
OnCall: Defeating Spikes with a Free-Market Application Cluster

James Norris, Keith Coleman, Armando Fox, George Candea

Department of Computer Science, Stanford University

{jcn, keith, fox, candea}@cs.stanford.edu

Abstract

Even with reasonable overprovisioning, today’s
Internet application clusters are unable to handle

major traffic spikes and flash crowds. As an alternative

to fixed-size, dedicated clusters, we propose a
dynamically-shared application cluster model based

on virtual machines. The system is dubbed “OnCall”

for the extra computing capacity that is always on call
in case of traffic spikes. OnCall’s approach to spike

management relies on the use of an economically-

efficient marketplace of cluster resources. OnCall
works autonomically by allowing applications to trade

computing capacity on a free market through the use of

automated market policies; the appropriate
applications are then automatically activated on the

traded nodes. As demonstrated in our prototype

implementation, OnCall allows applications to handle
spikes while still maintaining inter-application

performance isolation and providing useful resource

guarantees to all applications on the cluster.

1. Introduction

Today’s Internet application clusters face severe

limitations in responding to major traffic spikes and

flash crowds. A typical cluster runs a single application

on a fixed set of machines, each of which may require

hours of configuration time before becoming

operational. Were they sufficiently overprovisioned to

handle all spikes, clusters would become exceedingly

expensive and would waste resources while idling

during more typical traffic workloads.

As a more efficient alternative, we developed a

shared, dynamic application cluster design based on

virtual machines (VMs). The system is dubbed

“OnCall” for the extra computing capacity that is

always on-call in case of traffic spikes. OnCall is a

cluster management system designed to multiplex

several (possibly competing) e-commerce-type

applications onto a single server cluster in order to

provide enough aggregate capacity to handle

temporary workload surges for a particular application

while guaranteeing some capacity to each application

in steady state.

Our development efforts focus on a marketplace-

based resource manager that enables applications to

handle traffic spikes by acquiring additional computing

capacity from other applications on the cluster. OnCall

accomplishes this while still maintaining inter-

application performance isolation and providing useful

performance guarantees to all applications on the

cluster. Allocation decisions (and server switches) are

fully automated and run without human intervention.

OnCall is targeted for applications that serve

dynamic content; much work has already been done to

address the simpler problem of handling spikes in the

realm of static content. OnCall does not address surges

resulting from denial-of-service (DoS) attacks. Rather,

many of the other research or industry solutions to

detect and filter DoS-driven requests can be run in

front of an OnCall cluster to reduce the influence and

effects of a DoS attack.

1.1. Spike handling is the critical problem

Provisioning for load in steady state is the “easy”

case, while spike handling is the real challenge. Much

useful work on allocation policies attempts to optimize

resource allocation for applications in steady state.

However, even with the temporal traffic swings that do

occur in steady state, resources aren’t constrained, so

even the simplest hosting solutions like over-

provisioned, fixed-size clusters will fulfill performance

need; but during a spike, resources are highly

constrained such that maintaining desired performance

becomes difficult or impossible.

The primary challenge for hosting services, then, is

to provide adequate performance during unexpected

spike conditions. Beyond that, if hosting platforms can

handle steady state “well enough”—that is, with at

least the same efficiency and performance guarantees

of a static cluster—then applications will be well off.

We intend to demonstrate that OnCall not only handles

the difficult case of spikes but also provides a

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

mechanism for economically-efficient resource

allocation during steady state.

1.2. Contributions and organization

The primary contribution of this work is a spike

management system for shared hosting clusters that

relies on an economically-efficient marketplace for

computing resources to allocate capacity between

potentially competing applications. An implementation

also demonstrates the use of VMs as a platform for

shared clusters that serve dynamic content.

The remainder of the paper is organized as follows:

Section 2 describes the OnCall Marketplace, the

mechanism through which resource allocation

decisions are made. Section 3 discusses the details of

the OnCall Platform, including the VM-based

implementation. Section 4 discusses OnCall’s

strengths. Section 5 provides experimental validation

of the system. Section 6 presents areas for future work.

