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Abstract

Application-level software failures are a dominant cause of outages in large-scale software systems,
such as e-commerce, banking, or Internet services. The exact root cause of these failures is often
unknown and the only cure is to reboot, often at the cost of nontrivial service disruption or down-
time, even when clusters and failover are employed. Our thesis is that, although large-scale software
systems are unreliable, structuring them for fast, minimally-disruptive recovery is a cost-effective
way to make them highly available.

This dissertation defines the crash-only design, a set of principles for building large-scale pro-
grams that crash safely and recover fast. We describe the microreboot mechanism, by which fine-
grained components of crash-only systems are recovered through restart at the first indication of
failure. We applied the crash-only design and microreboot technique to a satellite ground station
and an Internet auction system; without fixing any bugs, microrebooting recovered most of the same
failures as process restarts, but did so more than an order of magnitude faster and with an order of
magnitude savings in lost work, reducing overall unavailability by a factor of 50.

The fast, minimally-disruptive nature of microrebooting makes several failure management poli-
cies cost-effective, policies that would otherwise be prohibitively expensive in terms of incurred
downtime. First, we show that failures can be avoided at low cost by preventively microrebooting
components, thus rejuvenating applications with minimal downtime. Second, we show that mi-
crorebooting at the slightest hint of failure (without engaging in diagnosis) improves availability
even when failure detection is prone to false positives. Finally, we demonstrate that microreboot-
based recovery can be hidden from end users via transparent request retries, improving availability
without change in end-user-perceived service quality.

The crash-only/microreboot approach is in keeping with a minimalist philosophy of system de-
sign, in which simpler recovery mechanisms are preferred to complex ones — by casting most fail-
ures as reboot-curable problems, we simplify recovery, making it more prompt and effective, while

being less disruptive to end users. We conclude that the combination of crash-only software and



microrebooting provides a better cost/dependability tradeoff compared to the traditional approach

of aiming for correct code and supporting diverse recovery mechanisms.
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Chapter 1

Introduction

Computer systems are being used in increasingly larger segments of everyday activities, propelled
by exponential increases in performance and functionality, compounded by exponential decreases in
cost. Software is making its way into every aspect of our lives, from transportation, communication,
and financial systems to cellular phones and entertainment. Dependability requirements previously
conceived only for small, isolated, special-purpose systems are now expected of many large, in-
terconnected, rapidly-evolving systems. These factors make building, deploying, and managing

dependable software systems an urgent task.

1.1 The Problem: Unreliable Software

Software failure is a threat to our life and productivity. In August 1997, a software defect in the
Minimum Safe Altitude Warning System at Guam’s airport led to the crash of Korean Airlines flight
801, killing 225 people [Nat98]. In February 1991, a Patriot missile defense system failed to track
and intercept an incoming Scud missile during Operation Desert Storm, due to an error accumulation
in its control software [Off92], resulting in 28 dead and 98 wounded American soldiers. A bug in
General Electric’s XA/21 energy management system contributed in August 2003 to the scope of the
worst power outage in U.S. history, that spread across the Northeastern U.S. and Canada [Pou(04],
affecting 50 million people and disrupting transportation, water, and many other services. At EBay,
a popular online auction service, a flaw in the Sun Solaris operating system led to database file
corruptions that brought the service down for 22 hours in June 1999; EBay’s direct costs were
estimated at $3-5 million, and EBay’s stock price dropped by 26%, erasing $4 billion in market
capitalization [FP02].
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In terms of direct costs, the National Institute of Standards and Technology (NIST) estimated in
2002 that software faults cost the U.S. economy $59.5 billion annually, which represents 0.6% of
the Gross Domestic Product [NIS]. These numbers suggest that unreliable software is emerging as

perhaps the single most significant problem faced by computer systems today.

1.1.1 Software-induced downtime

The goal of this work is to bring higher availability to software systems. Other important depend-
ability concerns, such as security and safety, are outside the scope of this dissertation.

A dominant factor affecting availability of large-scale systems is their software. When a com-
puter system fails, we generally say it is “down,” and the time period when it is down contributes
to its overall “downtime.” In all large-scale, well-managed computer systems, failures are eventu-
ally analyzed and diagnosed; their root cause generally falls in one of three categories: hardware
failure, software failure, or human error. Based on a scarce supply of public failure surveys for
commercial systems, we conservatively estimate that software failure causes approximately 40%
of outages in large-scale, well-managed commercial systems' (confirmed by [Wo095] for high-end
transaction processing servers and by [CCO02] for systems in general). When software-induced out-
ages occur, their effects are compounded by the fact that a large fraction of bugs that manifest in
production systems have no fix available at the time of failure; one study found this fraction to be
80% [Woo03].

Given sufficient time, software can mature and become more reliable. This is how, for example,
the U.S. public switched telephone network (PSTN) is able to provide its legendary high availabil-
ity. Kuhn [Kuh97] found that only 14% of the PSTN’s outages between 1992-1994 were caused by
software, coming in third after human error (49%) and hardware failures (19%). This seems to sug-
gest that thorough design reviews and extensive testing could eventually improve the dependability

of software systems single-handedly; we dispel this myth in the following section.

1.1.2  Why is software unreliable ?

Experience suggests that there is a significant limitation to how free of bugs a program can be.
Researchers and engineers have improved programming languages, built powerful development
and testing tools, designed metrics for estimating and predicting bug content, and assembled careful

development and quality assurance processes. In spite of all these, we’ve seen that software is still

! Some of the important factors that can cause this figure to vary include software quality, system architecture, quality
of system management and administration, etc.
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far from perfect. Moreover, NIST estimates that 2/3 of software bugs that manifest in deployed
systems could not have been readily caught by better testing processes [NIS]. Three phenomena
conspire to limit the effectiveness of traditional approaches to software reliability: code evolution,
unforeseen usage scenarios, and inadvertently deceptive abstractions. These three factors prevent
software vendors from being able to guarantee a program of reasonable size will run as expected
once deployed at the customer’s site.

Change is anathema to dependability or, in engineering parlance, “if it ain’t broke, don’t fix it.”
Only in a software system that evolves very slowly is it possible to control the effects of change,
and to maintain or improve software quality. Case in point: the space shuttle software consists of
half a million lines of mostly Ada code and, as of 1997, its last three releases manifested one bug
each, with the last 11 versions totaling only 17 bugs [Fis97]. Such reliability, however, comes at
the expense of evolution: upgrading the space shuttle software to use GPS-based instead of land-
based navigation was a major undertaking. The change involved only 1.5% of the code, yet simply
formalizing the required specifications into 3,300 lines of PVS code? took 4 person-months [CV98],
followed by an even longer development and test cycle. This is no surprise, considering that, prior
to every flight, the team’s senior technical manager must sign a document certifying to NASA that

the software will not endanger the shuttle [Fis97].

Such rigidity would threaten the very existence of most software systems in use today and in the
near future, mainly because of customer demands and time-to-market pressures. This is true of the
whole software stack — operating systems, applications, and software services — both commercial
and open-source. Consider, for instance, the rate of growth in two of today’s popular operating
systems (figure 1.1). The last 11 major versions of open-source Linux expanded the code base by
two orders of magnitude over 10 years, while 7 major releases of Microsoft Windows increased
its code base by more than one order of magnitude. The evolution due to addition of new code is
further compounded by extensive changes to existing code, resulting in the thousands of bugs that
lurk within Windows and Linux.

Most infrastructure service operators we have interviewed speak of reliable “change manage-
ment” as a seemingly insurmountable challenge. The rate of change in packaged applications turns
out to be higher than in operating systems, and even higher in online Web services. For example,
it is common for developers at Yahoo, a popular Web directory and portal, to deploy new code into

production on a weekly basis [Man(01]. When systems change at a faster rate than the rate at which

2 PVS [ORSVHO5] is a specification and verification system consisting of a specification language, tools and a theorem
prover; it enables mechanized use of formal methods.
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Figure 1.1: Code base evolution for Microsoft Windows and Linux.

development processes and tools can reduce the number of bugs per line-of-code, the net effect is
that each new release introduces more bugs than it fixes.

Diverse execution environments and scenarios constitute the second factor that limits software
quality. Returning to the space shuttle example, we observe that its software has the advantage of
supporting only one platform and only one customer. In contrast, most software today must interact
with a variety of devices, support a variety of configurations and uses, as well as be combined with
various other third-party software. Even if a system’s code base did not change at all, a new exe-
cution environment or scenario would unavoidably exercise a code path that had never been tested
before, bringing out latent bugs. Even if testing all paths through a program was possible, testing all
imaginable execution environments and the ensuing interactions would not. The more complex a
software product, the more difficult it is to understand and predict its behavior in production, mak-
ing quality assurance difficult. For example, in 2003, the Oracle 9i database server was subjected to
a battery of 60,000 tests after development, yet it did not pass all of them prior to release — a frac-
tion of these tests still failed, because the bugs were dependent on the testers’ environment, making
them difficult to reproduce, or were too expensive and/or risky to fix. This is true of all commercial
software of nontrivial size.

Inadvertently deceptive abstractions provide the third impediment to software quality. As
higher-level programming languages increase the level of abstraction, they hide from program-
mers the operating details of the underlying runtime environment. However, it is very difficult to
completely specify the behavior of abstractions and to correctly implement them. For example,
Java provides “care-free” memory management through the use of garbage collection. Yet, noncha-
lant reliance on this feature in server software can lead to failure: as memory usage increases, the
garbage collector starts reclaiming objects; doing so during a load spike can result in the system
thrashing and collapsing under load (one such instance is described in [GriO1]). Thus, writing ro-

bust server software in Java requires a thorough understanding of how the underlying Java virtual
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machine (JVM) manages resources, an understanding that is not frequent among Java program-
mers. What’s worse, when a JVM implementation or configuration switches between incremental
and non-incremental garbage collection, previously robust code can become unpredictable. This is
an example of how the memory abstraction in Java can be (inadvertently) deceptive.

While abstractions allow programmers to deal with new orders of complexity and to speed up
development (e.g., GUI and network programming is considerably simpler today than two decades
ago), they can also increase the incidence of bugs caused by a misunderstanding of the underlying
layers. It is therefore not surprising that, of the bugs that manifest after deployment of commercial
software in enterprise-scale systems, the lion share is held by Heisenbugs, race conditions, resource
leaks, and environment-dependent bugs [CJ02, Rei04]. The risks introduced by deceptive abstrac-
tions are further compounded by the fact that apparent ability to build more complex systems drives

customers to demand ever higher levels of (shabby) functionality.

1.1.3 Will software become more reliable?

Having identified code change and growth, diverse execution environments, and inadvertently de-
ceptive abstractions as three of the factors that limit software reliability, we will now project existing
trends into the future and explore whether these problems will become more or less challenging.
The very essence of software is its ability to be morphed at a moment’s notice — change is fun-
damental to software. Future code evolution and growth is inevitable, driven by continuing feature
pressure and the ability of hardware devices to accommodate increasingly larger footprints and per-
form more computation. Software products will constantly adapt to meet competitive demands and
the most successful products will be those built on platforms designed to accommodate change.
Resisting growth and change is not the path to higher dependability, as has been eloquently demon-
strated by software running the Internet. Even the most closely guarded infrastructures will not be
able to escape massive change. For example, failure reports for the U.S. public switched telephone
network reveal that software-induced downtime went from 15 million customer-minutes/month in
1992-1994 [Kuh97] to 155 million customer-minutes/month in 2000 [Enr02]. This order of magni-
tude increase is explained by the rising number of (software-based) features offered by the telecom

industry during that decade, as well as software changes made to handle the Y2K problem®.

3The “Year 2000 Problem” resulted primarily from the use of only two digits to represent a year (e.g., “99” instead of
“1999”). This flaw turned into a major fear that critical industries (electricity, financial, telecom, etc.) and government
functions would stop working at 12:00 AM, January 1, 2000 (or 1/1/00). This fear was fueled by extensive press coverage
and speculation, as well as copious official corporate and government reports. As year 2000 approached, companies and
organizations worldwide invested heavily in checking and upgrading their computer systems.



6 CHAPTER 1. INTRODUCTION

The diversity of execution environments will continue increasing as well, as the number of
devices relying on software goes up and infrastructure services become more complex and more
distributed. More software will be needed in more places. The commoditization of hardware will
continue forcing software to adapt, even in the most specialized of systems. For example, Tandem
NonStop systems are some of the most reliable servers in the world and run the vast majority of the
world’s securities trades, ATM transactions, and credit card transactions, as well as the US public
telephone system, emergency-911 and various cellular networks. Yet, a 5-year survey [Gra90]
(summarized in table 1.1) revealed that the fraction of Tandem outages due to software almost
doubled over the period of the study. Gray [Gra90] explains this phenomenon by the fact that,
during the 5-year period, Tandem’s software tripled in size to add support for 3 new processor
families and a variety of new peripherals, as well as to accommodate expanded functionality; in the
meanwhile, hardware became more reliable and engineer-friendly, thus reducing the incidents of

human error.

Fraction of all outages
1985 1987 1989

Cause of outage

Software failure 34% 39% 62%
Hardware failure 29%  22% 7%
Maintenance and operations | 27%  25% 20%
Other 10% 14% 11%

Table 1.1: Trends in causes of outages for high-end Tandem NonStop systems [Gra90].

Finally, as more software will be needed in more places, there will be a need for more program-
mers that can prototype software faster — prime candidates for victims of inadvertently deceptive
abstractions. Recent trends confirm our belief that increasingly more programmers will flock to
the languages and tools that allow shorter development cycles and have easier learning curves. For
instance, looking at the one-year changes since November 2003, we find that the world-wide avail-
ability of skilled engineers, courses and third party tools has increased most rapidly for Visual Basic,
PHP, Delphi, Python [Tio04]; this group of 4 claims almost one third of the programming language
space today. To make programming easy, these languages hide from the programmer resource
management, synchronization control, and other underlying details. We believe this will eliminate
some types of bugs, while introducing others that are more difficult to debug. Compounding this
effect, shorter development cycles will likely shorten test cycles and pressure engineers into hastier
designs.

The answer to this section’s title is most likely no — software will not become more reliable in
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the near future, due to sustained code growth and change, variety of execution environments, and
inadvertently deceptive abstractions. In light of the evidence, we believe bug densities will increase,

leading to software that fails more frequently.

1.2 High Availability despite Software Failures

To achieve high availability in the face of high failure probability, we focus on designing software
systems such that they recover fast and reduce the impact of failure and recovery. In the limit, a
system that instantly recovers from every fault is 100% available. In this dissertation, we show
how to use fine-grained rebooting at the sub-process level to improve availability of systems by 1-2
orders of magnitude. The rest of this section argues for the benefits of fast, universal, minimally

disruptive recovery in general, and then describes microrebooting, our proposed recovery technique.

1.2.1 Mitigating unreliability through fast, minimally disruptive recovery

Availability of a system is generally an expression of the system’s readiness to deliver service, and
can be expressed as a ratio between the system’s mean-time-to-failure (MTTF) and its mean-time-
to-recovery (MTTR):

MTTF

Availability = MTTF + MTTR

MTTF is an expression of the system’s reliability, because it describes how often the delivery of
correct service will be interrupted by a failure [Lap91]. MTTR describes the ability of the system
to return to correct functionality once it has failed.

The opposite of availability (“system up”) is unavailability (‘“system down”):

MTTR

Unavailability = 1 — Availability ~ MTTF

(assuming MTTF > MTTR)

Higher availability does not require higher reliability. As the above equation illustrates, one can
reduce unavailability by a factor of n by increasing MTTF n-fold (i.e., by improving reliability n
times). However, the exact same effect can be achieved by reducing MTTR n-fold (i.e., by speeding
up recovery n times). The premise of our work is that improving MTTF has reached a point of

diminishing returns: reducing unavailability by an order of magnitude through a ten-fold increase
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in MTTF is more difficult and expensive than reducing MTTR by a factor of ten. This motivates our

focus on improving MTTR.

There are two ways to reduce time-to-recover: First, one can preserve the current approach
to recovery, but engineer the system to perform that recovery faster. Second, one can reduce the
scope of recovery, thus making recovery faster and less disruptive. We choose the latter approach,
and introduce the notion of microrecovery — recovery confined to the individual component that is
faulty, instead of the entire system. In this dissertation we present in detail a reboot-based form of
microrecovery, with the understanding that many of the resulting techniques and lessons are more

widely applicable.

1.2.2 Rebooting — a pragmatic recovery technique

Rebooting is a simple, practical and effective approach to managing failure in large, complex sys-
tems; it is an approach that accepts bugs in applications as facts to be coped with, instead of view-
ing them as problems that can be eliminated. The results of several studies [SC91, Gra86, MG95,
Cho97] and experience in the field [BreOla, Pal02, Lev03] suggest that many failures can be suc-
cessfully recovered by rebooting. Not surprisingly, today’s state of the art Internet clusters provide
facilities to circumvent a faulty node by failing over, rebooting the failed node, and subsequently
reintegrating the recovered node into the cluster.

Rebooting can often take the form of just an application restart. Large-scale Internet software
fails mostly due to application-level bugs [Mit04, Cho03, Pal02, Rei04], unlike desktop systems,
which are still plagued by failures at the OS level, such as bad drivers [SBLO3]. Most practitioners
agree that hardware and operating system availability is a “solved problem” in enterprise-scale soft-
ware, at least in comparison to application-level availability. Platforms (such as hardware, operating
systems, and application servers) are subject to much less change than applications and are subject
to considerably more testing. Unlike desktop systems, the nodes of today’s Internet service clusters
support few devices/drivers, have relatively simple configurations, and have been extensively tested
prior to deployment. We therefore fold application process restarts into the reboot category, because

they often are as effective as operating system reboots.

1.2.3 Benefits of reboot

Rebooting has three core benefits.
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First, rebooting scrubs volatile state that has potentially become corrupt. A bad pointer, a dead-
lock surrounding a set of mutexes, an accumulated computation error are all examples of volatile
corruption that would be cleaned up by rebooting. Rebooting reclaims leaked resources and does
so decisively and quickly, because mechanisms used to effect the reboot are simple and low-level:
virtual memory hardware, operating system processes, language-enforced mechanisms, etc. Should
an application leak memory or file descriptors, they will all be reclaimed upon restarting that appli-
cation’s process.

Second, rebooting returns an application to its start state (or at least a well-known state), which
is the best understood, most thoroughly debugged state of the program. Whenever a program starts
up, it begins in its start state, so this is the most frequently visited state during development, testing,
and operation.

Third, rebooting improves MTTR by saving on diagnosis time. When failure strikes an Internet
system, operators cannot always afford to run real-time diagnosis; instead, they focus on bringing
the system back up by any means possible, and do the diagnosis later. Experienced operators realize
that there is a large opportunity cost in taking several minutes under fire to decide whether a reboot
would or would not cure the failure, whereas a minute-long reboot would answer the question much
sooner. Rebooting is simple, so implementing and automating a recovery policy based on rebooting
is perhaps the easiest and simplest of all recovery alternatives. The fact that rebooting an application
requires nothing more than a process kill and start is unique among recovery strategies.

Rebooting is in some sense a universal form of recovery, since a failure’s root cause does not
need to be known in order to recover it by reboot. The fact that rebooting can be done “blindly” is
one of the reasons some practitioners frown upon its liberal use; however, we view the avoidance
of lengthy diagnosis as one of the main strengths of reboot-based recovery and an important way to
reduce MTTR. The ability to recover without diagnosis explains why rebooting is so widely used
in large-scale systems [Bre(Ola, Pal02, Lev03]. As software becomes more complex and availability
requirements more stringent, the willingness and ability to perform thorough diagnosis prior to
recovery will decrease over time, making reboots more befitting. As hardware becomes faster, a

reboot will become proportionally faster, and thus an increasingly compelling form of recovery.

1.2.4 Drawbacks of reboot

Rebooting has two principal drawbacks: loss of data and unpredictable recovery times.
While scrubbing corrupt data is beneficial, losing good data is not. For example, in a traditional,

buffered UNIX filesystem, updates are kept in the volatile buffer cache for up to 30 seconds; should
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an unexpected crash occur during that period, any data that had been written to the buffer cache,
but not to disk, will be lost. This problem has been recognized in today’s Internet services, which
is why most now maintain all important data (including session state, such as shopping carts) in
databases.

Another drawback of rebooting is that it can result in long, unpredictable recovery times. Data
recovery procedures in systems handling large amounts of data can last many hours (e.g., filesys-
tem checks, transaction log undo/redo). Modern systems recognize this problem; for example, the
Oracle database server allows administrators to tune the rate of checkpointing, such that recovery
time after crash does not exceed a configured upper limit [LGWIJO1]. In the worst case, if there is a
persistent fault (e.g., a failed disk or a misconfiguration), the system may never come back up and

require instead some other form of recovery.

1.2.5 Benefits without drawbacks

We argued that improving availability by reducing time-to-recover may be more productive than
increasing reliability; we also showed that rebooting provides an attractive approach to recovery
in large-scale Internet systems. However, rebooting can be expensive; we mitigate this cost by
reducing the scope of a reboot.

We propose the concept of microreboot — individual restart of fine-grained application compo-
nent(s) — as a practical recovery mechanism that can achieve many of the benefits of whole-process
restarts, but an order of magnitude faster and with an order of magnitude less lost work. When
a system becomes unavailable, it is usually just a small subset of its components that are faulty,
so rebooting the entire system would entail a lot of unnecessary recovery. Microrebooting offers
the means for surgically recovering only what needs to be recovered. The universality of reboot-
based recovery promises to make microreboots effective for a variety of components, and to remain
effective despite code changes.

To get all the benefits of rebooting with as few drawbacks as possible, microrebooting requires
strong modularity and isolation. Both can be exploited to confine failures to one, or a few compo-
nents, and perform localized recovery on just the faulty ones. Tandem’s process pairs [Bar81] took
this observation from the domain of hardware to that of software, and advocated modularity and
recovery at the level of processes. We push this notion further, to the sub-process level, and achieve
the effects of a reboot/restart on a smaller scale.

Furthermore, we completely separate data recovery from process recovery. For microreboots to

achieve maximum benefit, components must be “stateless” and keep all important application state
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in specialized state stores, separate from the application logic; this way, application data does not get
lost or corrupted during a microreboot. The separation of data management from application logic
(or “data transformation”) allows us to take data recovery out of the critical path of process recovery.
Since application software fails far more often than data management software (e.g., databases), but
takes considerably less time to recover, this separation makes sense: it reduces overall downtime by
separating low-MTTF/low-MTTR components from the high-MTTF/high-MTTR ones.

All applications, legacy or newly-created, that abide by a small set of design principles, can
be recovered using microreboots without any further changes to the application. With a cheap,
universal recovery mechanism in place, it becomes possible to build systems that recover on their
own, with humans intervening only when absolutely necessary. This further reduces MTTR, since
recovery is now done in “machine time” rather than “human time.” Rather than try to automate and
speed up complex human-intensive recovery processes, we aim to equip systems with simpler, more

effective recovery levers.

1.3 Thesis and Contributions

Our thesis is that, although large-scale software systems are unreliable, structuring them for fast,
minimally-disruptive recovery is a practical, cost-effective way to make them highly available. The

present dissertation makes three contributions toward proving this thesis:

Crash-only design

We define a set of principles for building large-scale programs that crash safely and recover fast;
there is only one way to stop such software — by crashing it — and only one way to bring it up — by
initiating recovery. Crash-only applications consist of stateless components that keep all important

state in application-independent state stores.

Microreboot mechanism

We show that, with a small number of changes, runtime platforms can support a mechanism by
which fine-grained components of crash-only applications are recovered through microreboot at the
first indication of failure. We demonstrate that microrebooting can achieve many of the same bene-
fits as a process restart in Java systems, while reducing unavailability by a factor of 50. We show that
the combination of crash-only software and microrebooting is a better cost/dependability tradeoff

compared to the approach of aiming for correct code and supporting diverse recovery mechanisms.



12 CHAPTER 1. INTRODUCTION

Failure management policies

We show that the fast, minimally-disruptive nature of microrebooting makes several failure man-
agement policies cost-effective, policies that would otherwise be prohibitively expensive in terms of
incurred downtime. First, we show that failures can be avoided at low cost by preventively microre-
booting components, thus rejuvenating applications with minimal downtime. Second, we show that
microrebooting at the slightest hint of failure (without engaging in diagnosis) improves availability,
even when failure detection is prone to false positives. Finally, we demonstrate that microreboot-
based recovery can be hidden from end users via transparent request retries, improving availability

without change in end-user-perceived service quality.

The microreboot approach is in keeping with a minimalist philosophy of system design, in
which simpler recovery mechanisms are preferred to complex ones — by casting most failures as
reboot-curable problems, we simplify recovery, making it more prompt and effective, while being

less disruptive to end users.

1.4 Outline

The remainder of this dissertation consists of ten chapters and two appendixes. In chapters 2 and 3,
we describe a selection of related work, as well as our early forays into the systematic use of (mi-
cro)rebooting to improve system availability, respectively. Based on this early experimentation, we
formulated the crash-only design principles, which appear in chapter 4, and designed the microre-
boot recovery mechanism, described in chapter 5. We built a complete prototype of a crash-only
system, in several variants; in chapter 6 we describe this prototype along with the framework used
to evaluate the microreboot mechanism. In chapter 7 we demonstrate experimentally that substitut-
ing the microreboot mechanism for process restart in the recovery policy of a J2EE system reduces
downtime by a factor of 50. We describe and evaluate the qualitative improvements introduced by
microreboot-centric recovery policies in chapter 8. In chapter 9, we discuss the limitations of our
work, along with challenges in applying it more broadly. Chapter 10 concludes the dissertation.
Appendix A describes a tool for inferring inter-component dependencies, used in determining
groups of components that need to be microrebooted together. Appendix B provides a mapping

from chapters in this dissertation to published papers.



Chapter 2

Related Work

The rebooting technique embodied in crash-only software and recursive microreboots has been
around as long as computers themselves, and our work draws heavily upon decades of research
and development history. This dissertation refines and systematizes a number of known techniques,
turning them into a unitary, well-understood tool. In this chapter we describe some of the related
work that provides the background for the research presented here. We describe the relationships
between previous efforts and ours, whether the projects preceded ours or constitute extensions of
previous systems, and also whether they solved a similar problem to ours but for a system with

different constraints than those we address.

2.1 Preventing Software Failures

2.1.1 Better software

Many techniques have been advocated for improving software dependability, ranging from better
software engineering [Bro95] and object oriented programming languages [DN66] to formal meth-
ods that predict/verify properties based on a mathematical model of the system [SM0O0]. Language-
based methods, such as static analysis [Cou01], detect problems at the source-code level. Some
programming languages prevent many programming errors by imposing restrictions, such as type
safety [Wir88] or a constrained flow of control [MRAS87], or by providing facilities like garbage
collection [McC59].

This vast body of techniques have significantly improved software quality and, without them,

it would be impossible to build today’s software systems. At the same time, however, intricate

13
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software leads to bugs that are hard to find, and much software today is written by developers
with little training; hence the need for recovery-oriented techniques like the ones described in this
dissertation. Our microreboot-based approach to recovery is complementary to all efforts aimed at
improving the quality of software. As will be described at more length in section 9.2, the successful
use of microreboots assumes that software has already undergone what would be considered today

“diligent quality assurance.”

2.1.2 Containing failure propagation

Fault containment techniques aim to confine faults, so they affect as little of a system as possible
and allow for localized recovery. Good fault containment reduces the number of recovery attempts
required to resolve a failure, resulting in faster recovery times. Drawing strong fault containment
boundaries has long been considered good engineering and is found in many successful systems; for
some, strong fault isolation is a fundamental principle [CRD'95]. Techniques used for containment
range from physical isolation for cluster nodes to hardware-assisted virtual memory and sophisti-
cated software-based techniques. For example, the faintperl package [WS91] employs dynamic data
flow analysis to quarantine data that may have been “contaminated” by user inputs and thus might
contain malicious executable code — a serious security threat for Web sites using cgi-bin scripts.
Applications already employing such techniques are more amenable to our localized recovery, but

it is difficult to retrofit such approaches without significant changes to the applications.

Another set of containment technologies holds much more promise for microreboot-based re-
covery. Virtual machine monitors provide a powerful way to draw strong fault isolation boundaries
between subsystems without having to change the application software. A virtual machine mon-
itor [Gol74, BDGR97] is a layer of software between the hardware and operating system, which
virtualizes all the hardware resources and exports a conventional hardware interface to the soft-
ware above; this hardware interface defines a virtual machine (VM). Multiple VMs can coexist on
the same real machine, allowing for multiple copies of an operating system to run simultaneously.
In our research group we use virtual machines to isolate each publicly accessible network service
(sshd, Web servers, etc.) from all the other services running on the same host: in each VM we run
a copy of the OS and one single service. This way, a vulnerability in a Web server will not directly
compromise any of the other services. Motivated by this type of VM use, isolation kernels [WSGO02]
provide a VM-like environment, but trade off completeness of the virtualized machine for significant

gains in performance and scalability. While requiring slight modifications to the services, isolation
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kernels provide a lightweight mechanism for building strong fault isolation boundaries. One iso-
lation technique that we find particularly useful, given our choice of using a J2EE platform (see
chapter 6), is the multi-tasking Java VM [CDO01], which allows process-like isolation among appli-
cations running in the same JVM. Similar systems exist, such as JanosVM [THLO1], which allows
a single logical Java virtual machine to be split among multiple OS processes; and Luna [HVE(02],

which improves isolation among “tasks” running in a single Java VM.

