studied (§5.2), we find that packet sets
follow naturally from the NF’s logic, and the packet sets
we defined did not encounter the aforementioned problems.
Nevertheless, we extended the NFOS profiler to also report
the load imbalance among cores, to help developers choose
the right packet set definition, should the need arise.
Starvation freedom. The current transactional memory
implementation does not guarantee starvation freedom, so
a thread could theoretically starve if it accessed highly con-
tended aggregate state objects. Fortunately, our experience
suggests that such high contention is uncommon inNFs (§5.2),
and developers can avoid this issue by relaxing NF seman-
tics (§4.6). As part of future work, we intend to investigate
existing solutions to starvation in transactional memory [65].
NF chaining. Given the current NFOS design, operators
can chain NFs parallelized by NFOS by executing each NF
(and the associated NFOS runtime) in a virtual machine or
container, and connecting the NFs with virtual switches [27].
However, this approach suffers from the overheads imposed
by virtualization [47] and inter-core packet transfer. An in-
teresting future direction would be to extend NFOS with NF
chaining as a first-class design goal.

7 Conclusion
We presented a system that helps NF domain experts (with
our without concurrency expertise) productively develop,
profile, and optimize NFs that scale on multicore machines.
NFOS enables developers to simply write NFs as sequential
programs using NFOS data structures to store their state, as
did Vigor [64]. This simplifies NF development and elimi-
nates concurrency bugs “by construction.” Developers use
the intuitive packet set abstraction to indirectly convey to
NFOS which packets can be processed in parallel and which
cannot. The NFOS runtime then uses this information in
combination with transactional memory to parallelize the
processing of packets. The NFOS profiler bridges the se-
mantic gap between low-level events and application-level
concurrency and, by using the conflict cause abstraction, it re-
veals to developers the root causes of scalability bottlenecks.
When these are inherent to the NF’s semantics, the NFOS
scalability recipes guide developers in trading NF semantics
for scalability. Our experimental evaluation demonstrates
that NFs written in NFOS achieve scalability that is similar
to or better than that of manually parallelized NFs.
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