Section 7 compares OnCall with related work. Section

8 concludes.

2. OnCall Marketplace

The OnCall marketplace facilitates resource

allocation between various, possibly competing,

applications on the cluster. Each application has the

ability to incrementally grow its capacity by adding

additional nodes to its allocation, and decrease its

capacity by releasing nodes currently allocated to it.

2.1. Marketplace operation

As shown in Figure 1, each application is initially

statically assigned ownership of a fixed subset of the

cluster, such that every cluster node is statically owned

by exactly one application. Applications negotiate their

static allocations offline, based on their own estimates

of expected traffic and desired steady-state utilization.

In other words: there are N applications; each

application i pays a fixed price (or rate) at

configuration time for ownership of Gi cluster nodes

such that Gi is the total number of nodes on the

cluster. The fixed price for the Gi nodes could either be

a one-time fixed price or regular fixed rate, such as a

monthly fee that might be agreed upon in a month-to-

month hosting contract.

Normal operation is divided into time quanta of

length t (typically on the order of minutes). At the

beginning of each time quantum, any application can

offer to rent spare capacity on its statically-owned

nodes to other applications or borrow extra capacity

from other applications’ static allocations. If an

application rents nodes (beyond its own Gi nodes) from

another application, it pays that application the agreed

upon price.

An application defines the number of nodes it

wishes to use by providing a deterministic policy

function that maps from (price to rent 1 node during

this quantum) to (number of nodes it would be willing
to rent at that price). The policy function is also

provided with usage and performance statistics to help

it make allocation decisions.

The marketplace determines an equilibrium rental

price, P, by conducting a binary search on the price

space, querying each application's policy until the sum

total number of nodes desired by all applications is

equal to the number of nodes on the cluster. If exact

equilibrium is impossible, the marketplace selects the

highest price at which the total number of nodes

desired is greater than the number of nodes on the

cluster. Since this means there are more nodes to be

allocated than are actually available, strict allocation

priority goes to those applications that would have

been willing to pay 1 unit more. Effectively, the

Marketplace should behave much like a Dutch Auction

where the buyers and sellers are the same parties. Once

the equilibrium solution is determined, the resources

are allocated and money changes hands. At the end of

the time quantum everything starts over.

Some additional notes and assumptions:

• The cluster machines are assumed to be

homogeneous and all nodes are rented at the same

price. This assumption is made purely for

simplicity—there is nothing fundamental about

OnCall that imposes this limitation.

• There is a time delay cost when starting up and

shutting down applications on nodes that change

hands (see Section 4 for details). However, if a

OnCall Marketplace Stages

O
ff

lin
e

1. Each application assigned ownership of
G computers at fixed price (or rate)

2. Determine market equilibrium price P by
querying each app’s policy

3. Calculate new allocation sizes at price P

O
n

lin
e

(r
e
p
e
a
t

e
v
e
ry

 t
)

4. Adjust allocations, moving computers
from sellers to buyers

Figure 1. OnCall marketplace has an offline
stage that occurs once, and a series of online

stages that are repeated every time quantum t.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

L7 Load Balancers

Internet

Network Attached Storage
containing Application VM capsules

Cluster node running VMM
with OnCall Manager &

Marketplace Application VM

Cluster nodes running VMMs, OnCall Responders, and Application VMs

Figure 2. An overview of the OnCall platform.

rental contract is renewed in the next time

quantum, the given application will continue to

run on the same node.

• Applications only pay the market price, P, for

those nodes above and beyond their static

allocations. For example, if an application has 30

nodes in its static allocation but is using 40 nodes

during a given time quantum, it will only pay the

current market price for 10 nodes. Use of the first

30 nodes is pre-paid with the static allocation.

2.2. Resource guarantees

The OnCall marketplace provides useful resource

guarantees (and the implied performance guarantees

that follow) to its member applications. Namely, an

application will be guaranteed use of the Gi computers

it buys in the offline portion of the marketplace. If an

application’s market policy requests Gi or fewer nodes

during any market round, it is guaranteed to receive the

requested nodes and will not pay for their use (beyond

the fixed price it is already paying). The only case

where the application will have fewer than Gi nodes is

when it decides to rent out use of some nodes to

another application at the equilibrium price P. It can of

course recapture those nodes in any future market

round without paying additional fees.

