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Abstract

This thesis demonstrates that it is feasible for systems code to expose a latency interface that
describes its latency and related side effects for all inputs, just like the code’s semantic interface
describes its functionality and related side effects.

Semantic interfaces, such as code documentation, header files, and specifications, are indispens-
able. By providing a succinct summary of a system’s functionality, they make it possible for
developers to efficiently reason about, use and deploy code they did not write themselves. In
contrast, there is no equivalent construct that describes latency behavior in a way that is simulta-
neously succinct, precise, and complete. Widely-used representations such as envelopes (e.g.,
probabilistic upper bounds or asymptotic time complexity) or benchmarks (e.g., SPEC or TPC-C
results) provide an incomplete understanding of latency, leading to hiccups and meltdowns in
production when the workload or runtime environment changes in unpredicted ways.

We take a three-part approach to realize latency interfaces for systems code.
First, we show how to design datacenter systems that provide predictable latency behavior while
sustaining high throughput. We present Concord, an efficient runtime for datacenter applications
that demonstrates how the careful approximation (as opposed to canonical implementation)
of theoretically optimal scheduling policies enables datacenter systems to sustain significantly
higher throughput while continuing to meet the same latency targets.

Second, we propose that the latency interface of a system be a program that accepts the same
input(s) as the system and outputs its processing latency. We contribute three key ideas that
help summarize latency in a succinct, precise, and complete manner: latency-critical variables,
which provide succinct abstractions of how the system interacts with its environment, the latency
resolution, which provides readers of the interface with explicit control over the trade-off between
succinctness and precision, and deployment-specific interfaces which enable users of the system
to reason precisely about its latency behavior in their distinct deployment environments. We
concretize this representation in the domain of network functions (NFs) and present LINX, a
program analysis tool that automatically extracts latency interfaces from NF implementations.
We demonstrate that the LINX-extracted interfaces are succinct, precise, and complete and show
how they can be used to identify latency regressions, diagnose and fix performance bugs, as well
as identify the latency impact of NIC offloads.

Third, we present CFAR, a technique, and tool that allows developers to reason precisely about
micro-architectural side effects (specifically CPU cache usage) of systems code. CFAR introduces
memory distillates, an intermediate representation that contains all information relevant to how a
program accesses memory and discards everything else. CFAR automatically extracts memory
distillates from systems code and allows developers to query the distillate to answer specific
questions about the code’s cache usage. We demonstrate that CFAR enables developers to not
only identify inputs that lead to inefficient cache usage and security vulnerabilities in their own
code, but also reason about the performance impact of using third-party code.
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Résumé

Cette thèse démontre qu’il est possible pour le code système d’exposer une interface de latence
qui décrit la latence et les effets secondaires associés pour toutes les entrées, tout comme une
interface sémantique décrit les fonctionnalités et les effets secondaires.

Les interfaces sémantiques, telles que la documentation, les fichiers d’en-tête et les spécifications,
sont indispensables. En fournissant un résumé succinct des fonctionnalités d’un système, elles
permettent aux développeurs de raisonner, d’utiliser et de déployer efficacement du code qu’ils
n’ont pas écrit eux-mêmes. En revanche, il n’existe pas d’équivalent décrivant la latence de
manière succincte, précise et complète. Des représentations largement utilisées telles que les
enveloppes (par exemple, limites supérieures probabilistes ou complexité temporelle asympto-
tique) ou les benchmarks (par exemple, résultats SPEC ou TPC-C) fournissent une description
incomplète de la latence, conduisant à des ratés et des effondrements en production lorsque la
charge de travail ou l’environnement d’exécution changent de manière imprévue.

Nous adoptons une approche en trois parties pour réaliser des interfaces de latence pour le code
système.
Tout d’abord, nous montrons comment concevoir des applications pour centre de données offrant
un comportement de latence prévisible tout en maintenant un débit élevé. Nous présentons
Concord, un environnement d’exécution efficace pour ces applications, qui démontre comment
l’approximation minutieuse (par opposition à l’implémentation exacte) de techniques théorique-
ment optimales permet de maintenir un débit nettement plus élevé tout en respectant les mêmes
objectifs de latence.

Deuxièmement, nous proposons que l’interface de latence d’un système soit un programme qui
accepte les mêmes entrées que le système et retourne sa latence. Nous apportons trois idées clés
qui aident à résumer la latence de manière succincte, précise et complète : les variables critiques
en matière de latence, qui décrivent succinctement la manière dont le système interagit avec
son environnement, la résolution de latence, qui fournit aux lecteurs de l’interface un contrôle
explicite entre concision et précision, et les interfaces spécifiques au déploiement, qui permettent
aux utilisateurs du système de raisonner précisément sur son comportement de latence dans
leurs environnements spécifiques. Nous concrétisons cette représentation dans le domaine des
fonctions réseau et présentons LINX, un outil d’analyse qui extrait automatiquement les interfaces
de latence des implémentations de ces fonctions. Nous démontrons que les interfaces extraites
par LINX sont succinctes, précises et complètes et montrons comment elles peuvent être utilisées
pour identifier les régressions de latence, diagnostiquer et corriger les bugs de performances,
ainsi qu’identifier l’impact sur la latence des fonctionnalités de déchargement.

Troisièmement, nous présentons CFAR, une technique et outil qui permet aux développeurs de
raisonner précisément sur les effets secondaires micro-architecturaux (en particulier l’utilisation
du cache CPU) du code système. CFAR introduit les distillats de mémoire, une représentation
intermédiaire qui contient toutes les informations pertinentes sur la manière dont un programme
accède à la mémoire et rien d’autre. CFAR extrait automatiquement les distillats de mémoire
depuis du code système, et permet aux développeurs d’utiliser un distillat pour répondre à
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Résumé

des questions spécifiques sur l’utilisation du cache. Nous démontrons que CFAR permet non
seulement aux développeurs d’identifier les entrées qui conduisent à une utilisation inefficace du
cache et à des vulnérabilités de sécurité dans leur propre code, mais également de raisonner sur
l’impact de l’utilisation de code tiers sur la performance.
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1 Introduction

Large and complex computer systems such as those that power Google’s web search, Amazon’s
e-commerce, or Netflix’s video streaming are an integral part of everyday life for billions of
people. More than 5.1 billion people [177] are active internet users today, which results in more
than 3.5 billion Google search queries being made [176], 15 million e-commerce packages being
shipped [174], 1 billion hours of video streaming content being watched [249], and 350 billion
emails being exchanged on a daily basis [175].

To build such complex systems correctly, i.e., ensure that they provide the desired functionality,
developers need semantic interfaces (e.g., header files, documentation, and/or specifications).
Such complex systems typically consist of numerous components, each of which is built by
a different team of developers. Since semantic interfaces provide succinct, human-readable
descriptions of the functionality that a piece of code or system component provides, developers
can quickly use, build upon, and deploy code that was written by others while being confident
that the system as a whole correctly implements the desired functionality.

However, given how integral such systems are to everyday life, it is no longer sufficient for them
to be correct; they are also expected to be interactive, i.e., deliver consistently low latencies to
provide a seamless user experience. Failure to provide consistently low latencies can directly
impact revenue: for example, Amazon is known to lose 1% of sales for every additional 100ms

in latency [239], while a 500ms delay in Google’s search results causes a 20% drop in traffic and
thus advertisement revenue [225]. Similarly, brokers can lose up to $4 million per millisecond
if their platform is 5ms behind the competition [239] and a 2017 Akamai study showed that a
100ms delay results in a 7% decrease in the number of customers that complete transactions [4].

There exists no equivalent latency interface that developers can use to reason precisely about the
expected latency behavior of code. Engineers today reason about latency in terms of envelopes
(e.g., “runs in O(n) time”) and benchmarks, which implies that they deploy their system without
understanding the entire spectrum of latency it can exhibit. As a result, systems frequently
exhibit unexpected performance behavior [83, 103, 108] in production when the input workload
or runtime environment changes in unpredicted ways which results in missed performance targets
and a perpetual need to fix performance bugs [101, 130]. To give a sense of how much work
this is, half the configuration-related patches in open-source cloud systems are needed to fix
performance issues, while Mozilla developers have had to fix from 5 to 60 performance bugs
every month over the past 10 years [130].

So in this thesis, we answer the question(s): Can there exist a useful latency interface for systems
code? i.e., an interface that summarizes the latency behavior of systems code, just like a semantic
interface summarizes its functionality? What should such an interface look like to help developers
reason precisely about the expected latency of not just their own, but also third-party code?

3



Chapter 1. Introduction

1.1 Reasoning about System Latency Today

To help developers reason about expected latency behavior, latency interfaces need to provide
a balance between two, typically conflicting properties: accuracy and readability [147]. By
accuracy, we mean the ability to describe latency completely (for every possible input and
runtime environment) and precisely (with a small error). By readability, we mean that the
representation should be smaller than the system implementation and as abstract as possible,
i.e., summarize latency in terms of primitives appropriate for a semantic interface of the system,
and reveal implementation details only when necessary. Accuracy and readability are conflicting
requirements because improving accuracy typically involves adding more detail, which makes
the representation harder to read.

Widely-used representations such as asymptotic complexity bounds [26], upper bounds on worst-
case on execution time [241] and probabilistic service level objectives (SLOs) [211] typically
sacrifice accuracy for readability, i.e., there are many inputs for which they do not accurately
describe latency.

Asymptotic bounds on time complexity (e.g., “runs in O(n) time”) [26] describe the limiting
behavior of the number of computational steps the program must perform as a function of the
size of its input (n). While such bounds are easy to read (and hence widely used), they cannot
provide developers with a precise understanding of latency in terms of wall clock time. This is
because they ignore both the constants in the latency expression and factors such as the underlying
hardware. Constants and hardware often end up being the dominant factor in wall clock time; for
instance, it is common to trade off algorithmic complexity for improved locality (and thus lower
constants) in memory and storage devices [72, 73, 242].

Upper bounds on worst-case execution time (WCET) [241] are widely used in the domain of
real-time and safety-critical systems (e.g., control systems in airplanes [216, 236], cars [234]
and industrial manufacturing [235]) where the timeliness of executing an operation is part of
its semantic correctness. While such bounds are both easy to read and expressed in terms of
wall-clock time, they are not very useful beyond real-time and safety-critical systems. This is
because most systems are designed to be fast in the common case and make progress in the
worst [147], and so worst-case latencies may be orders of magnitude higher than typical or
median latencies and cannot be used to make informed development decisions.

Finally, latency SLOs [211] provide a target value or range for the statistical execution latency of
the system (e.g., X percentage of requests take < Y time). In theory, SLOs overcome the primary
limitations of both of the above representations since they reason about wall clock time and can
be used to describe latency in scenarios other than the worst case. However, in practice, SLOs
typically deteriorate to worst-case upper bounds. For instance, a recent paper from Google states
that “SLOs are aimed at bad outcomes, they are often far from the expected outcomes, and few
customers would be happy if a system only met its contractual SLOs” and calls for SLOs to take
the expected workload into account [165].
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1.2 Thesis Goals

In the absence of a readable and accurate representation, most developers resort to benchmarking
a system in order to reason about its latency behavior, i.e., they treat the system implementation
as its own interface. Benchmarking is not only a tedious process but is also error-prone, partic-
ularly when used to understand the latency behavior of code that the developer did not write
themselves [115].

Fig. 1.1 summarizes the quandary that developers face when trying to reason about the expected
latency behavior of systems code. They must either divine the expected latency behavior of
systems code from representations that provide little information about latency for realistic
workloads or download, build, write tests for, and run the code themselves to discover the
expected latency. In contrast, they can reason about expected functionality just by reading the
succinct semantic interface.

R
ea

da
bi

lit
y

Accuracy

Complexity
bounds

System implementation

WCET Latency SLOs

Figure 1.1: Existing representations of system latency. WCET refers to Worst-Case Execution
Time. SLOs refer to Service Level Objectives.

1.2 Thesis Goals

The goal of this thesis is to develop representations and techniques that enable developers to
reason about the expected latency behavior of systems code as easily as they reason about its
expected functionality today.

By systems code, we refer to the software that bridges applications to the hardware and infras-
tructure that executes it. Systems code typically performs low-level operations (e.g., DMA),
and the quintessential examples of systems code are operating systems, hypervisors, device
drivers, and variants thereof (such as network functions running on kernel-bypass frameworks).
Systems code plays a foundational role in the software stack; as a result, upper layers rely on
it being optimized for speed and efficient resource usage. Languages traditionally associated
with systems programming are C, C++, and Rust, languages that provide facilities for low-level
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Chapter 1. Introduction

memory manipulation and hardware access, while also allowing for higher-level abstractions
when needed.

We advocate that achieving our goal requires systems code to have a latency interface that
describes its expected latency behavior and related side effects in an accurate and readable
manner, just like the code’s semantic interface describes its expected functionality and related
side effects.

We take a three-part approach to realize latency interfaces for systems code.
In the first part of the thesis (§1.2.1), we show how to design operating system schedulers that
enable datacenter applications (such as the ones underlying web search and e-commerce) to
provide predictable latency behavior, i.e., latency that conforms to a well-defined interface and
is hence easy to reason about. Here, we work with existing representations of latency, and so
define the latency interface using tail latency SLOs, which is the standard practice in datacenters
today. We contribute Concord, an efficient scheduling runtime for datacenter applications that
carefully eliminates sources of overhead that plague state-of-the-art schedulers and lead to worse
tail latency. While Concord achieves its goals, our experiences in this part of the thesis motivated
us to develop interfaces and techniques that provide a more precise understanding of latency
behavior and related micro-architectural effects.

In the second part of the thesis (§1.2.2), we propose a new representation for latency interfaces—
simple, executable programs that accepts the same input(s) as the system and output its processing
latency—that we believe is best suited to describing the expected latency behavior of systems
code in an accurate and readable manner. We concretize this representation in the domain of
network functions (NFs) and present LINX, a program analysis tool that automatically extracts
latency interfaces from NF implementations.

Finally, since an interface should describe related side effects [210], we present CFAR, a tech-
nique and tool that allows developers to reason precisely about micro-architectural side effects
(specifically CPU cache usage) of systems code (§1.2.3). Our work on CFAR demonstrates that
simple, executable programs can summarize not only the processing latency but also any related
side effects of systems code in an accurate yet readable form.

1.2.1 Ensuring that Datacenter Applications Meet Their Latency Objectives

Datacenter applications are expected to meet strict microsecond-scale tail latency SLOs (e.g.,
99th percentile latency should be < Xµs) to remain interactive for end users [134, 185, 193].
Bounding tail latency (typically 99th percentile or higher) is necessary because of the “tail-at-
scale” problem [65]: given that such applications distribute each user request across thousands
of servers with the end-to-end response time determined by the slowest individual response, it
becomes highly likely that at least one server will incur a high percentile latency that will end up
determining the end-to-end response time. Additionally, for the application as a whole to remain
interactive and respond to user requests within tens of milliseconds, each individual server should
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1.2 Thesis Goals

process requests within ten to a few hundred microseconds [22, 134, 193].

We focus on ensuring that such applications meet their tail latency SLOs in a cost-effective
manner, i.e., while sustaining high throughput per server. Taking cost into account is necessary
since the easiest way to ensure that tail latency SLOs are met is to overprovision the number of
servers required and have each server serve a smaller fraction of the incoming load [66, 154].
However, this overprovisioning wastes precious CPU cycles and is not economical for services
that need to scale to billions of users [65, 134].

Since tail latency is dominated by queueing delay (not service time), we advocate for rethink-
ing microsecond-scale scheduling and present Concord, an efficient scheduling runtime for
microsecond-scale datacenter applications. Concord demonstrates that careful approximation (as
opposed to canonical implementation) of theoretically optimal scheduling policies enables new
microsecond-scale mechanisms that provide significant throughput benefits while ensuring the
applications continue to meet the same tail latency SLO. Concord introduces new mechanisms
that carefully approximate two scheduling policies to reduce their implementation overhead and
thus improve application throughput: (1) Preemptive scheduling, which is necessary to prevent
long-running requests from starving short-running ones but introduces the overhead of having to
context-switch between requests, and (2) Single-queue scheduling, which is necessary to ensure
optimal load balancing of incoming requests but introduces cache coherence overheads due to
requests being passed from the CPU core maintaining the single queue to the one that processes
the request.