The isolation of operating system services into separate components, for purposes that include
containment, has been pioneered by microkernels [ABB"86]; more recent work has demonstrated
that the performance overhead of achieving such isolation is negligible [HHL"97]. Containment of
drivers [SABLO4], identified as the buggiest part of operating system kernels today, has been em-
ployed successfully to save systems from crashing. All these projects enable the use of microreboots

in operating system kernels.

Isolated processing components appeared also in pre-J2EE transaction processing monitors,
where each type of system functionality (e.g., doing I/O with clients, writing to the transaction
log) was a separate process communicating with the others using IPC or RPC. Session state was
managed in memory by a dedicated component. Although the architecture did not scale very well,
the “one component/one process” approach provided better isolation than monolithic architectures

and would have been amenable to microrebooting.

Finally, the SEDA [WCBO1] project proposed an architecture in which performance behaviors
are isolated into separate stages, giving operators control over each stage individually. A slowdown
in one stage will not affect another stage (but, of course, will impact overall throughput). SEDA
also recognized the value of moving certain behaviors (admission control, load balancing, etc.) into
the runtime system, such that all applications running on that platform would benefit. In SEDA’s
case, applications had to be written in an event-driven continuation-passing style; admission control
and load balancing could then be done implicitly by the SEDA middleware. However, this requires
recoding the application in a somewhat nonintuitive programming style. We embraced the concept

of adding support into the platform, but aimed for minimal changes to applications themselves.

An interesting “counter”’-containment approach was recently proposed under the name of failure-
oblivious computing [RCDT04]. It is based on a C compiler that inserts checks that dynamically
detect invalid memory accesses. Instead of terminating or throwing an exception, the generated
code simply discards invalid writes and manufactures values to return for invalid reads, enabling the
server to continue its normal execution path. Initial experimentation indicates that this technique is

effective in improving availability for some applications. It is based on the same observation that
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microreboots is based on: when the workload is broken into fine-grained, independent units, then

recovery can be performed on a subset of the workload with little impact on the rest of the workload.

2.1.3 Software rejuvenation

Long-running software ages, i.e., the availability of system resources deteriorates, and data corrup-
tion and numerical error accumulate, eventually leading to failure. Software rejuvenation [HKKF95]
terminates an application and restarts it at a clean internal state to prevent faults from accumulating
and causing the application to fail. Rejuvenation has also found its way into Internet server instal-
lations based on clusters of hundreds of workstation nodes; many such sites use rolling reboots to
clean out stale state and return nodes to known clean states, Inktomi being one example [BreOla].
IBM’s xSeries servers also employ rejuvenation for improved availability [Int01]. As will be seen
in chapter 8, proactive microrebooting (microrejuvenation) is a valuable element of microreboot-

centric recovery policies.

2.2 Detecting failures

Rapid detection is a critical ingredient of fast recovery and is therefore an integral part of any
recovery-oriented approach to system dependability. A large fraction of recovery time, and there-
fore availability, is the time required to detect failures and localize them well enough to determine
a recovery action [CAKT04]. A study [OGP03] found that earlier detection might have mitigated
or avoided 65% of reported user-visible failures. By enabling “sloppier” fault detection, we make
a number of detection and diagnosis solutions more useful. For example, statistical learning ap-
proaches [CKFT02], while prone to false positives, are useful for systems whose structure is not
known a priori (see chapter 8).

Programmer-inserted assertions and periodic consistency checks — staples of defensive program-
ming — are an excellent way to catch bugs. Database and telecommunications systems take this one
step further and employ audit programs to maintain memory and data integrity. In the 4ESS tele-
phone switch [Wil82], for example, so-called mutilation detection programs constantly run in the
background to verify in-memory data structures. When a corrupt structure is found, its repair is
attempted by a correction module; if the repair fails, the data structure is reinitialized. Such appli-
cations integrate well with the recursive microreboot framework presented here, as they can notify
the recovery manager when detecting an unrecoverable fault, and allow the manager to decide what

higher level recovery action to take.
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Some of the most reliable computers in the world are guided by the principle of fast detection,
and use dynamic recovery to mask failure from upper layers. For example, in IBM S/390 main-
frames [SG99], computation is duplicated within each CPU and the results are compared before
being committed to memory. A difference in results freezes execution, reverts the CPU to its state
prior to the instruction, and retries the failed instruction. If the results now compare OK, the error is
assumed to have been transient and execution continues; if they are different, the error is considered
to be permanent, and the CPU is stopped and dynamically replaced with a spare CPU by reconfig-
uring data paths. Execution of the instruction stream resumes transparently to the operating system.
In its memory system, the S/390 performs background scrubbing on main memory data to reduce
the frequency of transient single-bit failures; faulty memory chips are dynamically replaced. While
the S/390 is a reliable computer that hardly ever fails, in large software systems most downtime is
not caused by hardware. For this reason, in our approach we perform fault detection at all levels in
the system, thus being able to capture more failure scenarios than could be detected by the hardware
alone. Moreover, the recursive recovery approach accepts that always choosing the right level in
the system at which to recover is difficult, so it progressively tries higher and higher layers until the

problem is eradicated.

BASE [RLCO1] and BFT [CL99] try to detect and correct what would otherwise be silently-
wrong answers, e.g. due to data corruption or a malicious adversary. Their work is complementary
to ours and composes with it, though we note that the state corruption errors we encountered (see

chapter 7.1) would have been difficult for these approaches to find.

Finally, some amount of knowledge about the application’s semantics enables end-to-end failure
detection. Infrastructure monitoring companies [NOCO02, Res02, Com02, Int02, Hew02] actively
supervise corporate databases, application servers, and Web servers by monitoring specific aspects
(e.g., the alert log contents of a DBMS, the throughput level of a Web server). The infrastructure
operator is notified when something has failed, is exhibiting fail-stutter behavior [ADADO1b], or
when resource utilization is approaching application-specific critical levels and may warrant reju-
venation. A similar approach has been taken in gray-box systems [ADADO1a], where knowledge
of the internal workings of an operating system is captured in information and control layers, which
can then observe OS activity and infer facts about the OS state without using explicit interfaces. In
our prototype we use score-based fault localization and tools like Pinpoint [KF05] to map end-to-
end failures or performance degradation onto the specific components that are causing the failure

and recover them with surgical precision.

ARMOR [WBS™98] provides some application-generic services, such as liveness monitoring
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and reboot, to distributed applications. It provides checkpoint-based recovery to applications writ-
ten to ARMOR’s micro-checkpointing API, including ARMOR itself (i.e., the ARMOR middleware
modules can recover using their own checkpoints). Compared to ARMOR, we are attempting to de-
tect more classes of failures via the use of different types of plug-in failure monitors, and collecting
in one place (the recovery manager) the policy decisions as to what should be rebooted to attempt
recovery. In our work, we are interested in supporting any unmodified J2EE applications, which are
not tied to a specific checkpointing API, but instead follow a set of design principles.

The monitors presented in this dissertation are strictly complementary to other failure detec-
tion techniques. The most common techniques for detecting failures in Internet services are low-
level monitoring, such as heartbeats and pings, and periodic high-level, end-to-end application
checks [MS00]. Heartbeats and pings have the advantage of being simple to implement and easy
to maintain. However, they lack the ability to detect many application-level failures. Complex,
end-to-end tests that make use of detailed application semantics are able to detect application-level
failures, but, since they must be redeveloped for individual applications, they are expensive to build.
In addition, they require significant maintenance to keep up-to-date with rapidly evolving applica-

tions.

2.3 Tolerating software failures

2.3.1 Redundancy

Virtually all recovery techniques rely on some form of redundancy, in the form of either func-
tional, data, or time redundancy. In the case of functional redundancy, good processors can take
over the functionality of failed processors, as in the case of Tandem process pairs [Bar81] or clus-
ters [FGCT97]. Some forms of recovery use time redundancy and diversity of programming logic
(e.g., recovery blocks [AK76], where the computation of an erroneous result triggers a retry using
a different algorithm), but such techniques have had only limited appeal due to their cost of devel-
opment and maintenance, as well as difficulty in ensuring true independence among the alternate
program paths.

Redundancy and failover [MSO00] are staples of Internet services and the most popular way to
reduce downtime. The techniques presented here are complementary to that strategy, since failed
nodes must eventually be recovered to restore system throughput, as well as close the “window of

vulnerability” associated with operating under partial failure.
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The CNN.com meltdown on 9/11/01 [LeFO01] is a good example of how slow node-level re-
covery time can lead to an entire service collapsing. Failover to a standby node is a powerful high
availability technique, but it cannot be solely relied on, because node failure takes the cluster into a
period of vulnerability in which further failures could cripple it. The CNN news site collapsed on
9/11/01 under the rapidly increasing load, because thrashing nodes could not recover quickly and
good nodes could not reintegrate fast enough to take over from the thrashing ones [LeF01]. Our
project’s emphasis on reducing recovery time complements redundancy-based failover by reducing
the system’s window vulnerability to additional failures. Most Internet services run on very large
clusters of computers (as an extreme example, Google uses tens of thousands of CPUs in 5 geo-
graphically distributed sites to serve google.com [Ach02]); at this scale, nodes become unavailable

quite frequently, making rapid reintegration critical.

Finally, there are limits to the scalability of node redundancy, because of the tension between
number of nodes and diversity. Having a large number of diverse nodes increases the system’s ro-
bustness to failure, but at the same time makes it very difficult to administer and maintain, which
makes the system prone to operator-induced failure. On the other hand, having a large number of
mostly identical nodes makes management easier, but drastically reduces system robustness. For
example, when an obscure bug in the software of a major content distribution network (CDN) man-
ifested simultaneously on all nodes running that release, a large part of the CDN crashed, leading to

a widespread outage. Rapid node recovery allows even widespread failure to be quickly eradicated.

Process pairs [Bar81] were an early mechanism that combined resource redundancy and state
mirroring to allow failover to a hot standby, but because they were difficult for programmers to use,
they have had limited impact outside of specialized high-end systems. Transactions [Gra81] have
enjoyed much wider impact, and remain a key element of today’s Internet applications, because
they are easy for programmers to use and they export a clean abstraction for dealing with recovery.
However, when combined with relational semantics, providing transactional guarantees requires
substantial engineering in order to get both good steady-state performance and complete crash-
safety and recovery (indeed, high-volume, high-performance database systems cost hundreds of

thousands to millions of dollars to deploy and maintain).

Separating applications into stateless logic plus transactions simplifies recovery; we exploit
this property by attempting application-generic recovery for the logic. We push this approach to
its logical extreme, by specializing the state stores used for other kinds of Internet service state,

including session state and persistent non-relational state such as user profiles.
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2.3.2 Saving state

Checkpointing [WHV 195, CR72, TTWR99] employs dynamic data redundancy to create a believed-
good snapshot of a program’s state and, in case of failure, return the program to that state. An impor-
tant challenge in checkpoint-based recovery is ensuring that the checkpoint is taken before the state
has been corrupted [WIHT02]. Another challenge is deciding whether to checkpoint transparently,
in which case recovery rarely succeeds for generic applications [LCCOO0], or non-transparently, in
which case source code modifications are required. In spite of these problems, checkpointing is a
useful technique for making applications restartable, and was successfully utilized in [HK93], where
application-specific checkpointing was combined with a watchdog daemon process to provide fault
tolerance for long-running UNIX programs. ARMORs [KIBW99] provide a micro-checkpointing
facility for application recovery, but applications must be (re)written to use it; limited protection is
provided for legacy applications without their own checkpointing code. We believe that maintaining

state in a suitable store (see chapter 4) obviates the need for checkpoints.

Past work [LCC00, CCOO0] has painted a grim picture regarding application-generic recovery,
showing that general-purpose transparent recovery is unlikely to work. They formulated an ap-
proach to application-generic recovery (i.e. recovery without application-specific knowledge) based
on checkpointing, and demonstrated that relatively few existing applications could be successfully
recovered by this approach. They studied both Unix-style monolithic applications such as vi and

large open-source Internet service components such as MySQL and Apache.

The authors’ conclusion derives in part from the fact that a fully generic recovery system can-
not make any assumptions about application structure, and therefore about what constitutes safe
(correctness-preserving) generic recovery. We argue that for the specific class of applications we’re
targeting — interactive Web-connected services deployed in a traditional multi-tier configuration —
we can make assumptions about their structural properties, and these assumptions make it possible
to obtain application-generic benefits solely by modifying the middleware. Although we do exploit
application-specific fault propagation information to guide recovery, the process for collecting this

information is itself application-generic, automatic, and relatively fast to perform.

Part of the appeal of rebooting as a recovery technique is that it discards corrupted transient
state that might itself be the cause of the failure or whose cleanup may be necessary in order for
recovery to succeed. Therefore we expect that replacing recovery with rebooting — which is logically
equivalent to restarting from a checkpoint that is the start state of the component — is more likely to

work, assuming it is safe to try.
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2.3.3 Careful state updates

Log-based recovery techniques cost more than checkpoint-based recovery, but are considerably
more powerful, because they allow the system to return to potentially any moment in time prior to
the failure. Undo and redo logs [Gra78, RO91] allow the system to undergo a set of legal trans-
formations that will take it from an inconsistent state, such as that induced by a bug or hardware
failure, to a consistent one. Logs enable transactions [Gra81], which are the fundamental unit of re-
covery for applications that require ACID [Gra78] semantics. In a new twist on the undo approach,
system-level undo [BP03] allows for an entire system’s state to be rolled back, repaired, and then
brought back to the present.

There is a long line of systems that have implemented the transaction concept [Gra81], and such
systems are highly synergistic with reboot-based recovery. The transaction introduced the powerful
and simple notion of recovering from failures while being oblivious to the reason for which that
failure occurred. In microreboot-based recovery we exploit much of the same approach.

The Quicksilver system [HMCS8S] is particularly relevant to the work presented in this disser-
tation — it uses atomic transactions as a unified failure recovery mechanism for client-server dis-
tributed systems. In Quicksilver, transactions allow failure atomicity for related activities at a single
server or at a number of independent servers. Rather than bundling transaction management into
a dedicated language or recoverable object manager, Quicksilver exposes the basic commit proto-
col and log recovery primitives, allowing clients and servers to tailor their recovery techniques to
their specific needs; servers can implement their own log recovery protocols rather than being re-
quired to use a system-defined protocol. These decisions allow servers to make their own choices to
balance simplicity, efficiency, and recoverability. At the same time, however, Quicksilver places a
significant burden on the developers of applications for this environment; in our work, we chose to
abstract away from programmers as many of the intricacies of microrebooting as possible. We also
do not advocate the universal use of transactional semantics, recognizing that in certain cases (such
as session state objects), using log-based approaches to atomicity introduces unnecessary overhead.

Two interesting systems provide safety in the face of crashes and fast recovery, although they
depart from transactional semantics: Sprite LFS [RO91] and WAFL [HLM94]. The log-structured
file system (LFS) writes all modifications to disk sequentially in a log-like structure, thereby speed-
ing up crash recovery. The log is the only structure on disk, although it does contains indexing
information so that files can be read back from the log efficiently. Network Appliance introduced
the file server appliance [HLM94], a dedicated server whose sole function is to provide NFS file ser-

vice. The filesystem employed in this appliance is called WAFL (Write Anywhere File Layout) and
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its primary focus is to implement “snapshots,” which are read-only clones of the active file system.
Snapshots eliminate the need for file system consistency checking after an unclean shutdown, which
results in speedy reboot-based recovery. As described in chapter 4, this type of filesystems could be

construed as “crash-only” state stores that play an important role in microrebootable systems.

2.3.4 Making recovery fast

The benefits of restarting quickly after failures have been recognized by many system designers,
as they employed techniques ranging from the use of non-volatile memory (e.g., Sprite’s recov-
ery box [BS92] and derivatives of the Rio system [CNRA96, LC97]) to non-overwriting storage
combined with clever metadata update techniques (e.g., the Postgres DBMS [Sto87], Network Ap-
pliance’s filers [HLM94]). A common theme is the segregation and protection of state that needs to
be persistent, while treating the rest as soft state. We see this approach reflected in recent work on
soft-state/hard-state segregation in Internet services [FGC97, GBHCO00] and we adopt it as a basic
tenet.

Baker [BS92] observed that emphasizing fast recovery over crash prevention has the potential to
improve availability, and she described ways to build distributed file systems such that they recover
quickly after crashes. In her design, a “recovery box” safeguards metadata in memory for recovery
after a warm reboot. In our work, we provide components for a more general framework that both
reduces the impact of a crash and speeds up recovery.

Other research systems have embraced the approach of reducing downtime by recovering at
sub-system levels. For example, Nooks [SABLO4] isolates drivers within lightweight protection
domains inside the operating system kernel; when a driver fails, it can be restarted without affecting
the rest of the kernel. Farsite [ABC*02], a peer-to-peer file system, has been recently restructured as
a collection of crash-only components, that are recovered through rebooting. These systems provide
examples of microrebootable systems and lend credibility to the belief that non-J2EE systems can
be structured for effective microrebootability.

Autonomic computing [KCO03] seeks to automate complex systems administration as much as
possible, often by having a system automatically learn or infer its operating points and then apply-
ing automated management techniques based on closed-loop control or statistical modeling. Recent
work in automatic inference of the behavior of complex applications relies on collecting fine-grained
(component-level) observations and extracting interesting patterns from them [CZL ™04, DMMO04],
whereas recent progress in applying automated management techniques [CNFC04, LCD 03] as-

sume a predictable performance cost for triggering management mechanisms such as recovering or
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activating a node. We combine similar techniques in the context of our three-tiered J2EE proto-
type system, building upon the observation that, when a machine can recover autonomously (see

chapter 8), it can do so much faster than a human operator.

2.4 Chapter Summary

Prior work has generally assumed failure to be an exceptional occurrence, that required special han-
dling. The result of this approach was an overemphasis on improving program reliability, while
providing just enough recovery mechanism to handle such exceptional events. Unfortunately, re-
covery code is difficult to test and, when invoked, must run flawlessly, because the system must
emerge from the failed state. In our work, we regard failure as a regular event, not an exceptional
one; this perspective will become increasingly legitimate, as software failure rates will increase with
program complexity.

In order to support the “failure as a regular event” paradigm, software must be written such that
it can be recovered frequently, easily, and quickly. In this dissertation we identify the principles

behind such a design, while minimizing the departure from common programming practice.
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Chapter 3
Background

Prior to the work presented in this dissertation, we did a preliminary exploration of the concept of
reboot-based recovery in two other systems. Here we briefly describe these earlier projects that
set the stage for our main body of work: the Medusa execution environment (section 3.1) and the

Mercury satellite ground station (section 3.2).

3.1 Medusa: An Execution Platform for UNIX Programs

Our first experience in using reboot-based recovery was in the context of Medusa [Can00]. This
project’s main contribution was to explore the possibility of building an execution platform that
allows highly available services to be built from programs that (individually) do not exhibit such
characteristics. The motivation for this work was our belief that perfect software is impossible to
produce.

The Medusa system is a rudimentary self-managing, self-replicating platform that can execute
arbitrary UNIX programs across a collection of UNIX machines. Medusa achieves increased end-to-
end availability for a large class of applications by exploiting loose coupling between its components

and quick reactive behavior in the face of failures.

3.1.1 Overview

The Medusa prototype is composed of a variable number of segments, which intercommunicate
using UDP over IP multicast. A segment is the basic unit of process replication and has two core
responsibilities: to ensure the well-being of other segments and to execute commands supplied

by Medusa’s clients. A segment runs on one host at any given point in time, but can migrate to
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other machines when this becomes necessary; it provides a highly available execution container for
generic UNIX programs.

Whenever a client wishes to execute a command on Medusa, it multicasts a special packet to the
entire system. Individual segments inspect this packet and respond, if they are available to execute
the command; a segment is ultimately elected to run the command. If the client does not hear back
from Medusa, it resends its request. Should the executing command fail abnormally, either due to
its own or its host segment’s failure, it is immediately restarted, potentially on a different machine.
The client can monitor the multicast communication between segments and determine, based on its
content, the progress of the execution. A segment will never communicate directly with a client
or another segment. In the event that the client who submitted an execution request dies while this
request is being completed, the requested program continues running even after the client is gone.

Segments do not share any state, thus achieving maximal fault isolation. The collaborative
nature of segments’ activity is limited to monitoring, replicating, and restarting each other. Host
machines and segments are logically independent, making Medusa’s host configuration require-
ments very simple: (a) ensure that some version of the Secure Shell Daemon sshd is running,
which is freely available and already common place on many UNIX machines, and (b) provide a
login account for Medusa.

This independence further enables simple upgrades through injection of newer Medusa seg-
ments into the system without having to upgrade individual machines.

Medusa could be regarded as a two-layered watchdog. Each segment is watched by its peer
segments, that ensure the segment continues running and doing its work regardless of failures. At
the same time, the segment itself is a watchdog for the application it is executing, ensuring the
application “stays up” even in the face of failures.

Each individual segment has two orthogonal threads of control: a heartbeat generator and the
segment’s state machine. Heartbeats provide the basis of Medusa’s health maintenance mechanism,
while the segment state machine is responsible for processing other segments’ heartbeats, replicat-
ing and restarting, as well as executing commands. Not hearing from a segment for some amount
of time is taken as an indication that the segment has died or been subjected to a network partition.
In the current prototype, the expiration time interval is a configurable multiple of the inter-heartbeat
sending intervals, but ideally would be a function of the heartbeat arrival rate from the monitored
segment. When a segment is declared dead, it must be regenerated by another segment through
replication.

Medusa can provide high availability for applications that have the following characteristics:
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* Application is restartable, i.e., running it again from the beginning is a recoverable form of
operation. In most cases, such applications can be built with reasonably low effort by using a

transactional substrate.

* Application’s operations must be globally idempotent; in the event that Medusa restarts the
application, its actions may repeat prior actions and so the end result must not be affected by

repeated executions. Most Internet services have this property.

» Sequential commands cannot require Medusa to maintain state on their behalf. For example,
the current prototype would not support running a command such as cat /etc/passwd
and then having Medusa feed this execution’s output into a new command, such as grep
/ul. If this sequence is desired, it must be requested as a unitary command (e.g., “cat

passwd | grep /ul”).

Medusa emphasizes manageability. New segments can smoothly join the system, which means
it can scale up (or down) seamlessly. Medusa currently requires virtually no configuration, except
for a handful of command line arguments; this is considered a virtue because it reduces the risk
of operator errors. We used Medusa as a way to explore the paradigm of network-wide software
upgrades performed through simple injection of higher versioned segments, which gradually replace
old Medusa segments. The hope was that, one day, we will not view software as packaged entities

anymore, rather as populations that get released into computing communities.

3.1.2 Lessons

The Medusa project illustrated the viability of building an execution platform for services with high
availability requirements. It allowed generic programs to exhibit increased end-to-end robustness
by running on a self-managing, self-replicating base. The key architectural decisions included parti-
tioning Medusa into loosely coupled segments, embedding highly reactive, adaptive behaviors, and
using simple, uniform multicast-based communication. Medusa provided a starting point and expe-
rience for developing a dependability toolkit for the average programmer, consisting of a platform
and a set of tools for building highly dependable software infrastructures from COTS components.
Some of the underlying design choices were based on principles derived from successful biologi-
cal systems: diversification, adaptation, and large-scale replication. The envisioned beneficiaries of
this toolkit were developers of mission/business-critical Internet services and pervasive computing

infrastructures.
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3.2 Mercury: Control Software for a Satellite Ground Station

Our second system exploring reboot-based recovery was the control software for the Mercury
satellite ground station [CCFT02]. We collaborated with the Space Systems Development Lab
(SSDL) on the design and deployment of space communications infrastructure to make collection of
satellite-gathered science data less expensive and more reliable. One necessary element of satellite
operations is a ground station, a fixed installation that includes tracking antennas, radio communi-
cation equipment, orbit prediction calculators, and other control software. When a satellite appears
in the patch of sky whose angle is subtended by the antenna, the ground station collects telemetry
and data from the satellite.

When we approached the design and deployment of the Mercury software, we wanted to im-
prove ground station availability — the control software had not been originally designed with high
availability in mind and was not written by professional programmers, yet it was used for several
active, in-orbit satellites. Our first step in improving the availability of Mercury was to apply recur-
sive microrebooting to “cure” transient failures by restarting suitably chosen subsystems, such that
overall mean-time-to-recover (MTTR) was minimized.

We had two main goals in applying recursive microreboots to Mercury. The first was to partially
remove the human from the loop in ground station control by automating recovery from common
transient failures we had observed and knew to be curable through full restarts or microreboots. In
particular, although all such failures are curable through a brute force reboot of the entire system, we
sought a strategy with lower MTTR. The second goal was to identify design guidelines and lessons

for the systematic future application of microreboot-based recovery to other systems.

3.2.1 Overview

The general software architecture is shown in figure 3.1: fedrcom is a bidirectional proxy between
XML command messages and low-level radio commands; ses (satellite estimator) calculates satel-
lite position, radio frequencies, and antenna pointing angles; str (satellite tracker) points antennas to
track a satellite during a pass; rtu (radio tuner) tunes the radios during a satellite pass; mbus passes
XML-based high-level command messages between software components.

The ground station components are safe to reboot, since they do not maintain persistent state;
they use only the state explicitly encapsulated by received messages from mbus. Hard state exists in
Mercury, but is read-only during a satellite pass and is modified off-line by ground station users. In

addition, the set of Mercury failures that can be successfully cured by reboot is large, and in fact this
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Figure 3.1: Mercury software architecture

is how human operators recovered from most Mercury failures before we implemented automated
recovery.

Mercury is a soft-state system, in that any writable state is constantly refreshed by messages,
and state which is not refreshed eventually expires. Soft state and announce/listen protocols have
been extensively used at the network level before [ZDE193, DEFT96] as well as the application
level [FILMO5]. Announce/listen makes the default assumption that a component is unavailable
unless it says otherwise; soft state can provide information that will carry a system through a tran-
sient failure of the authoritative data source for that state. The use of announce/listen with soft state
allows restarts and “cold starts” to be treated as one and the same, using the same code path; this
is an important tenet of crash-only software (chapter 4). Moreover, complex recovery code is no
longer required, thus reducing the potential for latent bugs and speeding up recovery. In soft-state
systems, reboots are guaranteed to bring the system back to its start state; by definition, no data
corruption is possible.

Mercury’s failure detection architecture was based on the addition of two new independent pro-
cesses: a failure monitor (FD) and a recovery manager (REC). FD continuously performs liveness
pings on Mercury components, with a period of 1 second, determined from operational experience
to minimize detection time without overloading mbus. When FD detects a failure, it tells REC
which component(s) appear to have failed, and continues its failure detection. For improved isola-
tion, FD and REC communicate over a separate dedicated TCP connection, not over mbus; mbus
itself is monitored as well.

Given the above strategy, two situations can arise, which we handle with special case code.
First, FD may fail, so we wrote REC to issue liveness pings to FD and detect its failure, after which

it can restart FD. Second, REC may go down, in which case FD detects the failure and restarts REC,
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although the generalized procedural knowledge for how to choose the modules to microreboot and
initiate recovery is only in REC.

Two salient properties of Mercury distinguish it from larger-scale Internet applications. First,
this is a static system that does not need to evolve online; it can be upgraded and reconfigured inbe-
tween satellite passes. Second, there are no circular functional dependencies between components,
and in particular, its fault propagation and recovery maps are very simple and have a tree struc-
ture. In subsequent work, we operated on systems with more general dependency structures (see

chapter 6 and appendix A).

3.2.2 Lessons

An interesting principle we found during this work was that, if one adopts a recovery strategy based
on microreboots, component boundaries should take into account MTTR and MTTEF, rather than be
based solely on “traditional” modularity considerations such as state sharing. Redrawing the bound-
aries of software components based on their MTTF and MTTR helped us minimize overall system
MTTR by enabling the tuning of which components are rebooted together. In contrast, most current
system and software engineering approaches establish software component boundaries based solely
on considerations such as performance overhead and amount of communication between compo-
nents or amount and granularity of state sharing.

For example, there was one component (fedrcom) that connected to a serial port at startup
and negotiated communication parameters with the radio device; thereafter, it translated commands
received from the other components to radio commands. Due to the hardware negotiation, restarting
fedrcom takes a long time; at the same time, due to instability in the command translator, it crashes
often. Hence fedrcom has high MTTR and low MTTF. We split fedrcom into a pbcom component,
which maps a serial port to a TCP socket, and fedr, the front end driver-radio that connects to pbcom
over TCP. pbcom is simple and very stable, but takes a long time to recover (over 21 seconds); fedr
is buggy and unstable, but recovers fast (under 6 seconds). After restructuring the code, our system
recovery time improved by approximately a factor of 4.