The offline agreement of Gi is thus what provides

the resource guarantee. A risk-averse application

owner may thus choose Gi to be the number of nodes it

would install in a static, fixed-size cluster, while a

more risk-seeking owner (i.e. one who is willing to

assume more risk for the chance to save or make

money) may choose a lower Gi with the hope that extra

capacity will be affordable when needed.

2.3. Market policies

Each application may develop its own custom

market policy to accurately reflect its performance-to-

dollar value relationship. OnCall provides every

custom policy engine with performance statistics (in

the form of CPU and disk usage) for every node on

which its application is running.

This research is not focused on developing practical

or effective policies, but rather on providing the

mechanism to enable efficient allocation of resources

through such policies. In fact, economically efficient

policies can only truly be developed by application

owners who understand the economics of their own

application as well as the traffic patterns that their

application typically experiences.

A simple market policy might look something like

the following: the application owner knows or can

calculate (a) expected number of nodes needed to

handle current traffic, (b) dollar value of one additional

user being served, (c) number of users each node can

serve, and (d) price each additional node is worth, p.

The policy decision process is then two separate

steps: (1) determine the number of nodes desired, ni,

and (2) if n is less than Gi, sell the excess nodes

(excess = Gi – ni) for any price; if n is greater than Gi,

use all Gi nodes and if p <= P, buy to ni – Gi extra

nodes at price P.

Additional policy features can be used to avoid

thrashing, such as (a) use the max of short and long-

term historic usage averages as the expected number of

nodes needed, or (b) employ an idle resource tax or

similar technique to control overprovisioning.

3. OnCall Platform

OnCall operates on a cluster of computers linked

together by a high-speed LAN and connected to the

public Internet through a wide-band link (Figure 2).

Each physical machine in the cluster runs a virtual

machine monitor (VMM) such as VMware GSX

server. Individual web applications are packaged

together with their associated, configured operating

systems into VM capsules that reside on network

attached storage. It is of course assumed that all

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

application components managed by OnCall be can be

replicated simply by adding nodes.

Between the OnCall cluster and the Internet are load

balancers that redirect requests to the appropriate

physical machines, depending on which machine is

running which application at a given time.

One cluster node runs the special OnCall Manager

application. The Manager is the central decision maker

on the cluster, containing the marketplace as well as

each application’s market policy engine.

The remaining cluster nodes run OnCall

Responders, which talk to the Manager, stopping,

starting and booting new application VM capsules on

their respective machines, as necessary. The VM-based

architecture provides a number of benefits, including

fast node activation, interapplication security, and

application generality, as application components can

run on any physical node with their own custom-

configured operating systems.

3.1. Runtime operation

Standard runtime operation runs in cycle with each

marketplace round. A full cycle runs as follows:

(1) Manager employs Marketplace to calculate an

equilibrium market price used to determine the

resource allocation for each application.

(2) Manager decides which application each

physical node will run, minimizing the number

of shutdowns and startups.

(3) Manager signals each node’s Responder to shut

down the current app and subsequently start up

the new one, should a switch be necessary.

(4) At the end of the round, Manager gathers

updated usage and performance statistics from

each node and reports them to the respective

application’s policy engine.

3.2. Multi-tiered applications

The platform provides an interface that allows a

multi-tiered application to replicate its various

components in different numbers. For instance, an

application could specify that of its N nodes, m should

be front end servers while p should be middle-tier

application servers. Databases must currently be fixed

onto specific nodes, but in the future we hope to enable

replication of data stores that provide such capabilities.

4. Simulation results

Our simulation test platform consists of a 40 node

cluster. Each node is configured with dual 1.0 GHz

Intel Pentium III CPUs, 1.5 GB RAM, and dual 36 GB

hard disks; nodes are connected via gigabit Ethernet.

We employ VMware’s GSX Server as the VMM,

running on top of Linux 2.4. OnCall’s Marketplace

was set to use a time quantum of 30 seconds. Load was

generated using the Apache JMeter testing tool.