Designing and implementing Concord made us acutely aware of the two main challenges that
system developers face when trying to reason about the latency behavior of systems code. First,
reasoning precisely about the differing latency behavior of different execution paths through
the code (e.g., processing of different request types) is hard; a direct consequence of this is that
developers are forced to rely on high-overhead, black box techniques such as interrupts to preempt
long-running requests. Second, developers possess little visibility into the micro-architectural
(specifically CPU cache) behavior of their code. As a result, cache issues (such as the ones
associated with single queue scheduling) often go unaddressed even in state-of-the-art systems
focused on maximizing performance [66, 134].

While it is feasible to overcome these challenges (as we did) using the traditional systems
approach—carefully measure, analyze, optimize, repeat—it is a painstaking process that needs to
be repeated for every system. Hence, in the next two parts of the thesis, we focussed on developing
interfaces and techniques that provide a more precise understanding of latency behavior and
related micro-architectural effects.

7



Chapter 1. Introduction

1.2.2 An Accurate, Readable Representation for System Latency

Here, our goal is to answer the question: Is it feasible to summarize the processing latency of
systems code for all possible inputs in an interface that is simultaneously accurate and readable?1

Summarizing processing latency in an accurate yet readable interface is more challenging than
doing the same for semantics because the system’s deployment environment (e.g., the hardware
it runs on) typically has a greater impact on its latency than on its semantics. This is because
systems—both hardware and software—typically employ strong semantic modularity but close
to no latency modularity. For instance, a mov (%ebx),%eax instruction has the same semantics
on all x86 machines but when it comes to latency, the modularity is much weaker: the time to
execute mov (%ebx),%eax can vary by orders of magnitude depending on several factors such
as the micro-architectural specifics of the machine and other processes executing on the same
machine.

We propose that the latency interface of a system be a program that accepts the same inputs as the
system and outputs how long the system would take to process the given input. System developers
are familiar with code, allowing them to quickly read such interfaces and understand the latency
behavior of the system without having to run it. Accepting the same input(s) enables the interface
to describe performance for different expected workloads, something that upper/lower bounds
cannot do.

We introduce three key ideas that enable latency interfaces to summarize latency in a manner
that is simultaneously accurate and readable: First, the interfaces describe latency not as concrete
numbers but as formulae of random variables that we call latency-critical variables (LCVs).
LCVs summarize the impact of latency of all factors other than the current input (e.g., prior
inputs, system state, configuration, and runtime environment) on latency. Representing latency
as formulae containing LCVs enables the interface to succinctly summarize the latency for
arbitrary workloads. Second, we introduce the concept of a latency resolution which specifies the
smallest change in latency that the interface captures. At a given resolution the interface only
reveals those implementation details that cause latency variability greater than the resolution,
thus eliminating unnecessary details and giving developers who do not care about cycle-accurate
latency predictions (whom we expect to be the majority) explicit control over the trade-off
between accuracy and readability. Finally, we introduce the concept of deployment-specific
interfaces, i.e., interfaces tailored to a particular deployment. Deployment-specific interfaces
enable developers who merely want to use the system in a particular deployment environment
to maximize readability while retaining all information relevant to latency behavior in that
environment.

To realize latency interfaces in practice, we concretize our proposal in the context of software
network functions (NFs)—in-network packet processing applications such as load balancers,
firewalls, and NATs— and present LINX (Latency INterface eXtractor), a program analysis tool

1We focus on systems code that provably terminates to avoid running into the Halting problem [224]
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that automatically extracts latency interfaces from NF implementations. LINX takes as input
NF code written in C and outputs latency interfaces in the form of simple Python programs.
We demonstrate that LINX-extracted interfaces are 2-3 orders of magnitude simpler than the
corresponding NF implementations, can predict NF latency across deployments with an average
error of < 8% and enable system engineers to identify performance regressions, diagnose and fix
performance bugs, and identify the latency impact of NIC offloads.

1.2.3 Reasoning About Latency Side Effects

Since a program’s semantic interface describes not only its expected output(s) but also any
expected side effects [210], i.e., modifications to shared state that may lead to differences in
externally observed behavior, an equivalent latency interface should also describe any expected
latency side effects in addition to the processing latency described above.

Latency side effects arise due to shared micro-architectural state. Since all programs running on
the same CPU core (e.g., caller and callee, application and operating system) share core-local
micro-architectural resources (e.g., data and instruction caches, TLB, branch predictor, etc.)
calling into a piece of code has not only a direct impact on latency (via the execution latency of
callee) but also an indirect cost that depends on how the callee perturbs shared micro-architectural
state. This indirect cost is a frequently observed source of latency variability; for example,
FlexSC [215] showed how a system call can take up to 3× longer depending on the invoking
program’s micro-architectural resource usage, while the invoking program may run up to 4×
slower after the system call, depending on the system call’s micro-architectural resource usage.

We focus on a dominant source of micro-architectural side effects, namely the CPU cache. Our
goal is to enable developers to answer frequently asked questions about how a piece of systems
code interacts with the cache, such as: How does the code’s cache usage vary with workload (e.g.,
as a function of the number of network connections)? Which workloads make the working set
exceed the cache size? Existing performance-analysis tools such as profilers [35, 153, 189, 230]
cannot directly answer the questions listed above, because they do not understand what the code
does to the micro-architecture as a function of workload.

We present CFAR (Cache Footprint AnalyzeR), a tool that processes a piece P of systems code
into answers to developers’ questions about how that code uses the cache. CFAR’s processing
consists of two phases: In the former, CFAR takes as input the code and outputs an intermediate
representation (a “distillate”) that contains all the information on how the code accesses memory.
In the latter, developers can write simple programs (“projectors”) that use the distillate to compute
answers (“projections”) to specific questions about P’s cache usage.

CFAR reinforces our belief that simple, executable programs are best suited to summarizing
latency information in a manner that is simultaneously readable and accurate. Like our proposed
latency interfaces, CFAR distillates and projections are represented as programs that take the
same inputs as P and return the metric of interest. In particular, projections can be seen as
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interfaces that describe the latency behavior of P in terms of the metric defined by the user-given
projector (e.g., the number of unique cache lines touched per network connection).

1.3 Thesis Statement

It is feasible for systems code to expose a latency interface that describes its latency and
related side effects for all possible inputs, just like the code’s semantic interface describes its
functionality and related side effects. Simple, executable programs can summarize system latency
in a manner that is simultaneously precise, complete, and human-readable, and thus useful to
system engineers.

1.4 Thesis Contributions

This thesis makes the following contributions:

Efficient microsecond-scale scheduling in the datacenter

• We demonstrate that approximating (as opposed to canonically implementing) theoretically
optimal scheduling policies lead to significant throughput benefits at microsecond-scale at
negligible tail latency costs.

• We introduce compiler-enforced cooperation, a technique that enables preemptive schedul-
ing at 4× lower overhead than the state of the art at microsecond-scale.

• We show how to design a work-conserving dispatcher, a thread that not only dispatches
incoming requests to other (worker) threads but also contributes to application goodput.

• We design and implement Concord, a scheduling runtime for microsecond-scale datacenter
applications that implements the above techniques. In comparison to the state of the art,
Concord improves throughput by up to 52% for microbenchmarks and up to 83% for
Google’s LevelDB key-value store while meeting the same tail latency SLO.

Latency interfaces as succinct, executable programs

• We propose that the latency interface of a system be a program that accepts the same inputs
as the system and returns its processing latency.

• We introduce Latency-Critical Variables (LCVs), random variables that summarize the
impact of prior inputs, system state, configuration, and runtime environment on latency.
Representing latency as formulae containing LCVs (as opposed to concrete numbers)
enables the interface to succinctly summarize the latency for arbitrary workloads.

• We introduce the latency resolution which specifies the granularity at which the interface
describes latency and provides readers of the interface with explicit control over the
trade-off between readability and accuracy.
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• We introduce deployment-specific latency interfaces which enable engineers who did not
write the code for, but merely want to use, a system to reason precisely about its latency in
their specific deployment environments.

• We design and implement LINX, a program analysis tool that automatically extracts
latency interfaces from software network function (NF) implementations. LINX-extracted
interfaces are 2-3 orders of magnitude simpler than the corresponding NF implementations
and can predict NF latency across deployments with an average error of < 8% while only
taking minutes to extract. We demonstrate how LINX-extracted interfaces can be used
to identify performance regressions, diagnose and fix performance bugs, and identify the
latency impact of NIC offloads.

Automatically reasoning about how systems code uses the CPU cache

• We propose memory distillates; an intermediate representation for programs that contains
all information relevant to how the program accesses memory, and discards everything
else. Developers can query the distillate using simple programs that we call projectors to
compute the answers to specific questions they have about the program’s cache usage.

• We design and implement CFAR, a program analysis tool that automatically extracts
memory distillates from system implementations and provides support for developers
to write projections. The combination of distillation and projection ensures that CFAR
provides engineers with succinct, yet accurate information about CPU cache usage which
enables them to identify inefficient paths and security vulnerabilities in their own code and
reason about the latency impact of incorporating third-party code into their systems.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

• In Chapter 2 of this introductory part of the thesis, we provide the necessary background
on existing representations for system latency and techniques to infer latency properties
from system implementations.

• In Part II of the thesis, we describe Concord, our scheduling runtime that enables datacenter
applications to meet microsecond-scale latency objectives (as defined today) in a cost-
effective manner (Chapter 3).

• In Part III, we first define our proposal for latency interfaces (Chapter 4), before presenting
LINX, a tool that automatically extracts such interfaces from software network function
implementations (Chapter 5), and CFAR a technique and tool that enables developers to
automatically reason about the performance side effects of systems code (Chapter 6).

• Finally, in Part IV, we describe future research directions (Chapter 7) and conclude (Chap-
ter 8).
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2 Background

In this chapter, we provide the necessary background on existing representations for system
latency (§2.1) and techniques to infer latency properties from system implementations (§2.2).

2.1 Representing System Latency Today

In this section, we detail existing representations for system latency from both academia and
industry and show how each representation provides a different balance between completeness
and precision. Recall that we define completeness as the ability to describe latency for every
possible input, system state built up by prior inputs and hardware platform that the code is
executed on, and define precision as the ability to describe latency for a particular input, system
state, hardware with small error. Table 2.1 summarizes the balance that each representation
provides that we explain throughout the rest of this section.

2.1.1 Asymptotic Bounds on Time Complexity

Asymptotic bounds on time complexity (e.g., this code runs in O(n2) time) are mathematical
descriptions of how the number of computational steps that a program must perform grows with
the size of its input (n). While such descriptions are typically used to provide upper or lower
bounds—using the Big-O and Big Omega notations, respectively [26]—they can also be used
to describe the average time complexity for a given probability distribution of inputs and the
amortized complexity for a sequence of program invocations.

Asymptotic bounds were designed, and continue to be the gold standard, for comparing the growth
rate of algorithms (and not implementations) as the size of the input grows arbitrarily large. As
a result, they ignore both constants and all non-dominant terms in the latency expression (e.g.,
O(n2 +10n +100) = O(n2)), since both become irrelevant when the size of the input approaches
infinity.

Ignoring constants and non-dominant terms causes such bounds to be imprecise with respect
to metrics such as machine instructions or wall clock time, which are the metrics that systems
developers ultimately care about. Constants, in particular, often end up being the dominant factor
in wall clock time especially for realistic input sizes; for instance, it is common to trade off
algorithmic complexity for the lower constants provided by improved locality in memory and
storage devices [72, 73, 242].

2.1.2 Worst Case Execution Time

Worst case execution time (WCET) [241] provides an upper bound on a program’s execution
latency in terms of wall clock time and is widely used in real-time and safety-critical systems.
For example, in order to comply with aviation regulations, airplane manufacturers must verify
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tight WCET bounds on components such as the flight control and avionics systems to ensure
timely responses to external events and timely communication between the airplane and air traffic
control, respectively [236]. Similarly, automotive vehicles must have verified WCET bounds for
the anti-lock braking system (ABS) to ensure that it can respond in time to prevent skidding [234].

However, WCET bounds are typically only useful in real-time or safety-critical systems where
the timeliness of executing an operation is part of its semantic correctness. This is because such
systems are designed to meet a single latency objective, namely a bounded worst case, and the
observed latency in other scenarios is of little interest. In contrast, most systems code has a
very different design philosophy and is designed to be fast in the common case at the cost of
being slow(er) in the worst case [147]. A classic example of this is branch prediction in modern
processors, where instead of using the predicted value of the branch as only a hint and incurring
similar latencies for both correctly and incorrectly predicted branches, modern processors are
optimized for the common case in which branches are predicted correctly at the cost of being
20× slower in the worst case where the prediction is incorrect [120]. Given that for most systems,
the worst-case latency can be significantly higher than typical or median latencies, developers
cannot make informed decisions based solely on a worst-case bound.

So in summary, while WCET bounds can be precise for the absolute worst case, they sacrifice
completeness and provide little/no information for realistic workloads.

2.1.3 Benchmark Scores

Benchmark scores represent performance as a set of numerical metrics (e.g., number of trans-
actions per minute in TPC-C [227], end-to-end training time in Dawnbench [63], etc). These
numbers are typically obtained through a standardized testing process, for instance, by running
the program/system on a predefined set of inputs. Benchmark scores were primarily designed to
compare multiple implementations of the same functionality (e.g., different relational databases,
different CPUs that implement the x86 ISA, etc) and hence represent performance as easy-to-
compare numbers.

While benchmark scores are widely used to quantify the performance of software in many domains
(e.g., TPC-C,YCSB for databases [52, 227], Dawnbench for machine learning training [63],
Octane, Jetstream [129, 178] for Javascript engines), they have several shortcomings. First, they
cannot help developers understand the expected performance for their workload since they do
not describe performance as a function of the workload, but only as opaque numbers. As a
result, developers must either reason about how similar their workload is to the ones in the
benchmark and extrapolate, or benchmark the program themselves which defeats the purpose of
the benchmark score. Second, benchmark scores are typically only used when the functionality
being implemented has gained significant maturity to have a representative set of workloads
(e.g., transaction processing systems or the x86 ISA). This is not the case for most systems
code that developers write on a day-to-day basis. Finally, benchmark scores themselves are not
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always reliable, since they depend on the environment in which the code runs. This has led to
“benchmark wars” where different organizations claim superiority based on differing benchmark
results for the same software and same inputs [214].

So, while benchmark scores are more complete than WCET estimates since they describe latency
for all inputs in the benchmark, their completeness is restricted to just the benchmark since they
provide no predictive capabilities.

2.1.4 Service Level Objectives

A latency service level objective (SLO) consists of two parts: (1) An easily measurable latency
metric such as median or 99th request latency; this is referred to as the latency service level
indicator (SLI), and (2) a target value or range. So, latency SLOs take the form: “SLI <= target”
or “lower bound <= SLI <= upper bound” [211].

The above format allows SLOs to represent latency in a flexible manner since SLIs can be used
to distinguish between different percentile latencies (e.g., median vs tail) and different inputs.
For instance, one can envision a detailed SLO that takes the form: “50% of reads to key-value
store X will take < 1µs, 99% of reads will take < 100µs, and 99% of writes will take < 1ms.”

However, one key drawback of how SLOs are typically formulated arises from the preference
for externally-visible and easily-measurable SLIs. Such SLIs are preferred because many SLOs
are a part of service level agreements (SLAs) which consist of an SLO and a consequence (e.g.,
“if 50% of reads take > 1µs, then X will pay Y an amount Z”), and in such cases, the SLI needs
to be easily measurable so that it can hold water in a court of law. However, this results in SLIs
typically being functions of only the system’s inputs and outputs and not the harder-to-measure
internal state, which makes SLOs incomplete with respect to system state. To ensure that the
SLOs are not violated due to this incomplete understanding of state, the latency targets typically
deteriorate to near-worst-case values in practice to account for all possible system states.