An already well-known principle was brought to light by experimentation in Mercury, namely
that unplanned downtime is generally more expensive than planned downtime, and downtime under
a heavy or critical workload is more expensive than downtime under a light or non-critical workload.
In Mercury, downtime during satellite passes (typically about 4 per day per satellite, lasting about
15 minutes each) is very expensive because we may lose some science data and telemetry from the

satellite. Additionally, if the failure involves the tracking subsystem and the recovery time is too
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long, the communication link will break and the entire session will be lost. A large MTTF does not
guarantee a failure-free pass, but a short MTTR can provide high assurance that we will not lose the
whole pass as a result of a failure. From among systems with the same level of availability, those

that have lower MTTR are often preferable.

3.3 Chapter Summary

The two projects described here represent early forays into reboot-based recovery. Experimentation
with the Medusa execution platform led us to the belief that a significant number of UNIX appli-
cations are restartable and that a system based on such applications can achieve reboot-based high
availability in spite of the individual pieces being unreliable.

The Mercury ground station further indicated that the benefit of faster recovery has discontinu-
ities (e.g., the threshold imposed by the duration of a satellite pass) that can be fruitfully exploited;
this observation was developed further in [FPO2]. Mercury was the first system in which we formu-
lated the benefit of a good MTTR/MTTF balance in component design.

In the following chapter we will take a systematic approach to reboot-based recovery and ex-

plore the design principles that underlie reboot-friendly systems.
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Chapter 4
Crash-Only Software

Despite decades of research and practice in software engineering, latent and pseudo-nondeterministic
bugs abound in complex software systems; as complexity increases, they multiply further, making
it difficult to achieve high availability. Transient faults account for a large fraction of failures in
today’s Internet systems and production software in general [MG95, AIST01]; even mainframe-
class operating systems are not immune to such transients [SC91]. Running out of memory or file
descriptors, bug-triggering load spikes, deadlocks, performance degradation due to unexplained in-
teractions between subsystems, etc. are just a few examples of what Internet service operators face
on a regular basis [Lev03, Cho97]. It is common for such bugs to cause a system to crash, deadlock,
spin in an infinite loop, livelock, or to develop such severe state corruption (memory leaks, dangling
pointers, damaged heap) that the only high-confidence way of continuing is to restart the process
or reboot the system. The Gartner Group [Sco99] estimates that 40% of unplanned downtime in
business environments is due to application failures; 20% is due to hardware faults, of which 80%
are transient [Cho97, MMS ™ 00], hence resolvable through reboot.

When failure strikes business-critical software systems, operators cannot always afford to run
real-time diagnosis. Instead, they focus on bringing the system back up by any means possible,
and then do the diagnosis later. Our challenge is to find a simple, yet practical and effective way
to build large, complex systems that are amenable to failure management through reboot, accepting
the fact that bugs in application software will abound for as long as humans write the software. In
this chapter, we first analyze in depth the benefits and drawbacks of recovering from failures via
rebooting (Section 4.1), expanding on the analysis we presented in chapter 1. Afterward we argue
for a design that assumes crash-rebooting to be a normal, frequent occurrence (Section 4.2), which

takes the form of reactive restarts of failed components (“revival”) as well as prophylactic restarts of
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functioning components (“rejuvenation’) to prevent state degradation. We then present a canon of
design principles for reboot-friendly systems (Section 4.3), which collectively form the principles
of “crash-only software.” Finally, we discuss the benefits, drawbacks, and challenges related to

designing crash-only systems (Section 4.4).

4.1 Reboot-based Recovery

The rebooting “technique” has been around as long as computers themselves, and remains a fact of
life for substantially all nontrivial systems today. Although rebooting a system or restarting a pro-
cess is often only a crude “sledgehammer” for maintaining system availability, its use is motivated

by several properties:

4.1.1 Rebooting works around Heisenbugs

Most software bugs in production quality software are Heisenbugs [MD99, Cho97, Gra86, Ada84].
They are difficult to reproduce, or depend on the timing of external events, and often there is no
other way to work around them but by rebooting. Even if the source of such bugs can be tracked
down, it may be more cost-effective to simply live with them, as long as they occur sufficiently
infrequently and rebooting allows the system to work within acceptable parameters.

Deadlock resolution in commercial database systems is a good example of living with application-
level failures. It is typically implemented by killing and restarting a deadlocked thread in hopes of
avoiding a repeat deadlock [Gra78]. The premise is that debugging deadlock-causing bugs in appli-
cations that use a database should not be in the critical path of recovering those applications, hence
the push of this functionality down into the database layer.

Furthermore, the time to find and deploy a permanent fix can sometimes be intolerably long.
For example, the Patriot missile defense system, used during the Gulf War, had a bug in its control
software that could be circumvented only by rebooting every 8 hours. Delays in sending a fix or
information about the reboot workaround to the field resulted in the system failing to intercept an
incoming Scud missile, which hit the US Army barracks in Dahran (Saudi Arabia), leading to 28
dead and 98 wounded soldiers [Off92].

4.1.2 Rebooting returns system to a known state

Restarting a failed process or system reclaims stale resources and cleans up corrupt state, returning

the system to a known, well-tested state, albeit with possible loss of data integrity. Corrupt or stale
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state, such as a mangled heap, can lead to some of the nastiest bugs, causing extensive periods
of downtime. Even if a buggy process cannot be trusted to clean up its own resources, entities
with hierarchically higher supervisory roles (e.g., the operating system) can cleanly reclaim any
resources used by the process and restart it.

In the Inktomi search engine, cluster nodes are periodically rebooted several times a day, in a
rolling fashion, in order to bring the Web servers back to their initial, clean state [Bre00O]. This
is affordable because the cluster has n instances of the Web server for a population of w users,
with each server being able to handle in excess of u/n users. A node reboot or transient node
failure result solely in a decreased amount of search answers per query, while keeping overall query

throughput constant.

4.1.3 Rebooting is simple and unequivocal

Unlike most recovery techniques, reboot-based recovery does not require the cooperation of the
entity being recovered, but rather only that of its hierarchically-superior entity (e.g., a process can
be restarted regardless of what that process is doing, as long as the kernel cooperates).

In addition to being unequivocal, rebooting is also straightforward to use and/or script; in an
ideal world, all recovery from failures would take the form of some type of reboot. As we will
see later, this makes reboot-based recovery easy to automate. Case in point: at major Internet
portals, it is not uncommon for newly hired engineers to write and deploy production code after
little more than one week on the job. Simplicity is stressed above all else, and code is often written
under the explicit assumption that it will necessarily be killed and restarted frequently. This affords
programmers such luxuries as never calling free () in their C code, thereby avoiding an entire

class of pernicious bugs [Pal02].

4.1.4 Rebooting is effective against poorly understood failures

As described earlier, in practice reboot-based recovery “cures” many application-level failures [Mit04,
Vor(03, Lev03, Pal02]. This observation speaks not only to the effectiveness of reboots, but also to
the fact that they can be employed against problems with unknown root causes. As software com-
plexity increases, the number of unexplained behaviors increases as well, resulting in many failures
for which the only recourse is reboot, hence the popularity of this technique. As we will show later,
reboot is one of the few application-generic recovery techniques available today.

NASA’s Mars Pathfinder illustrates the value of such recovery — shortly after landing on Mars,
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the spacecraft identified that one of its processes failed to complete execution on time, so the control
software decided to restart all the hardware and software [Ree98]. Despite the fact that the software
was imperfect — it was later found that the hang had been caused by a hard-to-reproduce priority-
inversion deadlock — the watchdog timers and restartable control system brought the system back
into normal operation. It wasn’t perfect software that saved the mission, rather the restart-oriented

design of VxWorks, the operating system running on the spacecraft.

Rebooting is not usually considered a graceful way to keep a system running — most systems are
not designed to tolerate unexpected crash-restarts, hence experiencing extensive and costly down-
time when rebooted, as well as potential data loss. This occurs most frequently when the software

lacks clean separation between data recovery and process recovery.

4.1.5 Rebooting can result in data loss/corruption

Reboot-based recovery in systems that are not crash-safe is dangerous. This is particularly acute
in software with high performance requirements — corresponding tradeoffs often make programs
more fragile. For example, why is it not safe to shut down a workstation by just flipping its power
switch? Often the reason is performance tradeoffs made in the filesystem and other parts of the
software. To avoid synchronous disk writes, many operating systems cache metadata updates in
memory, opening a window of vulnerability during which allegedly-persistent data is stored only in
volatile memory. An unexpected crash and reboot restarts the system’s processes, but buffered data

is lost, leaving the file system in an inconsistent state.

4.1.6 Rebooting can induce lengthy recovery

The filesystem example described above will usually require a lengthy fsck or chkdsk to repair,
an inconvenience that could have been avoided by shutting down cleanly. The designers of such
operating systems traded data safety and recovery performance for improved steady state perfor-
mance.

In software systems not designed for restartability, the transient failure of one or more compo-
nents often ends up being treated as a permanent failure. Depending on the system’s design, recover-
ing from a crash-induced failure can take very long if it requires manual intervention. NFS [SGK*85]
exhibits a flavor of this problem in its implementation of locking: a crash in the lock subsystem can

result in an inconsistent lock state between a client and the server, which sometimes requires manual
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intervention by an administrator to repair. The result is that many applications requiring file locks
test whether they are running on top of NFS and, if so, perform their own locking using the local

filesystem, thereby defeating the NFS lock daemon’s purpose.

In the rest of this chapter we will argue for a design in which we decouple data recovery from
process recovery, i.e., separate the definition and preservation of critical state from the code that
transforms that state. As will be shown later, such a design makes reboot-based recovery of pro-
cesses safe and fast. This separation is the very basis of crash-only design, which aims to get the

benefits of reboot-based recovery while mitigating its drawbacks

4.2 Why Crash-Only Design ?

In addition to arguing for a reboot-friendly design, we advocate software structure in which crashing

is the only way of shutting down — this is the crash-only design.

Occam’s Razor and the Restart Potpourri

As we have seen by now, rebooting is not optional in any system of reasonable size. There are many
reasons to restart software, and many ways to do it, with most non-embedded systems having a
variety of ways to stop; for example, an operating system can shut down cleanly, panic, hang, crash,
lose power, etc.

When shutting down programs cleanly, the resulting unavailability consists of the time to shut
down and the time to come back up; when crash-rebooting, unavailability consists only of the time
to recover. Ironically, shutting down and reinitializing can sometimes take longer than recovering
from a crash. Table 4.1 illustrates an informal comparison of reboot times (no critical data was lost

in either of the experiments).

System Clean reboot | Crash reboot
RedHat 8 Linux (with Ext3 filesystem) 104 sec 75 sec
JBoss 3.0 application server 47 sec 39 sec
Windows XP 61 sec 48 sec

Table 4.1: Duration of clean vs. crash reboots.

It is impractical to build a system that is guaranteed to never crash, even in the case of carrier
class phone switches or high-end mainframe systems. Since crashes are unavoidable, software

must be at least as well prepared for a crash as it is for a clean shutdown. But then — in the spirit
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of Occam’s Razor — if software is crash-safe, why support additional, non-crash mechanisms for

shutting down? A frequent reason is the desire for higher performance.

We described earlier the performance tradeoff in some UNIX filesystems by which metadata
updates are maintained in a write-back cache — this increases filesystem performance but also leaves
the filesystem in an inconsistent state after a crash. Not only do such performance tradeoffs impact
robustness, but they also lead to complexity by introducing multiple ways to manipulate state, more
code, and more APIs. The code becomes harder to maintain and offers the potential for more bugs
— a fine tradeoff, if the goal is to build fast systems, but a bad idea if the goal is to build highly
available systems. If the cost of such performance enhancements is dependability, perhaps it’s time

to reevaluate our design strategy.

We define a crash-only system as one that obeys two equations: stop=crash and start=recover.
The only way to stop the system is by crashing it; as a result, the only way to start the system is by
initiating recovery.

Mature engineering disciplines rely on macroscopic descriptive physical laws to build and un-
derstand the behavior of physical systems. These sets of laws, such as Newtonian mechanics, cap-
ture in simple form an observed physical invariant. Software, however, is an abstraction with no
physical embodiment, so it obeys no physical laws. Computer scientists have tried to use pre-
scriptive rules, such as formal models and invariant proofs, to reason about software. These rules,
however, are often formulated relative to an abstract model of the software that does not completely
describe the behavior of the running system (which includes hardware, an operating system, runtime
libraries, etc.). As a result, the prescriptive models do not provide a complete description of how
the implementation behaves in practice, because many physically possible states of the complete
system do not correspond to any state in the abstract model.

With the crash-only property, we are trying to impose, from outside the software system, macro-
scopic behavior that coerces the system into a simpler, more predictable universe with fewer states
and simpler invariants. Each crash-only component has a single idempotent “power-off switch” and
a single idempotent “power-on switch”; the switches for larger systems are built by wiring together
their subsystems’ switches. A component’s power-off switch implementation is entirely external to
the component, thus not invoking any of the component’s code and not relying on correct internal
behavior of the component. Examples of such switches include ki11 -9 sent to a UNIX process,
or turning off the physical, or virtual, machine that is running some software inside it.

Keeping the power-off switch mechanism external to components makes it a high confidence

“component crasher.” Consequently, every component in the system must be prepared to suddenly
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be deactivated. Power-off and power-on switches provide a very small repertoire of high-confidence,
simple behaviors, leading to a small state space. Of course, the “virtual shutdown” of a virtual
machine, even if invoked with ki1l -9, has a larger state space than the physical power switch on
the workstation, but it is still simpler than the state space of a typical program hosted in the VM, and
it does not vary for different hosted programs. Indeed, the fact that virtual machines are relatively
small and simple compared to the programs they host has been successfully invoked as an argument

for using VMs for inter-application isolation [WSGO2].

Recovery code deals with exceptional situations, and must run flawlessly. Unfortunately, ex-
ceptional situations are difficult to handle, occur seldom, and are not trivial to simulate during de-
velopment; this often leads to unreliable recovery code. In crash-only systems, however, recovery
code is exercised every time the system starts up, which should ultimately improve its reliability.
This is particularly relevant given that the rate at which we reduce the number of bugs per thousand
lines of code lags behind the rate at which the number of lines of code per system increases (see
Section 1.1.2), with the net result being that the number of bugs in an evolving system increases
with time [CYCT01]. More bugs mean more failures, and systems that fail more often will need to

recover more often.

Many of the benefits resulting from a crash-only design have been previously obtained in the
data storage/retrieval world with the introduction of transactions. Our approach aims for a similar
effect on the failure properties of Internet systems — crash-only design is in many ways a general-
ization of the transaction model. It is important to note that Internet applications do not have to use
transactions in order to be crash-only; in fact, ACID semantics are sometimes overkill. For exam-
ple, session data accumulates information at the server over a series of user service requests, for use
in subsequent operations. It is mostly single-reader/single-writer, thus not requiring ordering and
concurrency control. The richness of a query language like SQL is unnecessary, and session state
usually does not persist beyond a few minutes. These observations are leveraged by SSM [LF03], a

crash-only hashtable-like session state store.

A crash-only system makes it affordable to transform every detected failure into component-
level crashes; this leads to a simple fault model, and components only need to know how to recover
from one type of failure. For example, [NBMNO2] forced all unknown faults into node crashes,
allowing the authors to improve the availability of a clustered Web server. Existing literature often
assumes unrealistic fault models (e.g., that failures occur according to well-behaved tractable dis-
tributions); a crash-only design enables aggressive enforcement of such desirable fault models, thus

increasing the impact of prior work. If we state invariants about the system’s failure behavior and
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make such behavior predictable, we are effectively coercing reality into a small universe governed

by well-understood laws.

4.3 Principles of Crash-Only Design

In this section we describe a set of properties that we deem sufficient for a system to be crash-
only both at the system level and at the component level. If components are crash-only, restarting
these components becomes safe and fast; in chapter 7, we will show such component restarts can
achieving many of the same benefits as whole-system restarts, but an order of magnitude faster and
with an order of magnitude less lost work. Component-level restarts are called microreboots, a
detailed description of which appears in chapter 5.

Retrofitting systems that are recoverable by reboot is generally a difficult task. Researchers
have shown that the use of checkpoint-based solutions in an attempt to achieve application-generic
recovery is challenging [LCCOO]. It therefore makes sense to architect systems from the ground up,
if the end result is “universal” reboot-based recovery. Starting from the hypothesis that applications
are the predominant sources of downtime, rather than the data management servers, we describe
here a few architectural guidelines that aim to separate process recovery from data recovery. In this

vein, we have 3 goals:

* Strong boundaries: There must be a clear boundary around what is being rebooted, i.e., it
should be possible to indicate unambiguously what state will be lost, what resources released,
what loci of control returned to their start state, etc. For example, in the case of a process,
the boundary is typically the process’s heap and any kernel data structures or resources being

maintained on the process’s behalf.

* Loose coupling: if the entity being rebooted is part of a distributed system, other entities that
communicate with it must be able to tolerate the reboot event as normal, not exceptional. For
example, in a distributed system, calls to an RPC server that has failed and is in the process

of recovering could be stalled or temporarily rerouted to a failover RPC server.

 State and consistency preservation: To avoid data loss, we must ensure that all state visible
outside the component is either soft/discardable from the point of view of other components,
or it is committed to a separate persistent state store which has its own recovery procedures in
case of failure. For example, UDP multicast tree information is discardable soft state whose

reconstruction is explicitly part of the corresponding routing protocol.
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These conditions do not guarantee that rebooting will successfully recover every observed fail-
ure, only that a reboot will not result in a change in application semantics (e.g., as caused by data or
consistency loss).

To make components crash-only, we require that all critical state be kept in dedicated, crash-only
state stores. To make a system of interconnected components crash-only, it must be designed so that
components can tolerate the crashes and temporary unavailability of their peers. This requires strong
modularity with relatively impermeable component boundaries, timeout-based communication and
lease-based resource allocation, as well as self-describing requests that carry a time-to-live and
information on whether they are idempotent. While recognizing that some of these choices sacrifice
performance, we strongly believe the time has come for robustness to claim its status as a first-class

citizen.

4.3.1 Fine-grained isolation

Component-level reboot time is determined by how long it takes for the underlying platform to
restart a target component and for this component to reinitialize. A crash-only, microrebootable
application therefore aims for components that restart as fast as possible, given application-specific
constraints (such as functionality, permissions, etc.).

Components are defined by externally-enforced boundaries, that provide strong fault contain-
ment. The desired isolation can be achieved with virtual machines, isolation kernels [WSGO02],
task-based intra-JVM isolation [SDLS02, CDO1], OS processes, etc. Web hosting service providers
often use multiple virtual machines on one physical machine to offer their clients individual Web
servers they can administer at will, without affecting other customers. The boundaries between
components delineate distinct, individually recoverable stages in the processing of requests.

While partitioning a system into components is an inherently system-specific task, developers
can benefit from existing component-oriented programming frameworks. Architectures that provide
(and/or enforce) a component structure “out of the box,” such as Microsoft’s .NET and Sun’s Java
2 Enterprise Edition (J2EE), provide an excellent platform for studying microreboots, and we will
do so in chapters 6 and 7.

Aiming for fine-grained components is not a new goal; e.g., microkernels [ABB86] have advo-
cated the separation of operating system services into separate processes, albeit for different reasons
than microrecovery. Yet, these efforts have seldom succeeded, primarily because the dependabil-
ity benefits were not compelling when set against the performance overheads. We feel that now

the time is ripe because: (a) complexity is forcing developers into modularized architectures for
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reasons that go beyond recovery (maintainability, portability, testing, etc.); and (b) hardware has
become so fast that performance overheads due to such structuring become inconsequential in in-
creasingly more systems, with the benefits of the architecture far outweighing the performance
drawbacks. Many large-scale infrastructures, often found in Internet services, have found ways
to improve performance via horizontal scaling in clusters, in a way that does not compromise the

modular architecture.

4.3.2 State segregation

We define critical state in an interactive system to be state that can only be recreated by replaying
the end user interaction with the system. All other state (i.e., that can be recreated by the system on
its own), is discardable upon reboot. For recovery to be correct, we must prevent microreboots from
inducing corruption or inconsistency in the critical state. The inventors of transactional databases
recognized that segregating recovery of persistent data from application logic can improve the re-
coverability of both the application and the data that must persist across failures. We take this idea
further and require that microrebootable applications keep all critical state in dedicated state stores
located outside the application, safeguarded behind strongly-enforced high-level APIs. Specialized
state stores (e.g., relational and object-oriented databases, file system appliances, distributed data
structures [GBHCO0O0], non-transactional hashtables [HF03], session state stores [LF03], etc.) are
better suited to manage state than application code.

Storing all critical state in dedicated state stores takes the (potentially lengthy) task of data re-
covery out of the critical path of application recovery, because the application can be restarted and
recovered without triggering data recovery in the state store. In some sense, applications become
stateless clients of the state stores, allowing applications to have simpler and faster recovery rou-
tines. A popular example of such separation can be found in three-tiered Internet architectures,
where the middle tier is largely stateless and relies on back-end databases to store data.

Aside from enabling safe microreboots, the complete separation of data recovery from applica-
tion recovery generally improves system robustness, because it shifts the burden of data manage-
ment from the often-inexperienced application writers to the specialists who develop state stores.
While the number of applications is vast and their code quality varies, database systems and ses-
sion state stores are few and their code is consistently more robust. In the face of demands for
ever-increasing feature sets, application recovery code that is both bug-free and efficient will likely
be increasingly elusive, so data/process separation could improve dependability by making process

recovery simpler. The benefits of this separation can often outweigh the potential performance
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overhead.

Interfaces for crash-only state stores

Crash-only programs work best with crash-only state stores, because if the entire system is crash-
only, a single type of recovery mechanism and policy can be used throughout. We therefore argue
that dedicated state stores should be crash-only; this requirement does not simply push the problem
down one level, but rather separates the part of the system that breaks often (applications) from the
one that doesn’t (data managers). Many commercial off-the-shelf state stores available today are
crash-safe (i.e., they can be crashed without loss of data), such as databases and the various network-
attached storage devices, but most of them recover slowly, making them poor crash-only state stores.
The same products, however, offer tuning knobs that permit the administrator to trade performance
for improved recovery time, such as taking checkpoints more often in the Oracle DBMS [LGWJO01].

The abstractions and guarantees provided by state stores must be congruent with application
requirements. This means that the state abstraction exported by the state store should not be too
powerful (e.g., offering a SQL interface with ACID semantics for storing and retrieving simple key-
value tuples) and not too weak. A state abstraction that is too weak will require client components
to do too much of their own state management, such as implementing a customer record abstraction
over an offered file system interface. Good state abstractions allow applications to operate at their
“natural” semantic level. Offering the weakest state guarantees that satisfy the application allows us
to exploit application semantics and build simpler, faster, more reliable state stores.

For example, Berkeley DB [OBS99] is a storage system supporting B+tree, hash, and record
abstractions. It can be accessed through four different interfaces, ranging from no concurrency
control/no transactions/no disaster recovery to a multi-user, transactional API with logging, fine-
grained locking, and support for data replication. Applications can use the abstraction that is right
for their purposes and the underlying state store optimizes its operation to fit those requirements
at the highest level of performance it can provide. Workload characteristics can also be leveraged
by state stores; e.g., expecting a read-mostly workload allows a state store to utilize write-through

caching, which can significantly improve recovery time and performance.

How many different state stores?

Enterprise and Internet applications are standardizing on a small number of state store types: trans-

actional persistent state, single-reader/single-writer persistent state (e.g., user profiles, that almost
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never see concurrent access), expendable persistent state (server-side information that could be sac-
rificed for the sake of correctness or performance, such as clickstream data and access logs), session
state (e.g., the result set of a previous search, subject to refinement), soft state (state that can be re-
constructed at any time based on other data sources), and volatile state. While differentiated mostly
by guaranteed lifetime, the requirements for these categories of state lead to qualitatively different

implementations.

An interesting example is offered by object-oriented databases (OODB), which provide persis-
tent storage for programming language objects and offer a high level of congruence between the data
model for the application and the data model of the database. Despite these advantages, OODBs
have not shaken the market stronghold of the proven commercial relational databases (RDBMS).
Instead, RDBMSs are increasingly offering object-oriented features, and at the same time allowing

users to relax ACID requirements (e.g., by adjusting the inter-transaction isolation levels).

4.3.3 Inter-component decoupling

In an interactive system, subsystems that are recovered by crash-rebooting become temporarily
unavailable to serve requests. For a crash-only system to gracefully tolerate such behavior, compo-
nents need to be decoupled from each other. Strong decoupling between components is necessary
for independent recovery, because components need to be smoothly re-integrated into the running

system.

State segregation by itself introduces a certain level of decoupling, because separating compo-
nents’ process recovery from their data recovery implies that most component-level recovery can
proceed independently of other components. Components in a crash-only system have well-defined,
well-enforced boundaries; direct references, such as pointers, do not span these boundaries. If cross-
component references are needed, they are stored outside the components, either in the application

platform (operating system, application server, etc.) or, in marshalled form, inside a state store.

All interactions between crash-only components should have a timeout. This includes explicit
communication as well as RPC: if no response is received to a call within the allotted timeframe,
the caller assumes the callee has failed and reports it to a recovery manager, which crash-restarts the
callee (thus enforcing the assumption of failure). Crash-restarting helps ensure the called component
is in a known state; this is safe because the component is crash-safe and crash-restart is idempotent.
Timeouts combined with crashing provide an orthogonal mechanism for turning all non-Byzantine

failures, both at the component level and at the network level, into fail-stop events (i.e., the failed
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entity either provides results or is stopped), even though the components are not necessarily fail-

stop. Such behavior is easier to accommodate, and containment of faults is improved.

4.3.4 Component/request decoupling

While inter-component decoupling enables structural reintegration of a microrebooted component
after recovery, we also need functional reintegration. This is achieved via retriable requests, that
decouple components from the requests they process.

When a component invokes a currently microrebooting component, it receives from the appli-
cation platform (OS, application server, etc.) a RetryAfter (t) exception; the call can then be
re-issued after the estimated recovery time ¢, if it is idempotent. For non-idempotent calls, rollback
or compensating operations can be used, in order to make these calls idempotent. Making all re-
quests idempotent can significantly simplify recovery. If components transparently recover in-flight
requests this way, intra-system component failures and microreboots can be hidden from end users.

Component/request decoupling is achieved by virtue of the fact that any request that failed due
to component-level recovery can be retried on a different, non-failed instance of that component.
Requests, however, must make the state and context needed for their processing explicit. This
allows a fresh instance of a rebooted component to pick up a request and continue from where
the previous instance left off. Requests also carry information on whether they are idempotent (to
indicate whether the request can be retried transparently or not) along with a time-to-live (to avoid
endless retries). Both idempotency and TTL information can initially be set at the system boundary,
or by the client. For example, the TTL may be determined by load or service level agreements,
and idempotency flags can be based on application-specific information (which can be derived, for
instance, from URL substrings that determine the type of request). Many interesting operations in
an Internet service are idempotent, or can easily be made idempotent by keeping track of sequence
numbers/timestamps or by wrapping requests in transactions; some large Internet services have
already found it practical to do so [Pal02]. Over the course of its lifetime, a request will split into

multiple sub-operations, which may rejoin, in much the same way nested transactions do.

4.3.5 Component/resource decoupling

One can view explicit deallocation of resources as a mere optimization, not a required condition for
the program to run properly. Should resources not be explicitly deallocated, they must be released

by the application platform whenever needed in order to continue correct execution.
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Having decoupled components from each other and from the requests they process, the last
step is to decouple components from the resources needed to process the requests. Resources in a
frequently-microrebooting system should be leased [GC89], to improve the reliability of cleaning
up after a microreboot, which may otherwise leak resources.

In addition to memory and file descriptors, we believe certain types of persistent state should
carry long-term leases; after expiration, this state can be deleted or archived out of the system. One
example is account profiles for a free e-mail provider: every time the user logs in, a 6-month lease
is renewed; when the lease expires, all associated data can be purged from the system. One can
also imagine leasing CPU resources: if a computation is unable to renew its execution lease, it
is terminated by a high confidence watchdog [Fet03]. If requests carry a time-to-live, then stuck
requests can be automatically purged from the system once this TTL runs out. For example, in PHP,
a server-side scripting language used for writing dynamic Web pages, runaway scripts are killed and
an error is returned to the Web browser. Leases give us the ability to reason about the conditions that
hold true of the system’s resources after a lease expires. Infinite timeouts/leases are not acceptable;
the maximum-allowed timeout and lease are specified in an application-global policy. This way it

is less likely that the system will hang or become blocked.

4.4 Discussion

The crash-only design approach embodies well-known principles for robust programming of dis-
tributed systems. We push these principles to finer levels of granularity within applications, giving
non-distributed applications the robustness of their distributed brethren, along with the ensuing ben-
efits and drawbacks.

Building crash-only systems is not easy; the key to widespread adoption of our approach will
require employing the right architectural models and having the right tools. With the recent success
of component-based architectures (e.g., J2EE and .NET), and the emergence of the application
server as an operating system for Internet applications, it is possible to provide many of the crash-
only properties in the platform itself, as we show in chapter 6. This would allow all applications
running on that platform to take advantage of the effort and become crash-only.