Our simulations demonstrate four important traits of

the OnCall system: (1) its ability to handle traffic

spikes under unconstrained resources, (2) its ability to

handle traffic spikes under constrained resources, (3)

its ability to provide resource guarantees in the face of

spikes and constrained resources, and (4) fast server-

switching and boot time performance.

4.1. Spike handling and profit earning

Our first simulation (Figure 3) demonstrates how an

OnCall application can handle a traffic spike by renting

nodes from other applications.

App 1

0

5

10

15

20

25

1 11 21 31 41

Market Round

#
 N

o
d
e
s

0

200

400

600

800

1000

1200

P
ri
c
e # A ssigned

A ctive

Usage

Price

App 2

0

5

10

15

20

25

1 11 21 31 41

Market Round

#
 N

o
d
e
s

0

200

400

600

800

1000

1200

P
ri
c
e

A ssigned

A ctive

Usage

Price

Figure 3. In the first simulation, App 1 experiences a spike and rents extra capacity from App 2.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

This test was run on a cluster with 30 nodes. Three

applications are running on the cluster, each with a Gi

of 10. Between Market Rounds 19 to 34, App 1

experienced a traffic spike that required more than its

own 10 nodes to handle. Thus, throughout this period,

it rented extra nodes from Apps 2 and 3 at the market

equilibirum price of 999 (in abstract currency). It

continued to rent these nodes until Round 40 at which

point its market policy determined that the spike was

over and it was time to release the extra nodes.

The graphs also demonstrate the lag time between a

node being assigned to an application and the

application software becoming active on that node. The

activation time delay varies on a number of factors and

is discussed in greater detail in Section 4.3.

4.2. Resource guarantees in the face of spikes

Our second simulation (Figure 4) demonstrates

OnCall’s ability to provide resource guarantees in the

face of spikes, despite the fact that cluster resources are

constrained (e.g. the applications desire, but obviously

cannot afford, more nodes than are on the cluster).

The cluster was configured with 30 nodes, 12

owned by Apps 1 and 3 each and 6 owned by App 2. In

this case, App 1 experienced a gradually rising load

from Rounds 18 through 55 that eventually required

more than its given 12 nodes to handle. At the same

time, App 2 also experienced additional traffic that

caused it to look to the marketplace for additional

nodes. With both Apps 1 and 2 looking to buy nodes

and App 3 experiencing a low usage rate, App 3 was

willing to rent out many of its unused nodes for a high

price and keep only what it considered necessary to

serve its requests. Because App 1 was configured with

a higher budget than the other two applications, it

drove up the market price between Rounds 43 and 55

to a point where App 2 could no longer afford to rent

more than its original 6 guaranteed nodes. Thus, App 2

operated only on its guaranteed nodes during this

period and subsequently began renting additional

nodes at Round 56 when App 1’s spike subsided and

the price became affordable.

4.3. Fast server activation

Our third test demonstrates the speed with which

OnCall can activate new application nodes:

Table 1. OnCall activates nodes at least two times
faster than a “standard” dynamic cluster platform

that does not use VMs.

To obtain the first two data columns we timed

application activations over a number of runs. “OnCall

Optimal” is the case where OnCall is able to load VMs

from a suspended state and resume them on new

cluster nodes. Unfortunately, because of limitations in

VMware’s MAC address controls, OnCall is generally

required to boot a VM from a shut down state in order

to ensure that each node has a unique MAC address.

The “Optimal” run times were acquired in cases where

OnCall activated only a single instance of an

application. The full boot process (the “Limited” case)

adds roughly one to two minutes to the activation time,

depending on the number of simultaneous nodes

accessing the same virtual disk on a central NFS file

store. A distributed file store or caching system that

Platform
OnCall
Optimal

OnCall
Limited

Standard
with OS

Standard
w/out OS

Time until
Active (s)

5-10 50-120 270-330 710-750

Figure 4. In the second simulation, the wealthiest application, App 1, handles a spike

by renting nodes from App3. App 2 uses only its guaranteed nodes.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

bypassed the centralized bottleneck could consistently

hold this time to under a minute.