Nevertheless, we draw significant inspiration from SLOs in this thesis. This is evident both
in how we chose them as a starting point for latency interfaces in Chapter 3 and how LINX’s
deployment-specific interfaces resemble the detailed SLO from above when they concretize the
expected system state in a particular deployment environment (§5.4).

2.1.5 Performance Annotations

Performance annotations [201] describe a method’s latency as a a set of 〈input/global-variable
constraints, latency formula〉 tuples, where each formula is a mathematical function of the
method’s input and/or global variables.

Performance annotations are more complete than typical SLOs since the tuples include con-
straints about all system state that is maintained as explicit global variables. However, this is
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still insufficient since latency often depends not only on explicit global variables but also on
implicit/ghost variables [106, 107].

As an example, consider a simple lookup operation implemented as a while loop that iterates
over nodes in a linked list until the next pointer is null (e.g., while(node.next){...}). Here,
the number of iterations (and hence latency) depends on the number of nodes traversed which is
not stored as an explicit global variable and so will not be captured by performance annotations.
Finally, since the constraints in each tuple do not take into account the underlying hardware,
performance annotations possess no predictive power across different hardware platforms either.

We perform an in-depth evaluation of performance annotations in §5.7 and show how they fail to
capture the impact of most system state and hardware on latency.

2.1.6 Summary

Table 2.1 summarizes the above representations and shows the balance between completeness
and precision that each provides. In contrast, our proposed representation for latency interfaces
as simple, executable programs achieve both. In a nutshell, this is because our programs
include constraints in terms of not only the current input and global variables (like performance
annotations) but also arbitrary functions of system state and hardware to achieve completeness.
Finally, just like benchmark scores, latency interfaces are precise because they rely on targeted
ground truth measurements derived from running the program. We elaborate on how our proposed
representation is simultaneously precise and complete in Chapter 4.

Representation Complete PreciseInput parameters System state Hardware
Time complexity bounds Yes Yes No No
WCET No No No Yes
Benchmark scores No No No Yes
SLOs Yes No Yes No
Performance annotations Yes Partially No No
Latency interfaces Yes Yes Yes Yes

Table 2.1: Comparison of the precision and completeness of existing approaches to representing
system latency. System state refers to the state maintained by the system implementation in
software. Performance annotations are partially complete with respect to system state since they
can take into account state maintained as explicit, global variables.

2.2 Inferring Latency Properties from Code

Having discussed existing representations for latency behavior, we now provide background on
techniques that infer latency properties from system implementations and can thus be used to
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populate one’s representation of choice. We focus on techniques that infer latency properties
before the system is deployed in production, and do not discuss techniques that rely on runtime
monitoring and verification of the system [86, 139, 167, 202, 243].

We start by discussing black box techniques (§2.2.1, §2.2.2) i.e., techniques that do not analyze
the internal workings of the system, before moving on to white box ones (§2.2.3, §2.2.4). We
conclude by describing how this thesis builds upon each of these techniques (§2.2.5).

2.2.1 Traditional Profiling

The traditional approach to inferring the latency properties from code is to run it using a pro-
filer [35, 153, 230]. Profilers typically take as input the code (as a binary), a workload, and a list
of metrics of interest (e.g., CPU cycles, instructions executed, cache misses, etc). They then run
the binary on the workload and output a detailed breakdown of the metrics of interest.

Profilers are widely used for three reasons: First, because they run the code directly on the
hardware and do not rely on modeling of any kind, they provide ground truth latency information
for the given inputs. Second, since they make no assumptions about the provided code, they can
be used for almost any systems code. Finally, modern profilers make it easy for developers to
scrutinize and reason about latency in terms of not only wall clock time but also more nuanced
micro-architectural metrics such as the number of cache misses.

However, the information provided by profilers is limited to the inputs provided, and they offer no
predictive capabilities for other possible inputs. So, the utility of the profiler effectively hinges on
the developer’s ability to provide a representative set of inputs. Providing a representative set of
inputs to understand latency (or more generally performance) is hard because performance suffers
from the “large input problem” [157, 180], i.e., the fact that unexpected performance behavior
often manifests only when input size exceeds some limit that may seem arbitrary to those who are
not intimately familiar with the code. So, designing a test suite that completely covers a system’s
performance behaviors is hard, and developers don’t even have well-defined coverage metrics.
For example, line coverage is used as a proxy for coverage of semantic behaviors; performance
profiling does not even benefit from such an approximate metric.

2.2.2 Trend Profiling

Trend profiling [100], algorithmic profiling [253], input-sensitive profiling [53,54] and Freud [201]
improve upon traditional profilers by inferring trends (in terms of the inputs and global variables)
based on the results of executing the provided workload, to provide predictive capabilities for
unseen workloads. An example trend can be: the latency of function f is n2 +10n+100 where n

is the length of the input array.

These approaches work as follows. First, they automatically instrument the provided program
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binary to record the values of all input features and global variables. Note, they only record
features stored as explicit program variables, they do not add instrumentation to compute implicit
ones. Then, they run the program on the provided workload, record the instrumented features
and rely on machine learning techniques (typically linear regression [100, 201]) to automatically
infer trends from the recorded data.

While trend profiling provides greater visibility into the expected latency behavior of code when
compared to traditional profiling, it suffers from three main limitations. First, just like traditional
profiling, the trends are inferred based entirely on the provided workload, so the onus is once
again on the developer to provide such a workload. Second, since trend profilers do not record
implicit variables, they often cannot capture the impact on latency of most system state (e.g., the
implicit length of a linked list that is calculated as the number of nodes traversed until the next
pointer is null). Finally, since trend profiling is a black box technique and does not analyze what
the code does, it often cannot differentiate between correlation and causation. For instance, when
we evaluated our work against a state-of-the-art trend profiler [201] and tried to extract a trend
for a hash table lookup using a workload where every key was mapped to the same hash value,
the trend profiler concluded that the runtime was determined by the occupancy of the map, as
opposed to the number of collisions encountered by the input key.

We perform a detailed evaluation of state-of-the-art trend profilers in §5.7 and demonstrate that
the above limitations prevent them from accurately capturing the impact of most system state on
latency.

2.2.3 Discovering Adversarial Workloads

There exists a large body of work that focuses on discovering “adversarial inputs”, i.e., inputs
that incur high latency, to help developers find and fix potential performance bugs and scrutinize
the performance of their code when under attack.

The first work on this topic discovered such adversarial workloads by manually scrutinizing the
code. Crosby and Wallach were the first to demonstrate that adversarial inputs that exploit algo-
rithmic complexity vulnerabilities can lead to denial-of-service (DoS) attacks [58]. Subsequent
work [3, 212] went one step further by manually generating adversarial inputs that lead to not
only worse algorithmic complexity but also exhaustion of resources such as heap memory.

More recent work focuses on discovering adversarial inputs automatically and relies on automated
program analysis techniques such as fuzzing or symbolic execution to search for adversarial
inputs.

SlowFuzz [190] and PerfFuzz [149] demonstrate how fuzzing can be used to automatically
discover adversarial inputs to individual methods and data structures. Fuzzing is a program
analysis technique that involves running the program on a diverse set of inputs, called seeds, to
discover properties of interest. In fuzzing, the program is first run on a set of seeds, with the
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program’s behavior for those seeds used as feedback to inform the next set of inputs. This process
is repeated until the developer is satisfied, or a time budget is reached. The key to effective
fuzzing is deciding the right aspects of program behavior to use as feedback. For example,
SlowFuzz used the “total number of instructions executed” as its feedback metric, and PerfFuzz
showed that using the “number of previously unseen branch instructions executed” as the metric
leads to better results.

WISE [34], PerfPlotter [42], Violet [112], and Castan [188] demonstrate how symbolic execution
can lead to the discovery of adversarial inputs; since we also rely on symbolic execution in
this thesis, we describe it in detail here. Symbolic execution (SE) [140] is a program analysis
technique that automatically explores feasible execution paths of a given program. It uses a
special interpreter, called a symbolic execution engine (SEE). The SEE can make any input or
variable (including a pointer) symbolic, i.e., assign to it a symbol representing many possible
concrete values. As the symbolic inputs propagate through the program, the SEE keeps track of
the resulting symbolic expressions. For example, suppose a program takes as input an integer in,
the SEE can make in symbolic, assigning to it a symbol α that represents all possible integer
values; if the program at some point assigns to an integer variable x the value in+1, then x also
becomes symbolic with value α+1. If the program reaches a conditional branch predicated on a
symbolic value, the SEE explores both paths and keeps track of the constraints that led down
each path, such as α< 0. The SEE uses a constraint solver [64, 95] to ensure that it explores only
feasible paths and to identify the class of inputs that triggers each one. However, SE typically
cannot exhaustively analyze programs (identify all feasible paths) due to path explosion [30],
i.e., scenarios in which the SEE must explore a large, potentially unbounded number of paths.
Path explosion typically occurs in the presence of loops and/or due to symbolic pointers in code
that maintains significant state. Overcoming path explosion is an active area of research with
recent SEEs having introduced various techniques such as state merging [146], loop-extended
symbolic execution [203], loop summaries [99, 247], loop invariants [127], and symbolic abstract
transformers [143].

WISE [34] uses symbolic execution to find adversarial inputs as follows: First, WISE exhaustively
explores all program paths for small inputs to find worst-case paths, with the small input sizes
ensuring that path explosion is limited. Then, it uses these worst-case paths as a heuristic to guide
an incomplete search over inputs of larger sizes. While WISE’s idea of splitting the search space
based on input size is clever, in practice, it often runs into the “large input problem” [157, 180]
where unexpected performance behavior often manifests only when input size exceeds some
limit. This results in WISE’s search heuristics often being insufficient to detect poor performance
for large inputs.

Violet [112] uses symbolic execution to automatically detect combinations of configuration
options that lead to poor latency. Focusing only on the latency impact of configurations (and not
the input) allows Violet to sidestep many path-explosion-related challenges.

Finally, Castan [188] automatically generates adversarial inputs for network functions (NFs).
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Castan’s key contribution is taking into account the behavior of not only the software but also
the underlying hardware to direct SE’s search process. Given that NF latency is significantly
impacted by last-level cache (LLC) misses [68, 156], Castan leverages an empirically-derived
model of the LLC to guide its search for adversarial inputs.

All the above techniques and tools are useful since they help developers find and fix performance
bugs in their code that can stem from both algorithmic complexity and micro-architectural
resource usage. However, they have two main shortcomings: First, they provide no guarantees,
i.e., they only extract inputs with “bad” performance but cannot prove that these inputs are the
“worst” performing ones. Second, the cost models that guide their search are typically highly
domain-specific and rarely generalize. For instance, Castan’s cost model is intrinsically tied to
how network functions interact with the LLC and does not generalize.

2.2.4 Verifying Latency Behavior

Here, we discuss two prior approaches to formally verifying the latency behavior of an imple-
mentation before it is deployed. The key difference here is that these techniques (unlike the ones
above) provide provably correct guarantees about latency behavior.

Verifying Upper Bounds on Worst Case Execution Time (WCET)

The need for formally verified upper bounds on WCET in safety-critical and real-time systems
such as airplanes [236] and cars [234] has motivated a plethora of prior work on computing
increasingly precise, verified upper bounds on WCET (summarized in [241]).

In this section, we focus on static approaches to computing upper bounds for WCET. These
approaches do not run the code on real hardware or in a simulator but instead rely on detailed
timing models of the hardware. Approaches that eschew such models and instead rely on
empirical observations also exist, but since empirical observations cannot compute guaranteed
upper bounds that will never be violated, measurement-based approaches are rarely used in
safety-critical or real-time systems [241].

Static approaches typically rely on a three-step process to compute an upper bound for WCET1:
(1) First, the “flow analysis” step extracts a precise control flow graph (CFG) for the program,
computes loop bounds for all loops in the code, and determines any infeasible paths through the
CFG. All three tasks are performed in a conservative manner (no feasible execution paths are
eliminated), and when necessary, additional annotations from the developer are required (e.g., to
resolve indirect function calls and compute upper bounds on hard-to-analyze loops). (2) Then,
the “low-level analysis” step computes the worst-case execution latency for individual basic
blocks using a precise timing model of the target hardware, and (3) Finally, the “calculation” step
models the program as an Integer Linear Program (ILP) and constructs an objective function

1The terms used for each of these steps are those used in existing literature on WCET analysis
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with variables representing the number of times each basic block is executed, weights for each
variable corresponding to the WCET for each basic block and constraints representing feasible
execution paths through the CFG. This formulation is fed to an ILP solver which computes an
upper bound on the WCET of the entire program by maximizing the objective function.

However, static WCET computation techniques are crippled by their reliance on a precise, worst-
case timing model of the underlying hardware (needed for Step 2 above). Since such models must
be painstakingly derived for each processor, state-of-the-art WCET tools only provide support for
a handful of simple embedded processors that were released at least 15 years ago [241]. Further,
since hardware is designed to make the common case fast and not the worst case predictable [147],
the bounds computed can be an order of magnitude larger than the observed WCET [29]. In
§5.5.2, we evaluate the techniques we propose in this thesis against state-of-the-art static WCET
ones and demonstrate that this is indeed the case.

Verifying Bounds on Resource Usage

There exists considerable prior work on verifying bounds on a program’s resource usage (e.g.,
computational steps, heap usage).

This line of work was pioneered by Wegbreit in 1975 [237] who proposed to represent such
bounds as recurrence relations. Wegbreit proposed to extract such bounds in two steps: first
extract recurrence relations from the program and then compute closed-form expressions for each
extracted recurrence. Wegbreit implemented his analysis for LISP programs but mentions that
it “can only handle simple programs”. The most complicated examples that he provides are a
function that reverses lists and a function that computes the union for sets represented as lists.

The COSTA project [5,6] revisited this idea of computing bounds as recurrence relations for Java
bytecode and use abstract interpretation [57] to the compute recurrence relations. However, they
only focus on recurrence relations defined on program inputs, and so cannot compute precise
bounds for stateful code such as data structures.

The SPEED project [106, 107] demonstrates how to compute such bounds for C++ programs
(including snippets of data structures from the C++ standard template library) with loops and
recursion. SPEED computes bounds in terms of not only inputs to the program but also “user-
defined quantitative functions” that can characterize implicit program variables such as the length
of a linked list and the depth of a tree. To compute these bounds, SPEED instruments the
program with counters for each user-defined quantitative function and then uses off-the-shelf
abstract interpretation-based linear invariant-generation tools to infer invariants on these counters
automatically.

Finally, an alternative approach focuses on automatically computing bounds on the amortized
resource usage (i.e., resource usage across a sequence of inputs). This approach, known as
automatic amortized resource analysis (AARA) [111] typically computes such bounds at compile
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time using type inference instead of an abstract-interpretation-based analysis. AARA relies on
the potential method [221] and assigns a potential function to each data structure that maps the
state of the data structure to a non-negative number. It then computes the amortized cost of an
operation as the sum of its execution cost and the change in potential of the data structure caused
by it.

While much of the prior work on AARA (summarized in [111]) has focused on computing
amortized heap usage for first-order functional programs, there exists work that extends the
technique to imperative programs as well, including reasoning about other metrics such as WCET.
For example, Jost et. al [131] demonstrated how AARA can be used for bounding the WCET
in terms of CPU cycles by augmenting AARA with an analysis of the WCET for each basic
block in the binary. That said, a key limitation of AARA is that it requires the metric of resource
usage to be context-independent; i.e., the cost of each instruction must be statically computable
and must not depend on instructions that come before or after it. While this assumption does
not hinder WCET analysis since one can assume the worst-case cost for each instruction, it
prevents AARA from being applied to reason about other percentile latencies since the latency
of executing each instruction on modern hardware depends significantly on the instructions that
came before it [120].

2.2.5 Takeways

The techniques and tools presented in this thesis draw significant inspiration from those presented
above, particularly the SPEED project, symbolic-execution-based tools, and profilers. The
latency-critical variables (LCVs) that we propose in Chapter 4 are similar to SPEED’s “user-
defined quantitative functions”, although we generalize the idea to include functions of not just
software state but also hardware state. Like WISE, Castan, and Violet, we rely on symbolic
execution (SE) in both LINX (Chapter 5) and CFAR (Chapter 6), although we do not rely
on domain-specific cost models to direct SE since we explore all execution paths through the
program2. Finally, like profilers, LINX relies on (partially) running the program to discover
ground truth latencies; this is because our goal is not to compute guaranteed upper bounds on
execution latency for safety-critical code, but rather to provide useful predictions for the expected
latency of more general systems code.