When counting on request retry to hide unavailability from end users, the finer the grain of
these requests, the more successful the result, because the effect on service quality is smaller (see
section 8.6). We therefore focus on applications whose workloads can be characterized as relatively

short-running tasks that frame state updates. Substantially all Internet services fit this description,
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in part because the nature of HTTP has forced designers into this mold. As enterprise services
and applications (e.g., workflow, customer management) become Web-enabled, they adopt similar
architectures, thus widening the spectrum of applications that are amenable to microreboot-based

recovery.

In order for a crash-only system to make reasonable progress, enough of its requests must be
idempotent to avoid frequent rollbacks. This requirement might be inappropriate for some appli-
cations. Our proposal does not handle Byzantine failures or data errors, but such behavior can be
turned into fail-stop behavior using well-known orthogonal mechanisms, such as triple modular

redundancy [GR93] or clever state replication [CL99].

In today’s Internet systems, fast recovery is obtained by overprovisioning and counting on rapid
failure detection to trigger failover. Such failover can sometimes successfully mask hours-long
recovery times, but often detecting failures end-to-end takes longer than expected. Crash-only soft-
ware is complementary to this approach and can help alleviate some of the complex and expensive
management requirements for highly redundant hardware, because faster recovering software means
less redundancy is required. In addition, a crash-only system can reintegrate recovered components

faster, as well as better accommodate removed, added, or upgraded components.

We expect throughput to suffer in crash-only systems, but this concern is secondary to the high
availability and predictability we expect in exchange. The first program written in a high-level lan-
guage was certainly slower than its hand-coded assembly counterpart, yet it set the stage for software
of a scale, functionality and robustness that had previously been unthinkable. These benefits drove
compiler writers to significantly optimize the performance of programs written in high-level lan-
guages, making it hard to imagine today how we could program otherwise. We expect the benefits
of crash-only software to similarly drive efforts that will erase, over time, the potential performance

loss of such designs.

The dynamics of loosely coupled systems can sometimes be surprising (e.g., unforeseen syn-
chronization between Internet router updates [FJ94]). Resubmitting requests to a component that is
recovering can overload it and make it fail again; for this reason, the RetryAfter exceptions should
provide an estimated time-to-recover. This estimated value can be used to spread out request resub-
missions, by varying the reported time-to-recover estimate across different requesters. A maximum
limit on the number of retries may be specified in an application-global policy, along with the lease
durations and communication timeouts. These numbers can be dynamically estimated based on
historical information collected by a recovery manager [CKK 03], or simply captured in a static

description of each component, similar to deployment descriptors for EJBs. In the absence of such
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hints, a simple load balancing algorithm or exponential backoff can be used.

There is also a natural tension between the cost of restructuring a system to make it crash-only
and the cost (in downtime) of not restructuring it. Fine module granularity improves the system’s
ability to tolerate partial restarts, but requires the implementation of a larger number of internal,
asynchronous interfaces. The paradigm shift required of system developers could make such a
design too expensive in practice and, when affordable, may lead to buggier software. In some cases
crash-only design may simply not be feasible, such as for systems with inherent tight coupling (e.g.,

real-time closed-loop feedback control systems).

4.5 Chapter Summary

This chapter proposed a design that enables the systematic use of (micro)reboots to recover from
failures. Crash-only programs crash safely and recover quickly; there is only one way to stop such
software — by crashing it — and only one way to bring it up — by initiating recovery. Crash-only
systems are built from crash-only components, and the use of transparent component-level retries
hides intra-system component crashes from end users.

We took the view that transient failures will continue plaguing the software infrastructures we
depend on, and thus reboots are here to stay. We proposed turning the reboot from a demonic
concept into a reliable partner in the fight against system downtime, given that it is a time-tested,
effective technique for circumventing Heisenbugs.

By using a crash-only approach to building software, we expect to obtain better reliability and
higher availability. Application fault models can be simplified through the application of externally-
enforced “crash-only laws,” thus encouraging simpler recovery routines which have higher chances
of being correct. Writing crash-only components may be harder, but their simple failure behavior
can make the assembly of such components into large systems easier. The promise of a simple
fault model makes stating invariants on failure behavior possible. A system whose component-level
and system-level invariants can be enforced through crash-rebooting is more predictable, making
recovery management more robust. In chapter 7 we quantitatively evaluate these hypotheses.

Building crash-only systems in a systematic way requires a framework consisting of well-
understood design rules. Our attempt at formulating such a framework was presented here, advo-
cating the paradigm of building applications as distributed systems, even if they are not distributed
in nature.

While reboot-based recovery is still a coarse recovery method in today’s systems, in the next
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chapter we will describe how this recovery sledgehammer can be turned into a scalpel, as long as

the system being recovered is crash-only.
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Chapter 5
Microreboot-based Recovery

In this chapter we show that, with a small number of changes, runtime platforms can support a
mechanism by which fine-grained components of crash-only applications are recovered through
microreboot at the first indication of failure. In later chapters, we will demonstrate that microre-
booting can achieve many of the same benefits as a process restart in Java systems, while reducing
unavailability by a factor of 50. The combination of crash-only software and microrebooting is a
better cost/dependability tradeoff compared to the approach of aiming for correct code and support-
ing diverse recovery mechanisms. Here we describe in general terms the infrastructure needed to
recover a crash-only application using microreboot, along with a simple policy that tolerates failure

of the recovery mechanism itself.

5.1 The Microreboot Mechanism

The model used throughout this dissertation is that of a crash-only application (consisting of crash-
only components) running atop an execution platform that has complete control over the execution
of the application. Such a platform could be an operating system running user programs, an appli-
cation server running hosted applications, an object framework running a distributed program, etc.
In this dissertation, the system in question can be any Java 2 Enterprise Edition (J2EE) application
running on a suitably modified J2EE application server (see chapter 6); individual EJBs (application
components) can be microrebooted in response to actual failure or just hints of impending failure.
Focusing on application availability is motivated by the fact that most downtime-causing failures
in large-scale business-critical systems occur at the application level [Mit04, Cho03, Pal02, Rei04].

Applications are therefore the weakest link, while hardware, operating systems, databases, Web
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servers are much more reliable, by comparison. This is not surprising, given that most business value
is created by applications, not the execution infrastructure itself; as a result, it is the applications that
change most often and evolve the fastest. We can therefore reliably place support for microrebooting

in the execution platform itself.

The model is abstractly represented in figure 5.1. The execution platform, be it an operating
system, application server, or Java virtual machine, instantiates and runs applications built from
components (shown as COM units), which interact with each other and with the platform’s services.
These components can be any of a variety of types: threads, processes, Java beans, .NET services,
etc. We extend the execution platform with a microreboot facility that performs the recovery per se,

and a failure monitoring facility (both are described in section 5.1.1).
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Figure 5.1: A crash-only application running atop a microreboot-enabled execution platform.

The monitoring agents are in charge of supervising the health of the applications and reporting
interesting changes to an external recovery manager. The manager decides which components need
to be recovered, thus implementing the desired recovery policy. These decisions are transmitted
to the microreboot facility for execution. Should the recovery not cure the observed failure, we
progressively enlarge the recovery perimeter to the larger, containing subsystem, as described in
section 5.2.2. The recovery attempts continue with increasingly larger scope, attempting to find the
fault recursively through successively broader fault domains until the failure stops manifesting or

until human intervention is deemed necessary; more details can be found in section 5.2.
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5.1.1 Platform-level support

The execution platform is a piece of software in control of the application components’ lifecy-
cle: instantiation/destruction, starting/stopping, and suspending/resuming (for example, Java ap-
plication servers can perform these operations on Java components). To this platform we add a

microreboot () facility, described by the pseudocode shown in figure 5.2.

microreboot( component c )
reject new requests to ¢ with MicrorebootInProgressException(t)

terminate requests that are in progress at ¢
release c’s resources

destroy ¢

initialize new instance of ¢

integrate new ¢ into running system
resume accepting requests to ¢’

Figure 5.2: Pseudocode for a generic microreboot facility.

The role of the microreboot facility is to cleanly remove the faulty component from the system,
restart it, then reintegrate it into the running system. For this to be effective, the execution platform

must

» mediate all interactions between the application’s components, in order to control the suspen-
sion and resumption of new requests (e.g., in a Java application server, application compo-
nents call each other over RMI, Java’s RPC-like remote method invocation service provided

by the application server)

* control the resources of application components, so they can be promptly reclaimed upon
microreboot (e.g., an operating system kernel has this type of control over the local resources

of processes)

5.1.2 State stores

As described in chapter 4, specialized state stores are an important ingredient of any crash-only
system. We gave as examples databases, session state managers, and persistent hashtables. Since
the state stores are themselves crash-only, they are amenable to reboot-based recovery as well. We
therefore hook state store recovery into the recovery manager, and treat the state stores as just

another set of components (albeit which fail much less frequently).
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5.1.3 Correctness of microrebooting

We will argue in this section that a system that recovers by microrebooting provides no less correct-
ness than if it recovered by full rebooting. For this, we need to show that a wrong response provided
by a correct crash-only system cannot be attributed to having recovered from a failure by microre-
boot instead of a full reboot in the system’s past. Correct behavior in the face of microreboots is
difficult to define in the absolute, since (by assumption) microreboots are performed in response to

a failure; with or without a microreboot, such failure might cause incorrect behavior.

Impact on shared state

We have defined critical state as state that can only be recreated by replaying the end user interaction
with the system; all such state is stored in dedicated state stores in a crash-only system. The result
of a particular user request depends only on the components it calls and on any critical state that is
involved in answering the request (whether or not that state is directly visible outside the component
boundary). Instances of components that are stateless (with respect to critical state) are by definition
indistinguishable from each other.

Since all critical shared state resides in external state stores, a microreboot is indistinguishable
from a full reboot: the state store itself cannot distinguish a microreboot from a full one, so consis-
tency of the stored state is not changed. For example, if the state resides in a session state store like
SSM, then the object representing the session state is always stored atomically and in its entirety —
microrebooting a component engaged in a SSM update looks to SSM just like a full reboot.

If critical state resides in several state stores and updates to this state are made in a non-atomic
fashion, then microrebooting one component may leave that state inconsistent, without notifying
the other component(s) that share it. A full reboot, on the other hand, would restart all components
simultaneously, thus not giving them an opportunity to read the inconsistent state.

First, we advocate that the implementation of the “strong boundaries” requirement of crash-only
design prevent such scenarios (e.g., in Java components, object references should not be passed
between components and the use of static variables should be conservative; these “best practices”
could be enforced by a suitably modified JIT compiler). When the runtime detects the presence of
such unsafe state sharing practices, it should disable the use of microreboots for the application in
question.

Second, in addition to prevention through language mechanisms, it is also possible to declare

higher level application invariants on shared critical state as constraints and assertions in the data
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schema at the various state stores. Mechanisms such as J2EE’s container-managed persistence
offer the option of describing these invariants in the deployment descriptors and having the runtime
enforce those constraints transparently, rather than requiring the state stores to do it.

Third, mechanisms such as that introduced in section 6.3.5 and described in appendix A, can
help determine groups of components that must be microrebooted together in order to preserve
correctness.

In addition to refreshing all components, a full reboot also discards the volatile shared state,
regardless of whether it is inconsistent or not; microrebooting allows such state to persist. In a crash-
only system, state that survives the recovery of components resides in a state store that assumes
responsibility for data consistency. In order to accomplish this, dedicated state repositories need
APIs that are sufficiently high-level to allow the repository to repair the objects it manages, or at
the very least to detect corruption. Otherwise, faults and inconsistencies perpetuate; this is why
application-generic checkpoint-based recovery in UNIX was found not to work well [LCCOO0]. In
the logical limit, all applications become stateless and recovery involves either microrebooting the
processing components, or repairing the data in state stores.

An interesting case is that of necessary, but non-critical state, that is lost upon microrebooting
and could be recreated post-microreboot, but isn’t. For example, a component may build up infor-
mation about how many other components are running in order to estimate system capacity and do
admission control; upon microreboot, this information could be lost and not recreated. If the system
were rebooted entirely, then the system would start in the original configuration and the capacity
estimator would not need updated configuration information. Such a design is in violation of the
crash-only principles, because a restart-after-crash behaves differently from a regular start; capacity

information should be reconstructed at each start (i.e., start=recovery).

Interactions with external resources

If a component is able to circumvent the execution platform in the acquisition of an external resource
that the platform is not aware of, then microrebooting the component may leak the resource in a
way that a full reboot would not. For example, a Java component X, running on a J2EE application
server, could directly open a connection to a remote database without using the application server’s
transaction service, acquire a database lock, then share that connection with another component Y.
If X is microrebooted prior to releasing the lock, Y’s reference will keep the database connection
open even after X’s recovery, and thus X’s DB session stays alive. The database will not release

the lock until after X’s DB session times out. In the case of a full reboot, however, the resulting
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termination of the underlying TCP connection by the operating system would cause the immediate
termination of the DB session and the release of the lock. If the application server knew that X

acquired a DB session, it could properly free that session when X is microrebooted.

It is for this type of reasons that we require application components to obtain resources exclu-

sively through the facilities provided by their platform.

Microrebooting is well-suited for Internet services

We believe the microreboot technique is best suited for large-scale Internet services and any applica-
tions that fit this mold, such as recent enterprise applications. The workloads faced by such services
consist of short-lived, mostly-independent requests coming from a large population of distinct users.
The work that Internet services must do is generally partitioned into disjoint sets of discrete opera-

tions; microreboots take advantage of the application’s structure to realize this potential.

Additionally, the underlying protocol (HTTP) and most of the application logic is stateless and,
except for marked, non-idempotent requests, end-users can safely retry failed requests until they
succeed. This lets us microreboot components in the system, knowing that any users affected will
face only a minor inconvenience. In fact, this property makes it useful to recover even from purely
deterministic bugs such as a pathologically malformed request: if recovery is fast enough, other

users issuing non-pathological requests may still be able to use the service.

Many Internet services today use large in-memory caches in order to avoid the bottleneck of
central databases (e.g., the servers at a large Internet portal use 64 GB of RAM just for caching
database queries [Pal02]). Unfortunately, a full machine reboot flushes this cache, and re-warming
it can take a long time: transferring 64 GB over a 40 MB/sec SCSI bus takes on the order of half an

hour, which is why whole-system reboots are generally avoided.

Microrebooting can be viewed as an optimization over rebooting, because any failure that can
be cured with a microreboot could have been cured with a full reboot — the difference is that mi-
crorebooting can do so more than an order of magnitude cheaper (chapter 7). However, as will be
shown in chapter 8, microrebooting goes beyond just optimization, as it enables a qualitative change

in the way failures are handled.
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5.2 Microreboot-based Recovery Policy

Microreboots separate the concern of recovery from that of diagnosis and bug finding. When an
online system fails, downtime is expensive and the first priority is to restore service by any means
available. Identifying and fixing the root cause of the transient failure is a separate effort, and
microrebooting does not aid this effort in a direct way, nor does it provide much more than a “tem-

porary fix.” Thorough logging mechanisms help developers fix root causes.

5.2.1 Recovery groups

When the recovery manager receives a failure notification from the monitoring agents, it must decide
which component to microreboot. In the ideal case, each component is individually recoverable; in
practice, this is not always possible due to dependencies between components. Such dependencies

can be:

* inherent to the application, such as a Login component requiring an Authenticate component

to be present in order to complete a user login;

* due to lack of programmer discipline (such as the inappropriate use of shared state) or due to

legacy software that is too costly to partition into components;

* due to idiosyncratic interactions (for example, UpdateUser may leak database connections,

thus causing another component to fail due to the unavailability of such connections).

A representation of these dependencies is necessary for effective microreboot-based recovery;
we call such a representation a failure propagation map (f-map). An f-map is a directed graph whose
nodes are the application components and whose edges represent propagation paths of faults from
one component to another (see figure 6.5 for an example). Note that f-maps are not guaranteed to
be correct, but rather serve as an aid to improve overall recovery effectiveness.

The transitive closure of a component ¢ over the f-map is called a recovery group, and repre-
sents the unit of microreboot recovery. In the presence of dependencies, when microrebooting a
component c is necessary, the corresponding recovery group must be microrebooted. This ensures
both correctness (by avoiding inconsistencies) as well as recovery performance (by avoiding causing

other failures that will need to be detected, localized, and recovered later).
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5.2.2 Recursive microrebooting

Microrebooting a set of components may not cure the observed failure, either because

* some error has propagated from faulty components to their neighbors outside the recovery

group, along an edge not captured in the current instance of the f-map, or

* the failure is not reboot-curable (e.g., a persistent failure, a condition triggered deterministi-

cally by bad input), or

* the recovery manager chose the wrong component to microreboot.

For these situations, we introduced the notion of recursive microrebooting: upon noticing that
a microreboot has not cured the failure as expected, the recovery manager initiates progressively
coarser grained restarts until either the failure no longer manifests, or the top of the system hierarchy
has been reached. In the latter case, the recovery manager either notifies a system administrator (by
pager, email, etc.) or invokes an alternate recovery mechanism. As will be seen in chapter 7,
microreboots are generally cheap enough to attempt them as a first-line recovery prior to any other
recovery mechanism.

An example of such recursive microrebooting would be in a Java system, where individual
components are microrebooted, then larger groups of components, then the entire JVM, and finally
the operating system. If a full machine reboot does not eliminate the failure symptoms (due, for
instance, to a failed disk drive), then a human operator is notified.

The recovery manager also recognizes repeating patterns in order to prevent infinite microreboot
loops. If two or more components form an undetected reboot-failure cycle, then microrebooting
one component could cause the second to fail, and rebooting the second component causes the
original component to fail again, repeating the process endlessly. To identify such patterns, the
recovery manager records a signature tuple o =<symptom, suspected-faulty components, action
taken> in a history log and, upon receiving a new failure symptom, looks it up. If it reacted to the
same symptom within a recent At amount of time, it immediately enlarges the scope of recovery,
otherwise it performs the requisite microreboot.

In the same vein, the recovery manager tracks its past responses to prior failure symptoms to
optimize recovery. If a symptom is received that required multi-level recursive microrebooting in the

past, the recovery managers short-circuits this process and performs only the final level of recovery.
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5.2.3 Tradeoffs

A detailed analysis of the various recovery policies and tradeoffs involved is beyond the scope of
this dissertation; nevertheless, in this section we touch upon some of the issues that microreboots
bring to light. We have purposely separated mechanism from policy in the above design in order to

allow new policies to be seamlessly plugged in, to encourage further research on the topic.

Knowing what to microreboot

Microrebooting is an application-generic recovery technique for componentized applications, which
can be supported entirely in the execution platform, and requires no recovery awareness in the
application other than the crash-only software principles. It promises a reduction in recovery time,
but it also has a reduced certainty of success. In the prototype described in chapter 6, microrebooting
is 1-2 orders of magnitude faster than a full restart — in this case, the reduced certainty of success is
of little consequence, since the cost of attempting a microreboot is minimal.

This, however, may not be the case in all systems. Should the relative benefit of a microre-
boot be considerably lower, identifying the exact components that need to be recovered becomes
increasingly more important to reducing recovery time. Since we advocate avoiding the pollution
of the recovery manager with a priori knowledge of application structure, it can be claimed that re-
cursive microrebooting is an application-generic recovery approach. Yet, in the face of incomplete
application information, optimizations are difficult.

Resolving this dilemma is system-specific. Chapter 6 describes our approach in a Java environ-

ment; others can build upon these initial constructions and extend to other environments as well.

Preventing failures and curbing fault propagation

By microrebooting promptly at the first indication of a failure, faults are prevented from propagating
to the rest of the system. Such faults typically propagate through calls between healthy and faulty
components; prompt recovery prevents some of these contaminating calls. Furthermore, we can
microreboot prior to any observed failure, as a way to prevent such failure from occurring.

Based on the f-map and monitoring information, the recovery manager has the ability to not only
make reactive recovery decisions but proactive preventive maintenance decisions as well. Software
rejuvenation [HKKF95, GHKT96] has been shown to be a useful technique for staving off failure
in systems that are prone to aging; for instance, rebooting several times a day Apache Web servers

that leak memory is an effective way to prevent them from failing [BreO1b]. The recovery manager
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in a recursively recoverable system tracks components’ failure histories and infers for how long a
component can be expected to run without failing due to age; restarting it before that time runs
out will avert aging-related failure. The observation of fail-stutter behavior [ADADO1b] can also
trigger rejuvenation. A number of sophisticated models have been developed for the software aging
process [GPTT95, GMVTI8], but experience with deployed large scale Internet services seems to
indicate that simple observation-based strategies work best [BreO1b].

Similarly, the recovery manager can identify statistical correlations between the failure of one
component (or some other types of events) and the subsequent failure of other component(s); should

the former be observed, recovery of the latter can be triggered preventively.

Delaying a full reboot

The more state gets segregated out of the application, the less effective a reboot becomes at scrub-
bing this data. When a full process restart is required, poor diagnosis may result in one or more
ineffectual component-level microreboots. As discussed in Section 8.1, failure localization needs to
be more precise for microreboots than for full restarts. Using the recursive policy, microrebooting
progressively larger groups of components will eventually restart the entire system, but later than
could have been done with better diagnosis.

If we think of the recursive microrebooting policy as being described by an abstract “microre-
boot tree,” it becomes clear that, the closer to the bottom a restart occurs, the less expensive the en-
suing downtime, but the lower the confidence that transient failures will be resolved. In the extreme,
a full reboot is the last action taken (root of the tree), but it is certain to fix all reboot-curable failures.
When a failure manifests, a sophisticated recovery manager could use a cost-of-downtime/benefit-
of-certainty analysis to decide at what level of granularity to microreboot.

This same set of tradeoffs can be utilized in tuning the proposed rejuvenation regimen: it could
be as simple as rebooting periodically, or as sophisticated as a differentiated restart treatment for
each subsystem/component based on various parameters and variables. Identical systems can have
different revival and rejuvenation policies, depending on the application’s requirements and the
environment they are in. Scheduled non-uniform rejuvenation can transform unplanned downtime
into planned, shorter downtime, and it gives the ability to more often rejuvenate those components
that are critical or more prone to failure. For example, a recent history of revival restarts and load
characteristics can be used to automatically decide how often each component requires rejuvenation.
Simpler, coarse-grained solutions have already been proposed by Huang et al. [HKKF95] and are

used by IBM’s xSeries servers [IntO1].
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5.3 Chapter Summary

Adopting a model in which recovery is performed by microrebooting can be conducive to more
robust software even in the absence of performing said recovery.

The unannounced restart of a software component is seen by all other components as a tem-
porary failure; systems that are designed to tolerate such restarts are inherently tolerant to all tran-
sient non-Byzantine failures. Since most manifest software bugs and hardware problems are tran-
sient [MMS™'00, MD99, Cho97], a strategy of failure-triggered, reactive component restarts will
mask most faults from the outside world, thus making the system as a whole more available.

Since our approach is based on observation and control at the platform layer, it is application-
generic and requires no a priori knowledge of application structure. This addresses the fact that
today’s services are heterogeneous and dynamic, encompassing many vendors’ hardware and soft-
ware components that evolve rapidly and often turbulently. We can therefore cast observed failures
into microreboot-curable failures, and only treat them as special failures when microrebooting does

not cure them.
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Chapter 6

Prototype and Experimental Setup

In evaluating microreboot-based recovery, we aimed to construct a testbed that is as close to a real
Internet service as a lab environment can permit. A common design pattern for Internet-connected
applications is the three-tiered architecture [Jac03, CMZ02]: a presentation tier consists of stateless
Web servers, the application tier, and the back-end tier. The last decade has seen a number of
systems, such as those hosting enterprise applications, migrate to the three-tiered architecture. The
presentation tier handles and demultiplex incoming HTTP connections, the application logic tier

runs the code that constitutes the application, and the back-end tier stores persistent data.

We chose to use the enterprise edition of Java (J2EE) [Sun], a component framework specifically
designed to simplify the development of large-scale enterprise applications in the three-tiered model.
Motivated by J2EE’s popularity (40% of the current enterprise application market [Bar04]), we
chose to add microreboot capabilities to the most widely used open-source J2EE application server
(JBoss) and converted a J2EE application (RUBiS) to the crash-only model. The changes we made

to the JBoss platform universally benefit all J2EE applications running on it.

We start this chapter by describing the details of J2EE (section 6.1) and the synergies between
this programming platform and the crash-only principles (section 6.2). We then describe the testbed
itself, including all the extensions we made to JBoss and other software used in our experiments
(section 6.3). We present our failure detection and localization mechanism (section 6.4), the client
emulator (section 6.5), and finally the action-weighted throughput metric used for the evaluation

(section 6.6).
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6.1 Overview of J2EE

J2EE is an extension of the Java language and runtime, allowing Java programmers to seamlessly
use facilities that, previously, required complex programming; examples include access to remote
databases and transactional control, LDAP and other authentication and naming infrastructures,
interactions with SOAP and WSDL-based Web services, CORBA object brokers, etc. In spite of
a number of shortcomings, J2EE has largely succeeded in allowing a wider set of programmers
to create Web-accessible enterprise applications that are portable between platforms and scalable,
while integrating with legacy technologies.

J2EE applications consist of portable Java components, called Enterprise Java Beans (EJBs),
and platform-specific XML deployment descriptor files. J2EE applications are hosted by and run
on an application server, as shown in figure 6.1. The J2EE application server, akin to an operating
system for Web-connected enterprise applications, uses the deployment information to instantiate
an application’s EJBs inside management containers; there is one container per EJB object, and
it manages all instances of that object. The server-managed containers provide the application
components with a rich set of services: thread pooling and lifecycle management, client session
management, database connection pooling, transaction management, security and access control,
etc. A J2EE application is able to run on any J2EE application server, with modifications only

needed in the deployment descriptors.
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Figure 6.1: Architectural diagram of a J2EE application environment.

End users interact with a J2EE application through a Web interface, the application’s presen-

tation tier, encapsulated in a WAR — Web ARchive. The WAR component consists of servlets and
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Java Server Pages (JSPs) hosted in a Web server that resides outside the application server. The Web
tier translates URL accesses into invocations of EJB methods and then formats the returned results

into HTML pages for presentation to the end user.

To run a J2EE application, one must boot the operating system, start the J2EE application server,
start any necessary additional components required by the application (e.g., a database used for
persistent state storage and the Web server front-ends), and finally “deploy” the application on
the application server, i.e. instantiate each EJB in its container and allow the application to begin

accepting requests from the Web servers.

When the application server receives a call from the Web tier, it retrieves an idle thread from its
thread pool, associates it with the request, and then allows the thread to carry the request through
the various EJBs that need to be invoked. Invoked EJBs can call on other EJBs, interact with the
back-end databases, invoke other Web services, etc. An EJB is similar to an event handler, in that
it does not constitute a separate locus of control — a single Java thread shepherds a user request

through multiple EJBs, from the point it enters the application tier until it returns to the Web tier.

EJBs provide a level of componentization that is suitable for building crash-only applications;
this, together with the wide accessibility of the J2EE platform, were the primary reasons we chose
J2EE for our prototype. Aside from JBoss, there are a number of other application servers to which
all the modifications described here could be applied: Weblogic from BEA, Websphere from IBM,
iAS from Oracle, JRun from Macromedia, JOnAS from the ObjectWeb Consortium, Geronimo from
the Apache Software Foundation, Java AS from Sun, Enterprise Server from Borland, Resin from
Caucho, etc. The principles of microreboot-based recovery also easily carry over to frameworks like
Microsoft’s .NET, as well as the LAMP architecture (Linux, Apache Web server, MySQL database,
PHP/Python/Perl) for developing Web applications.

6.2 Synergies with Crash-Only Design

As described in section 4.3, to write a crash-only application in J2EE, we would need the J2EE
application server to provide strong isolation between components, and these components must be
fine-grained. There must be a way to segregate critical state from the application into dedicated
state stores. We must also be able to decouple components from each other, decouple components

from the requests they handle, and from the resources they use.
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6.2.1 Component management

EJBs, the J2EE components, run in the managed environment of an application server, which pro-
vides containers in which the beans are instantiated and run. The application server, aided by the
type safety of the Java language, provides clear boundaries around these components. Most J2EE
application servers provide the ability to deploy/undeploy individual EJBs, which offers sufficient
structure in the server for implementing microreboots.

The Web server processes that dispatch incoming HTTP traffic to EJBs are also self-contained

and can be managed independently of the EJBs.

6.2.2 Decoupling

Whenever an EJB wants to invoke another EJB’s method, it looks up the target EJB by name in the
Java Naming Directory (JNDI, provided by the application server) and uses the Java class resulting
from the lookup to make the invocation (similar to the way RPC stubs work). The inter-EJB calls
themselves are also mediated by the application server via the containers, to abstract away the
details of remote invocation (if the application server is running on a cluster) or replication (if the
application server has replicated a particular EJB for performance or load balancing reasons).

Since doing a lookup on every call is expensive, JBoss provides the caller with a proxy on the
first lookup, which then handles all subsequent calls without interacting with JNDI. This model
ensures that inter-bean communication is mediated by the application server, which is particularly
useful when an EJB is in the process of being microrebooted — with suitable modifications in the
application server, we can cleanly expose the recovery either by throwing back an exception to the
caller or by stalling the call until the target component has recovered.