Nonetheless, even in worst case “Limited” mode,

OnCall nodes activate over two times faster than the

best case for nodes on a more typical dynamic cluster

platform such as Oceano. The data in the “Standard”

columns are approximate activation times as measured

on the Oceano system [1]. In the best case, when the

appropriate OS is already installed on a given node, the

Oceano system takes 4.5 to 5.5 minutes to activate a

node; in the worst case, when an OS must first be

installed, the activation time is 11.5 to 12.5 minutes.

Both the OnCall and Oceano measurements were taken

over relatively small samplings, rather than from

rigorous performance analyses [1].

These speed improvements are significant, as

OnCall’s short activation times reduce the need to have

accurate future traffic predictors. Since the system can

activate new nodes quickly, predictors must only

predict a short time (1-2 minutes) in advance.

5. Discussion

5.1. Marketplace optimality and fairness

The marketplace simulates a competitive market

that, subject to certain conditions, is Pareto efficient

and achieves the desired result that, within resource

constraints, those applications with the most utility to

derive from the use of additional nodes are given those

nodes. Some of the conditions mentioned above fall

under the category of preventing anti-competitive

behavior, which is the subject of the following section.

Other conditions involve assumptions about the shape

of applications’ utility curves.

An application’s utility curve specifies the dollar

value an application derives from possessing a certain

number of nodes for a specific time quantum. We can

say trivially that utility curves will always be

monotonically non-decreasing—that is, it is never

worse to own more nodes at a given total cost. The

assumption we’ve made for optimality to hold in the

current OnCall marketplace model is that utility

functions are also smooth—that is, the marginal price

an application is willing to pay for an additional node

is a monotonically non-increasing function. In the case

where this condition doesn’t hold—for example, when

an application requires nodes to be activated in pairs—

then the application risks overpaying for some nodes if

an exact equilibrium cannot be found. Since

applications with these types of utility curves restrict

the marketplace’s flexibility, we believe that it is not

inappropriate for the marketplace to restrict their

flexibility. Nonetheless, we hope to examine additional

market options, such as a multi-round marketplace, that

could improve efficiency under these conditions.

5.2. Preventing market tampering

The efficiency of the OnCall marketplace rests on

the existence of a free and fair market, so it is essential

to prevent tampering of the marketplace. It is easy to

envision scenarios in which tampering could occur: an

app that owns a majority of cluster nodes artificially

inflates the equilibrium price; an evil app waits until

other apps are spiking, at which point it buys the vast

majority of machines on the cluster at an extremely

high price but for only a single time quantum, thus

incurring little aggregate expense but forcing spiking

apps to temporarily shut down.

In OnCall, just as in most real world markets, such

tampering is prevented through regulation. Most of

these measures are not technical in nature, but rather

take place in the real world. Some examples might be:

• Ensure that a cluster with competing apps has

enough distinct applications and sufficiently

diverse “fixed” ownership allocations such that no

monopoly or oligopoly exists.

• Always select the lowest of the possible

equilibrium prices, making price inflation less

likely in less competitive marketplaces.

• Fine or ban any application that engages in overtly

anti-competitive behavior.

Though they are likely to be effective, the obvious

downside of these solutions is that they rely on

deterrence and retribution rather than direct prevention.

5.3. Competitive or cooperative

OnCall works in both competitive or cooperative

environments. The system could be used internally

within a single corporation to manage a cluster that

runs all of the business’s various services.

Additionally, because of the security and performance

isolation provided by the VM framework, OnCall

could be used by a third-party hosting service to

manage a cluster containing applications from varied

and potentially competing owners.

5.4. Profit through efficiency

OnCall allows both application owners and hosting

providers to financially benefit from efficient

allocations of computing resources. Applications can

gain by selling any capacity that they own but are not

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

using. The hosting provider who owns the cluster can

generate extra profits through two methods:

(1) The provider can shut down unused computers to

save on utilities and maintenance cost.