2Naturally, this introduces scalability limitations, we mention them in §5.2
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3 Meeting Microsecond-Scale, Tail
Latency Objectives while Sustaining
High Throughput

As a first step towards enabling developers to efficiently reason about the latency behavior of
systems code, we study the problem of ensuring that datacenter applications provide predictable
latency, i.e., latency that meets a well-defined target and is hence easy to reason about. In this
chapter, we work with existing representations of latency, and so define latency targets in terms
of tail latency SLOs, which is the standard practice in datacenters today [65].

We focus on ensuring that datacenter applications meet their tail latency SLOs in a cost-effective
manner, i.e., while sustaining high throughput per server. Taking throughput into account is
necessary while reasoning about tail latency SLOs since the easiest way to ensure that the latter
are met is to overprovision the number of servers required and have each server serve a smaller
fraction of the incoming load [66, 154]. However, this overprovisioning wastes precious CPU
cycles and is not economical for services that need to scale to billions of users [65, 134].

In the rest of the chapter, we first define the problem and show why it mandates efficient
microsecond-scale scheduling (§3.1), before performing a systematic analysis of the throughput
overheads introduced by state-of-the-art microsecond-scale schedulers (§3.2). We then present the
design (§3.3), implementation (§3.4) and evaluation (§3.5) of Concord, our proposed scheduling
runtime that addresses each source of overhead identified by our analysis. Finally, we discuss
Concord’s limitations and broader applicability (§3.6), summarize related work (§3.7), and
conclude with lessons learned that serve as motivation for the rest of the thesis (§3.8).

3.1 Problem Definition

Datacenter applications such as web search and e-commerce are architected in a scale-out manner,
with each user request being distributed across thousands of individual servers [21, 65]. These
applications aggregate the responses from individual servers, and so the end-to-end response time
is determined by the slowest individual response.

This scale-out architecture imposes stringent, microsecond-scale, tail latency service level objec-
tives (SLOs) on the code running on individual servers [22, 65]. Bounding tail (typically 99th

percentile or higher) latency is critical since the large number of servers involved in processing a
user request makes it likely that at least one will incur a high-percentile latency that will determine
the end-to-end response time. Additionally, for the service as a whole to remain interactive and
respond to user requests within tens of milliseconds, each individual server must process requests
within ten to a few hundred microseconds [22, 134, 193]. These strict tail latency SLOs are
only expected to get tighter over time [117, 135] as applications are being modularized into
increasingly finer microservices [1, 94, 160, 199] and communication stacks are being offloaded

25



Chapter 3. Meeting Microsecond-Scale, Tail Latency Objectives while Sustaining High
Throughput

to specialized hardware [12, 136, 222, 254].

Since the tail latency of a request at individual servers is dominated by its queueing delay (and
not service time), state-of-the-art schedulers are optimized based on queueing theory results.
Weirman and Zwart [240] show that there is no single scheduling policy that minimizes tail
latency across all possible workloads; the First Come, First Served (FCFS) policy is optimal
for light-tailed workloads, and Processor Sharing (PS) is optimal for heavy-tailed workloads.
Additionally, single-queue scheduling improves tail latency when compared to multi-queue
scheduling for both FCFS and PS policies. Since both light- and heavy-tailed workloads are
common in production [66, 134], state-of-the-art microsecond-scale schedulers need to support
both (1) preemptive scheduling to implement PS for heavy-tailed workloads, and (2) a single
queue.

However, optimizing systems for tail latency inevitably sacrifices the maximum throughput
they can sustain, with the sacrificed throughput only increasing as request service times grow
shorter. For example, single-queue systems such as ZygOS [193] and Shinjuku [134] achieve
lower maximum throughput than IX [24], an earlier system that had no tail-latency optimizations.
Similarly, preemptive scheduling in Shinjuku imposes a 20% throughput penalty at a scheduling
quantum of 5µs, and a 50% throughput penalty at a quantum of 2µs. Fig. 3.1 conceptualizes the
trade-off faced by tail-optimized microsecond-scale systems: chasing tight bounds on tail latency
makes such systems move from the blue to the orange curve, which results in them saturating
sooner than their non-tail-optimized counterparts.
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Figure 3.1: Abstract visualization of throughput overhead in state-of-the-art datacenter systems.

Systems optimized for tail latency also frequently sacrifice deployability and generic support
for applications. For example, Shinjuku relies on non-standard use of virtualization hardware to
achieve microsecond-scale preemption, but this precludes its deployment on VMs in public clouds.
Similarly, Persephone [66], another state-of-the-art system, relies on non-blind scheduling, i.e.,
it requires prior knowledge of the application’s service time distribution and is restricted to
applications with request classes that have disjoint service-time distributions known a priori.
However, this makes it ill-suited for the datacenter where blind policies are required to deal with
heterogeneous applications [114].

So in this chapter, our goal is to build a microsecond-scale scheduler that (1) preserves the
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tail latency properties of the state-of-the-art by supporting both preemptive and single queue
scheduling while (2) improving application throughput and (3) eschewing reliance on custom
hardware or application-level assumptions. To do so, we do not introduce new scheduling policies,
but instead introduce new mechanisms that implement existing policies with lower overhead.
Since the saturation point of tail-optimal systems is determined exclusively by the amount of
overhead in the system, reducing system overheads is both necessary and sufficient to reach ideal
system behavior (green curve in Fig. 3.1).

3.2 Throughput Overheads at Microsecond-Scale

We now analyze the throughput overheads in state-of-the-art microsecond-scale schedulers that
arise from implementing preemption and single queue scheduling, and show how they scale
as timescales grow shorter. We use an analytical model to describe the sources of throughput
overhead. This enables us to look beyond particular prior systems and instead reason abstractly
about the trade-offs and optimality of multiple systems. We first introduce our system model
(§3.2.1), and then use it to show how existing systems suffer from double-digit overheads at
today’s 5µs timescales and triple-digit overheads at tomorrow’s 1µs timescales (§3.2.2).

Schedulers that implement a single queue fall in two categories: those that maintain a physical and
logical single queue respectively. In the former [66, 134], one thread (the dispatcher) is dedicated
to maintaining the queue and sending requests to the others, while in the latter [185, 193] there is
no dedicated thread and idle threads steal requests from other threads, mitigating load imbalance.
We focus (in this section) on single physical queue systems for two reasons: (1) The only prior
work [134] that implements both a single queue and preemption—and is thus the most relevant
baseline—employs such a queue, and (2) having a dedicated thread with global visibility of the
entire system provides the flexibility to implement arbitrary queueing policies. We provide a
detailed discussion of systems that maintain a single logical queue in §3.6.

3.2.1 System Model

We consider a system with 1 dedicated dispatcher thread and n worker threads, all of which are
pinned to individual CPU cores. The dedicated dispatcher maintains the single queue. This model
reflects how many state-of-the-art microsecond-scale systems are built [61, 66, 134, 137, 159].

We define system throughput overhead (Overheadsys) as the fraction of CPU cycles that do not
contribute towards application goodput. Eq. 3.1 describes the overall overhead on a system
with n workers and 1 dispatcher. We separate the overhead based on the types of threads, i.e.
Overheadw, Overheadd denote the per-worker and dispatcher overheads respectively. Since the
dispatcher does not run application logic, Overheadd = 1.

To define Overheadw, we consider the CPU cycles wasted during the lifetime of a request with a
service time of S CPU cycles, and summarize it in Eq. 3.2. Intuitively, for every request there are
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some cycles lost during processing (cproc) beyond the application logic. These include overheads
of the underlying runtime, such as for logging, and are proportional to the service time. Further,
in a system that supports preemptive scheduling, there are also lost cycles associated with each
preemption (cpre) that include context switch and inter-thread communication costs. Finally, after
the completion of a request, the worker will need to communicate with the dispatcher and wait
for the next request, which will incur further wasted cycles (cfin).

We now further break down these costs: cproc is a fixed fraction of the service time (S), and
depends on the implementation of the underlying runtime. cpre is a cost paid on every preemption
event, so ⌊S/q⌋ times for every request, where q is the scheduling quantum; it includes the cost
of receiving the preemption notification (cnotif ), the context-switch cost (cswitch), and the cost to
wait for the next request (cnext), as seen in Eq. 3.3. Finally, cfin consists of the context switch cost
and the cost to fetch the next request (shown in Eq. 3.4).

Overheadsys = n ×Overheadw +Overheadd

n +1
(3.1)

Overheadw = cproc + cpre + cfin

S
(3.2)

cpre =
⌊

S

q

⌋
× (cnotif + cswitch + cnext) (3.3)

cfin = cswitch + cnext (3.4)

3.2.2 Sources of Throughput Overhead

We now use this model to analyze the overheads in state-of-the-art systems. Later in §3.3, we
introduce new mechanisms that address each of these overheads.

Preemptive scheduling (cnotif or cproc)

Today, there exist two mechanisms for implementing preemption at microsecond-scale—interrupts
and code instrumentation—that introduce significant overheads via the components cnotif and
cproc, respectively. We describe each approach using the corresponding state of the art—
Shinjuku [134] and Compiler Interrupts [23], respectively—as canonical examples.

In interrupt-based systems, the dispatcher sends an inter-processor interrupt (IPI) to a worker
whenever it has reached the desired scheduling quantum. The benefit is that the preemption is
precise; the worker promptly stops processing the current request and moves on. The drawback is
the large cost of receiving IPIs (cnotif ). Since this cost results in an overhead that is inversely pro-
portional to the quantum size q , namely Overhead ∝ cnotif

q (Eq. 3.3), interrupt-based approaches
lead to prohibitive throughput overheads at microsecond timescales. For instance, receiving an
IPI in Shinjuku costs ≈1200 cycles which results in an ≈12% overhead for q = 5µs, and an ≈30%
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Figure 3.2: Overhead of state-of-the-art preemption mechanisms as a function of the scheduling
quantum. This overhead excludes the time required to context switch and receive a new request.

overhead for q = 2µs, assuming a 2GHz clock. Note, Shinjuku’s IPIs rely on non-standard use of
virtualization hardware and cannot be deployed in the public cloud. The corresponding overhead
for Linux’s easily-deployable IPIs is double [31, 134].

Instrumentation-based approaches forgo the dispatcher and rely solely on compile-time instru-
mentation of the code. The compiler inserts bookkeeping probes (e.g., rdtsc calls) at regular
intervals in the application code, enabling the worker to track how long it has been executing for
and yield the CPU when the quantum has elapsed. This approach offers the benefit of avoiding
IPIs, thus eliminating cnotif . However, bookkeeping probes are expensive (e.g., calling rdtsc()
costs ≈30 cycles) and so inserting them frequently leads to prohibitively high overheads, while
inserting them infrequently leads to poor preemption timeliness. In our model, the cost of book-
keeping is represented by cproc. Since the bookkeeping is typically performed at significantly
smaller granularities than microsecond-scale scheduling quanta [23], cproc is a fixed fraction of
the service time and leads to a throughput overhead independent of the scheduling quantum.

Fig. 3.2 provides empirical evidence for our model’s predictions w.r.t the two preemption mecha-
nisms. We measure the time it takes Shinjuku and Compiler Interrupts to service 1M requests,
each running for 500µs, while handling preemption notifications with scheduler quanta from 1µs
to 100µs. We compare to a baseline where each request runs to completion, without interruption.
To isolate the preemption overhead, we run both systems with no-op preemption handlers. As
predicted by our model, IPIs in Shinjuku lead to an overhead that grows linearly with decreasing
scheduling quanta: 33% at 2µs and 6% at 10µs. On the other hand, the rdtsc() probes used
by compiler interrupts lead to a uniform ≈ 21% overhead across all scheduling quanta, since the
probes are inserted approximately every 200 instructions, which is substantially smaller than 1µs.

Synchronous inter-thread communication (cnext)

Maintaining a single physical queue mandates synchronous communication between the dis-
patcher and worker threads. To ensure optimal load balancing in such systems, each worker
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Figure 3.3: Time spent idle by a worker thread awaiting the next request in state-of-the-art Single
Queue (SQ) systems.

thread must first finish processing the current request before it can pull the next request from
the dispatcher. To avoid concurrency issues due to multiple workers pulling from the dispatcher,
state-of-the-art systems [66, 134] implement a single queue as follows: (1) workers set a flag
upon finishing a request and then poll a dedicated cache line for a new request; (2) the dispatcher
continuously polls the workers’ flags and sends a new request as soon as a flag is set.

This synchronous communication directly results in wasted CPU cycles (cnext), since workers
sit idle until the dispatcher sends them a new request. In particular, cnext subsumes at least two
cache coherence misses, which add up to ≈400 cycles in total [62]. These misses occur when
(1) the dispatcher reads the flag previously written by the worker (Read after Write miss) and
(2) the dispatcher writes into the worker’s request queue that was last read by the worker when
processing the previous request (Write after Read miss). Note, 400 cycles provides a lower bound
on cnext since this assumes that the dispatcher sends a new request to the worker instantly. In
practice, the dispatcher may be busy preempting or dispatching requests to any of the other n

cores, so in the worst case, the worker thread might have to wait as long as 400×n cycles. For
short requests, this idle time can lead to significant throughput overheads since the component of
system overhead induced by cnext is inversely proportional to the service time: Overhead ∝ cnext

S .

Fig. 3.3 illustrates the measured median overhead due to cnext for Shinjuku and Persephone when
running with 8 cores. As predicted by the model, the overhead is inversely proportional to service
time. However, the overhead increases slightly faster than 1

S because, with shorter request times,
it becomes more likely that multiple workers finish while the dispatcher is busy sending a request
to another worker.

Dedicated dispatcher (Overheadd)

Since the dedicated dispatcher does not run application logic even when idle, Overheadd = 1.
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While dedicating 1 core does not significantly impact throughput when running on a large server,
it does have a serious impact for smaller VMs in the cloud. For example, consider a 16-core
server with 1 dispatcher and 15 worker threads, where the dispatcher runs at full capacity to feed
the 15 workers. When serving the same workload from a 4-vCPU VM in the cloud, the dedicated
dispatcher only serves 3 workers (20% of its capacity), and thus ends up being idle 80% of the
time. As a result, in this particular deployment, the system as a whole sacrifices 80

4×100 = 20% of
its potential maximum throughput.

To summarize, state-of-the-art microsecond-scale schedulers suffer from three main sources of
throughput overhead: preemptive scheduling, synchronous inter-thread communication between
the dispatcher and workers to maintain the single queue, and the dedicated dispatcher that runs no
application logic. In the next section, we describe how Concord, our proposed microsecond-scale
scheduling runtime, addresses each source of overhead.

3.3 Efficient Microsecond-Scale Scheduling

We now describe the design of Concord, an efficient scheduling runtime for microsecond-scale
applications.

Concord’s design is driven by the insight that careful approximation (as opposed to canonical
implementation) of optimal scheduling policies enables efficient, low-overhead microsecond-
scale mechanisms that lead to significant throughput improvements at negligible tail-latency
costs. Thus, Concord preserves the tail latency properties of the state of the art, while increasing
application throughput by introducing new mechanisms that carefully approximate existing
policies.

Concord relies on three key mechanisms to efficiently approximate the optimal single queue
and precise preemption policies and mitigate the sources of throughput overhead described in
§3.2. First, compiler-enforced cooperation (§3.3.1) approximates precise preemption using
asynchronous communication between the dispatcher and worker threads. While this asynchrony
leads to slightly imprecise scheduling quanta, it does not significantly impact tail latency. Instead,
it enables Concord to reduce the preemption overhead by 4× by minimizing cnotif while keeping
cproc low. Second, Join-Bounded Shortest Queue (JBSQ) scheduling (§3.3.2) adds bounded
core-local queues to approximate a single queue; this enables Concord to reduce cache-coherence
stalls in worker threads by 9−13× by nearly eliminating cnext . Finally, the Concord-dispatcher
(§3.3.3) is work-conserving and steals work from the global single queue when all worker threads
are busy. This approximates both the single queue and precise preemption—the dispatcher
sends preemption notifications late when busy—but ensures Overheadd < 1 which significantly
improves application throughput at low core counts. Fig. 3.4 provides an architectural diagram of
Concord that we gradually explain throughout the section.