We recommend against the use of direct references that span the boundaries of components.
Indirect, microreboot-safe references can be maintained outside the components, either by a state
store or by the application platform. For EJBs that do maintain references to other EJBs, microre-
booting a particular EJB causes those references to become stale. To remedy this, whenever an EJB
is microrebooted, we also microreboot the transitive closure of its inter-EJB references (the recov-
ery group), as described in section 5.2.1. This ensures that, when a reference goes out of scope, the
referent disappears as well.

Further containment of recovery is obtained through compiler-enforced interfaces and type
safety. EJBs cannot name each others’ internal variables, nor can they use mutable static vari-

ables. While this is not enforced by the compiler, J2EE “best practices” documents warn against
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the use of static variables and recommend instead the use of singleton EJB classes, whose state is

accessed through standard accessor/mutator methods.

6.2.3 State segregation

Web-enabled applications, like the ones we would expect to run on JBoss, typically handle three
types of important state: long-term data that must persist for years (such as customer information),
session data that needs to persist for the duration of a user session (e.g., shopping carts or workflow

state in enterprise applications), and virtually read-only data (static images, HTML, JSPs, etc.).

There are three types of EJB: (a) entity beans, which map each bean instance’s state to a row
in a database table, (b) session EJBs, which are used to perform temporary operations (stateless
session beans) or represent session objects (stateful session beans), and (c) message-driven EJBs
(not of interest to this work). EJBs may interact with a database directly and issue SQL commands,
or indirectly via an entity EJB. In microrebootable applications we require that only stateless ses-
sion beans and entity beans be used; this is consistent with best practices for building scalable EJB
applications. The entity beans must make use of Container-Managed Persistence (CMP), a J2EE
mechanism that delegates management of entity data to the EJB’s container. CMP provides rela-
tively transparent data persistence, relieving the programmer from the burden of managing this data
directly or writing SQL code to interact with a database. Our prototype applications conform to

these requirements.

Session state must persist at the server for long enough to synthesize a user session from inde-
pendent stateless HTTP requests, but can be discarded when the user logs out or the session times
out. Typically, this state is maintained inside the application server and is named by a cookie ac-
companying incoming HTTP requests. To ensure the session state survives both microreboots and
full reboots, we externalize session state into a session state store that we modified to integrate well
into a J2EE environment. Many commercial application servers forgo this separation and store ses-
sion state in local memory only, in which case a server crash or EJB microreboot would cause the

corresponding user sessions to be lost.

The segregation of state offers a certain degree of recovery containment, since data shared across
components by means of a state store does not require that the components be recovered together.
Externalized state also helps to quickly reintegrate recovered components, because they do not need

to perform data recovery following a microreboot.
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In summary, the J2EE application model is not completely crash-only, but offers a good com-
promise for the requirements of microrebooting. We now describe the particular J2EE application

server implementation that we augmented for the work in this paper.

6.3 Testbed

To evaluate microreboot-based recovery, we modified JBoss, developed session state stores, devel-
oped a client emulator, a fault injector, and a system for automated failure detection, diagnosis, and
recovery. Figure 6.2 schematically describes the connections between these various components —

all of these will be described in subsequent sections.
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Figure 6.2: Conceptual architecture of our J2EE prototype.

6.3.1 A microreboot-enabled application server

We built a platform for crash-only applications by extending JBoss [JBo02], an open-source ap-
plication server that complies to the J2EE standard. JBoss’s performance and features compare
favorably with proprietary closed-source offerings [Bar04]. It received early on the JavaWorld 2002

Editors’ Choice Award over several commercial competitors, and has since been downloaded from
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SourceForge several million times. More than 100 corporations, including WorldCom and Dow
Jones, are using JBoss for demanding computing tasks.

We added a microreboot method to JBoss, that can be invoked programatically from within
the server, or remotely by the recovery manager, over HTTP. Since we modified the JBoss server,
microreboots can now be performed on any J2EE application; however, this is safe only if the
application is crash-only. The microreboot method can be applied to one or more EJB or WAR
components.

Pseudocode of our JBoss implementation of microreboot appears in figure 6.3.

microreboot jpess( cOomponent ¢ )
reject new requests to ¢ with MicrorebootInProgressException(t)

kill threads associated with instances of ¢

destroy all instances of the c object

release all ¢ resources known to JBoss

destroy c’s container

release all metadata maintained by JBoss on behalf of ¢
replenish pool of worker threads

re-instantiate a container for ¢

create new instance of ¢ in new container

invoke ¢’s start () method

Figure 6.3: Pseudocode for the JBoss implementation of microreboot.

1. The server starts off by suspending the relaying of any new requests to the microrebooting
component. Since all inter-EJB calls pass through the component containers, and the appli-
cation server has control over these containers, this change fits cleanly in the existing archi-
tecture. Any call to this component (while microrebooting) will result in a special Microre-
bootInProgressException(t), which can be handled by the caller’s container transparently to
the caller (e.g., by retrying after ¢ msec), or can be propagated to the caller code itself. ¢ is
the estimate, in milliseconds, of how much longer it will take for the callee to recover; the
callee’s container could add a randomized At to the value of ¢, in order to avoid overload

upon completion of recovery.

Inside the callee’s container, we set a flag indicating the callee is currently microrebooting.
Any time a call comes in, we check this flag and only pass the call to the component code if

the flag is not set.

We have disabled transparent call retries in all experiments reported in chapter 7, in order to
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avoid masking the downtime induced by a microreboot.

. All worker threads that are associated with instances of the microrebooted component are

killed. This will automatically interrupt all request processing within the microrebooted com-
ponent and the callers either time out or receive exceptions, both being cases that can be
handled cleanly by the caller’s container or the caller code itself. Calls that were in-progress
at the time of the microreboot will fail in exactly the same way they would fail if the compo-

nent crashed, had a bug, etc.

. A component is a Java object, and as such has several instances; in a production system there

could be hundreds to many thousands of instances of the same component. As part of the

microreboot, we destroy all these instances.

It is worth noting that this is a coarse-grained version of a microreboot — if we only destroyed
the faulty instance(s), then the results reported in chapter 7 would be improved significantly.
At the same time, the localization of faulty instances (rather than faulty components) would
be more difficult. Even this form of coarse microreboot provided 1-2 orders of magnitude
improvement over existing recovery approaches, hence reducing the motivation to pursue

finer granularities.

. Release all resources associated with the microrebooted component: locks, external resources

like DB connections, in-progress transactions, etc. Note that only the resources allocated via
the application server can be released. Given that Java does not offer explicit release of
resources, the application server may choose to invoke the system-wide garbage collector

after having nulled all references to resources.

The only resource we do not discard on a microreboot is the component’s classloader. JBoss
uses a separate class loader for each EJB to provide appropriate sandboxing between com-
ponents; when a caller invokes an EJB method, the caller’s thread switches to the EJB’s
classloader. A Java class’ identity is determined both by its name and the classloader respon-
sible for loading it; discarding an EJB’s classloader upon microreboot would unnecessarily
complicate the update of internal references to the microrebooted component. Preserving the
classloader does not violate any of the sandboxing properties. Keeping the classloader ac-
tive does not reinitialize EJB static variables upon microreboot, but this is acceptable, since
J2EE strongly discourages the use of mutable static variables anyway, as this would prevent

transparent replication of EJBs in clusters.
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5. Destroying the container marks the point at which the component is entirely removed from the
system. Calls to this component will now fail during the JNDI name-lookup process, because
there is no component registered under the desired name; the caller’s container again handles
this exception transparently. As an optimization, we modified the JNDI registry to maintain a
mapping for the microrebooting component, but mark it as temporarily unavailable; a suitable

exception is then issued to whoever performs a lookup on that name.

6. Once the container has been removed from the system, the application server discards any
metadata it maintained on behalf of that component. In the same way an OS kernel does for
processes, JBoss maintains for each active EJB a rich set of metadata: the Java class imple-
menting its functionality, the type of EJB (session, entity, etc.), whether the bean requires
transactional support, along with references to other beans that this EJB might call and ref-
erences to the resources required by the EJB, accounting information, security credentials,

etc.

7. The worker thread pool needs to be replenished, because a number of threads have been killed

off in step 2.

8. A new container is created and a new instance of the component is instantiated inside this

container.

9. The start () method is a standard part of the EJB and WAR interface, as per the J2EE
specification [Sun]. This method instructs the component to initialize itself. Note that the
“reject incoming calls” flag is no longer set in the newly-created container, so both new and
retried calls can come in, once the start () completes. We have not implemented a backoff
mechanism to avoid overloading the newly instantiated component, but this could easily be

added to the application server.

Since all persistent and session state is preserved in specialized state stores, behind narrow
APIs, this microreboot does not lead to state corruption; the state updates ensure that consistency
is preserved. As will be shown in chapter 7, this form of microreboot fixes many problems, such
as EJB-private variables being corrupted, EJB-caused memory leaks, or the inability of one EJB to
call another because its reference to the callee has become stale.

The time to reintegrate a microrebooted component is determined by the amount of initialization
it performs at startup and the time it takes for other components to recognize the newly-instantiated

EJB. Initialization (the start () method) dominates reintegration time; in our prototype it takes
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on the order of hundreds of milliseconds, but varies considerably by component, as will be seen in
table 7.2. The time required to destroy and re-establish EJB metadata in the application server is
negligible. Making the EJB known to other components happens through the JNDI naming service
described earlier; this level of indirection ensures immediate reintegration once the component is
initialized.

Our implementation of microreboots does not scrub application-global data maintained by the
application server, such as the JDBC connection pool and various other caches. Microreboots also
generally cannot recover from problems occurring at layers below the application, such as the ap-

plication server or the JVM. In all these cases, a full server restart may be required.

6.3.2 EBid: A crash-only application

Although many companies use JBoss to run their production applications, we found them unwilling
to share their applications with us. Instead, we converted Rice University’s RUBiS [CMZ02] (a
J2EE/Web-based auction system that mimics the functionality of the popular eBay online auction
service) into eBid — a crash-only version of RUBiS with additional functionality.

eBid maintains user accounts, allows bidding on, selling, and buying of items, has item search
facilities, customized information summary screens, user feedback pages, etc. It distinguishes three
kinds of users: visitor, buyer, and seller, with buyer and seller sessions requiring login. A buyer can
bid on items and consult a summary of their current bids, rating and comments left by other users.
Seller sessions require a “fee” before a user is allowed to put up an item for sale. The seller can
specify a reserve (minimum) price for an item. eBid contains 582 Java files and about 26K lines of
code; it uses MySQL for the database back-end and stores 7 tables. In our configuration, eBid has
132,000 items for sale, distributed among eBay’s 40 categories and 62 regions. There are 1,500,000

entries in the bids table (i.e., an average of 11 bids/item). The users table has 10,000 entries.

6.3.3 State segregation in EBid

Like most e-commerce applications, eBid has long-term data, session data, and static presentation
data. We keep these categories of state in a database, dedicated session state store, and an Ext3FS
filesystem (optionally mounted read-only), respectively.

eBid presents a mixed object-oriented/procedural design, consistent with best practices for
building scalable J2EE applications [CMZ02]. eBid uses entity EJBs and stateless session EJBs.
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The entity EJBs implement the persistent application objects, in the traditional object-oriented pro-
gramming sense, with each instance’s state mapped to a row in a database table. Stateless session
EJBs are used to perform higher level operations on entity EJBs: each end-user operation is im-
plemented by a stateless session EJB interacting with several entity EJBs. For example, there is a
“place bid on item X’ EJB that performs operations on three entity EJBs (User, Item, and Bid).

Persistent state in eBid consists of user account information, item information, bid/buy/sell
activity, etc. and is maintained in a MySQL database through 9 entity EJBs: IDManager, User,
Item, Bid, Buy, Category, OldItem, Region, and UserFeedback. MySQL is crash-safe and recovers
fast for our data sets. Each entity bean uses container-managed persistence. If an EJB is involved
in any transactions at the time of a microreboot, they are all automatically aborted by the container
and rolled back by the database.

Session state in eBid takes the form of items that a user selects for buying/selling/bidding, her
userID, etc. Users are identified using HTTP cookies. In our prototype, we keep session state

outside the application, in a dedicated session state repository, consistent with crash-only design.

6.3.4 Session state storage

As we stated earlier, management of session state varies across implementations of J2EE application
servers. JBoss offers two options: (a) individual EJB’s can manage their own session state by
explicitly updating an external state store; or (b) JBoss can transparently manage session state,
which it does by keeping it in RAM with no replication or backup. In eBid, we use option (a),
which means all beans’ session state will survive microreboots of the beans themselves. The session
state could be stored in a transactional database, but this would impose significant burdens on the
application both in terms of using the SQL interface and in terms of performance.

We created two options for eBid’s session state storage needs. First, we modified SSM [LKF04],
a clustered session state store with a hashtable API. SSM maintains its state on separate machines;
isolated by physical barriers, it provides access to session state, and survives application-level mi-
croreboots, JVM-Ievel restarts, as well as node reboots. The session storage model is based on
leases, so orphaned session state is garbage-collected automatically. Second, we built FastS, an
in-memory repository inside JBoss’s Web server. The API is identical to SSM; it illustrates how
session state can be segregated from the application, yet still be kept within the same JVM. Iso-
lated behind compiler-enforced barriers, FastS provides access to session objects much faster than
SSM, but only survives application-level microrebooting — a full restart of the JVM or the node will

discard all session state.
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Both SSM and FastS are crash-only and guarantee atomic, consistent updates to the session
state objects (i.e., the put () method). The session state abstraction takes advantage of the typical
session state workload (objects are read/written by a single user in a serial fashion, and state has to
persist only for the duration of a user session) in order to relax isolation and durability constraints
in the implementation.

A major challenge when designing a state store isn’t that much how to build it, but rather what
abstractions to offer programmers, so as to make it easier for them to separate the state into suitable
categories. Figure 6.4 shows stylized sample eBid code that uses the session state interface common

to SSM and FastS, as a way to illustrate the abstraction provided for session state.

obj = new SessionObject;
// initialize session state

cookie = FastS.put( obj, lifetime );
obj = null;

// send cookie to client

// do other work

// receive cookie from client
obj = FastS.get ( cookie );

// read/write session object

newCookie = FastS.put( obj, lifetime );

// send new cookie to client

Figure 6.4: Sample code using the SSM/FastS session state interface.

In response to a put () operation, the session state store returns a lookup key in the form of a
cookie. Every time a put () is performed, a new key is generated and returned to the caller; this
key uniquely identifies that version of the session state object. The key can conveniently be wrapped
in an HTTP cookie and sent to the client Web browser, thus relieving the application from the need
of maintaining any references to session state. The next time the client accesses the application, it
sends the cookie, which provides the key needed to retrieve the user’s session state (as illustrated in
the sample code). This offers complete decoupling between client, application, and session state.

On each put (), the application can specify a lifetime, as an optional parameter. This instructs
the session state store for how long that object has to be persisted; in the case of most e-commerce

applications, the lifetime is on the order of 15-20 minutes. If lifetime is not specified, a system
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default is used. Once lifetime expires, the state store will discard that version of the object; as a
result, if session state is not updated for lifetime minutes, all versions will have expired and a new
state object has to be created. The application does not have any means to explicitly delete session
objects in FastS or SSM.

6.3.5 Recovery manager

The recovery manager is an entity external to the execution platform. It receives failure notifications
and automatically attempts recovery; it only involves human operators when the recovery policy re-
quires it to do so (e.g., when repeated automated recovery attempts are unsuccessful). The recovery
manager performs recovery by sending microreboot requests to the microreboot facility.

Running the recovery manager outside the monitored system allows for independent failure
and recovery of the recovery manager itself. To ensure the recovery manager is always running,
there can be a mutual supervision relationship between the application platform and the recovery
manager, that allows either one to detect the others’ failure and restart it. The recover manager does
extensive logging of its actions, so that failures can be debugged a posteriori, hence removing the
diagnosis step from the critical path of recovery.

When the recovery manager receives a failure notification from the monitoring facility, it is
responsible for making recovery decisions. To aid in these decisions, the manager maintains a dy-
namic view of the system that captures the currently known paths along which faults can propagate.

The system view is captured in a failure propagation map, as defined in section 5.2.1 — a graph
that has application components as nodes and direct fault-propagation paths as edges. Given that
the recovery manager has no a priori knowledge of the layout of the application or system it is
supposed to manage, nor of what components form the system or how they interact, the recovery
manager uses failure reports to infer the f-map.

There are a variety of techniques to build such an f-map, including static source code analysis or
human-generated dependency graphs. We developed an application-generic tool, called AFPI (see
appendix A). AFPI has two phases: in the (invasive) staging phase, the recovery manager actively
performs both single-point and correlated fault injections, observes the system’s reaction to the
faults, and builds the “first draft” of the f-map; in the (non-invasive) production phase, the system
passively observes fault propagation when such faults occur during normal operations, and uses
this information to refine and evolve the f-map on an ongoing basis. In both phases, the monitors
report to the recovery manager the path taken by faults through the system, and the manager adds the

corresponding edges to the f-map. If components are added or removed from the system for upgrade
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or reconfiguration reasons, the recovery manager is notified and automatically removes/adds the
corresponding nodes from/to the f-map. The passive observation phase works fine even without the
initial active phase, but can take much longer to converge onto a correct representation of the failure
dependencies.

We built a recovery manager that performs simple failure detection and localization (described
in more detail in section 6.4) and recovers the application by microrebooting EJBs, the WAR, or
all of eBid; restarting the JVM that runs JBoss (and thus eBid as well); or rebooting the operating
system. The recovery manager listens on a UDP port for failure reports coming in from the monitors;
these reports take the form of a failure signature f =<symptom, faulty URLs>, containing the type
of failure observed and the particular URLSs that are not working as expected.

The recovery manager uses a recursive recovery policy based on the principle of trying the
cheapest recovery first. If the cheapest recovery is not effective, the recovery manager reboots
progressively larger subsets of components. Thus, it first microreboots EJBs, then eBid’s WAR, then
the entire eBid application, then the JVM running the JBoss application server, and finally reboots
the OS; if none of these actions cure the failure symptoms, a human administrator is notified. In
order to avoid endless cycles of rebooting, the recovery manager also notifies a human whenever
it notices recurring failure patterns. The recovery action per se is performed by remotely invoking
JBoss’s microreboot () method (for EJB, WAR, and eBid) or by executing commands, such as

kill -9, over ssh (for JBoss and node-level reboot).

6.4 Failure Detection and Localization

An important part of fast recovery is fast detection and accurate localization. Particularly in the case
of microrebooting, good localization is very important.
Downtime for an incident consists of the time it takes for the failure to be detected by a monitor

(T4et), the time to diagnose the problem (Ty;ag), and the time to recover (Trec):

Tdown = Taet + Tdiag + Thec

While detection and diagnosis is out of scope for this dissertation, we did explore the topic as
much as was needed to build a realistic prototype.
Since the only recovery method employed is microreboot, which is application-generic, we

don’t need diagnosis; in the case of full reboot, detection of a reboot-curable failure is sufficient;
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in the case of microreboot, detection and localization is sufficient. Diagnosis is different from
localization (i.e., identification of the faulty component); we argue that a good approach to recovery
is to do sufficient localization to perform the recovery, and then do all diagnosis out of the critical
recovery path (e.g., offline based on logs). As a result, Tgown'= Tdet +Lrec and Tgown’ <<Tdowns

because Tyi,g often involves humans.

6.4.1 Failure detection

There is a plethora of commercial solutions available for system monitoring, most of which do not
do component-level monitoring; this is understandable, since fine-grained localization of failures is
pointless if one does not have the ability to do microrecovery (it only becomes useful for debugging,

profiling, etc.)

To enable fully-automatic recovery, we implemented failure detection in the client emulator
(section 6.5) and placed primitive localization facilities in the external recovery manager. While
real end users’ Web browsers certainly do not report failures to the Internet services they use, our
client-side detection mimics WAN services that deploy “client-like” end-to-end monitors around the
Internet to detect a service’s user-visible failures [Key]. Such a setup allows our measurements to
focus on the recovery aspects of our prototype, rather than the orthogonal problem of detection and

diagnosis.

We implemented two fault detectors. The first one is simple and fast: if a client encounters a
network-level error (e.g., cannot connect to server) or an HTTP 4xx or 5xx error, then it flags the
response as faulty. If no such errors occur, the received HTML is searched for keywords indicative of
failure (e.g., “exception,” “failed,” “error”). Finally, the detection of an application-specific problem
can also mark the response as faulty (such problems include being prompted to log in when already

logged in, encountering negative item IDs in the reply HTML, etc.)

The second fault detector submits each request to the application instance we are injecting faults
into, as well as (in parallel) to a separate, known-good instance on another machine. It then com-
pares the result of the former to the “truth” provided by the latter, flagging any differences as failures.
This detector is the only one able to identify complex failures, such as the surreptitious corruption
of the dollar amount in a bid. Certain additional checks were required to account for timing-related

nondeterminism.
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6.4.2 Score-based fault localization

Using static analysis, we derived a mapping from each eBid URL prefix to a path/sequence of calls
between servlets and EJBs. The recovery manager maintains for each component in the system a
score, which gets incremented every time the component is in the path originating at a failed URL.
The recovery manager decides what and when to (micro)reboot based on hand-tuned thresholds.
Accurate or sophisticated failure detection was not the topic of this work; our simple approach to
diagnosis often yields false positives, but part of our goal is to show that even the mistakes resulting
from simple or “sloppy” diagnosis are tolerable because of the very low cost of microreboots — more

on this topic in chapter 8.

6.4.3 Inferring application structure

We obtained a description of the failure dependencies between eBid’s components using automated
fault-propagation inference (described in appendix A); the resulting fault propagation map is shown
in figure 6.5. Shaded components are EJBs, clear boxes indicate servlets. We found AFPI to be more
precise than just statically inspecting the application’s deployment descriptors; static inspection of
the source code, however, could work quite well, but would be manual. This f-map is used by the

recovery manager to compute recovery groups.
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6.5 Client Emulator

We wrote a client emulator using some of the logic in the load generator shipped with RUBiS. Hu-
man clients are modeled using a Markov chain with 25 states corresponding to the various end user
operations possible in eBid, such as Login, BuyNow, or AboutMe; transitioning to a state causes the
emulated client to issue a corresponding HTTP request. In addition to the application-specific states,
we also have two states corresponding to the user hitting the back button (Back) and spontaneously
deciding to end his/her session and abandon the site (End).

Transition probabilities are stored in a table 7". The client emulator uses this table to auto-
matically navigate the Web site; when in a given state s, it will choose the next state ¢ randomly,
with probability 7'(s,t); it then constructs the URL for this state and “clicks” on it. Inbetween
successive “clicks,” emulated clients have independent think times based on an exponential random
distribution with a mean of 7 seconds and a maximum of 70 seconds, as in the TPC-W Web server
benchmark [Smi02].

We populated table 7" with transition probabilities representative of online auction users; the
resulting workload, shown in Table 6.1, mimics the real workload seen by a major Internet auction

site [EBa04].

User operation results mostly in... % of all
requests
Read-only DB access (e.g., browse a category) 32%
Initialization/deletion of session state (e.g., login) 23%
Exclusively static HTML content (e.g., home page) 12%
Search (e.g., search for items by name) 12%
Session state updates (e.g., select item for bid) 11%
Database updates (e.g., leave seller feedback) 10%

Table 6.1: Client workload used in evaluating microreboot-based recovery.

We classify responses from the server as correct or incorrect (see section 6.4). Our chosen
workload covers all possible eBid operations; experimentally we have determined that, in runs

lasting a few minutes with 20 clients or more, we routinely exercised all components.

6.6 Action-Weighted Throughput

In choosing a metric for evaluating microreboot-based recovery, we wanted to find a way to capture

the impact such recovery has on end users. A simple approach to measuring the effect of downtime
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on end users would be to measure goodput (number of requests completed successfully) under
partial-failure conditions, averaged across all clients. This is usually how performability [Mey80]
is measured.

Unfortunately, the simple goodput metric fails to distinguish between potentially long-running
DB-touching operations and simple, fast, browse-only operations. A typical interaction of a client
with the Web site proceeds as follows: client goes to the homepage, browses around for a while
performing different site actions (e.g., searching), and then decides to do something that touches the
persistent-state database (e.g., place a bid, leave a comment for a user, update his/her profile, etc.).
The DB-touching operation(s) usually require the user to have logged in. Interactions preceding
the persistent-state update are just precursors to the real action, making the DB update a sort of
“commit point” from the point of view of users’ behavior; thus, these interactions serve no purpose
(with respect to the proposed metric) in the absence of a successful commit point.

The surprising result of inducing failures during long-running DB operations is that the good-
put actually goes up in the presence of failure, because the user no longer waits for a long-running
operation — it fails right away and the client emulator moves on to the next (non-DB-touching) oper-
ation. In other words, the simple goodput metric would fail to capture that some operations are more
“valuable” than others, and executing many “simple” operations does not necessarily compensate
for failing to execute a few long-running ones.

We therefore devised a new metric that accurately reflects end-user perceived availability rather
than some arbitrary notion of frue availability.

In action-weighted throughput (7%,,), we view a user session as beginning with a login operation
and ending with an explicit logout or abandonment of the site. In our model, if something goes
wrong during a session, the user will try to logout and log back in via the homepage, so we define a
session as the sequence of URLs bracketed by accesses to the homepage.

Each session consists of a sequence of user actions. In our model, each user action is a sequence
of operations (HTTP requests) that culminates with a “commit point”: an operation that must suc-
ceed for that user action to be considered successful as a whole. For example, the last operation in
the action of placing a bid results in committing that bid to the database; similarly, we assume that
browsing activity has the purpose of performing some action that carries the meaning of a commit
point.

An action succeeds or fails atomically: if all operations within the action succeed, they count
toward action-weighted goodput (“good T,,,”); if an operation fails, all operations in the corre-

sponding action are marked failed, counting toward action-weighted badput (“bad 73,,””). Unlike
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simple throughput, T4, accounts for the fact that both long-running and short-running operations
must succeed for a user to be happy with the service. T4, also captures the fact that, when an action
with many operations succeeds, it generally means the user did more work than in a short action.
Figure 7.1 gives an example of how we use T}, to compare recovery by microreboot to recovery by
JVM restart.

Commit points are those user actions that indicate completion of useful work on the part of the
end-user. In our auction application, we identified 9 commit points: the actions that correspond to
database updates (registering a new user, auctioning a new item, making a bid, performing a “buy
now,” leaving user feedback) as well as actions that indicate completion of useful work even without
a database update (viewing account information, logging out, spontaneously deciding to abandon

the site, and clicking to the homepage after a sequence of browse operations).

6.7 Chapter Summary

In this chapter we described the details of a J2EE-based testbed for microreboot-based recovery. Our
choices were motivated by the synergy that exists between J2EE and the principles of crash-only
design. After introducing the J2EE framework, we presented the extensions we made to JBoss and
other software used in our experiments, described our failure detection and localization mechanism,
the client emulator, and finally the action-weighted throughput metric used for the evaluation.

This testbed was hosted on 3GHz Pentium machines with 1IGB RAM for Web and JBoss tier
nodes; databases were hosted on Athlon 2600xp+ machines with 1.5 GB of RAM and 7200rpm
120GB disks; emulated clients ran on a variety of multiprocessor machines. All machines were
interconnected by a 100 Mbps Ethernet switch and ran Linux kernel 2.6.5 with Sun Java 1.4.1 and
Sun J2EE 1.3.1.

In the next chapter we describe the results obtained using this testbed.
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Chapter 7

Evaluation of the Microreboot Recovery

Mechanism

We used our prototype to answer four questions about a microreboot-based approach to recovery in

J2EE enterprise applications:

* Is microrebooting effective in recovering from failures in J2EE systems? In particular, how

does it compare to a JVM process restart?

* Is there any benefit to using component-level microreboot instead of JVM restarts? If yes,

how large is this benefit?

* Is microrebooting useful in clusters of J2EE application servers? If yes, how and to what

extent?
* Does a crash-only J2EE system incur any performance overhead? If yes, is this significant?

We find that microrebooting is able to recover from a substantial majority of the failures that
could be cured by a process restart (section 7.1), but does so 50x faster and with a 98% reduction in
user-perceived downtime (section 7.2). This results from the fact that microreboots recover faster,
induce less functional disruption, and preserve more critical state. In clusters of application servers,
microrebooting plays an important role in recovery performance, by reducing both the number of
failed requests as well as the number of failed-over requests; should failure be accompanied by a
load spike (as it often is), response time is better preserved when microreboot-based recovery is
employed (section 7.3). Finally, any performance degradation introduced by a crash-only design is

insignificant when comparing to top commercial systems (section 7.4).
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7.1 Recovery Effectiveness

Having built a realistic testbed and generated realistic workloads, we wanted to inject realistic faults
in our prototype and observe its ability to recover from the ensuing failures.

Despite J2EE’s popularity, we were unable to find any published systematic studies of faults
occurring in production J2EE systems. Therefore, we interviewed 10 professionals who work with
enterprise applications or application servers in variety of industry sectors, and asked them about
the failures they experience!. In deciding what faults to inject in our prototype, we relied on these
interviews as well as advice from colleagues in industry, who operate systems such as ours [Cho03,
CJ02, Lev03, Mit04, Pal02, Rei04].