(2) The provider can offer additional capacity on the

cluster (above the sum of the applications’ fixed

size allotments) and sell that capacity when

profitable.

Both goals can be accomplished through a host-owned

“Shut Down” application that is willing to buy capacity

at any price less than the base operational expense. The

Shut Down application turns off nodes it is able to buy,

then restarts those nodes when it can sell them at a

price greater than the operational expense.

6. Future work

There are a number of platform features that were

not critical for the prototype presented here, but would

benefit a production system. We are currently

developing and exploring these features: VM

caching—cache VMs to local disk either speculatively

or as they are read from network attached storage.

Fault tolerance—add master-backup fault tolerance to

the OnCall Manager. Performance statistics—provide

market policies with additional statistics (e.g. end-to-

end response time). Advanced policies—examine the

use of feedback control loop theory in the creation of

market policies. Scalable data layer—add support for

new scalable persistent stores [2, 3] that would allow

replication on the data tier. Multiplexing—study the

trade-offs of running several applications on one node.

7. Related work

Much work has been done in the areas of cluster

design and resource allocation. The work can largely

be divided into mechanism- and policy-related work.

7.1. Mechanism-related work

Mechanism related work focuses on platforms for

supporting either spike handling or dynamic clusters.

Several projects are related to OnCall with regard to

our use of VMs but lack a marketplace-type allocation

policy mechanism. Jiang and Xu [4] make a case for

the use of VMs on shared clusters for purposes of

security. Figueiredo et al [5] make a case for the use of

VMs in Grid computing, highlighting VMs’ surprising

efficiency. The Collective [6] provides a mechanism

for managing VM capsule-based server updates and

replication—some of the inspiration for OnCall came

from this work. The vMatrix project [7] promoted a

VM-based cluster that was much like a simplified

OnCall cluster. Denali [8] makes the case for the use of

a new, lightweight isolation kernel in a hosting cluster

context instead of virtualizing at the hardware layer.

Other systems for load/spike handling differ from

OnCall in their goals and approaches: IBM’s Oceano

[1] system is a dynamic cluster that can shift

unvirtualized resources between various applications.

A number of P2P systems [9, 10] [Padmanabhan] have

been developed to handle flash crowds hitting privately

hosted static content, whereas OnCall concentrates on

dynamic content in shared hosting environments.

7.2. Policy-related work

Many contributions have been made in the realm of

resource allocation policies on shared cluster systems,

and the concepts developed therein could influence the

design of OnCall market policies and increase their

efficiency. Much of the work (Clockwork [11],

Resource Overbooking [12]) focuses on optimizing

allocation policies during steady state instead of

rapidly changing demands. [13] focuses on static data,

and its models don’t directly apply to dynamic content.

The “dynamic surge protection” approach of [14] uses

regression analysis techniques to determine resource

requirements for a given application, but does not

provide a method for allocating resources between

competing applications. A study by Chandra et al [15]

demonstrated the effectiveness of resource

multiplexing on shared application clusters and

highlighted several potential optimization variables.

Other work [16-18] is largely tangential but is worth

mentioning for those interested in this area.

8. Conclusions

We proposed a spike management system for

shared hosting clusters that serve dynamic content. The

system, OnCall, relies on an economically-efficient

marketplace for computing resources to reallocate

capacity to spiking applications, as needed. Our

prototype implementation demonstrates (a) OnCall’s

spike handling ability, (b) the economic gains and

savings that accrue as a result of the resource

marketplace, (c) the resource guarantees provided to

each application, and (d) the speed benefits gained

through the use of VMs.

In a broader sense this work demonstrates that

market models are an effective and efficient way to

allocate resources on shared clusters (particularly

under spike conditions), and that even greater benefits

would be gained from the expansion of market models

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

to accommodate more complex application structures

and market policies.

OnCall is able to automatically reallocate resources

at a rate that current manually controlled systems

cannot. OnCall makes decisions on the fly based on

application-specified policies, increasing economic

efficiency and reducing management overhead.

9. Acknowledgments

We would like to thank UC Berkeley’s Mike

Howard for his tremendous help in configuring our

testbed cluster and Yoav Shoham for his insights into

the economics of resource markets.