Concord uses an asymmetric threading model with a dispatcher thread D and worker threads
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W1, ...,Wn; in §3.3.1 we describe how this design enables Concord to achieve low-overhead
preemption while retaining the flexibility to support arbitrary scheduling policies. Each worker
thread is pinned to a CPU core, to ensure maximum locality. This architecture is consistent
with §3.2.1 and how state-of-the-art microsecond-scale systems are built today [61, 66, 134, 137,
159, 185].

3.3.1 Compiler-Enforced Cooperation

We now describe how Concord’s compiler-enforced cooperation provides an alternative to enforc-
ing latency quanta using IPIs that: (1) enables preemption at lower overhead for microsecond-scale
tasks, (2) does not require non-standard use of hardware and can be deployed in the public cloud,
and (3) makes it easier to port applications and preempt safely.

In Concord, scheduling decisions are communicated between workers Wi and the dispatcher
D via a per-core dedicated cache line Li , instead of IPIs. The Concord runtime enforces
this communication for arbitrary applications using automated compiler instrumentation. The
dispatcher monitors how long each request has been executing and writes to Li when the request
has reached the end of its scheduling quantum. Concord’s compiler instrumentation ensures
application code running on Wi periodically checks cache line Li for a preemption signal from
the dispatcher. When the signal is received, the worker thread writes to Li indicating to D that
preemption has taken place, and yields. Yielding consists of saving the context corresponding
to the current request, and then switching to the default worker context, which awaits the next
request. The dispatcher re-places the preempted request on the main queue. Thus, Concord
automatically converts worker threads from being “interrupt-driven CPU drivers” to “poll-mode
CPU drivers”. This is consistent with how the majority of low-latency systems today eschew
interrupts in favor of polling due to the associated overheads [70,123,124,134,142,186,193,251].

Concord deliberately separates scheduling concerns between D , in charge of signalling the end of
a quantum, and Wi , in charge of yielding. D has global visibility of the system, and so it is best
positioned to decide when Wi should stop processing a request and which request it should begin
processing instead. On the other hand, cooperative yielding allows worker threads to switch
between requests within ≈ 100ns, and avoids expensive preemptive context switches. Delegating
the preemption notifications to the dispatcher ensures that Concord can support scheduling
algorithms beyond First Come, First Served (FCFS) and Processor Sharing (PS). For instance,
Concord can easily be extended to support algorithms such as Shortest Remaining Processing
Time [209] or ones that takes locality into account and prioritize scheduling preempted requests
back on to the core they were last processed by. Implementing such algorithms in single logical
queue systems is hard, since they do not have a dispatcher, and thus have no core that possesses
visibility of all the requests in the system.

Communicating scheduling decisions via shared cache lines enables Concord to minimize cnotif

(cost of preemption notification), while keeping cproc (instrumentation overhead) low. cnotif
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Figure 3.4: The Concord architecture. Compiler-enforced cooperation relies on communicating
via a shared cache line, JBSQ(k) employs bounded core-local queues to eliminate coherence
stalls, and the dispatcher’s steals work at high load.

is minimized since a shared cache line is the fastest way for two cores to communicate in
commodity shared-memory processors. This minimization does not significantly increase cproc

because, unlike an rdtsc call, which always costs ≈30 cycles, the cache line Li is in the L1
cache of worker Wi for all but the final check, so most checks consist of an L1 cache hit plus a
compare, i.e., 2 cycles. The final check (after which the request yields), incurs a Read after Write
cache-coherence miss since it is the first check after the dispatcher writes to Li . However, this
miss only costs ≈150 cycles leading to a cnotif that is 1

8
th the cost of a Shinjuku IPI (which costs

≈1200 cycles), while eschewing reliance on the non-standard use of virtualization hardware.

Fig. 3.5 shows this overhead, for scheduling quanta from 1-100µs. We see that Concord’s
overhead is near-constant at around 1-1.5%, mainly coming from the instrumentation and not
the notification itself, which is consistently 16× cheaper than invoking rdtsc(). Concord’s
overhead is also 12× lower than that of Shinjuku’s IPIs at a scheduling quantum of 2µs and 10×
lower at a quantum of 5µs. As the quantum increases further, the percentage overhead of an
IPI decreases until the two become roughly equal (≈ 0.7%) at around 25µs. Note, 25µs refers
to the scheduling quantum and not the service time, so even datacenter applications that have
some long requests (e.g., 100µs to 10ms) will benefit from Concord, as long as there are also
many short requests (1-10µs) for which we would like to preempt the long-running requests.
Many real-world applications have such distributions e.g., search engines, microservices and
function-as-a-service (FaaS) frameworks, and in-memory stores or databases such as RocksDB,
LevelDB, and Redis that support both point and range queries [13, 40, 52].

Compiler-enforced cooperation approximates precise preemption since workers do not yield
instantaneously: the application code must first reach the cache-line check to see the preemption
notification. In practice though, we observed that as long as preemption occurs within a “small”
interval around the desired quantum, tail latency is not significantly affected. This ensures that
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Figure 3.5: Comparing the throughput overhead introduced by Concord’s compiler-enforced
cooperation to that of state-of-the-art preemption mechanisms. This overhead excludes the time
required to context switch and receive a new request, which is identical across all systems.

compiler-enforced cooperation outperforms IPIs by achieving greater throughput while meeting
the same tail latency SLO.

Fig. 3.6 illustrates the impact of non-instantaneous preemption using a queueing simulation for
two service time distributions from prior work [66,134]. In the first (Bimodal(99.5 : 0.5,0.5 : 500)),
99.5% of the requests have a 0.5µs service time and 0.5%,500 µs. In the second (Bimodal(50 :

1,50 : 100)), 50% of the requests have a 1µs service time and the other 50%,100 µs. For both
distributions, we model Concord’s preemption as a one-sided Normal random variable1 with a
mean of 5µs and different standard deviations and compare this non-instantaneous preemption
with precise preemption (red line), which is the optimal behavior and no preemption (blue line),
which serves as a lower bound. We observe that for small standard deviations, the latency
behavior of the system is almost identical to the optimal precise preemption curve, indicating that
approximating the preemption quantum does not significantly affect tail latency. In §3.5.4, we
show that for a 5µs quantum, Concord’s instrumentation keeps the standard deviation within 2µs
across 25 benchmarks from standard benchmark suites.

Finally, compiler-enforced cooperation also reduces the overhead of sending the preemption
notification at the dedicated dispatcher by 2.5×, thus reducing the amount of work that the
dispatcher needs to do. This is because sending an IPI costs approximately 300 cycles on today’s
hardware, but writing to a shared cache line costs approximately 120 cycles in comparison. This
enables the upcoming mechanisms (JBSQ and dispatcher work-conservation) to be more effective
since both require the dispatcher to perform additional work.

1The distribution is one-sided because we never preempt before the quantum
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Figure 3.6: The impact of non-instantaneous preemption on 99.9th percentile request slow-
down for Bimodal(99.5 : 0.5,0.5 : 500) (top) and Bimodal(50 : 1,50 : 100) (bottom) service time
distributions. N (x, y) represents a normal variable with mean x and standard-deviation y

Safety-first preemption

Concord takes a safety-first approach to preemption that we believe is particularly suited to
microsecond-scale applications. Concord ensures safety by not preempting worker threads when
they are either performing external calls that might acquire locks (e.g., system calls) or holding a
lock in the application code. While such an approach can (in theory) lead to tail-latency spikes
due to long-running critical sections or system calls, in our experience this is rarely the case in
practice because such calls are infrequent in microsecond-scale application code.

Concord guarantees that preemption is avoided within external calls by construction, since the
compiler has full control over the portions of code it instruments. This has the added benefit of
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ensuring that widely-used libraries (e.g., libc) can be used in Concord without modification.
In contrast, such libraries must be modified to ensure safety in systems that rely on IPIs (e.g.,
Shinjuku) since the worker thread has no control over what code it will be executing when it
receives an IPI from the dispatcher.

To avoid preemption while holding application locks developers must modify their code; however,
in our experience, this takes negligible effort. For example, to achieve safety in LevelDB we
only had to add a total of 4 lines of code that incremented/decremented a counter whenever a
mutex was locked/unlocked in the application code. By only preempting if the counter was zero,
Concord ensured that it would never preempt a worker thread while it held a lock. On the other
hand, the Shinjuku prototype avoids this issue by disabling preemption during entire LevelDB
API calls. However, this approach can lead to significant tail-latency spikes since entire LevelDB
API calls can run for significantly longer than just their critical sections. It was easy for us to
create a microbenchmark where the worker thread in Shinjuku was not preempted until 100µs
due to a long-running LevelDB GET API call. For this microbenchmark, Concord improved
throughput by 4× in comparison to Shinjuku while meeting the same tail-latency SLO.

3.3.2 Eliminating Cache Coherence Stalls in Worker Threads

To eliminate the overhead due to worker threads being idle, Concord carefully trades the optimal
single queue policy in favor of the Join-Bounded-Shortest-Queue policy [142], abbreviated
JBSQ(k). JBSQ(k) approximates an ideal, work-conserving single queue by combining a single,
central queue with short, bounded per-worker queues, each with a maximum depth of k messages.
JBSQ(1) is therefore equivalent to a single queue.

JBSQ enables Concord to forego the purely pull-based single queue and adopt a controlled
push-based policy: Whenever there is a pending request in the main queue, and one or more
per-worker queues have empty slots, the dispatcher pushes the request to the shortest per-worker
queue. This ensures that, upon completing a request, worker threads can immediately begin
processing a new request from their local queue, thus eliminating the idle time spent waiting for
the next request.

To ensure that the per-worker queues do not significantly impair load balancing (and hence
tail latency), k must be just large enough to ensure that a worker is never idle during the
dispatcher-worker communication. Any larger value of k only hurts tail latency without improving
throughput. While the exact communication delay is a complex function of the number of workers
and the service time distribution, we found k = 2 to be sufficient for service times above 1µs.
Approximately, a value of k = ⌈ cnext

S

⌉+1, where S is the service time, should ensure zero idle
time. Prior work [142] has shown that k = 2 imposes a negligible tail-latency penalty over the
optimal single queue.

Fig. 3.7 compares the throughput overhead due to idling in state-of-the-art systems implementing
a single queue and Concord, which uses JBSQ(2). We observe that using JBSQ(2) results in an
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Figure 3.7: Time spent idle by a worker thread awaiting the next request in Single Queue (SQ)
and JBSQ systems.

overhead that is 9−13× lower. Of course, JBSQ(2) does not make cnext zero. This is because the
asynchronous dispatching and processing of requests requires the worker to start a timer denoting
the scheduling quantum; in a synchronous single queue, this can be done by the dispatcher.

This work is the first to make the observation that JBSQ(k) is necessary to mask cache-coherence
latencies during inter-thread communication. In fact, JBSQ(k) is the accepted policy when
the communication delay between the dispatcher and workers approaches the average service
time [60,113,117,142,220]. This is because it enables explicit control of the trade-off between tail
latency and throughput, through the choice of k, thus making it possible to pick an optimal queue
depth. Prior work has already explored the use of JBSQ(k) in scenarios where the dispatcher was
located on either a programmable switch [142] or a smartNIC [113, 117].

3.3.3 A Work-Conserving Dispatcher

To reduce Overheadd (=1 for a dedicated dispatcher) the Concord dispatcher contributes to
application goodput while retaining the ability to respond to network and worker events in a
timely manner. Whenever the dispatcher notices that all per-worker queues are full, it begins
processing user requests, i.e., it runs application logic instead of dispatcher logic for one quantum.

To ensure the dispatcher provides timely responses to network and worker events, Concord
employs rdtsc-based instrumentation for the dispatcher. This is because there is no external
agent to send preemption signals to the dispatcher and so it must self-preempt. The automatically
inserted rdtsc probes check periodically whether it is time for the dispatcher to switch from
application requests to dispatching.

As a result, Concord has two differently instrumented versions of the application code. The
expensive, rdtsc-based instrumentation is only used for the dispatcher thread, while the cache-
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line-polling is used on the worker threads. Since all threads are pinned to CPU cores, the second
version does not cause I-cache pressure at the workers; these instructions are limited to the private
I-cache of the dispatcher.

Having two versions of the code requires a slight modification of the single queue: This is because
requests that have started processing on a worker cannot be processed by the dispatcher and vice
versa, since the instruction pointers are different due to different instrumentation. Therefore,
the dispatcher can only pick up non-started requests from the central queue, and, once it starts
processing a request, it is solely responsible for completing that request. So, whenever D is not
dispatching and not processing a request, it picks the first non-started request from the central
queue. If it needs to preempt itself before completing the request, it saves the context to a
dedicated buffer. The next time D is idle, it picks this request up from the buffer and continues
processing it.

This approximation does not significantly impact tail latency. We present an intuitive argument
now, and demonstrate it empirically in §3.5. First, at low loads it is unlikely that all per-worker
queues will be full, hence the dispatcher will never have a request to pick up from the queue.
To understand the impact at high loads, assume that the dispatcher is idle for 50% of each time
quantum, and the rdtsc instrumentation induces 20% overhead. This makes the dispatcher only
50%−50×20% = 40% as effective as a typical worker, causing the request to take 2.5× the usual
service time. In practice, this overhead turns out to be far less than the time the request would
spend queueing or bouncing around different workers if the dispatcher had not taken it over for
processing. Typical tail slowdown targets at high load are 20−50× according to [66, 117], so we
believe that the 2.5× is negligible.

To summarize, Concord efficiently approximates the optimal single queue and precise preemption
to mitigate the throughput overheads that plague state-of-the-art microsecond-scale schedulers. To
do so, Concord leverages three mechanisms—compiler-enforced cooperation, JBSQ(k) schedul-
ing and a work-conserving dispatcher—all of which eschew the non-standard use of hardware
and application-level assumptions.

3.4 Concord Prototype

In this section, we describe the key implementation details of our Concord prototype.

3.4.1 API

Concord’s API comprises three callbacks:

• setup() initializes global application state

• setup_worker(int core_num) initializes application state for each worker thread,
such as local variables or configuration options
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• response_t* handle_request(request_t*) processes a single application request
and returns a pointer to the response. At any particular point in time, a request is only
processed by a single thread, although preemption might cause it to be served by multiple
threads over its entire service time.

This simple event-driven API hides all of Concord’s underlying complexity from application
developers and enables Concord to be easily integrated into existing dataplane OSes; we now
describe two integrations.

3.4.2 Concord Runtime

We integrate the Concord runtime into two state-of-the-art microsecond-scale operating systems,
Shinjuku and Persephone.

The Concord-shinjuku implementation was straightforward, since Shinjuku’s dispatcher already
implements a preemptive scheduling policy and there exists a userlevel threading mechanism.
We only had to change the preemption signal, add per-core queues and add support for dispatcher
work-stealing. Concord-shinjuku only required adding 847 LOC to Shinjuku’s initial codebase.

The Concord-persephone implementation required more effort since Persephone operates in a
run-to-completion manner. Thus, we had to implement userlevel threading and ported Shinjuku’s
implementation to Persephone for the same. JBSQ was easier to implement here since Perse-
phone already supports multi-request queues. In total, Concord-persphone adds 2358 LOC to
Persephone.

3.4.3 Concord Compiler

We implemented Concord’s code instrumentation as two LLVM passes; one each for polling a
shared cache line and checking rdtsc(), respectively. Both passes use LLVM version 9 and
comprise ≈ 350 LOC each.