We found that production J2EE systems are most frequently plagued by deadlocked threads,
leak-induced resource exhaustion, bug-induced corruption of volatile metadata, and various Java
exceptions that are handled incorrectly. These results are not surprising: First, J2EE systems are
highly threaded and the interactions between these threads can often lead to deadlocks. Second,
the workloads faced by Web-connected applications are typically very large, so even the smallest
resource leak will quickly grow into a system-wide resource shortage that causes the application to
fail. Finally, given the complexity and heterogeneity of these large-scale environments, it is difficult
for application code to correctly handle all the possible exception conditions that arise in practice.

We added hooks in JBoss for injecting artificial deadlocks, infinite loops, memory leaks, JVM
memory exhaustion outside the application, transient Java exceptions to stress eBid’s exception
handling code, and corruption of various data structures. In addition to these hooks, we also used
FIG [BST02] and FAUmachine [BS01] to inject low-level faults underneath the JVM layer.

eBid, being a crash-only application, has relatively little volatile state that is subject to loss or
corruption — much of the application state is kept in FastS / SSM. We can, however, inject faults
in the data handling code, such as the code that generates application-specific primary keys for
identifying rows in the DB corresponding to entity bean instances. We also corrupt class attributes
of the stateless session beans. In addition to application data, we corrupt metadata maintained by
the application server, but accessible to eBid code: the JNDI repository, that maps EJB names to
their containers, and the transaction method map stored in each entity EJB’s container. Finally, we
corrupt data inside the session state stores (via bit flips) and in the database (by manually altering
table contents).

We performed three types of data corruption on various fields: (a) set a value to null, which

'All these interviews were conditional upon not disclosing the sources.
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generally elicits a NullPointerException upon access; (b) set an invalid value, i.e., a non-null
value that type-checks but is invalid from the application’s point of view, such as a userID larger
than the maximum userID; and (c) set to a wrong value, which is valid from the application’s point
of view, but incorrect, such as swapping IDs between two users.

After injecting a fault, we used the recursive policy described earlier to recover the application.
In reporting the results, we differentiate between resuscitation (restoring the system to a point from
which it can resume the serving of requests for all users, without necessarily having fixed the result-
ing database corruption) and recovery (bringing the system to a state where it functions with a 100%
correct database). For example, contrary to popular belief, financial institutions typically aim for
resuscitation, applying compensating transactions at the end of the business day to repair database
inconsistencies [Rei04]. In the rightmost column, we indicate whether additional manual database

repair actions were required to achieve correct recovery after resuscitation.

In Table 7.1 we show the worst outcome among several experiments for each type of injected
fault. There are several cases (e.g., bit flips) in which complete recovery was achieved most of the
times, but on rare occasions only resuscitation could be achieved; in such cases, manual intervention

was required, and the table lists “resuscitation” as a result.

For this experiment we relied on our comparison-based failure detector to determine whether a
recovery action had been successful or not; when failures (caused by a difference in the responses
of the good vs. faulty application server instances) were encountered subsequent to the recovery,

we escalated recovery to the next level in the policy.

Aside from EJB, JBoss, and operating system reboots, some faults required microrebooting
eBid’s Web component (WAR). In two cases no resuscitation was needed, because the injected fault
is “naturally” expunged from the system after the first call fails. In the case of recovering persistent
data, this is either done automatically (transaction rollback), or, in the case of injecting wrong data,
manual reconstruction of the data in the DB is often required (indicated by a “resuscitated” value in
the last column).

In our broader experience, we have found few failures from which whole-system restart recovers
but microreboots do not. Nevertheless, such failures exist; for example, we observed that under
high load, the JVM running the application server would sometimes run out of file descriptors,
or encounter an internal error, requiring a process restart of the JVM. We have also encountered
a resource leak involving serialized objects sent over a socket: the object does not get garbage
collected even when our references to it are gone, and eventually the leaks require a JVM restart.

Finally, on our version of Linux, we also encountered on occasion a kernel bug in the swapping
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Injected Fault Type Reboot level Result
Deadlock EJB recovered
Infinite loop EJB recovered
Application memory leak EJB recovered
Transient exception EJB recovered
set null EJB recovered
Corrupt primary keys invalid EJB recovered
wrong EJB resuscitated
set null EJB recovered
Corrupt JNDI entries invalid EJB recovered
wrong EJB recovered
Corrupt transaction .Set ngll EIB recovered
method map invalid EJB recov'ered
wrong EJB resuscitated
Corrupt stateless set null unnecessary | recovered
session EJB invalid unnecessary | recovered
attributes wrong EJB+WAR | resuscitated
o set null WAR recovered
Corrupt data inside invalid WAR recovered
FastS wrong WAR resuscitated
Corrupt data inside SSM bad object automatically discarded
Corrupt data inside MySQL database table repair needed
Memory leak outside intra-JVM | JVM/JBoss recovered
application extra-JVM | OS kernel recovered
Bit flips in process memory JVM/JBoss | resuscitated
Bit flips in process registers JVM/JBoss | resuscitated
Bad system call return values JVM/IBoss recovered

Table 7.1: Recovery from injected faults: worst-case scenarios.

code which would manifest under high memory utilization conditions; in such cases, any memory

allocation (specifically, any call to the brk system call) hangs, and a full system restart is necessary.

The results indicate that EJB-level or WAR-level microrebooting in our J2EE prototype is effec-
tive in recovering from the majority of failure modes seen in today’s production J2EE systems (first
19 rows of Table 7.1). Microrebooting is ineffective against other types of failures (last 7 rows),
where coarser grained reboots or manual repair are required. Fortunately, these failures constitute
an insignificant fraction of failures in real J2EE systems. While certain faults (e.g., JNDI corrup-
tion) could certainly be cured with non-reboot approaches, we consider the reboot-based approach

simpler, quicker, and more reliable. In the cases where manual actions were required to restore
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service correctness, a JVM restart presented no benefits over a component-level microreboot.
While rebooting is a common way to recover middleware in the real world, for the rest of
this paper we compare EJB-level microrebooting to JVM process restart (which restarts JBoss and,
implicitly, eBid) rather than full OS/node-level reboots. In doing so, we are conservative with
respect to the results of our experiments; if we compared against OS/node-level rebooting, our
results would be more favorable, since a machine reboot takes several times (5x in our case) longer

than a process restart.

7.2 Recovery Efficiency

With respect to availability, Internet service operators care mostly about how many user requests
their system turns away during downtime, not the absolute value of downtime (e.g., 1 minute of
downtime can cost $0 in the middle of the night, whereas that same minute of downtime can cost
$50,000 [Kem98] during peak time). We therefore evaluate the efficiency of microrebooting with
respect to the end-user-aware action-weighted throughput metric (75y).

We injected faults in our prototype and then allowed the recovery manager to recover the system
automatically in two ways: by restarting the JVM process running JBoss, or by microrebooting one
or more EJBs, respectively; we compare the results of these two forms of recovery. We ran the same
workload and faultload for both the process restart and microreboot experiments. We deem recovery
successful when end users do not experience any more failures after recovery, as determined by our
application-specific fault detector.

Figure 7.1 shows the results of injecting three different faults every 10 minutes. Each sample
point represents the number of successful (failed) requests observed during the corresponding sec-
ond. While we did perform this experiment for many of eBid’s components, we show here only a

conservative sample. We injected the following faults:

1. At ¢ = 10 minutes, we corrupted the transaction method map for EntityGroup, the EJB

recovery group that takes the longest to recover (see table 7.2).

2. Att = 20 minutes, we corrupted the JNDI entry for RegisterNewUser, the EJB with the

slowest individual recovery time.

3. At t = 30 minutes, we injected an exception in BrowseCategories, the entry point for all

browsing on the eBid Web site and, thus, the most-frequently called EJB in our workload. An
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outage in BrowseCategories would therefore have the most immediately visible impact of all

components on the user population.

Session state is stored in FastS. We ran a load of 500 concurrent clients connected to one appli-
cation server node; for our specific setup, this lead to a CPU load average of 0.7, which is similar
to that seen in deployed Internet systems [Mes04b, Duv04]. Unless otherwise noted, we use 500

concurrent clients per node in each subsequent experiment.
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Figure 7.1: Impact of recovery on end users: process restart vs. microreboot.

In figure 7.1, recovering with a process restart (shown in the top graph) caused 11,752 requests
to fail overall, corresponding to 3,101 user actions. When microrebooting, only 233 requests (34 ac-
tions) failed. In the latter case, three recovery actions were undertaken, that required 7 microreboots,
due to the dependencies between components>. The average is 3,917 failed requests (1,034 actions)
per process-restart-based recovery action, and 78 failed requests (11 actions) per microreboot-based
recovery action.

Using microreboots instead of JVM restarts reduced the number of failed requests by 98%

in this conservative experiment; this corresponds to a factor of 50x reduction in failed end-user

In fact, 10 microreboots occurred, because of lack of precision in our fault localization algorithm (6 microreboot
recovery actions instead of 3); despite this, the results are better than the case of process restarts. See section 8.1 for a
more detailed discussion of this aspect.
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requests. Visually, the impact of a failure and recovery event can be estimated by the area of the
corresponding dip in good T%,,, with larger dips indicating higher service disruption. The area of a
Tsw dip is determined by its width (i.e., time to recover) and depth (i.e., the throughput of requests

turned away during recovery). We now analyze these factors in isolation.

7.2.1 Faster recovery

The wider the dip in 7%, the more requests arrive during recovery; since these requests fail, they
cause the corresponding user actions to fail, thus retroactively marking the actions’ requests as

failed. This explains why “bad T,,,” in figure 7.1 is retroactive relative to the injection point.

We measured recovery time at various granularities and summarize the results in Table 7.2. In
the two right columns we break down recovery time into how long the target takes to crash (be
forcefully shut down) and how long it takes to reinitialize. EJBs recover an order of magnitude
faster than JVM restart, which explains why the width of the good T3, dip in the microreboot case
of figure 7.1 is negligible. EJBs with a * superscript are entity EJBs, while the rest are stateless
session EJBs. Averages are computed across 10 trials per component, on a single-node system
under sustained load from 500 concurrent clients. Recovery for individual EJBs ranges from 411-

601 msec.

Some EJBs have inter-dependencies, captured in deployment descriptors, that require them to
be microrebooted together. eBid has one such recovery group, EntityGroup, containing 5 entity
EJBs: Category, Region, User, Item, and Bid — any time one of these EJBs requires recovery, we
microreboot the entire EntityGroup. Restarting the entire eBid application is optimized to avoid
restarting each individual EJB, which is why eBid takes less than the sum of all components to

crash and start up. For the JVM crash, we use operating system-level ki11 —9.

Notice that all reboot-based recovery times are dominated by initialization. In the case of JVM-
level restart, 56% of the time is spent initializing JBoss and its more than 70 services (transaction
service takes 2 sec to initialize, embedded Web server 1.8 sec, JBoss’s control & management ser-
vice takes 1.2 sec, etc.). Most of the remaining 44% startup time is spent deploying and initializing
eBid’s EJBs and WAR. For each EJB, the deployer service verifies that the EJB object conforms to
the EJB specification (e.g., has the required interfaces), then it allocates and initializes a container,
sets up an object instance pool, sets up the security context, inserts an appropriate name-to-EJB
mapping in JNDI, etc. Once initialization completes, the individual EJBs’ start () methods are

invoked. Removing an EJB from the system follows a reverse path.
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Microreboot time | Crash | Reinit

Component name
(msec) (msec) | (msec)
AboutMe 551 9 542
Authenticate 491 12 479
BrowseCategories 411 11 400
BrowseRegions 416 15 401
BuyNow* 471 9 462
CommitBid 533 8 525
CommitBuyNow 471 9 462
CommitUserFeedback 531 9 522
DoBuyNow 427 10 417
EntityGroup* 825 36 789
IdentityManager* 461 10 451
LeaveUserFeedback 484 10 474
MakeBid 514 9 515
OldItem* 529 10 519
RegisterNewltem 447 13 434
RegisterNewUser 601 13 588
SearchltemsByCategory 442 14 428
SearchltemsByRegion 572 8 564
UserFeedback* 483 11 472
ViewBidHistory 507 11 496
ViewUserInfo 415 10 405
ViewlItem 446 10 436
WAR (Web component) 1,028 71 957
Entire eBid application 7,699 33 | 7,666
JVM/JBoss process restart 19,083 ~0 | 19,083

Table 7.2: Average recovery times under load, at various granularities.

7.2.2 Less functional disruption

Figure 7.1 shows that good T%,, drops all the way to zero during a JVM restart, i.e., the system serves
no requests during that time. In the case of microrebooting, though, the system continues serving
requests while the faulty component is being recovered. We illustrate this effect in figure 7.2,
graphing the availability of eBid’s functionality as perceived by the emulated clients. We group
all eBid end user operations into 4 functional groups (shown in different colors) — Bid/Buy/Sell,
Browse/View, Search, and User Account operations — and zoom in on one of the recovery events of

figure 7.1.

For each interval [¢1,t2] along the horizontal axis, a solid bar indicates that all requests submitted
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Figure 7.2: Functional disruption, as perceived by end users.

to the service during that interval in the corresponding category were correctly satisfied. A gap
indicates that some request, whose processing spanned [t1,t2] in time, eventually failed, conveying
to the end user that the site was down.

While the faulty component is being recovered by microrebooting, all operations in other func-
tional groups succeed. Even within the “User Account” group itself, many operations are served
successfully during recovery (however, since RegisterNewUser requests fail, we show the entire
group as unavailable). Fractional service degradation compounds the benefits of swift recovery,

further increasing end user-perceived availability of the service.

7.2.3 Less lost work

In figure 7.1, a number of requests fail after JVM-level recovery has completed; this does not happen
in the microreboot case. These failures are due to the session state having been lost during recovery
(FastS does not survive JVM restarts). Had we used SSM instead of FastS, the JVM restart case
would not have exhibited failed requests following recovery, and a fraction of the retroactively failed
requests would have been successful, but the overall good T3,, would have been slightly lower, due

to performance overhead. Using microreboots in the FastS case allowed the system to both preserve
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session state across recovery and avoid cross-JVM access penalties.

7.2.4 Summary

In this section we evaluated the efficiency of microrebooting with respect to the end-user-aware
action-weighted throughput metric 7},,. Results show that replacing JVM restarts in our J2EE appli-
cation with microreboots reduces the number of failed requests by a factor of 50 in our experiments.
This reduction is due to three effects: microreboots are faster than process restarts, microrebooting
induces less user-visible functional disruption, and microrebooting preserves more user work than

process restart.

7.3 Microrebooting in a Cluster

In a typical Internet cluster, the unit of recovery is a full node, which is small relative to the clus-
ter as a whole. To learn whether microreboots can yield any benefit in such systems, we built a
cluster of 8 independent application server nodes. Clusters of 2-4 J2EE servers are typical in enter-
prise settings, with high-end financial and telecom applications running on 10-24 nodes [Duv04];
a few gigantic services, like eBay’s online auction service, run on pools of clusters totaling 2000
application servers [CZLT04].

Our testbed cluster consists of 8 application server nodes, 8 database nodes, and 8 Web server
nodes. We distribute incoming load among nodes using a client-side load balancer LB. Under
failure-free operation, LB distributes new incoming login requests evenly between the nodes and,
for established sessions, LB implements session affinity (i.e., non-login requests are directed to the
node on which the session was originally established). We inject a microreboot-recoverable fault
from Table 7.1 in one of the server instances, say Ny,q; the failure detectors notice failures and
report them to the recovery manager. When RM decides to perform a recovery, it first notifies LB,
which redirects requests bound for Ny,,q uniformly to the good nodes; once NVy,,q has recovered,
RM notifies LB, and requests are again distributed as before the failure.

The general architecture of the testbed is shown in figure 7.3.

7.3.1 Conserving session state during failover

We first explored the configuration that is most likely to be found in today’s systems: session state
stored locally at each node; we use FastS. During failover, those requests that do not require ses-

sion state, such as searching or browsing, will be successfully served by the good nodes; requests
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Figure 7.3: Conceptual architecture of the cluster testbed.

that require session state will fail. We injected a fault in the most-frequently called component
(BrowseCategories) and ran the experiment in four different cluster configurations; the load was
500 clients/node.

The left graph in figure 7.4 shows the number of requests and failed-over sessions for the case of
JVM restart and microreboot, respectively. When recovering Ny,,q with a JVM restart, the number
of user requests that fail is dominated by the number of sessions that were established at the time of
recovery on V4. In the case of EJB-level microrebooting, the number of failed requests is roughly
proportional to the number of requests that were in flight at the time of recovery or were submitted
during recovery. Thus, as the cluster grows, the number of failed user requests stays fairly constant.
When recovering with JVM restart, on average 2,280 requests failed; in the case of microrebooting,
162 requests failed.

Although the relative benefit of microrebooting decreases as the number of cluster nodes in-
creases (right graph in figure 7.4 — fraction of total user requests failed in our test’s 10-minute
interval, as a function of cluster size), recovering with a microreboot will always result in fewer
failed requests than a JVM restart, regardless of cluster size or of how many clients each cluster
node serves. Thus, it always improves availability. If a cluster aimed for the level of availability
offered by today’s telephone switches, then it would have to offer six nines of availability, which

roughly means it must satisfy 99.9999% of requests it receives (i.e., fail at most 0.0001% of them).
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Figure 7.4: Failover under normal load.

Our 8-node cluster served 33.8 x 10 requests over the course of 10 minutes; extrapolated to a
24-node cluster of application servers, this implies 53.3 x 10° requests served in a year, of which
a six-nines cluster can fail at most 53.3 x 103. If using JVM restarts, this number allows for 23
single-node failovers during the whole year; if using microreboots, as many as 329 failures would

be permissible.

We repeated some of the above experiments using SSM. The availability of session state dur-
ing recovery was no longer a problem, but the per-node load increased during recovery, because
the good nodes had to (temporarily) handle the Np,q-bound requests. In addition to the increased
load, the session state caches had to be populated from SSM with the session state of N},,q-bound
sessions. These factors resulted in an increased response time that often exceeded 8 sec when using
JVM restarts; microrebooting was sufficiently fast to make this effect unobservable. Overload situa-
tions are mitigated by overprovisioning the cluster, so we investigate below whether microrebooting

can reduce the need for additional hardware.

7.3.2 Preserving response time during failover

We repeated the experiments from the previous section using FastS, but doubled the concurrent user
population to 1000 clients/node. The load spike we model is very modest compared to what can
occur in production systems (e.g., on 9-11, CNN.com faced a 20-fold surge in load, which caused
their cluster to collapse under congestion [LeFO1]). We also allow the system to stabilize at the
higher load prior to injecting faults (for this reason, the experiment’s time interval was increased to

13 minutes). JVM restarts are more disruptive than microreboots, so introducing a modest two-fold
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change in load and inducing stability in initial conditions favors full process restarts far more than

microreboots. Consequently, the microreboot results shown here are conservative.

Figure 7.5 shows that response time was preserved while recovering with microreboots, unlike
when using JVM restarts. We show average response time per request, computed over 1-second
intervals, in 4 different cluster configurations (2, 4, 6, 8 nodes). eBid uses FastS for storing session
state, in both the JVM restart and microreboot case. Vertical scales of the four graphs differ, to

enhance visibility of details.
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Figure 7.5: Failover under doubled load.

Stability of response time results in improved service to the end users. It is known that response
times exceeding 8 seconds cause computer users to get distracted from the task they are pursuing
and engage in others [Mil68, BBKO0O], making this a common threshold for Web site abandon-
ment [ZonO1]; not surprisingly, service level agreements at financial institutions often stipulate 8
seconds as a maximum acceptable response time [MesO4a]. We therefore measured how many

requests exceeded this threshold during failover; Table 7.3 shows the corresponding results.
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# of nodes 2 4 6 |8
Process restart 3,227 | 530 |55 1|9
EJB microreboot 3 0 010

Table 7.3: Requests exceeding 8 sec during failover under doubled load.

7.3.3 Summary

Microreboots reduce the need for overprovisioning or sophisticated load balancing. We asked our
colleagues in industry whether commercial application servers do admission control when over-
loaded, and were surprised to learn they currently do not [Mes04b, Duv04]. For this reason, cluster
operators need to significantly overprovision their clusters and use complex load balancers, tuned
by experts, in order to avert overload and oscillation problems. Microreboots are more successful
at keeping response times below 8 seconds in our prototype.

The results of this section show that, by moving from process-restart-based recovery to microreboot-

based recovery, cluster operators can expect to either

 provide higher levels of availability while keeping the same number of cluster nodes, or

* reduce the number of nodes while maintaining the same level of availability, which presents

a cost and manageability benefit.

7.4 Performance Impact

In this section we measure the performance impact our modifications have on steady-state fault-free
throughput and latency. We measure the impact of our microreboot-enabling modifications on the
application server, by comparing original JBoss 3.2.1 (JBoss) to the microreboot-enabled variant
(JBoss, grp). We also measure the cost of externalizing session state into a remote state store by
comparing eBid with FastS (eBid,ss) to eBid with SSM (eBidgsay).

It is not meaningful to compare the performance of eBid to that of original RUBIS (based on
which we developed eBid), because the semantics of the applications are different. For example,
RUBIS requires users to provide a username and password each time they perform an operation
requiring authentication. In eBid, users log in once at the beginning of their session; they are
subsequently identified based on the HTTP cookies they supply to the server on every access. We
refer the reader to [CMZ02] for a detailed comparison of performance and scalability for various

architectures in J2EE applications.
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Table 7.4 summarizes the results. Throughput varies less than 2% between the various config-
urations, which is within the margin of error. Latency, however, increases by 70-90% when using
SSM, because moving state between JBoss and a remote session state store requires the session
object to be marshalled, sent over the network, then unmarshalled; this consumes more CPU than if

the object were kept inside the JVM.

Configuration Throughput | Average Latency
[req/sec] [msec]
JBoss + eBidpasts 72.09 15.02
JBOSSHRB + eBidFastS 72.42 16.08
JBoss + eBidggu 71.63 28.43
JBOSSHRB + eBidSSM 70.86 27.69

Table 7.4: Performance comparison.

The performance results shown here are within the range of measurements done at a major In-
ternet auction service, where latencies average 33-300 msec, depending on operation, and average
throughput is 41 requests/second per node [EBa04]. Since minimum human-perceptible delay is
about 100 msec [Mil68], the increase in latency from using FastS to using SSM is of little con-
sequence for an interactive Internet service like ours; latency-critical applications can use FastS
instead of SSM.

7.5 Chapter Summary

In this chapter we described the results of experimentation with the J2EE prototype presented in
chapter 6. We first asked whether microrebooting is effective in recovering from failures, and found
it to be as effective as a process restart in the vast majority of cases, and in particular in all cases
that represent dominant causes of downtime in practice. We then analyzed whether there is any
benefit to using component-level microreboot instead of process restarts, and demonstrated that
EJB-level microrebooting recovers 50x faster than JVM process restarts, with a 98% reduction in
user-perceived downtime. In clusters, we found the benefits of microreboots to persist, in particular
with respect to the preservation of session state and the load dynamics during failover. Finally, the
performance degradation introduced by a crash-only design was found to be inconsequential when
compared to a top online auction service.

In the following chapter we show that these results are more than mere quantitative improve-

ments — they actually open the door for a qualitative change in recovery policies.
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Chapter 8

Exploration of Microreboot-based

Recovery Policies

The previous chapter showed microreboots to have significant quantitative benefits in terms of re-
covery time, functionality disruption, amount of lost work, and preservation of state and load dy-
namics in clusters. The low cost of microreboots engenders a new approach to high availability, that

would be too expensive if full reboots were used.

In this chapter we evaluate, through quantitative experiments, the benefits offered by the liberal
use of microrebooting in recovery policies for large-scale, failure-prone J2EE systems. We find that
microreboot-centric policies afford considerable relaxation on the correctness constraints of failure
detection (section 8.1); this further leads to a fortunate combination with the ability of microre-
booting to be application-generic, thus enabling autonomous recovery (section 8.2). Experiments
indicate that, in clusters, it is advantageous to attempt microreboot-based recovery prior to any node
failover (section 8.3), which provides motivation for a more general approach of multi-tier recov-
ery (section 8.4), in which microrebooting is always attempted first, prior to any other recovery
mechanism. We also show how an entire system can be rejuvenated by parts, using what we call
microrejuvenation (section 8.5). Finally, fast recovery offers the opportunity to mask microreboot-
based recovery from end users by exploiting thresholds in humans’ perception of response latency

(section 8.6).

99
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8.1 Lax Failure Detection

When recovery is cheap (i.e., fast and minimally disruptive), it becomes acceptable for a recovery
manager to crash-recover suspect components even when it lacks the certainty that those compo-
nents have indeed failed; the downtime risk of letting the components run may be higher than
crash-rebooting healthy components.

In general, downtime for an incident is the sum of the time to detect the failure (7yet), the time
to diagnose/locate the faulty component, and the time to recover. A failure monitor’s quality is
generally characterized by how quick it is (i.e., Tqet), how many of its detections are mistaken (false
positive rate F'Pget), and how many real failures it misses (false negative rate F'N 4e). Monitors
make tradeoffs between these parameters; e.g., a longer Tyt generally yields lower F'Pgyet and
F'N 4et, since more sample points can be gathered and their analysis can be more thorough.

Cheap recovery could relax the task of failure detection in at least two ways. First, it allows for
longer Tyet, since the additional requests failing while detection is under way can be compensated
for with the reduction in failed requests during recovery. Second, since false positives result in
useless recovery leading to unnecessarily failing requests, cheaper recovery reduces the cost of a
false positive, enabling systems to accommodate higher F'Pget. Trading away some F'Pger and Tyet
may result in a lower false negative rate, which could improve availability, since failures are not

missed by the detection system.

8.1.1 Cheap recovery allows longer detection times

We illustrate Tyt relaxation in figure 8.1. We injected a null reference fault in BrowseCategories,
the main entry point for all browsing on the eBid Web site and, thus, the most-frequently called
EJB (9.3% of total workload). The single-node system is loaded with 500 concurrent clients. We
allow the system to recover with a process restart and compare the results to the same experiment
using microreboot-based recovery. We delay recovery by Tye; seconds, by introducing a delay in
the monitoring system (shown along the horizontal axis); in this experiment, there are no false
positives or false negatives. Note that a non-zero false negative rate is not interesting for any of
the experiments in this section, because its effects are independent of the recovery technique — not
triggering recovery is equally bad, regardless of what recovery was not triggered.

The two curves show how many requests fail as a function of the Tyet delay. The horizontal
dotted line indicates that, if a monitor took as long as 53.5 seconds to detect the failure, the system

using microreboot-based recovery would still provide higher user-perceived availability than full
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Figure 8.1: Relaxing failure detection: F'P ;5 = 0 constant, while Ty, varies.

JVM restarts with immediate detection (T4er = 0). The two curves in the graph become asymptot-
ically close for large values of Tyet, because the number of requests that fail during detection (i.e.,
due to the delay in recovery) eventually dominate those that fail during recovery itself.

Doing real-time diagnosis, instead of recovering at the slightest hint of failure, has an opportu-
nity cost. In this experiment, 102 requests failed during the first second of diagnosis. A microreboot
averages 78 failed requests and takes 411-825 msec (Table 7.2), which suggests that microreboot-
ing during diagnosis would actually result in approximately the same number of failures, but would

additionally offer the possibility of curing the failure before diagnosis even completes.

8.1.2 Cheap recovery tolerates occasional mistakes

In figure 8.2 we explore the effect of false positives on end-user-perceived availability, given the av-
erages from figure 7.1: 3,917 failed requests per JVM restart, 78 requests per microreboot. We keep
Tyer = 0, corresponding to UDP packet delivery time in our LAN; we vary F'Pg;,, by generating
spurious failure reports, tricking the recovery manager into believing there has been failure.

False positive detections occur in between correct positive detections; the false ones result in
pointless recovery-induced unavailability, while the correct ones lead to useful recovery. The graph
plots the number of failed requests f(n) caused by a sequence of n useless recoveries (triggered
by false positive detections) followed by one useful recovery (in response to the correct positive
detection). A given number n of false positives in between successive correct detections corresponds
to a FPget =n/(n + 1), shown along the top horizontal axis.

The dotted line indicates that the availability achieved with JVM restarts and F'Pget = 0% can
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Figure 8.2: Relaxing failure detection: Tye; ~ O constant, while F'Pg;,4 varies.

be improved with microreboot-based recovery even when false positive rates are as high as 98%.
This false positive rate is high compared to what can be achieved in practice; e.g., a fault decision
tree-based diagnosis system used at eBay [CZL*04] achieves FPyi,g = 24%. This suggests that a
microreboot-based policy at eBay could improve availability, since their architecture and workload

conditions are similar in nature to the ones we used in our experiments.

8.1.3 Summary

Engineering failure detection that is both fast and accurate is difficult. Microreboots give failure
detectors more headroom in terms of detection speed and false positives, allowing them to reduce
false negative rates instead, and thus reduce the number of real failures they miss. Lower false
negative rates can lead to higher availability.