10. References

[1] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and

M. Kalantar, "Oceano: SLA Based Management of a

Computing Utility," IFIP/IEEE Intl. Symposium on

Integrated Network Management, May 2001.

[2] A. C. Huang and A. Fox, "Decoupled storage: State with

stateless-like properties," Submitted to the 2004 USENIX

Annual Technical Conference, 2003.

[3] B. Ling, E. Kiciman, and A. Fox, "Session State:

Beyond Soft State," In Proc. First USENIX Symposium on

Networked Systems Design and Implementation (NSDI '04),

March 2004.

[4] X. Jiang and D. Xu, "Protection of Application Service

Hosting Platforms: an Operating System Perspective," CS

Technical Report TR-03-010, Purdue University, February

2003.

[5] R. J. Figueirido, P. A. Dinda, and J. A. B. Fortes, "A

Case for Grid Computing on Virtual Machines," Proceedings

of IEEE ICDCS 2003, May 2003.

[6] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich,

J. Chow, M. S. Lam, and M. Rosenblum, "Virtual Appliances

for Deploying and Maintaining Software," 17th Large

Installation Systems Administration Conference (LISA 2003),

October 2003.

[7] A. Awadallah and M. Rosenblum, "The vMatrix: A

Network of Virtual Machine Monitors for Dynamic Content

Distribution," 7th Int'l Workshop on Web Content Caching

and Distribution, 2002.

[8] A. Whitaker, M. Shaw, and S. D. Gribble, "Scale and

Performance in the Denali Isolation Kernel," USENIX

Symposium on Operating Systems Design and

Implementation (OSDI 2002), December 2002.

[9] T. Stading, P. Maniatis, and M. Baker, "Peer-to-Peer

Caching Schemes to Address Flash Crowds," First

International Workshop on Peer-to-Peer Systems (IPTPS

'02), March 2002.

[10] A. Stavrou, D. Rubenstein, and S. Sahu, "A

Lightweight, Robust P2P System to Handle Flash Crowds,"

10th IEEE International Conference on Network Protocols,

November 2002.

[11] L. W. Russell, S. P. Morgan, and E. G. Chron,

"Clockwork: A New Movement in Autonomic Systems,"

IBM Systems Journal, vol. 42, no. 1, 2003.

[12] B. Urgaonaker, P. Shenoy, and T. Roscoe, "Resource

Overbooking and Application Profiling in Shared Hosting

Platforms," USENIX Symposium on Operating Systems

Design and Implementation (OSDI 2002), December 2002.

[13] P. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M.

Vadhat, "Model-Based Resource Provisioning in a Web

Service Utility," USENIX Symposium on Internet

Technologies and Systems (USITS '03), March 2003.

[14] E. Lassettre, D. W. Coleman, Y. Diao, S. Froehlich, J.

L. Hellerstein, L. Hsiung, T. Mummert, M. Raghavachari, G.

Parker, L. Russell, M. Surendra, V. Tseng, N. Wadia, and P.

Ye, "Dynamic Surge Protection: An Approach to Handling

Unexpected Workload Surges With Resource Actions That

Have Dead Times," IFIP/IEEE Workshop on Distributed

Systems: Operations and Management, October 2003.

[15] A. Chandra, P. Goyal, and P. Shenoy, "Quantifying the

Benefits of Resource Multiplexing in On-Demand Data

Centers," First Workshop on Algorithms and Architectures

for Self-Managing Systems, June 2003.

[16] K. Shen, H. Tang, T. Yang, and L. Chu, "Integrated

Resource Management for Cluster-based Internet Services,"

USENIX Symposium on Operating Systems Design and

Implementation (OSDI '02), December 2002.

[17] S. Ranjan, J. Rolia, H. Fu, and E. Knightly, "QoS-

Driven Server Migration for Internet Data Centers," Tenth

International Workshop on Quality of Service (IWQoS '02),

May 2002.

[18] T. Kelly, "Utility-Directed Allocation," First Workshop

on Algorithms and Architectures for Self-Managing Systems,

June 11, 2003.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