The Concord compiler places probes at the beginning of each function call, before and after any
call to un-instrumented code (e.g., syscalls) and at every loop back-edge. Placing probes as such
has been shown empirically to be sufficient to yield on all long paths through code [23, 130]. For
non-loop code, this translates into a probe being placed approximately once every 200 LLVM IR
instructions [23], and so, to avoid prohibitive overheads arising from tight program loops, we
unroll each loop body until it has at least 200 LLVM IR instructions. With additional engineering
effort, it should be feasible to place probes more infrequently for both loops and non-loop code.
We did not to pursue this goal in our work since Concord’s instrumentation overhead is already
low (≈1% on average).
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3.5 Evaluation

We evaluate Concord to answer the following questions:

• How does Concord perform across different service time distributions for which different
scheduling policies are optimal? (§3.5.2)

• How does Concord perform for a real, latency-sensitive application? (§3.5.3)

• What is the contribution of each of Concord’s proposed mechanisms to its overall perfor-
mance benefits? (§3.5.4)

• What are the drawbacks of Concord’s design? (§3.5.5)

• Do Concord’s mechanisms remain relevant as datacenter server hardware evolves to provide
increased support for microsecond-scale scheduling? (§3.5.6)

3.5.1 Methodology

Baselines: We focus on blind policies, i.e. policies that do not rely on application-level informa-
tion, and pick two baselines that represent the state of the art for workloads with high and low
service time dispersion, respectively. Shinjuku represents the state of the art for workloads with
high service time dispersion since it implements both a single queue and preemptive scheduling.
To compare against recent systems [66, 185] that implement only an FCFS single queue for
workloads with low dispersion, we configure Persephone to use the C-FCFS policy. We refer to
this baseline as “Persephone-FCFS”.

For all experiments on our own cluster, we use the implementation that builds on top of Shinjuku.
Since Shinjuku is the best-performing baseline in this context, using this implementation enables
an apples-to-apples comparison. As detailed in §3.4, the performance differences between the
two implementations of Concord are minuscule.

Testbed: We use a testbed set up as per RFC 2544 [229] with two directly connected machines—a
server that runs Concord or the baselines and a client that runs a load generator. Both machines
are identical Cloudlab [51] c6420 nodes with a 32-core (64-thread) Intel Xeon Gold 6142 CPU
running at 2.60GHz, with 376 GB of RAM, and an Intel X710 10 Gbps NIC. The average network
round trip time between the client and server is 10µs. The server machine runs Ubuntu 18.04

with the 4.4.185 Linux Kernel since this is the version that Shinjuku’s kernel module requires.
We set up each system as in prior work [66]: Shinjuku uses one hyperthread for the networker
and another for the dispatcher, co-located on the same physical core. Persephone runs both its net
worker and dispatcher on the same hardware thread. Unless otherwise specified, all systems use
14 worker threads running on dedicated physical cores.
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The client’s load generator sends requests according to a Poisson process centered at the work-
loads’ mean service time to mimic the bursty behavior of production traffic [13]. Unless specified,
all measurements are performed at the client, ensuring end-to-end evaluation of Concord. Each
experiment runs for 60 seconds and we discard the first 10% of samples to remove warmup
effects.

Workloads: We used one synthetic and one real application to evaluate Concord across several
service distributions from both academic and industrial references. The synthetic workload is a
server application that spins for the amount of time specified by each request; this application
allows us to evaluate Concord across a variety of service time distributions. In §3.5.2 we describe
four such distributions, three of which are based on workload A from the YCSB benchmark [52],
Meta’s USR workload [13] and TPCC running on an in-memory database [66], respectively.

The real application is a server running LevelDB [150], a popular and widely deployed key-value
store developed by Google that supports both point queries (put/get requests) and range queries
(scans). We evaluated LevelDB on two service time distributions, one from Meta’s ZippyDB
traces [40] and the other from prior work [66, 134]. Unless otherwise specified, we use two
scheduling quanta—5µs and 2µs respectively—for all workloads. Many of our workloads were
also used by Shinjuku and Persephone; in all such cases, we were able to replicate their published
results. When running on Shinjuku and Persephone, the application code (both synthetic and
LevelDB) was not instrumented by the Concord compiler.

Metrics: For each workload, we primarily compare the throughput that the two systems can
sustain given a target 99.9th percentile Slowdown — which is the ratio of the total time the request
spends at the server to its un-instrumented service time. Using tail Slowdown (instead of latency)
allows us to evaluate all workloads at a common Service Level Objective (SLO), despite their
absolute latencies varying significantly. For all experiments, we set the slowdown SLO at 50×
the service time which is consistent with prior work [66, 134].

3.5.2 Evaluating Concord Using Synthetic Microbenchmarks

Here we mimic four service time distributions, two each with high and low dispersion respectively.
The first two distributions stress Concord’s approximate preemption and its approximate single
queue, while the last two only stress its single queue.

Workloads with high dispersion that benefit from preemption: Both high-dispersion work-
loads follow a bimodal service-time distribution. In the first (Bimodal(50:1, 50:100)), 50% of
the requests have a 1µs service time and the other 50%,100µs. Such a distribution with an equal
amount of short and long requests is based on workload A from the YCSB benchmark [52]. In
the second (Bimodal(99.5:0.5, 0.5:500)), 99.5% of the requests have a 0.5µs service time and
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target slowdown

target slowdown

Figure 3.8: 99.9th percentile slowdown vs load for Bimodal(50 : 1,50 : 100). Scheduling quantum
is 5µs (top) and 2µs (bottom).

0.5%,500µs. This distribution, with a majority of short requests and a few very long requests, is
based on Meta’s USR workload [13].

Fig. 3.8 and Fig. 3.9 illustrate the results for the two high-dispersion distributions for scheduling
quanta of 5µs and 2µs, respectively. For a scheduling quantum of 5µs, Concord can support
18% and 20% greater throughput than Shinjuku for our 99.9th percentile slowdown SLO of 50×.
Similarly, for a scheduling quantum of 2µs, Concord supports 45% and 52% greater throughput
than Shinjuku. Due to its lack of preemptive scheduling Persephone-FCFS crosses the slowdown
SLO much earlier than the other two systems for workloads with high dispersion.

Workloads with low dispersion that do not benefit from preemption: The first low-dispersion
workload (Fixed(1)) uses a fixed service time of 1µs for all requests. The second workload
(TPCC) is based on the service time distribution of TPCC [227] running on an in-memory
database [228] and is taken from prior work [66]. The distribution of request types and service
times is as follows: Payment (5.7µs) - 44%, OrderStatus (6µs) - 4%, NewOrder (20µs) - 44%,
Delivery (88µs) - 4%, and StockLevel (100µs) - 4%. For Fixed(1), we continue to use scheduling
quanta of 5µs and 2µs. For TPCC, we set the quantum to 10µs to avoid unnecessary preemptions,
since all requests run for longer than 5µs.
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target slowdown

target slowdown

Figure 3.9: 99.9th percentile slowdown vs load for Bimodal(99.5 : 0.5,0.5 : 500). Scheduling
quantum is 5µs (top) and 2µs (bottom).

While such workloads do not benefit from preemption (since there are too few long requests
that block the shorter requests), we observe that Concord still performs favorably w.r.t the state-
of-the-art; Fig. 3.10 illustrate the results. We see that for the Fixed(1) workload (Fig. 3.10(a)),
Concord achieves effectively the same (2% less) throughput than Shinjuku and Persephone. In
such situations, the bottleneck is the dispatcher thread—common to all three systems—which
cannot deliver requests to workers fast enough. Concord’s dispatcher incurs the 2% penalty since
it must calculate the “shortest queue” for each incoming request to implement JBSQ(2). For
the TPCC workload (shown in Fig. 3.10(b)), which has low dispersion and the dispatcher is not
the bottleneck, preemption overheads in Shinjuku and Concord harm throughput compared to
Persephone-FCFS, yet Concord still outperforms Shinjuku given its low-overhead preemption
mechanism.

3.5.3 Evaluating Concord Using Google’s LevelDB

We now compare Concord’s performance to Shinjuku’s and Persephone’s for a LevelDB server
that supports both point and range queries. We set up LevelDB in a manner similar to prior
work [66, 134]. We populate the database with 15,000 unique keys and use memory-mapped
plain tables to keep all data in memory. In this setup, GET requests take ≈ 600ns each, PUT,
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Figure 3.10: 99.9th percentile slowdown vs load for Fixed(1) (top) and TPCC (bottom) service
time distributions.

DELETE requests take ≈ 2.3µs each and SCANs take approximately 500µs.

We evaluate Concord’s throughput improvements for LevelDB using two request distributions.
The first distribution consists of 50% GET requests for a single key and 50% SCAN requests that
scan the entire database. This workload strikes a balance between the previous two Bimodal
distributions and was used by both Shinjuku and Persephone. The second distribution is based on
recently published Meta traces [40] from their ZippyDB service. This workload consists of 78%

GETs, 13% PUTs, 6% DELETEs and 3% SCANs. We use scheduling quanta of 5µs and 2µs for
the first distribution. We use only a 5µs quantum for the second distribution since all requests in
the workload run for longer than 2µs and so a 2µs quantum leads to unnecessary preemptions.
Both distributions also allow us to evaluate how Concord performs for real application code with
locks since in LevelDB, both PUT and GET requests acquire locks.

Fig. 3.11 illustrates the results for the first distribution. We observe that for our 99.9th percentile
slowdown target of 50×, Concord supports 52% greater throughput at a scheduling quantum
of 5µs and 83% greater throughput at a scheduling quantum of 2µs. Concord’s throughput
improvement over prior work is larger for this workload because it has greater dispersion (1000×)
than the previous microbenchmarks. At such dispersions—which are common in production
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workloads [10, 41, 164]—all three of Concord’s mechanisms shine. JBSQ(2) ensures no worker
thread is ever idle (minimizing cnext), compiler-enforced cooperation ensures that long requests do
not suffer prohibitive overheads due to frequent preemption (eliminating cnotif ) and the incoming
requests per second is low enough for the Concord dispatcher to frequently remain idle and thus
contribute to application goodput (improving Overheadd). In §3.5.4, we provide a quantitative
breakdown for this improvement.

Fig. 3.12 illustrates the results for the second distribution, which is based on Meta’s production
traces from their ZippyDB service. We see that Concord supports 19% greater throughput than
Shinjuku for the target 50× slowdown. This improvement is in line with Concord’s results for
Bimodal(99.5 : 0.5,0.5 : 500), shown in Fig. 3.9(a). This is unsurprising, since the two service
time distributions are similar.

target slowdown

target slowdown

Figure 3.11: 99.9th percentile slowdown vs load for a levelDB server running 50% GETs, 50%
SCANs. Scheduling quantum is 5µs (top) and 2µs (bottom).
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target slowdown

Figure 3.12: 99.9th percentile slowdown vs load for a LevelDB server running a workload based
on ZippyDB production traces [40]. Scheduling quantum is 5µs. We do not use a 2µs quantum
since all requests run longer than 2µs

3.5.4 Evaluating Concord’s Mechanisms Individually

Instrumentation overhead and precision across applications

Since compiler instrumentation rarely produces uniform slowdowns, we evaluated the overhead
and timeliness of Concord’s instrumentation across 24 benchmarks from the Phoenix [191],
Parsec [187] and Splash-2 [217] benchmark suites. We compared Concord’s instrumentation
overheads to published numbers from prior work [23] that uses rdtsc()-based instrumentation.
We used their published numbers because we were unable to accurately replicate their results.
To obtain optimal overhead numbers, their LLVM pass must be differently configured with 8
parameters for each application and naive configurations lead to significant overheads. They do
not publish numbers for preemption timeliness.

Table 3.1 presents the results across the 24 benchmarks. We observe that Concord’s average
instrumentation overhead is not only low enough to be acceptable (≈1.04% on average) but also
13.1× lower than the state of the art, with the maximum overhead being 5.5× lower.

To evaluate Concord’s preemption timeliness, we set a quantum of 5µs and measured the standard
deviation from the target quantum for the same set of applications (last column of Table 3.1).
Across all benchmarks, we see that the standard deviation is smaller than 2µs and so well within
the tolerable imprecision (§3.3.1). Further, the 99th percentile of the achieved scheduling quanta
was always within 3 standard deviations ensuring that Concord’s imprecise scheduling quanta do
not significantly impact tail latency.

Breaking down throughput improvements

We evaluated the contribution of each of Concord’s mechanisms to its throughput improvement
by measuring the throughput sustained by a system that cumulatively employs Concord’s key
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Program Benchmark Concord CI Concord
name Suite overhead overhead std.dev
water-nsquared Splash-2 -0.3% 3% 0.24µs
water-spatial Splash-2 -0.6% 4% 0.23µs
ocean-cp Splash-2 0.1% 10% 1.8µs
ocean-ncp Splash-2 1% 6% 1.1µs
volrend Splash-2 0.5% 13% 0.47µs
fmm Splash-2 0.4% -2% 0.11µs
raytrace Splash-2 -0.2% 4% 0.03µs
radix Splash-2 0.9% 4% 0.56µs
fft Splash-2 1.2% 1% 0.63µs
lu-c Splash-2 4.6% 13% 0.63µs
lu-nc Splash-2 -3.7% 23% 0.58µs
cholesky Splash-2 -2.9% 29% 0.86µs
histogram Phoenix 1.6% 20% 0.57µs
kmeans Phoenix -0.3% 3% 1µs
pca Phoenix -2.7% 25% 0.06µs
string_match Phoenix 2% 18% 0.86µs
linear_regression Phoenix 6.7% 37% 0.78µs
word_count Phoenix 2.4% 30% 1.11µs
blackscholes Parsec 4% 10% 1.14µs
fluidanimate Parsec 1.3% 2% 0.04µs
swapoptions Parsec 2.2% 24% 0.86µs
canneal Parsec 1.5% 34% 0.02µs
streamcluster Parsec -2.1% 6% 0.08µs
dedup Parsec 0.4% 4% 1.2µs
Average - 1.04% 13.7% 0.29µs
Maximum - 6.7% 37% 1.8µs

Table 3.1: Overhead and timeliness of Concord’s instrumentation compared to Compiler-
Interrupts (CI) [23]. The baseline (0% overhead) corresponds to un-instrumented code. Concord’s
overhead is often negative due to its loop unrolling.

mechanisms for a LevelDB workload consisting of 50% GETs and 50% SCANs.

Fig. 3.13 illustrates the results. We observe that in comparison to the ≈19kRps sustained by
Shinjuku at the target 50× slowdown, systems that cumulatively employ compiler-enforced
cooperation, JBSQ(2) scheduling and a work-conserving dispatcher sustain a throughput of
≈22.5 kRps, ≈32 kRps, and ≈35 kRps, respectively.

We now provide an intuitive argument for these improvements. First, the 3.5kRps improvement
due to cooperation can be seen as nearly eliminating the 20% cost of interrupt-based preemptions
(3.5 ≈ 0.2∗19). Second, JBSQ(2) eliminates ≈ 400ns of idle time per request; this time is used
to effectively double the number of GET requests processed which leads to an additional 9.5

kRps (0.5×19) in throughput. Finally, since the absolute load (in kRps) is ≈ 100× lower than the
maximum throughput the dispatcher can sustain (Fig. 3.10), the dispatcher spends most of its
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time idle, allowing it to also contribute to application throughput.

In a nutshell, the absolute service latencies and the large dispersion prevalent in this LevelDB
workload (which is very similar to key-value store workloads from prior work [66,134]) provides
the perfect setting for all of Concord’s mechanisms to shine.

target slowdown

Figure 3.13: Contribution of each Concord mechanism towards throughput improvement for the
LevelDB server in Fig. 3.11(b)

Scheduling quantum (µs)

O
ve

rh
ea

d 
(%

)

0

25

50

75

100

1 5 10 50 100

Shinjuku (IPIs + single queue) Co-op + single queue Concord (co-op + JBSQ)

Figure 3.14: Preemption overhead across scheduling quanta.

target slowdown

Figure 3.15: Application throughput for dedicated dispatcher vs. Concord dispatcher in a 4-core
configuration.
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Reduction in preemption overhead

Next, we demonstrate how Concord reduces the throughput overhead of preemptive scheduling,
and break down the contributing factors. To do so, we measure the time it takes to service
1M requests, each running for 500µs, while handling preemption notifications and yielding.
Since the preemption overhead (Eq. 3.3) includes both the cost of the preemption notification
(addressed by compiler-enforced cooperation) and the time spent waiting for the next request to
arrive (addressed by JBSQ(2) scheduling), we break down the contribution of each mechanism
by evaluating the overhead of systems that cumulatively use the above two mechanisms. We use
the state-of-the-art interrupt-based approach (Shinjuku) as a baseline and perform this experiment
for scheduling quanta ranging from 1-100µs.