Microrebooting requires more precise diagnosis than process restarts, since microrebooting re-
quires component-level precision. It seems, however, that the benefit of microreboots outweighs the
added requirement in precision. For example, looking back to figure 7.1, our simple localization
algorithm resulted in 6 microreboot actions instead of the necessary 3, thus exhibiting a FPgjag
=50%; yet, microreboot-based recovery still reduced unavailability by a factor of 50. We would
expect some of the extra headroom afforded by microreboots to also be used for improving the
precision with which monitors pinpoint faulty components.

In general, we expect cheap recovery to blur the line between normal operation and recovery.

When recovery becomes an order of magnitude cheaper, it allows one to think differently about
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how and when to apply it. Since microreboots result in only a minor cost in goodput if applied by
mistake, they provide the level of recovery performance needed to pursue a rationally-aggressive

approach of initiating recovery at the slightest hint of failure.

8.2 Autonomous Recovery

Fast and safe microreboots allow us to apply more sophisticated failure detection policies, which is
important because total recovery time is often dominated by fault-detection time [CAK™04]. One
promising direction involves using statistical anomaly detection to infer failures. Such techniques
have been shown to reduce time-to-detection at the cost of some false positives [KF05], and a
simplified version of this approach has been successfully demonstrated in a state-management layer
designed specifically to make reboots fast and safe [LKF04].

Automatic detection of failures coupled with fast recovery can improve availability over a sce-
nario in which, while end users contact customer support (who then contact system administrators,
who then re-establish the service’s operation), the service stays down. Automatic detection could
enable autonomous recovery, that would allow the system to recover on the scale of “machine time”
rather than “human time,” with the end result being a better service experience for its human end
users and fewer support calls.

There are two important components in an autonomous recovery strategy: automatic detection
and localization of faults, as well as a reliable form of recovery. Neither of these components
can afford to be custom designed for the application, because they need to co-evolve with the sys-
tem that is being cared for (through upgrades, workload changes, etc.). The increasingly large
scale of today’s Internet systems therefore calls for both detection/localization and recovery to be

application-generic.

8.2.1 Application-generic failure detection

Microrebooting is an application-generic recovery technique, in that no a priori knowledge of the
application is needed. Good failure detection, however, is generally application-specific. Writing
application-specific monitors unfortunately does not scale, because of the difficulty of capturing
all the possible wrong behaviors and changing the monitors in sync with changes to the moni-
tored service. While developing detection and localization tools for rapidly evolving systems may
seem difficult, our colleagues built an application-generic fault detection and localization program:

Pinpoint [KFOS5] uses statistical learning techniques to detect and localize likely application-level
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failures in component-based Internet services. Assuming that most of the system works correctly
most of the time, Pinpoint learns a baseline model of system behavior; during system operation, it
looks for anomalies (relative to this model) in low-level behaviors that are likely to reflect high-level
application faults, and correlates these anomalies to their potential causes (software components)
within the system. Application-generic detection in Pinpoint comes at the cost of occasional false
positives.

We connected the Pinpoint prototype to our J2EE-based system to evaluate the possibility of
autonomous recovery. Pinpoint instruments the JBoss EJB container to capture calls to the JNDI
naming directory and the invocation and return data for each call to an EJB. It also instruments
the Java Database Connection (JDBC) wrappers to capture information on interactions with the
database tier. Each observation includes the monitored component information, IP address of the
current machine, a timestamp, an ordered observation number, and a globally-unique request 1D,
used to correlate observations. All observations are sent to a centralized engine for logging and
analysis. Anomalies in application behavior are detected by measuring the deviation between a
single component’s current behavior and the statistical model of normal behavior that was built over
time; anomalies are found using the statistical y? test of goodness-of-fit. For further details, we
refer the reader to [CKKFO04] and [KFO05].

8.2.2 Recovering autonomously

In figure 8.3 we illustrate the functioning of the integrated system in reaction to a single-point fault
injection; this is representative of the reaction to the other categories of faults we injected. We
corrupted an internal data structure in Viewltem, setting it to null, which results in a NullPointerEx-
ception for Viewltem callers. Labeled light-colored vertical lines indicate the point where the fault
is injected and where the faulty component completes recovery, respectively.

To analyze the events that occur, we zoom in on the interval between 5:32 and 6 seconds in
figure 8.4; the horizontal axis now represents seconds. We mark on the graph the points (along
with the time, to millisecond granularity) at which the following events occur: we inject the fault
(t1), then the first end user request fails as a result (¢2), then Pinpoint sends its first failure report
to the recovery manager (¢3), the recovery manager decides to send a recovery command to the
microreboot hook (%4), the microreboot is initiated (¢5), and finally the microreboot completes (t¢)
and no more requests fail.

The system recovers on its own within 19.4 seconds of the first end user failure; of this interval,

18.5 seconds are spent by Pinpoint detecting and localizing the fault. The kind of faults we inject
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Figure 8.4: Autonomous recovery: zooming in on time interval [5:32, 6:00].

cannot be noticed by TCP or HTTP-level monitors, because the Web pages returned by the server
constitute valid HTML. It takes on the order of a second or less to recover from a faulty EJB with a

microreboot, compared to a full application reboot.

We also conducted a multi-point fault injection experiment: we simultaneously injected a data
corruption PutBid, a Java Exception fault in ViewUserlnfo, and a Java Error fault in Searchltems-
ByRegion. Our system notices and recovers PutBid and SearchltemsByRegion within 19.9 seconds,
while ViewUserlInfo is recovered 46.6 seconds after the injection. The reason for the delay is that,
in our workload, the former two components are called more frequently than the third. Thus, the

Pinpoint analysis engine receives more observations sooner, which gives it a quicker opportunity to
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detect and localize the injected fault.

8.2.3 Summary

These results argue for the combination of statistical anomaly detection with microrebooting to
enable autonomous recovery. This combination is effective in detecting and recovering realistic
transient faults, with no a priori application-specific knowledge. This approach combines the gen-
erality and deployability of low-level monitoring with the sophisticated failure-detection abilities
usually exhibited only by application-specific high-level monitoring. Due to its level of general-
ity, false positives do occur, but cheap recovery makes the cost of these false positives negligible.
The synergy between Pinpoint and microreboots offers the potential for significant simplification of
failure management.

Autonomous recovery enables automated response to failures, that operates in “machine time”
rather than “human time,” thus improving end user experience. Such autonomy is particularly useful
for systems located in zero-administration environments, where access to the system is not imme-

diate.

8.3 Alternative Failover Schemes

Since microrebooting is cheap, it makes sense to employ it instead of (or prior to) node failover in
clusters. As seen earlier, node failover can be destabilizing: in the first set of experiments in sec-
tion 7.3, failing requests over to good nodes while Ny,q was recovering by microreboot resulted in
162 failed requests. In figure 7.1, however, the average number of failures when requests continued
(no failover) being sent to the recovering node was 78. In that case, microrebooting without failover
would have improved user-perceived availability over failover and microreboot.

The benefit of pre-failover microrebooting is due to the mismatch between node-level failover
and component-level recovery. Coarse-grained failover prevents Ny,,q from serving a large fraction
of the requests it could serve while recovering (as evidenced in figure 7.2). Redirecting those re-
quests to other nodes will cause many requests to fail (if not using SSM for remote session state
storage), or at best will unnecessarily overload the good nodes (if using SSM, the good nodes will
have to spend extra time on contacting SSM, marshalling/unmarshalling objects, etc.). Should the
pre-failover microreboot prove ineffective, the load balancer can do failover and have N}.q re-
booted; the cost of microrebooting in a non-microreboot-curable case is negligible compared to the

overall impact of recovery.
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Assuming we microreboot first, we can use the average of 78 failed requests per microreboot
instead of 162 and update the computation for six-nines availability from section 7.3.1. Thus, if
using microreboots and no failover, a 24-node cluster could fail 683 times per year and still offer
six nines of availability. Appealing to common engineering intuition, we conjecture that writing
microrebootable software that is allowed to fail almost twice every day (683 times/year) is easier
than writing software that is not allowed to fail more than once every 2 weeks (/23 times/year for

JVM restart recovery).

Another way to mitigate the coarseness of node-level failover is to use component-level failover;
having reduced the cost of a reboot by making it finer-grained, microfailover seems a natural solu-
tion. Load balancers would have to be augmented with the ability to fail over only those requests
that would touch the component(s) known to be recovering. There is no use in failing over any
other requests. We expect microfailover accompanied by microreboot to reduce recovery-induced
failures even further. Just like in the case of fault localization, microfailover requires the load bal-
ancer to have a thorough understanding of application dependencies, which could be inferred with

approaches similar to AFPI (described in appendix A).

8.4 Multi-Tier Recovery

Microrebooting prior to failover in a cluster is a special case of a recursive recovery policy viewed as
“multi-tier recovery”: we try the cheap recovery first, because the opportunity cost of not attempting

it can be high (in amortized terms). In this section we explore this idea more broadly.

The same way a software system cannot be flawless, neither can a recovery mechanism. Systems
must therefore defend themselves in depth, with multiple layers of recovery, that can provide backup
for each other. We believe the design space for recovery is spanned by two principal axes: cost of
recovery and broadness of failures that can be recovered (figure 8.5). One axis captures the amount
of coverage a technique can achieve in terms of failures it cures; the other axis refers to the general
cost of employing that technique. In some sense, this set of axes captures a cost/benefit ratio for

recovery, and multi-tier recovery policies constitute an exploration of this cost/benefit space.

Microrebooting is not a cure-all; component-level crash-restart works best on transient software
and hardware failures and is effective against resource leaks and corruption of volatile data struc-
tures. Although these are important classes of bugs that are difficult to prevent with today’s quality

assurance processes, they do not represent all failures in systems. Other types (e.g., deterministic
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software bugs, corruption of persistent data) are seldom fixed by rebooting, while others (miscon-
figurations, botched upgrades) are not at all fixable by a reboot. In fact, some studies identify
human-caused problems to be the largest single source of outages and data corruption in large-scale
IT systems [OGPO3]: incorrectly-performed upgrades, configuration changes that unintentionally

disable or degrade service, inopportune component shut-downs, accidentally-deleted data, etc.

To extend recovery to all these types of failure, we can add a second line of defense based on
the pattern of “undo/redo.” Much like a user uses undo to fix typos in a word processor, the system
operator can invoke system-level undo [BP03] to recover from state-corrupting failure and human
operator error. Since undo is a much more comprehensive and broadly applicable recovery method
covering the OS as well as user applications, administrators are willing to incur significantly higher
overhead, since, in non-reboot-curable situations, the cost of not recovering (e.g., permanent data

loss) is significantly higher than the cost of (possibly expensive) undo.

A system-level undo prototype [BP03] wrapped an Internet IMAP/SMTP email server with an
undo/redo layer that uses a proxy to log all external interactions with the server (such as e-mail
delivery and mailbox manipulation). Undo functionality is offered via a rewindable storage layer
that can quickly restore a prior snapshot of all system state, including OS and application binaries
as well as configuration state and user data. Redo is performed by replaying the logged external
interactions via the proxy, thereby restoring end-user work lost during the undo operation while

respecting the system-level repairs effected by the undo operation. For example, if an operator
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misconfigured a global SPAM filter to drop legitimate mail, she could use undo to revert the config-
uration change then use redo to replay the lost email traffic, restoring the dropped messages to their

rightful mailboxes.

A “defense in depth” approach to recovery consists of multiple layers that span the cost/benefit
spectrum. A first line of defense should be a low-cost, low-overhead mechanism that has a good
probability of repairing the problem, but a low opportunity cost in the event it doesn’t work. Mi-
crorebooting provides such a line of defense. We advocate a recovery policy in which microreboot-
ing is always attempted first, at virtually no cost; if this does not cure the observed failure, more

comprehensive (and potentially more expensive) recovery, such as undo, should be employed.

8.5 Microrejuvenation: Preventing Failures Caused by Resource Leaks

Despite automatic garbage collection, resource leaks are a major problem for many large-scale Java
applications; a recent study of IBM customers’ J2EE e-business software revealed that production

systems frequently crash because of memory leaks [MS03].

8.5.1 Resource leaks lead to failure

In figure 8.6 we illustrate the effect of memory leaks on our prototype application. We instructed
Item’s container to leak 2 KB of memory on each call, and Viewltem’s container to leak 250 KB of
memory per call; we chose these leak rates such that the experiment is completes in less than 30
minutes. The load was 350 concurrent clients. The amount of consumed memory increases until
it exhausts all available memory, at which point the server is no longer able to answer requests, as
it is spending most of the CPU cycles trying to reclaim un-reclaimable memory. The requests that
fail are caused by attempted memory allocations that return an error. Once the server is completely
hung, socket-level accept () calls hang in the Java networking layer. At ¢=25.2 and ¢=26, JBoss
released an object pool, which freed up 4 KB of memory, allowing incoming requests to be accepted,

but then promptly failed.

To avoid such leak-induced hangs or crashes, operators in industry resort to preventive reboot-
ing, or software rejuvenation [HKKF95]. Some of the largest U.S. financial companies reboot their

J2EE servers daily [Mit04] to recover memory, network sockets and file descriptors.
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Figure 8.6: Memory leaks induce failure.

8.5.2 Rejuvenation prevents catastrophic failure

We wrote a server-side rejuvenation service that periodically checks the amount of memory avail-
able in the JVM; if it drops below M1, bytes, then it microreboots components in a rolling fashion
(and invokes the system garbage collector) until available memory exceeds a threshold Mg, mcient; if
all components are microrebooted and Mg, ficient has not been reached, the whole JVM is restarted.
This is a simple implementation; real production systems could monitor a number of additional
system parameters, such as number of file descriptors, CPU utilization, lock graphs for identifying
deadlocks, etc.

In figure 8.7 we illustrate the effect of rejuvenation using JVM process restarts, under the exact
same conditions as the previous experiment: we injected a 2 KB/invocation leak in I/tem (an entity
EJB part of the long-recovering EntityGroup) and a 250 KB/invocation leak in Viewltem. Majarm
was arbitrarily set to 35% of the 1-GByte heap (thus ~ 350 MB) and Myymicient to 80% (= 800 MB).
Through rejuvenation, the necessary level of memory is automatically restored, well in advance of it
causing the entire system to grind to a halt. In the experiment’s 30-minute interval, a total of 4,317

requests failed, all due to the process restart; no requests failed due to insufficient memory.
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Figure 8.7: Full rejuvenation: 73, and level of available memory.

8.5.3 Microrejuvenation

In this section we show that microreboot-based rejuvenation, or microrejuvenation, can be as effec-
tive as a JVM restart in preventing leak-induced failures, but cheaper.

We augmented the above-mentioned rejuvenation service with the ability to microreboot com-
ponents when the M1, threshold is reached. Note that the service does not have any knowledge
of which components need to be microrebooted in order to reclaim memory. We therefore devised
a simple adaptive algorithm: the rejuvenation service builds a list of all components and, as compo-
nents are microrebooted, it remembers how much memory was released by each one’s microreboot.
The list is kept sorted in descending order by released memory and, the next time memory runs low,
the rejuvenation service microrejuvenates components starting at the front (thus microrebooting first
those components that are expected to release most memory). The list is re-sorted using the updated
released-memory amounts.

Figure 8.8 shows T3, and the level of free memory during the microrejuvenation experiment.

To be conservative, we examined the worst-case scenario for microrejuvenation, in which the initial
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list of components has the two components leaking most memory at the very end; this way, the
first time the rejuvenation service is triggered, it does not free up sufficient memory until it has

microrebooted all components.
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Figure 8.8: Microrejuvenation: T}, and level of available memory.

During the first round of microrejuvenation (interval [7.43-7.91] on the timeline), all of eBid
ends up rebooted by pieces. During this time, Viewltem is found to have the most leaked memory,
and Item the second-most; the list of candidate components is reordered accordingly, improving the
efficiency of subsequent rejuvenations. The second time M. is reached, at ¢ = 13.8, microre-
booting Viewltem is sufficient to bring available memory above threshold. On the third rejuvenation,
both Viewltem and Item require rejuvenation; on the fourth, a Viewltem microreboot is again suffi-
cient; and so on. Overall, more time is spent in garbage collection, because we invoke the collector
after every microreboot; in spite of this, the number of requests successfully served is higher than

when full rejuvenation is performed.
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8.5.4 Summary

In the case of microrejuvenation, only 1,049 requests failed, representing a factor of 4x improve-
ment over full rejuvenation. Moreover, T4, never dropped to zero. The commonly used argument
to motivate software rejuvenation is that it turns unplanned total downtime into planned total down-
time; with microrejuvenation, we can further turn this planned total downtime into planned partial
downtime.

Earlier, we described the application of Pinpoint [KF05] — the statistical anomaly detection
engine — to the problem of failure detection. It appears to be a natural extension to use detected
anomalies for the purpose of anticipating failures. Such anticipation can be used as a trigger for

microrejuvenation.

8.6 User-Transparent Recovery

Fast recovery offers the opportunity to hide failure and recovery from end users. Various stud-
ies [BBKO0O, Mil68] have shown that, when a user is interacting with a computer system or service,
response times up to 1-2 seconds are perceived as interactive; a delay of more than 8-10 seconds,
however, leads the user to conclude the system has failed. In the case of Web services, exceeding
the 8-second threshold leads the user to hit the Reload or Stop button, or click over to another site.
These thresholds in the human perception of latency suggest that, as long as a Web site responds in
less than 1 second, users will perceive it as interactive. If a Web site can recover from a transient
failure and retry the failed in-flight request(s) within 8 seconds, affected users will have the illusion
of continuous uptime — they will see a short delay rather than a failure.

Microrebooting an EJB takes less than 1 second, which permits us to use call retries to mask
EJB failures from most end users. The HTTP/1.1 specification [GMF™99] offers return code 503
for indicating that a Web server is temporarily unable to handle a request (typically due to overload
or maintenance). This code is accompanied by a Retry—-After header containing the time after
which the Web client can retry. This offers the opportunity to transform MicrorebootInProgressEx-
ception(n) events into HTTP Ret ry-After (n) responses to Web browsers.

We implemented call retry in our prototype. Previously, the first step in microrebooting a com-
ponent was the removal of its name binding from JNDI; instead, we bind the component’s name to
a sentinel during microreboot. If, while processing an idempotent request, a servlet encounters the
sentinel on an EJB name lookup, the servlet container automatically replies with [Retry-After

2 seconds] to the client. We associated idempotency information with URL prefixes based on
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our understanding of eBid, but this could also be inferred using static call analysis. We measured
the effect of HTTP/1.1 retry on calls to four different components, and found that transparent retry
masked roughly half of the failures, as shown in table 8.1 (data is averaged across 10 trials for each

component shown). This corresponds to doubling perceived availability.

Operation / No Delay &
Retry
component name retry retry
Viewltem 23 16 8
BrowseCategories 20 8 0
SearchltemsByCategory | 31 15 0
Authenticate 20 9 1

Table 8.1: Masking microreboots with HTTP/1.1 Retry-After.

The failed requests visible to end users were requests that had already entered the system when
the microreboot started. To further reduce failures, we experimented with introducing a 200-msec
delay between the sentinel rebind and beginning of the microreboot; this allowed some of the re-
quests that were being processed by the about-to-be-microrebooted component to complete. Of
course, a component that has encountered a failure might not be able to process requests prior to
recovery, unless only some instances of the EJB are faulty, while other instances are OK (a microre-
boot recycles all instances of that component). The last column in Table 8.1 shows a significant
further reduction in failed requests. We did not analyze the tradeoff between number of saved re-
quests and the 200-msec increase in recovery time.

A technique that achieves similar effects is that of using a delay proxy; we experimented with
this approach in [CKK"03]. During the recovery process, we queue up incoming requests inside
a proxy interposed between end users and the service in question; once recovery has completed,
we replay requests that were in progress. This keeps clients from seeing failures due directly to
the recovery process; instead of a failure, clients perceive an increased latency in the request. This
induced latency is finite, as we stall requests for a maximum of 8 seconds, after which we return a
failure to the client if recovery has not completed and the request cannot be admitted to the system.

The experiments reported here indicate a reduction by 50% in the user-perceived unavailability,
when call-retry is in place. Such retries can be automated and performed transparently at multi-
ple levels; we have only shown the highest level, as provided by the HTTP/1.1 Retry-After
response header. At a lower level, calls between EJBs can be retried if a particular EJB is microre-
booting, as described in chapter 5. We expect judicious and careful use of call-level retries to be a

useful tool to improve availability in Web-connected applications.
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8.7 Chapter Summary

This chapter described ways in which microreboots enable more flexible and effective recovery
policies; we provided a few examples of recovery and prevention actions that could be incorporated
in a broader policy for recovering large-scale software systems. We showed through analytic ar-
gument and experimentation that a microreboot-centric policy affords relaxation on the correctness
constraints of failure detection: microreboot-based recovery allowed the monitor in our prototype
to take up to 53.5 seconds longer to detect a failure than the case where JVM restarts were used. In
the same vein, moving from a recovery policy based on JVM restarts to one based on microreboots
allowed the monitors to have a false positive rate in detection as high as 98%, while overall system
availability was still higher. This level of tolerance for mistakes in detection allowed us to produc-
tively combine microrebooting with a detection system based on statistical analysis, which reduces
the rate of false negatives at the expense of increased false positive rates; the result was autonomous
recovery from microreboot-curable failures.

We argued for the use of a multi-tier recovery policy, in which microrebooting is tried first, at the
slightest hint of failure, followed by other recovery techniques, if necessary. Should the microreboot
cure the observed failure, it is a significant win in recovery time; should it be ineffective, the cost of
having tried is insignificant. For illustration, we showed that, in clusters, attempting microreboot-
based recovery can reduce the amount of unavailability perceived by end users

We introduced the notion of microrejuvenation, by which components are restarted prophylacti-
cally, before they actually fail. We showed that, compared to using process restarts, a microreboot-
based rejuvenation policy in our prototype offers a 4x benefit in terms of unavailability.

Finally, we showed that fast recovery offers the opportunity to mask microreboot-based recovery
from end users by retrying requests transparently and exploiting thresholds in humans’ perception
of response latency. In our prototype, we reduced unavailability resulting from online recovery by
50%, while maintaining user-perceived service quality.

In summary, we have shown that quantitative reduction of recovery time enables qualitative

changes in the way such recovery is applied to failures in crash-only software systems.



116 CHAPTER 8. EXPLORATION OF MICROREBOOT-BASED RECOVERY POLICIES



Chapter 9
Limitations and Challenges

The success of microreboot-based recovery is predicated on several assumptions, and the absence
of any of these can cause recovery to be less effective. In this chapter we present the limitations of
microreboot-based approaches to recovery, along with challenges a system builder would face when

applying the results of this work outside the domain of our prototype.

9.1 Results Proven in Java Environments

Our experimental evaluation was conducted on two Java-based systems: the JBoss/EBid online
auction system and the Mercury satellite control system. We derived conclusions with respect to
software systems in general by extrapolating the results shown in chapters 7 and 8. A more com-
plete body of evidence supporting our thesis would consist of experiments run in more than one
environment (e.g., also C/C++ programs using processes/threads for component boundaries, Mi-
crosoft .NET applications, etc.).

We expect our conclusions to hold in these programming environments as well; recent efforts in
non-Java projects (e.g., a new version of Farsite [ABCT02], new projects at Hitachi and IBM, the
Nooks [SBLO03] project) support this expectation. The crash-only design and the microreboot mech-
anism are not specific to Java, but rather use general software engineering techniques. We derived a
programming model in which programs consist of independently-recoverable components that take
a short time to restart and maintain important state in external, application-independent state stores.
Structuring a C/C++ application, for example, as a collection of OS processes that can individually
reinitialize very fast is a suitable way to achieve microrebootability in an otherwise-monolithic pro-

gram; microrebooting such process-based components will be faster and less disruptive compared
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to restarting the entire application or rebooting the operating system.

9.2 Microreboots Only Cure Transient Failures

Rebooting has little chance to be effective against persistent failures and certain classes of determin-
istic bugs; if a failure is not reboot-curable, microrebooting is unlikely to fix it. For a microreboot-
based recovery approach to be successful, there need to be relatively more Heisenbugs than deter-
ministic ones, so that restarting causes the failure to disappear once the program returns to its start
state. We did find that, in present-day enterprise applications, the majority of failures that occur in
practice are indeed transient in nature; there is not, however, sufficient evidence to argue that this
assumption holds for most software. For example, failures in embedded control software may be
more tightly related to non-transient physical events than to transient problems.

Even in crash-only systems, microreboot-based recovery is not a substitute for root cause diag-
nosis and bug fixing; performing such a substitution can be self-defeating. Without suitable failure
analysis, feedback from the field back into development organizations is disrupted, reducing the rate
at which software bugs are discovered and fixed. Whether employing microreboots or not, fixing a
software bug will always improve the reliability and availability of a program (as long as no new
bugs are introduced with the “fix”).

We support a development approach in which components are explicitly designed to be microre-
booted frequently and take conscious advantage of this expected mode of operation (e.g., by never
explicitly releasing resources and instead relying on microrejuvenation to do so). We disapprove,
however, of simply relaxing quality assurance processes and relying on microrebooting to cure
whatever failures may occur during operation. Such relaxation would likely result in a relatively

higher fraction of deterministic bugs, leading to a reduction in the effectiveness of microreboots.

9.3 Fine-grained Recovery Requires Fine-grained Workloads

In cases where a system’s workload consists of long-running operations (such as long-running trans-
actions), a microreboot can result in the loss of large amounts of work. It is sometimes possible to
periodically microcheckpoint individual components [WKIO00], to keep the cost of microreboots
low, but this approach poses the risk of capturing reboot-curable state corruption in the checkpoint.
Microrebooting clearly depends on workloads consisting of fine-grained, independent requests; if

the units of work are small and little state needs to be preserved from one request to the next, then
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there is little state that needs reconstruction upon the failure of one such request.

The benefits shown in our prototype are partly due to the general structure of Web-based appli-
cations, which is inherently favorable to microreboot-based recovery. HTTP shaped the evolution
of all Web-connected applications, by forcing designers to piece together independent HTTP re-
quests into sessions (through preservation of state at the server and the use of cookies as keys to that
state). Applications that were normally accessed over persistent connections, as was the case with
most enterprise applications at the time, migrated to an HTTP-based model. In the past decade, an
increasing number of applications started using small transactions to turn previously-long-running
operations into smaller, independently-recoverable units of work. With the advent of Web services,

we expect this to become even more the case.

What developers of Web-based applications may have considered (and perhaps still consider) a

headache, has ultimately turned out to be a tremendous benefit to high availability.

9.4 State Segregation Requires Discipline

It is usually not difficult to identify the critical state (i.e., that which cannot be recreated without
requiring the end user to replay part of her interaction with the system). It is, however, difficult
to ensure that such state is managed in a microreboot-safe manner, and we see this as the most
important limitation to employing reboot-based recovery in existing systems. Code that was not
designed to preserve the separation between important state and application code will often take
“shortcuts” and perform unsafe updates that compromise the use of microreboots. In such systems,
the engineering effort of untangling state management from application logic may present itself as

too expensive.

In our experience with non-microrebootable J2EE applications (Petstore [Sun02], RUBiS [RUB],
ECperf [Sub02]), we found the biggest challenges to be (a) separating code that manages session
state from the rest of the application logic, and (b) ensuring that persistent state is updated us-
ing transactions. In general, however, J2EE applications are suitable for microrebooting and require
minimal changes to take advantage of our microreboot-enabled application server, because the J2EE

model encourages state externalization and component isolation.
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9.5 Achieving Good MTTF/MTTR Balance is not a Rigorous Process

We advocated in section 3.2.2 a good balance between MTTF and MTTR of components; frequently-
failing components need to be recovered more frequently than seldom-failing ones, and thus should
aim far fast recovery times. We described the application of this principle in the Mercury satellite
ground station software, but did not specify how this could be done in the general case.

Unfortunately, the general problem of designing a componentized program that is well-balanced
from the point of view of MTTF/MTTR cannot be cast (yet) as a rigorous optimization problem
during the development phase. While for each subsystem there is certainly some “size” that provides
the optimal trade-off between MTTF and MTTR, identifying this size must be done largely based on
empirical data. A number of models have been developed over time (see [Lyu95] for examples) to
help with MTTF prediction during the software development process, but few, if any, have proven
successful in practice. Heuristics, however, can be useful — e.g., a mature piece of code can be
assumed to have a higher MTTF than a new piece of code, so coupling a long-recovering component
with the new code can be avoided.

Achieving the right MTTE/MTTR balance appears today to be more of an art than a science;
we expect a practical approach to take into account not only directly measurable factors, but also
development cost, maintenance costs, and the interplay of these measures with the resulting MTTF
and MTTR.

If estimating the MTTF of a component ahead of time is difficult, then data from the field could
be fed back into the development process to guide the redesign of programs. Runtimes designed to
collect MTTF and MTTR data during operation and relay it back to the vendor can be very useful in
this respect; many software vendors are building such features into their runtimes (e.g., Microsoft
Windows XP). Unfortunately, small code changes in the component itself or in peer components
can lead to drastic changes in MTTF; as a result, the MTTF can change significantly over time,

eliminating the balance achieved in a prior release of the software.