Fig. 3.14 illustrates the results. We observe that Concord reduces the overhead of preemptive
scheduling by 4× in comparison to Shinjuku. In this setting (unlike Fig. 3.13), we observe that
compiler-enforced cooperation is the mechanism that contributes the most towards Concord’s
improvements. This is because unlike the workload in Fig. 3.13, every request must be preempted,
and so reductions in the cost of the preemption notification dominate.

Does the dispatcher do useful work?

Finally, we demonstrate the benefit of running application logic on the dispatcher thread in
resource-constrained environments (e.g., smaller VMs in the public cloud).

Fig. 3.15 illustrates our results. We ran the same LevelDB workload on 4 cores—1 dispatcher,
1 networker, two workers—to simulate smaller VMs in the public cloud. In such situations,
particularly with the low incoming load (in absolute kRps), the dispatcher is almost entirely idle.
Hence, running application logic on the dispatcher thread improves application throughput by
33%.

3.5.5 The Drawback of Approximate Scheduling

While approximating optimal scheduling enables Concord to sustain higher application through-
put for the same tail latency/slowdown SLO, it comes with the drawback of slightly increasing
tail latency (and hence slowdown) at lower loads.

Fig. 3.16 illustrates this increased slowdown for the workload used in Fig. 3.8 (Bimodal(50 :1,
50 : 100)); we observed similar results across all workloads. We observe that Concord increases
the 99.9th percentile slowdown by ≈3 in comparison to Shinjuku at lower loads. This increase
in tail slowdown occurs when the Concord dispatcher steals requests during occasional bursts
even at low loads. Since these requests cannot be migrated to worker cores once the dispatcher
has started processing them due to the different code instrumentation (§3.3.3), they run slower
than ones processed by worker cores, which leads to this additional slowdown. That said, we
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Figure 3.16: Zoomed-in version of Fig. 3.8(a) to show Concord’s increased slowdown at low
loads. We observed similar increases across all other workloads.

believe that this increase in slowdown is acceptable since it is much smaller than typical SLOs,
which are usually 10−50× the service time to account for queueing and network round trip times.
Users unwilling to tolerate even this slight increase in slowdown at low loads can disable the
Concord dispatcher’s work-stealing mechanism and retain the throughput benefits of Concord’s
compiler-enforced cooperation and JBSQ(2) scheduling.

3.5.6 Is Concord Future-Proof?

Finally, we evaluate whether Concord’s mechanisms will remain useful as datacenter server
hardware evolves and provides increasing support for microsecond-scale scheduling.

To do so, we compare the throughput overhead of Concord’s preemption mechanism (compiler-
enforced cooperation) with that of user-space IPIs (UIPIs), a feature recently introduced by Intel
on their new Sapphire Rapid servers. UIPIs reduce the overhead of traditional IPIs by allowing
application threads to directly send each other interrupts while bypassing the kernel [245]. We
set up our experiment just like the one in Fig. 3.5; we measure the time it takes to service 1M

requests, each running for 500µs and isolate the overhead of the preemption mechanism by
running the application with no-op preemption handlers. We use a 192-core Intel Xeon Platinum
8648 Sapphire Rapid server to compare the mechanisms.

Fig. 3.17 demonstrates the results. We observe that Concord’s compiler-enforced cooperation
outperforms even the most recent hardware support and imposes a throughput overhead that
is ≈ 2× lower. This is unsurprising, since no matter how fast interrupts get, they will always
be slower than Concord’s reads and writes to a shared cache line which will remain the fastest
way for two cores to communicate on shared memory hardware. Note, the absolute value of
Concord’s overhead is slightly higher on this machine as compared to the machines we used
in our evaluation and for Fig. 3.5. This is because of the large number of cores, which makes
cache coherence misses approximately 1.5× more expensive. That said, the relative overhead of
Concord with respect to UIPIs will remain the same even on Sapphire Rapid machines with fewer
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Figure 3.17: Comparing the overhead of Concord’s compiler-enforced cooperation to Intel’s new
user-space IPIs.

cores, since sending an interrupt also requires writing to memory-mapped registers and thus relies
on the same cache coherence mechanisms as Concord’s compiler-enforced cooperation.

3.5.7 Conclusions Drawn

Recall that the goal of this chapter was to build a microsecond-scale scheduler that preserves
the tail latency properties of the state of the art while improving application throughput and
eschewing reliance on custom hardware or application-level assumptions (§3.1).

Our evaluation of Concord demonstrates that it accomplishes this goal across a wide range of
service time distributions and for both synthetic microbenchmarks and real applications. While
Concord is particularly effective—18-83% higher throughput than the state of the art—for ser-
vice time distributions that benefit from preemptive scheduling (Figures 3.8, 3.9, 3.11, 3.12) it
continues to perform favorably even for service times that only require single queue schedul-
ing (Fig. 3.10). Finally, each of Concord’s mechanisms contributes to its overall throughput
improvements (Figures 3.13, 3.14) and will remain relevant even as datacenter servers provide
increasing hardware support for microsecond-scale scheduling (Fig. 3.17).

3.6 Discussion

Limitations

Concord has two main limitations:

First, it requires the application source code to be available and written in a compiled language
with an LLVM backend. We believe that access to source code should not be an issue for
developers deploying Concord on bare metal, or for tenants deploying their low-latency systems
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on VMs in the public cloud. That said, the current Concord prototype is ill-suited to being
a runtime provided by public cloud providers for their tenants since this would require that
all tenants share their code with the cloud provider. We plan to explore replacing Concord’s
source code instrumentation with approaches that directly instrument the binary to overcome this
limitation.

Second, the current Concord prototype is restricted to single-dispatcher systems. This will
not be a limitation for low CPU count, e.g. small VMs, but the single dispatcher can become
a bottleneck as the number of CPUs increases and the service time (as well as service time
variability) decreases. In such cases, replication, i.e. creating multiple single-dispatcher instances
that feed disjoint sets of cores, or trading off throughput for tail-latency, e.g. using batching, can
help improve scalability [134].

How Concord extends to work-stealing systems

Concord’s compiler-enforced cooperation and work conserving dispatcher can enable low-
overhead preemption even in systems that implement a single logical queue such as Shenango [185]
and Caladan [91]. This is because compiler-enforced cooperation only requires the dispatcher
to monitor the elapsed time and does not require it to maintain the single queue. Such a system
would also overcome the throughput bottleneck of a single dispatcher.

Incorporating the above mechanisms will require a dedicated hyperthread (referred to as the
“scheduler” henceforth) that only monitors whether a worker thread has been processing a request
for longer than the scheduling quantum. Some single-logical-queue systems (e.g., Caladan [91])
already have such a scheduler thread. When the quantum has elapsed, the scheduler writes to
the cache line, and the worker—instrumented to poll for it—stops processing the current request.
Since the dispatch of a request is not synchronous with when a worker begins processing it, the
worker must start the timer at the beginning of the quantum, but this is already the case with
Concord’s asynchronous dispatch for JBSQ (§3.3.2). Finally, the scheduler can steal requests
safely using rdtsc() instrumentation (§3.3.3) since it is likely to be idle for extended periods.

Broader use of compiler-enforced cooperation

We believe Concord’s compiler-enforced cooperation mechanism can be used as a replacement
for IPIs in many settings beyond scheduling. For instance, any periodic event, such as garbage
collection and timer management or Unix signals and global synchronization mechanisms, imple-
mented through membarrier() on Linux or FlushProcessWriteBuffers on Windows,
can eschew IPIs in favor of compiler-enforced preemption. Compiler-enforced preemption can
also be used in deployments where IPIs are not available or untrusted. This is the case for
confidential VMs [9, 119] in which the hypervisor is considered potentially malicious and can
inject virtual interrupts at any point in time.
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3.7 Related Work

Having already discussed the closest related work—Shinjuku, Persephone, Compiler Interrupts—
in detail, we do not do so again here.

Microsecond-scale schedulers deployed by major cloud providers (e.g., ghOSt from Google [114])
typically have lower raw performance than academic ones (e.g., ghOSt aims to be within 5%

of Shinjuku’s maximum sustainable throughput). However this is because they prioritize re-
quirements that academic schedulers (including Concord) do not; for instance, the ability to
simultaneously support multiple tenants with different scheduling policies and the ability to
provide fault isolation. In this work, we focused on extracting maximum raw performance from
a single application with Concord. We plan to pursue extending Concord to support the above
constraints as immediate future work.

The key ideas underlying Concord’s compiler-enforced cooperation, namely cooperative schedul-
ing and inter-core communication using dedicated cache lines, are well known. For instance,
cooperative scheduling and user-level threading go back to the seminal paper on Scheduler
Activations [11] and are widely used in different contexts such as language runtimes, e.g. gor-
outines [104], and modern thread library implementation for the datacenter, e.g. Arachne [196].
Similarly, using dedicated cache lines instead of interrupts or barriers to enable low-overhead
core-to-core communication is widely used for high-performance computing [7, 97]. That said,
the key difference between such prior work and Concord is that the former relies on the program-
mer to correctly insert both yield points and reads/writes to cache lines, while Concord does so
automatically using a compiler pass.

While programming language approaches have been used extensively in the context of memory
isolation [116, 186], splitting CPU time using such approaches is more challenging. Lilt [231]
introduces a new language to statically enforce timing policies and the Erlang scheduler [81]
depends on the underlying language virtual machine implementation to count the number of
executed instructions and preempt Erlang processes in a timely manner. Finally, Libringer [31]
introduces the abstraction of a preemptible function but depends on Unix signals to implement it,
thus incurring high overheads for µs-scale tasks.

3.8 Key Takeways

Designing and implementing Concord made us acutely aware of the two main challenges that
developers face in reasoning about the latency behavior of systems code: (1) The differing latency
behavior of different execution paths through the application logic (e.g., processing of different
request types) which necessitates preemptive scheduling, and (2) Micro-architectural (specifically
CPU cache) effects that lead to unexpected latency overheads and necessitate JBSQ(k) scheduling.

In Concord, we approached these challenges using the traditional systems approach: measure,
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analyze, optimize, and repeat. While this approach eventually enabled us to correctly add cache
line probes at all important points in the code to ensure preemption and realize that a significant
portion of the overhead of preemption came from cache coherence induced stalls, it was a
painstaking effort that will likely need to be repeated for a different system.

This experience motivated us to seek a more precise representation that enables developers to
reason precisely about both the latency and micro-architectural behavior of systems code. We
describe our proposed representation in the next chapter.
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4 Latency Interfaces as Simple, Exe-
cutable Programs

In this chapter, we present our proposal for latency interfaces as programs. We first describe the
design goals and target audience for latency interfaces (§4.1), then define (§4.2) and illustrate
(§4.3) our programmatic representation before explaining our design rationale (§4.4)

4.1 Design Goals and Target Audience

We envision latency interfaces providing succinct descriptions of a system’s externally visible
latency behavior, just like semantic interfaces (e.g., abstract classes, specifications, header files,
documentation) describe a program’s externally visible functionality [147].

We design latency interfaces for two categories of audience for any system. The developers
write the code for the system and are familiar with its low-level implementation details, but not
necessarily with all possible latency behaviors it can exhibit. The operators did not write the
code but instead seek to use/deploy/build on top of the system in their respective environments.
They are unfamiliar with and do not necessarily want to understand its low-level details. Further,
unlike the developers who care about the system’s latency in all settings, they care primarily
about its latency in their specific use-case/deployment. These categories can vary from system to
system—the developer of an application A might themselves be building upon a network stack B,
making them an operator for that stack.

Recall that to be useful to developers and operators, a latency interface must provide a balance
between two, typically conflicting properties: (1) Accuracy, i.e., the ability to summarize latency
completely (for every possible input and runtime environment) and precisely (with a small
error). (2) Readability, i.e., being smaller than the code and as abstract as possible—summarize
latency in terms of primitives appropriate for a semantic interface of the system, and reveal
implementation details only when necessary. Accuracy and readability are typically in conflict
because improving the accuracy of an interface typically involves adding more detail, which
makes it harder to read.

Summarizing latency in an accurate yet readable interface is more challenging than doing the
same for semantics because systems typically employ functional modularity but close to no
latency modularity, i.e., they expose a greater variety of latency behaviors than semantic ones.
For instance, a mov (%ebx),%eax instruction works the same way on all x86 machines no
matter what but when it comes to latency, the modularity is much weaker: the time to execute
mov (%ebx),%eax can vary by orders of magnitude depending on several factors such as the
micro-architectural specifics of the machine and other processes executing on the same machine.
As a result, a system’s latency can depend significantly on its deployment environment (e.g., the
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hardware it runs on). So the design of latency interfaces should make it easy to quantify the
impact of a particular environment on latency, enabling developers and operators to accurately
understand latency across different deployments.

4.2 Definition

The latency interface of a program P with procedures p1, p2, ... is a program LP = {p ′
1, p ′

2, ...}.
A procedure p ′

i ∈ LP takes the same inputs as the corresponding pi ∈ P and returns the latency
of executing pi . The latency can be reported in computation steps, in x86 instructions, in x86

memory operations, in cycles of a particular processor, etc. We call all these metrics for latency.

Every latency interface LP has a resolution r that represents the smallest difference in latency
that LP can specify: if P (pi (I )) is pi ’s latency given input I , then |p ′

i (I )−P (pi (I ))| < r, ∀pi , I .

A latency interface can be for the “general case” or specific to a deployment.

In a general-case latency interface, the procedures p ′
i return latency not as concrete numbers but

as a function of random variables that we call latency-critical variables (LCVs). LCVs capture
how the environment that pi is deployed in impacts its latency for processing the current input(s).
We define pi ’s deployment environment by the configuration parameters it reads at startup, a
representative workload, and the specific hardware it runs on. LCVs ensure that the interface can
describe pi ’s latency in full generality, i.e., for arbitrary deployment environments.

An LCV is not always an explicit variable in pi ’s implementation, rather it can be an implicit
“ghost” variable [87, 96]. For instance, for a pi that uses a hash map to implement a network
flow table, an LCV could be the “number of collisions” encountered while looking up the
input flow—this ghost variable allows latency to be expressed as a function of, among other
things, the number of collisions. While LCVs appear in the general-case latency interface as
uninterpreted functions, they are a deterministic function of pi ’s environment. So, given a specific
〈configuration, workload, hardware〉 tuple, one can correctly compute the corresponding LCV
distribution.

A deployment-specific latency interface is simpler than the general-case one and does not contain
LCVs. Instead, procedure p ′

i returns latency as a statistic (e.g., median, max, 99th percentile),
computed for a given joint probability distribution of the LCVs that describes P’s environment
for a particular deployment. Said differently, deployment-specific interfaces represent partial
evaluations of the general-case interface and are derived by instantiating the LCVs in the general-
case interface with deployment-specific distributions.
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4.3 Example

We now illustrate our programmatic latency interfaces using an example implementation of a
MAC learning bridge (shown in Fig. 4.1). Our example bridge uses a fast MAC table, imple-
mented in hardware, and a slow software-based table, based on a cuckoo hash table.

1 void bridge(pkt* p, time_t now) {
2 expire_stale_ports(now);
3 if (invalid_hdr(p)) {
4 DROP(p);
5 return;
6 }
7 /* Learning source MAC addr */
8 if(!slow_MACtable_get(p->src_mac, &p->port))
9 slow_MACtable_put(p->src_mac,&p->port);

10 else
11 slow_MACtable_update(p->src_mac, now);
12 /* Forwarding based on dest MAC addr */
13 if (fast_MACtable_get(p->dst_mac,&out_port))
14 FORWARD(p,out_port);
15 else if (slow_MACtable_get(p->dst_mac,&out_port))
16 FORWARD(p,out_port);
17 else
18 BROADCAST(p,p->port);
19 }

Figure 4.1: Example implementation of a MAC learning bridge

Table 4.1 shows the latency cost of this implementation’s procedures in terms of executed lines of
pseudocode (LOP), a latency metric we use for illustration only. Two have non-constant latency:
expiring learned ports is linear in the number of stale ports, and doing a put() in the cuckoo hash
table depends on the number of keys that must be evicted and whether rehashing is necessary.
For now, we assume these costs, we elaborate on how they are obtained in Chapter 5.