9.6 Componentizing Legacy Software is Difficult

In order to perform fine-grained microrebooting, applications need to be composed of fine-grained
components that can be restarted independently of each other, while important state needs to be
managed by specialized state stores. However, most software that is currently in operation is mono-

lithic, and microrebooting cannot be applied safely to such non-crash-only applications. Some
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legacy programs are fairly easy to transform into microrebootable ones, while others are not.

In the case of all software, whether monolithic or not, there exist boundaries along which subsys-
tems can be isolated from each other — these boundaries are generally suggested by the functionality
of the program in question. Enforcing these boundaries can be done with low-level mechanisms,
as would be the case with separate process address spaces or the use of virtual machines. Some re-
search projects have explored the possibility of wrapping harnesses around parts of legacy software
(e.g., [KPGVO03]).

The challenge resides in making these components sufficiently small to obtain a noticeable ben-
efit from microrebooting. In our experience, mature monolithic programs require non-negligible
amounts of redesign prior to being broken down into fine components; strongly modularized pro-
grams present more attractive opportunities for componentization.

We are encouraged however by the fact that componentized software design has been gaining in
popularity for many reasons beyond recovery. Componentized programs offer flexibility in devel-
opment, packaging, and testing; they enable fine-grained upgrades while in operation, thus reducing
the cost of these upgrades; and components can be distributed, replicated, and/or scaled individually.
We have already witnessed several major rewrite projects, in which commercial monolithic software
underwent componentization for one or more of these reasons; such projects have the added benefit

of making microreboots possible.
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Chapter 10

Conclusions

This dissertation defines the crash-only design, a way to build software systems that can be recov-
ered safely and fast using fine-grained restarts. Crash-only design is centered around modularity
and the complete separation of process recovery from data recovery, with the delegation of the latter
to specialized state stores. This design differs from prior approaches primarily by viewing reboot-
ing/restarting of programs as a necessarily-routine operation in highly available software. Although
crash-only design may introduce performance overheads, we argued that the benefits outweigh the
drawbacks; in our J2EE prototype, we showed the overheads to be negligible compared to an equiv-
alent deployed system.

We define the microreboot mechanism, a way to make system recovery cheap by reducing the
scope of a system reboot to those components that are indeed faulty. We build upon prior work
by casting most failures into reboot-curable problems and effectively recovering from them. For
example, in our J2EE prototype, microrebooting cures the majority of failures empirically observed
to cause downtime in real-world Internet services. Compared to recovery based on JVM process
restart, microrebooting is an order of magnitude faster and an order of magnitude less disruptive,
even in multi-node clusters.

The use of microreboot-based recovery simplifies failure management policy, thus improving its
probability of success; once recovery becomes fast and safe, it has even further reaching effects. Us-
ing microreboots, we reclaim memory leaks in our prototype application without shutting it down.
Microreboot-based recovery achieves higher levels of availability even when fault detection has
false positive rates as high as 98%. Microrebooting faulty nodes in clusters of J2EE application
servers improves availability even over the traditional “failover and reboot” approach. Finally, 50%

of microreboots are masked using simple, transparent call-level retry, unbeknownst to the system’s
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end users.

In summary, crash-only design in conjunction with microreboot-based recovery mitigates sev-
eral key dependability problems, such as the difficulty of building reliable large-scale software, the
complexity of managing failures in large infrastructures, and the effects of long diagnosis times on
availability. We conclude that our approach is an appropriate way to structure software with high-
availability requirements, and we advocate the use of microrebooting as a first-line defense against

transient failures.

The premise of this dissertation is that many forces prevent large-scale software from being
reliable; accepting software failure as a fact, we showed that structuring systems for fast, minimally-
disruptive recovery is practical and makes systems highly available. The fact that we focused on
fast recovery instead of trying to eliminate failures altogether allowed us to increase the availability

in a prototype system by several orders of magnitude.



Appendix A

Automatic Failure-Path Inference

In complex but modular software systems, it is useful to have a failure dependency graph, to under-
stand how a failure in one part of the system will propagate to or affect other parts. Such dependency
information has been used for root cause analysis, for guiding automated system recovery, and for
identifying where debugging efforts should be focused.

Automatic Failure-Path Inference (AFPI) is an application-generic, automatic technique for
dynamically discovering the failure dependency graphs of componentized Internet applications.
AFPT’s first phase is invasive, and relies on controlled fault injection to determine failure propa-
gation; this phase requires no a priori knowledge of the application and takes on the order of hours
to run. Once the system is deployed in production, the second, non-invasive phase of AFPI pas-
sively monitors the system, and updates the dependency graph as new failures are observed. This
process is a good match for the perpetually-evolving software found in Internet systems; since no
performance overhead is introduced, AFPI is feasible for production systems.

We applied AFPI to J2EE and tested it by injecting Java exceptions into an e-commerce appli-
cation and an online auction service. As will be shown later, the resulting graphs of exception prop-
agation are more detailed and accurate than what could be derived by analysis of readily-available
static application descriptors.

The rest of the appendix is organized as follows: Section A.1 describes the specifics of our
approach, section A.2 presents experimental results validating the accuracy of our f-maps and con-
firming that there is no performance overhead in applying AFPI. We highlight specific cases in
which AFPI finds interesting fault propagation paths that would have been difficult to find manu-
ally, as well as cases in which it eliminates paths that appear in static dependency graphs but do not

actually propagate faults in practice. Finally, section A.3 concludes.
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A.1 Approach

AFPI consists of two phases. In the (invasive) staging phase, the system actively performs fault
injection, observes its own reaction to the faults, and builds the f-map. In the (non-invasive) pro-
duction phase, the system passively observes fault propagation when faults occur during normal
operation, and uses this information to evolve the f-map on an ongoing basis. In this appendix we
focus on the staging phase.

Aside from the reasons described in the main body of the dissertation, our choice for a J2EE
application server in the case of AFPI was also motivated by the fact that Java offers features such as
reflection and other mechanisms that allow AFPI to discover relevant faults to inject. J2EE enforces
a particular application structure in which components have a small number of well-defined entry
points, and by instrumenting the platform we can intercept communication between components

and, hence, propagation of faults.

A.1.1 AFPI algorithm

The general algorithm for the staging phase is as follows:

1. Initialize a global fault list to be empty.
2. Start the application and any external components it uses (e.g., a separate database).

3. Every time a new component C' of the application is deployed (whether at startup or during
the operation of the application server), use reflection to discover the methods exported by its

interface.

4. For each method M; of C, use reflection to discover the set F of Java exceptions declared as
throwable by A;, and for each F; € F, add the triplet (C, M;, F}) to the global fault list.

5. Also add to the global fault list any exceptions corresponding to “environmental” faults that
could occur during execution of method M;. The set E of all such environmental exceptions
could include network-related exceptions, disk I/O exceptions, memory-related exceptions,
etc. In our current approach, we add a triplet (C, M;, E;) for every exception type E; € E.
Injecting application-defined exceptions stresses robustness to application bugs, while inject-
ing environment-related exceptions primarily probes the paths through which application-

external faults can propagate.
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6. Once all components have been deployed, select a triplet (C, M, F') from the list of faults,
and arrange to inject exception F' into component C' the next time method M is called. Sec-

tion A.1.2 describes how this is done.
7. Start the load generator (client emulator), to exercise the application.

8. As failures occur, the monitoring agent is notified by a separate fault detector. As the monitor
receives notifications, it builds up an f-map for each type of fault. An f-map is a directed
graph that captures failure propagation: the presence of a directed edge (u,v) means that
a fault in component u propagated and caused component v to fail. If, however, u’s fault
propagates but is properly handled by v, then no externally visible behavior is reported to
our monitor, so edge (u,v) is not added to the f-map. F-maps for different fault types may
differ, because some faults propagate from the callee up the call tree and others do not. In all
our experiments, the injected faults always resulted in observed failures, i.e., exceptions that

propagated to at least one component.

9. Save the current f-map and list of faults to stable storage, shut down and restart the application,
and continue with the next (C, M, F') triplet. The fault injection experiments end when the list
of faults has been exhausted. We restart the application between injections to avoid spuriously

representing cascading failures in the f-map.

Two notable differences emerge in comparing our fault injection approach to other recent work.
First, in step 4, we directly induce application-visible exceptions, in contrast to prior work that
injects low-level hardware faults. Determining which (if any) application-visible failures result
from low-level hardware faults requires the construction of a fault dictionary [KIR"99], which has
proven difficult.

Second, some recent work [Fea03] attempts to narrow the possible faults injected at a particular
point based on static or dynamic analysis; for example, if a particular bytecode sequence is known
to specify a read from a network stream rather than from a file, one might inject only network-
related hardware errors rather than low-level disk errors at that point. As stated in step 5, we avoid
such narrowing and simply enumerate all possible environmental conditions that can be expressed
as Java exceptions. Besides the fact that deriving more specific information using static analysis can
be cumbersome, we would like to minimize our assumptions about whether, in fact, the executing
method would really be unaffected if an “unrelated” low-level fault occurred (consider a method

that does no disk I/O, but a low-level disk fault occurs while that method is trying to page in data



128 APPENDIX A. AUTOMATIC FAILURE-PATH INFERENCE

or code). In fact, all we assume is that it is possible that a given exception might be thrown by
a particular method. We return shortly to the question whether most low-level faults do in fact
manifest as application-level exceptions.

A major flaw in many fault injection experiments in the literature is that they do not account
for correlated faults. However, in large scale production systems, true independent failures are
rare [Bar02, Ach02]. Therefore, once the AFPI sequence of single-point injections completes, our
system does multi-point injections, to simulate correlated failures. The monitoring agent adds to the
f-map any additional edges that it detects this way.

Once the multi-point injection phase completes, the system can be deployed into production.
The monitoring agent continues to observe the system’s reactions to “naturally occurring” (i.e.,
non-injected) faults, and modifies the f-map based on these observations. Whenever an edge in the
graph is added or re-observed, a timeout is reset on it; propagation paths that do not manifest for a
long time are removed from the graph. Thus, the f-map is a continuously evolving representation
of the application. This passive phase is in no way dependent on the active, fault-injection phase —
it would work even without an initial draft of the f-map, but it would take much longer to converge
onto a correct representation of the dependencies. We can therefore think of the fault injection phase

as an optimization.

A.1.2 Modifying JBoss to enable AFPI

JBoss consists of a microkernel, with the various services being held together through Java Man-
agement Extensions (JMX). The services are hot-deployable, which implies that one can replace an
existing service with our modified version at runtime, and the server will properly reintegrate it. We
built our failure monitoring and fault injection facilities as two separate services of the JBoss mi-
crokernel, so that failures are detected independently of any specific knowledge that they are being
injected.

In addition, we modified existing JBoss code in three ways. First, whenever a new EJB is
deployed (i.e., the EJB is instantiated in a new container), the fault injector uses Java reflection to
enumerate the EJB’s methods and the exceptions each method can throw, in addition to those thrown
by the JVM itself (i.e., step 4 of the AFPI algorithm). This process is identical whether the EJB is
deployed as part of regular application deployment, or as part of a live upgrade or bug fix.

Second, we provide a new container method by which we can instruct the EJB that the next
call to method M should throw exception X, i.e. step 6 in the algorithm. During the fault injection

stage, the fault injector will systematically inject every kind of exception that can be thrown by
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each method in the EJB, one at a time. It will attempt to throw both declared exceptions (i.e.,
those explicitly declared by the EJB’s Java method signature, some of which may be handled using
catch and others which may be passed up to the caller) and non-declared exceptions (e.g., a
runtime condition such as OutOfMemoryError, to simulate more generic system-level problems
that most EJBs would not try to detect directly, as in step 5 of the algorithm).

Third, we modified the EJB container so that, when an exception is thrown by an EJB, the
stack trace is parsed and we extract the identity of the calling component (EJB/servlet/JSP) and the
invoked component. This information is passed to AFPI, which uses the information to build up a
failure propagation map.

Since we modified the application server rather than a specific application being deployed, we

can invoke the new functionality on any J2EE application that runs on JBoss.

A.2 Experiments

Our experiments address three issues: the suitability of our injected faults, the accuracy and use-
fulness of our f-maps, and the cost in terms of time and performance at which we can obtain these
f-maps.

All experiments, except performance overhead, were performed on an Intel Pentium—4 1GHz
machine, with 512 MB RAM, running Linux 2.4.9. We modified JBoss 3.0.3 running on Sun Java
2SE 1.4 and Sun Java 2EE 1.3.1. The applications we chose for our experiments are Petstore 1.1.2
and RUBIS 1.3. Petstore is a freely available sample J2EE application from Sun that implements an
e-commerce site where users can maintain an account, update their profile and payment information,
browse a merchandise catalog, add/remove items to/from a shopping cart, complete a purchase, etc.
It consists of 233 Java files and about 11K lines of code. RUBIS, developed at Rice University,
implements a Web-based auction service modeled on eBay. It contains 582 Java files and about 26K
lines of code. For each of these applications, the invasive staging phase took between two and three

hours to complete.

A.2.1 Suitability of injecting Java exceptions

Since we intend for our technique to be used on real systems, it is important that we inject faults rep-
resentative of those that would occur in real systems. We inject application and JVM-visible faults
(exceptions, application-visible or OS-visible resource exhaustion) rather than low-level faults (bit

flips, stuck-ats) for three reasons. First, low-level faults are not that common in Internet systems,
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unlike, e.g., space-born applications exposed to radiation; Internet services go down mainly due
to software bugs and operator errors [MG95, Cho97, Sc099, AIST01, OGP03]. Second, faults not
corrected by the hardware will often manifest as some higher-level fault, but if transient, the map-
ping may appear nondeterministic. A “random” bit flip may corrupt an important/live data structure
or trash the heap, but in many cases turns out to be harmless [CMB101]. Getting reliable failure
propagation for this type of faults is difficult; we are not aware of prior work that systematically
addresses this problem.

An important question concerns coverage of failures: have we exercised all the conditions that
could trigger a particular exception, especially given that the way the exception is handled may
depend on the particular state of the program at the time the exception occurs? Although the exper-
iments performed so far have not provided evidence for this, we anticipate that our coverage is not
complete. However, in cases where partial recovery fails due to incorrectly determining the subset
of components that must be recovered, a full reboot could always be used.

Determinism is related to the timing of our injections: we inject an exception after the applica-
tions has gone through a sequence xg, x1, ..., ) of state transitions; if we were to inject, instead,
after a sequence xg, ..., T, ..., Ty the application could conceivably handle the exception differently.
We have found it to not be the case in the two applications we looked at; we also verified it experi-
mentally, by injecting the same set of exceptions in different orders and with different timings, but
the resulting f-maps were the same. However, in the more general case, it is quite possible that a
Java application would treat an exception differently. Such differentiated treatment of failures would
lead over time to denser f-maps, because all the alternate paths would be captured simultaneously.

In addition to injecting the kinds of faults the application designer originally thought of, we
choose faults that are in fact commonly observed as software-related transients. Exceptions ex-
plicitly declared by the EJBs correspond to the designer’s own knowledge of particular “expected”
failure modes. With respect to undeclared exceptions, it is reasonable to ask whether the kinds
of failures that are independent of application semantics — OS-level resource exhaustion, network
connectivity problems, manifestation of bugs in the OS kernel or libraries — are indeed manifest as
Java-visible exceptions.

When an internal error or resource limitation prevents the Java virtual machine from implement-
ing the semantics of the Java programming language, it throws an exception that is a subclass of

VirtualMachineError; these exceptions are included in table A.1.
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Exception Possible real life cause
declared exceptions | application-expected faults
OutOfMemoryError | memory exhaustion
StackOverflowError | code bugs

IOException failed or interrupted I/O operations
RemoteException remote method invocation failure
SQLException database access error

NullPointer code bugs and data errors

Table A.1: Exception types used in AFPI experiments.

We also injected timing faults, in which calls to various EJIBs were delayed, but due to the
blocking nature of RMI (Java’s RPC-like remote method invocation mechanism), such timing faults
did not induce any failure in Petstore or RUBIS.

We did not find literature that documents the extent to which different JVMs actually translate
such low-level faults into Java-visible exceptions. We performed a number of ad hoc experiments
(see table A.2 for a few examples) to determine whether Java exceptions were indeed a reasonable
way to simulate such faults. The results were satisfactory: using the Sun HotSpot JVM, all faults we
injected at the network level (e.g., severing the TCP connection), disk level (e.g., deleting the file),
memory (e.g., limiting the JVM’s heap size), and database (e.g., shutting DBMS down) resulted in

one of the exceptions shown in table A.1. Our validation, however, is certainly not exhaustive.

Induced failure | Exception

bad server in registry ConnectException
RMI registry unreachable | ConnectException
server not in registry NotBoundException

server crashes during call | UnmarshalException

Table A.2: RMI experiments evaluating the conversion of real faults into Java exceptions.

A.2.2 F-maps compared to existing structures

In this section we examine whether our f-maps are as accurate as those obtained using other tech-
niques, and, if so, whether they are any better. We compare f-maps obtained through our introspec-
tive method with a dependency graph built by manual inspection of J2EE deployment descriptors
— a programmer-supplied XML document for each J2EE component, that describes a component’s
deployment settings. An EJB’s descriptor declares, among other things, what other EJBs this EJB

calls; this suggests using the collection of descriptors as an approximation of the static call graph.
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In our implementation, the nodes in an f-map represent EJBs, servlets, JSPs, and special data
access objects (DAOs) used for accessing databases. Figure A.1 shows two versions of the Petstore
f-map: one derived by manually inspecting Petstore’s deployment descriptors (top f-map) and one
obtained automatically with our introspective system (bottom f-map). The bold edges are those that
are not common between the two f-maps.

Notice two types of differences between the f-maps: First, the injection-based f-map is missing
some edges present in the descriptor-based f-map: AccountEJB — OrderEJB, CatalogEJB — Shop-
pingClientControllerEJB, and EStoreDB — Web tier. Second, the injection-based f-map has addi-
tional nodes and edges that are not present in the descriptor-based f-map: HttpJspBase, MainServlet,
and six JSPs, with the corresponding edges. The deployment descriptors group all Web components
(servlets and JSPs) into one entity, called the Web tier.
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Figure A.1: F-map for Petstore: deployment descriptors (top) vs. AFPI (bottom).
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We were most concerned about the missing edges, because they seemed to imply that our tech-
nique failed to discover existing dependencies. However, upon inspection of the code, we found
that the injection-based f-map was correct. In the case of the AccountEJB — OrderEJB edge,
OrderEJB did indeed maintain a reference to AccountEJB, but it never interacted with that EJB,
hence no opportunity for a fault propagation from AccountEJB to OrderEJB. In the case of Cata-
logEJB — ShoppingClientControllerEJB, ShoppingClientControllerEJB did not even have a refer-
ence to CatalogEJB, so the deployment descriptors were simply wrong. This illustrates that, con-
trary to our initial expectations, the descriptors cannot be relied on for understanding the structure

of the application.

Finally, the EStoreDB — Web tier edge is present in the descriptors due to a servlet which runs
at setup time and populates the database with default information (users, merchandise, etc.). This
servlet is run once at installation and never again during normal operation, which is why our f-map
correctly indicates there is no direct fault propagation edge from the database to any of the Web

components.

The second difference is that components are discovered at a finer grain than can be captured
in the deployment descriptors. For example, what the descriptors showed as the “Web tier,” our
system dissected into the individual servlets and JSPs, along with fault propagation information.
These additional f-map nodes naturally result in new edges along which faults can propagate, edges
that can be used in better pinpointing the source of failure and thus provide a more powerful tool
in deciding which components to recover. An interesting case is that of the HttpJspBase node; we
tried to find it in the Petstore source code to understand its role, but it turned out it is not part of the
application. HttpJspBase is the superclass of all JSP-generated servlets and it is part of Jetty, the
servlet/JSP container that we used with JBoss. Hence, our technique was able to identify interactions
with components which, although not part of the application, are still parts of the system delivering

the service.

Obtaining the f-maps for RUBIS, as indicated in figure A.2, confirmed the properties observed
with the Petstore f-maps. This time, the deployment descriptors turned out to be quite conservative,
in that the AFPI-based f-map contained strictly more information than the descriptors. Many of the
inter-EJB dependencies fail to be indicated as references in the deployment descriptors. Dependen-
cies between EJBs and servlets are not captured in deployment descriptors either. While much of
this information could be obtained through static analysis, certain conditions cannot be found, such

as code that is dead, owing to a dependency on the current date.
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Figure A.2: F-map for RUBIS: deployment descriptors (top) vs. AFPI (bottom).

AFPI needed no application-specific knowledge to derive the correct set of dependencies be-
tween components, and didn’t even require access to the application’s source code. As was men-
tioned previously, the collection of deployment descriptors does not need to reflect a correct static
call graph in order for the application to run, and in fact one would expect EJB evolution to make
erroneous descriptors more common. This is especially true given that developers often maintain
the descriptors manually [Are02], although commercial tools are available to programatically gen-
erate deployment descriptors from EJB sources. Moreover, even if the deployment descriptors were
correct and complete, they would capture all possible paths that might propagate faults at runtime,

whereas we are interested in those that actually do propagate faults.

Since deployment descriptors fail to provide an accurate static call graph, we considered obtain-
ing the call graph using a tool that directly inspected the source code. Of course, such a call graph
would have to be significantly pruned in order to make it useful; the static call graph is normally
exponential in the program size, and researchers currently attempting to apply static analysis to
improve fault coverage admit they will have to use a smaller-sized approximation of the full static
call graph [Fea03]. Even if we could work with a compact representation of the static call graph,

it would show paths along which faults might propagate, not only the ones along which faults do
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propagate, and it would not reveal edges that propagate faults unrelated to individual method invo-
cations, such as an errant thread that overallocates memory and causes another unrelated thread in

the same JVM to get an out-of-memory exception.

A.2.3 Fault-class-specific f-maps

Unlike general dependency graphs, our technique allows the system to obtain and maintain separate
f-maps for each fault class. Such maps enable targeted recovery in the case of specific faults. Since
one motivation of obtaining f-maps is fast recovery, we do want such fine-grained information
about failure propagation so that we can recover the minimal subset of failed components. By
eliminating edges that do not reflect actual (observed) propagation paths, we can do more efficient

microrecovery.

MainServlet

ShoppingCartEJB

/ CustomerEJB
ShoppingClientControllerEJB
CatalogEJB AccountEJB

SignOnEJB

Figure A.3: Petstore f-map based exclusively on application-declared exceptions.

Figure A.3 shows a Petstore f-map discovered by injecting exclusively application-declared
exceptions. Such an f-map may help us in deciding how useful it would be to suppress environmen-
tal/external sources of faults (e.g., by purchasing more reliable hardware). Notice that this f-map is

considerably simpler than the previous f-maps.

We also examined Petstore’s five fault-class-specific f-maps for undeclared exceptions, i.e.,
those obtained by injecting OutOfMemoryError, StackOverflowError, IOException, RemoteExcep-
tion, and SQLEXxception, respectively. To our surprise, each of these f-maps was virtually identical
to the cumulative one in figure A.1, which represents the union of all the fault-class-specific f-maps.
Inspecting the Petstore code provided a simple explanation: the application contains almost no code
to handle exceptions that may occur from its interaction with the environment. Such lack of ro-
bustness causes any external exception to appear as “something bad” that the affected EJB does not

handle gracefully.
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A.2.4 Correlated faults

As described earlier, the second phase of f-map generation consists of injecting correlated faults.
The algorithm for this second phase is similar to the first phase, with one exception: in order to
generate the fault list, we take the Cartesian product of the original fault list with itself, and then
eliminate any 6-tuples for which the same component is involved in both the first and the second
fault of the tuple. This gives all possible combinations of 2 faults that involve distinct components.
An analogous algorithm is used for building the list for n-point injections, where n. > 2. If new
propagation paths are discovered through multi-point injection, they are merged into the f-map.
We were particularly interested in verifying the robustness of the information in the f-maps to
correlated fault scenarios. The f-maps converged much quicker onto their final form, because of the
richer set of faults that the system was exposed to. The unexpected result, however, was that we
obtained f-maps identical to those resulting from single-point injection. While this might suggest
the f-maps are robust, we actually believe the result is due to another reason: in a request/response
system with very little recovery code, when a request enters the system and hits a faulty component,
it will almost always fail at that point and not proceed further through the system. Hence, the
correlated faults are likely being consumed by separate requests, as if the faults had been injected

separately.

A.2.5 Performance overhead

We evaluated the performance impact of our modifications by comparing the performance of un-
modified JBoss to that of our instrumented version, with the same Petstore workload we used for
generating the f-maps. We found no statistically significant difference in performance when no ex-
ceptions are thrown, i.e., under steady state operating conditions. This suggests that it is feasible to
implement our technique in a production system.

JBoss and the database were hosted on the same Intel-P3 450MHz-based machine with 512MB
of RAM. The workload generators ran on a dual P3/1GHz machine with 1.5GB of RAM. The
purpose we chose machines with such different characteristics was to allow us to saturate the server.
Both machines ran Linux 2.4 with Sun’s JVM 1.4.1 and were connected via 100Mbps Ethernet. The
server’s CPU was saturated at 100% during each run. Our modified JBoss completed each test run
on average in 93 seconds, compared to 94.8 seconds for unmodified JBoss; standard deviation was
5.8 in both cases. We consider this improvement in the running time of the application to be just

statistical noise, as we do not think any of our changes would make JBoss run faster.
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A.2.6 Weaknesses

A problem specific to our experiments is the fact that we only injected exceptions and timing faults.
First, there may be low-level faults that do not manifest as exceptions in the Java VM, although we
haven’t found any in our ad hoc experiments. Second, we haven’t explored yet data-level faults, in
which a called component provides wrong data. Most of these faults require application-specific
knowledge to detect, unless we transparently employ redundancy combined with a voting scheme.
A special kind of data faults are null pointers, which we inject using NullPointerException.

Problems also arise from the fact that we currently do not collect all the information we could
about the exceptions, thus preventing us from distinguishing between propagation paths composed
of a sub-path that propagates fault X, chained to a sub-path that propagates fault Y. We do collect
per-fault-class f-maps, but in the case of application-declared exceptions, our current version of the
system would indicate the entire path as a fault propagation path, without discriminating among the
faults.

We cannot claim that any particular set of AFPI experiments will find all failure propagation
paths, e.g., because we depend on the applied workload to exercise all affected components. How-
ever, when using AFPI in recovery via recursive microreboots, we can view the use of the f-map as
an optimization that impacts recovery performance but not recovery correctness. If the failure had
been non-transient, then neither full recovery nor partial recovery guided by the f-map would have
cured it.

We cannot say that the f-maps converge after the fault injection experiments have completed
and we don’t know how many fault paths remain undiscovered. Preliminary evidence suggests that
the type of experiments we’ve run are sufficient, but there is no proof that an exhaustive injection of
the application-visible and system-generated faults would achieve this kind of coverage. We would

expect to experience rapidly diminishing returns in trying to perform exhaustive injection.

A.3 Summary

We focused on applying Automated Failure-Path Inference to applications built on Java 2 Enterprise
Edition middleware, because such applications tend to be highly modular and rely on a well-defined
set of runtime services whose implementation we can change to add fault injection and monitoring
behaviors.

The experiments we described show that AFPI automatically and dynamically generates f-maps

that find runtime dependencies that static call graph analysis might miss. AFPI-generated f-maps
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correctly omit dependencies that appear in the static call graph but do not result in observed fault
propagation at runtime. The dynamically generated f-maps can capture dependency information per
fault type, providing higher resolution than many static techniques.

Injecting Java exceptions to represent real operational faults is reasonable, and in particular,
certain common classes of application-generic faults (such as resource exhaustion) are often man-
ifest as JVM exceptions. While injecting correlated faults, we did not find any new f-map edges,
but expect this to be due to the simple applications, rather than to the AFPI implementation. For
similar reasons, we have not yet investigated in depth the stability of f-maps in the presence of
quasi-deterministic faults, such as those introduced by pernicious firmware bugs.

AFPI’s staging phase took about three hours for a nontrivial application consisting of over 26K
lines of code and required no manual inspection or knowledge of the application itself; the additional
overhead of leaving AFPI in place during production operation was negligible. Although AFPI
may not capture all propagation paths, we aim for a solution that is the right tradeoff between

complexity/difficulty/cost and effectiveness.
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Roadmap to Representative Publications

Microreboot-based recovery and the related properties of crash-only software systems were intro-
duced in [CFO1], as described in chapter 5, and in [CF03], as covered by chapter 4.

The initial forays into reboot-based recovery, described in chapter 2, appeared in [Can00]
and [CCF"02]; an expanded version of the latter was published as [CCF04].

An extensive exploration of microreboots in the eBid/JBoss J2EE system appeared in [CKFT04];
this work provided material for chapters 7 and 8. Some of the ramifications of microreboot-based
recovery, described in chapters 8 and 10, appeared in [CKK"03] and [CKKF04] (autonomous re-
covery and fault detection/localization) and in [CBFP04] (multi-tier recovery). Some additional
work on detection of application-level failures appeared in [BFB*05]. The contents of appendix A
are largely based on [CDCFO3].
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