Operation Performance [LOP]
expire_stale_ports() 40+60× n_stale
invalid_hdr() 5
DROP 1
FORWARD 60
BROADCAST 200
fast_MACtable_get() 10
slow_MACtable_get() 50
slow_MACtable_update() 70
expire_stale_ports() 40 + 60 × n_stale

slow_MACtable_put() 110 + 80 × n_evicted

+ 120 × occ × rehashing

Table 4.1: General-case performance of procedures called by the code in Fig. 4.1.

Figures 4.2, 4.3 illustrate the general-case and deployment-specific latency interfaces, respectively
for this bridge implementation. Since the implementation exposes a single procedure, both
interfaces also have only a single procedure. Both interfaces have a resolution r = 50 LOP and so
they only distinguish between execution paths that can lead to latency variability > 50 LOP. For
example, they do not differentiate between successful lookups in the fast or slow MAC tables.
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The general-case interface (Fig. 4.2) describes latency as a function of 4 LCVs: number of
stale flows (n_stale), hash-table occupancy (occ), number of hash-table evictions triggered
by the current input (n_evictions), and whether rehashing is needed (rehashing=1 if yes, 0
otherwise). Since the latency metric LOP is independent of the underlying hardware, all 4 LCVs
are uniquely determined by the bridge’s implementation. If the bridge stored the MAC table
using a binary tree instead of a cuckoo hash table, the interface would describe latency using
different LCVs (e.g., tree_depth instead of rehashing).

1 def latency_bridge_gc(p,now):
2 # Metric: LOP, Resolution: 50
3 # NF state: slow_MACtable, fast_MACtable
4
5 if invalid_hdr(p):
6 return 46 + 60* n_stale
7 if fast_MACtable_get(p->dst_mac) or slow_MACtable_get(p->dst_mac):
8 return 280 + 60* n_stale + 80* n_evictions + (120* occ) * rehashing
9 else

10 return 445 + 60* n_stale + 80* n_evictions + (120* occ) * rehashing

Figure 4.2: General case latency interface for MAC learning bridge

The deployment-specific interface (Fig. 4.3) returns the median latency for a deployment where
the expected workload is such that 50% of input packets encounter no hash collisions and expire
≤ 1 stale ports. The interface produces concrete numbers corresponding to this deployment-
specific LCV distribution. Note, the deployment-specific interface does not restrict the inputs
(e.g., the types of packets), it only instantiates the LCVs.

This latency interface captures all the latency behaviors of the bridge that are externally visible at
resolution r =50. It is accurate, in that it correctly predicts latency (at the given resolution) for
every possible input. It is smaller and simpler than the implementation: each procedure considers
only three operations (invalid header check, fast table lookup, and slow table lookup), since these
are the only ones that affect latency at r =50. However, unlike the general-case interface, the
deployment-specific interface makes assumptions about the expected workload.

1 def latency_bridge_ds(p,now):
2 # Metric: LOP, Resolution: 50
3 # Statistic: 50th percentile
4 # NF state: slow_MACtable, fast_MACtable
5
6 if invalid_hdr(p):
7 return 106 #(46+60)
8 if fast_MACtable_get(p->dst_mac) or slow_MACtable_get(p->dst_mac):
9 return 340 #(280+60)

10 else
11 return 505 #(445+60)

Figure 4.3: Example deployment-specific latency interface for MAC learning bridge

4.4 Design rationale

Why represent the interface as a program that takes the same input(s)? We chose such
a representation for three reasons: (1) both developers and operators are intuitively familiar
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with code, allowing them to quickly eyeball such interfaces and gain visibility into the latency
behavior of the program in question without having to run it, (2) accepting the same input(s) allows
the interface to describe performance corresponding to each developer or operator’s expected
workload, something that upper/lower bounds or today’s SLOs cannot do, and (3) programs are
executable, and enable empirical reasoning about environmental factors that are known to be hard
to reason about analytically (e.g., the precise cycles per instruction (CPI) or effective last level
cache (LLC) miss latency incurred by the program on arbitrary hardware).

Resolution: Often, developers and operators do not care about certain latency differences,
either because they do not affect their latency targets, or because they are masked by the
environment. For example, developers building second-scale applications may not care about
µs-scale variability in the networking stack, while those building µs-scale ones typically do.

The latency resolution enables the developer/operator reading the interface to choose between
multiple levels of abstraction (trading off accuracy for improved readability) in a controlled man-
ner. A latency interface at a specified resolution only differentiates between input classes whose
latency differs by more than the resolution—implementation details that cause variability relevant
to the specific developer/operator are abstracted away. In our bridge example, a latency interface
with a resolution of 1 LOP must report the latency of each forwarding behavior separately; an
interface with resolution >= 45 LOP can abstract away the difference between a fast and slow
lookup, and an interface with resolution >= 115 LOP can abstract away the difference between a
successful and unsuccessful lookup.

We envision developers/operators picking their respective resolutions based on the latency
variability they are willing to tolerate in their deployment scenarios. In §5.2, we show how
our tool (LINX) goes a step further for those unsure of the “right” resolution, by identifying a
minimal set of resolution thresholds that yield all the possible different latency interfaces. This
is possible since the latency interface can only elide each implementation detail at a distinct
resolution threshold, which results in it not changing between two such thresholds. In our
bridge example, {1, 20, 45, 115, 210} is such a minimal set of resolution thresholds, i.e., other
resolutions don’t yield different interfaces (e.g., the interface at r = 50 is identical to that at
r = 46). By identifying these resolution thresholds, LINX enables developers and operators
to easily pick the resolution (and corresponding interface) that achieves the desired trade-off
between accuracy and simplicity.

General-case vs Deployment-specific interfaces: We chose to have separate general-case and
deployment-specific interfaces to provide a different balance between accuracy and simplicity for
operators and developers respectively.

General-case interfaces are meant for developers. Developers cannot always predict where/how
their code will be deployed, and are hence often interested in the latency of their system when
deployed in arbitrary environments. The general-case interface provides them with such a
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description by summarizing the impact of the environment on the system’s latency using LCVs.
While LCVs do reveal implementation details (e.g., n_evicted, rehashing reveal the use of
a cuckoo-hash table), these details are necessary to summarize latency for an arbitrary workload,
so they must be represented in the general-case interface.

We designed the deployment-specific interface for operators. Since operators are unfamiliar
with the system’s implementation and only care about the system’s latency behavior in their
particular deployment environment, the deployment-specific interface does away with the hard-
to-understand LCVs by instantiating them with a distribution specific to that deployment. This
enables the deployment-specific interface to summarize latency in an NF-generic way—any NF
would normally involve a header check and state lookups—and be understood by almost any
NF operator. Of course, it does reveal one important aspect of the implementation, namely the
distinct fast and slow tables. However, this aspect (which would have no place in a semantic
interface) is crucial to any bridge operator interested in latency.

That said, we do not envision the separation between the general-case and the deployment-
specific interfaces being set in stone—developers may refer to the deployment-specific interface
to understand latency in the face of specific workloads, while operators may refer to the general-
case interface to understand latency beyond their expected workload.

4.5 Putting It All Together

In summary, we propose that a latency interface be a program that takes in the same inputs
as the original program and returns its execution latency. We propose two kinds of latency
interfaces—general-case and deployment-specific—tailored to the needs of developers and
operators respectively. The general-case interface expresses latency as formulae with LCVs. This
allows it to be both precise and complete while being readable for a developer who understands
the program’s implementation details. The deployment-specific interface expresses latency as
concrete statistics tailored to a particular deployment environment. This allows it to be simple,
abstract, and precise while being complete for the deployment and operator in question. Both
interfaces come with a resolution that specifies the granularity at which the interface summarizes
latency. The resolution provides readers of the interface with explicit control over the trade-off
between readability and accuracy.
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tency Interfaces for Software Network
Functions

In this chapter, we concretize our proposal for latency interfaces in the context of software
network functions (NFs)—in-network packet processing applications such as load balancers,
firewalls and NATs— and present LINX (Latency INterface eXtractor)1, a technique and tool to
automatically extract latency interfaces from NF implementations. LINX takes as input NF code
written in C and outputs general-case latency interfaces in the form of small Python programs
that it can then specialize into deployment-specific interfaces for individual deployments.

The rest of this chapter is organized as follows: we first describe why we chose NFs as our
starting point for latency interfaces (§5.1) before providing an overview of LINX’s design (§5.2)
and describing how it extracts general-case (§5.4) and deployment-specific (§5.4) interfaces from
NF code, respectively. We then present our evaluation of LINX (§5.5), summarize related work
(§5.8), and conclude (§5.9).

5.1 Why Network Functions?

We chose Network Functions (NFs) as our starting point for latency interfaces for three reasons:

NFs are ubiquitously deployed

NFs are an integral part of today’s networks [19, 88, 145] and are used to implement a wide range
of functionality such as security (e.g., firewalls, intrusion detection systems), performance (e.g.,
caches, WAN optimizers) and support for new applications and protocols (e.g., TLS proxies).
Recent surveys of enterprise datacenters have shown that the number of NFs deployed in their
networks is approximately equal to the number of routers [205, 207].

Understanding NF latency is critical

While NFs were traditionally deployed using dedicated, specialized hardware (ASICs), this
changed in the early 2010s when major carriers began deploying NFs as software applications
running on general purpose hardware, an approach known as Network Functions Virtualization
(NFV) [172]. While NFV makes it easier and cheaper to deploy new NF functionality, it
introduces the challenge of unpredictable latency because processing packets on general-purpose
CPUs (as opposed to ASICs) can lead to significant latency variability [14, 68, 69, 156, 188, 194].
This latency variability directly impacts user-perceived latency since NFs are typically on the
critical path of serving user requests. For example, any packet that enters a cloud provider’s data
center traverses at least one load balancer and typically also a firewall. A recent survey [163]

1Pronounced “Lynx”
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Figure 5.1: Typical architecture of NF code. DS refers to data structures that the NF uses to store
mutable state.

of network operators found NF performance degradation due to unexpected workloads to be a
frequent pain point, and such performance bugs to be among the hardest to diagnose.

NFs are amenable to automated program analysis

While most NFs maintain mutable state and are thus not directly amenable to exhaustive, auto-
mated program analysis, recent work [251, 252] has shown that such analysis is feasible because
of how most (but not all) NF code is architected.

Fig. 5.1 illustrates the typical architecture of NF code. NF code typically consists of two distinct
parts: stateless packet processing logic and cleanly separated NF state stored in data structures
such as queues and hash tables. Many popular NF development frameworks (e.g., eBPF [246],
NetBricks [186], FastClick [20], Vigor [251]) enforce this clean separation of state and provide
a library of data structure implementations that all NFs written using the framework must use
to store state. For example, all NFs written using the increasingly popular eBPF framework are
architected as stateless modules that maintain state in cleanly-separated, kernel-maintained eBPF
maps [76] with the stateless code being the only distinguishing aspect across NFs.

Vigor [251] leverages the above architecture to formally verify semantic properties of NFs as
follows: First, the maintainers of the NF development framework manually verify each API
call provided by the library of data structures and produce a semantic contract with pre- and
post-conditions for each call. While this is a tedious task, it must only be performed once, with
the manual effort being amortized across all NFs written using the framework. Once this is
done, Vigor uses symbolic execution (SE) to automatically explore all execution paths through
the stateless NF code, with the lack of state ensuring that path explosion is avoided. Finally,
Vigor automatically combines the results of symbolic execution with the semantic contracts
of the API calls that the NF uses to generate a proof that the NF as a while satisfies the target
semantic properties. Note that Vigor’s semantic proofs are unrelated to latency interfaces and do
not provided any latency related information.
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In summary, we chose NFs as our starting point for latency interfaces because they are an example
of ubiquitously deployed systems code whose latency matters and are amenable to automated
analysis which is necessary for the automated extraction of latency interfaces.

5.2 LINX Overview

LINX is a program analysis tool which takes as input an NF implemented in C and automatically
extracts latency interfaces in the form of Python programs.

We designed LINX to meet two goals: (1) minimal developer effort: NF developers/operators
should not need to write test suites or proof lemmas, and (2) allow for proprietary NFs: NF
vendors typically provide operators with only binaries [166]; it’s ok for them to provide a latency
interface, but not source code.

Fig. 5.2 presents an overview of LINX. The NF developer gives the LINX back-end the NF
source, augmented with a few single-line annotations akin to instantiating a type in a higher-
level language. LINX combines this with a pre-analysis of the data structures used by the NF
and extracts the general-case interfaces for all meaningful resolution ranges. The NF operator
provides the LINX front-end with an NF binary and general case interface (provided by the NF
developer), along with a (set of) packet trace(s) that represent the expected workload in their
deployment. From these, LINX extracts the deployment-specific interfaces for all meaningful
resolution ranges. NF developers/operators can also query LINX with a specific resolution, to get
the interface at that resolution.

LINX currently supports three latency-related metrics: number of instructions, number of memory
operations, and number of CPU cycles. For each metric, LINX outputs one set of Python
programs; each set contains one Python program per relevant range of resolutions.

5.2.1 Limitations and Assumptions

LINX is designed for NFs written using popular development frameworks (e.g., eBPF [246],
NetBricks [186], FastClick [20], Vigor [251]) that enforce cleanly-separated state and provide a
common, pre-analyzed library of data structures that all NFs must use to store state. The LINX
back-end uses exhaustive symbolic execution (ESE) [140] to automatically analyze the NF code.
This requires that the NF logic (in addition to being stateless) be single-threaded, and all its loops
except the top-level event loop have statically computable bounds. Many (not all) data-plane
NFs meet these requirements. For instance, all NFs written using the eBPF [246] framework as
stateless, single-threaded modules that keep their state in cleanly separated, kernel-maintained
eBPF maps [76]. Counterexamples include TCP-terminating NFs and Intrusion Detection
Systems (IDSes); running LINX on such NFs causes symbolic execution to time out due to path
explosion stemming from symbolic pointers into the reconstructed TCP bytestream.
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Figure 5.2: Overview of LINX. GC and DS refer to general case and deployment-specific
respectively. ESE refers to Exhaustive Symbolic Execution.

LINX-extracted interfaces only summarize the processing latency for each packet and do not
reason about queuing latencies. Reasoning about these latencies would require LINX to reason
about multiple inputs together, and for this, we need to employ techniques more sophisticated
than ESE [251]. Reasoning only about processing latency allows LINX to avoid reasoning about
load-based variability since processing latency (unlike queueing latency) does not vary with load.

To capture how hardware affects latency with reasonable accuracy, LINX assumes that the NF
runs pinned to a core and does not significantly contend for hardware resources, e.g., due to smart
process isolation [44, 91, 156, 226]. We believe network operators keen on predictable latency are
likely to employ such techniques.

5.2.2 Running Example

Algorithm 1 shows pseudocode for a simplified longest prefix match (LPM) IPv4 router that
we use as a running example through the rest of the chapter. The router stores its state (the
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forwarding table) in a cleanly separated Patricia trie that exposes a single external method (line 8).
The router first classifies packets based on whether they are IPv4 or not (line 2). Invalid packets
are immediately dropped (line 6), thus incurring a constant performance cost. Valid packets lead
to a lookup in the LPM data structure (line 3), which has a more complex performance profile
(lines 10–17), with the number of loop iterations being data-dependent (see lines 12 and 15).

Algorithm 1: Simple LPM Router

1 function processPacket (packet pkt)
2 if pkt.etherType == IPv4 then
3 dst_port = lpmGet (pkt.ipv4.dst_addr)
4 FORWARD (pkt, dst_port)
5 else
6 DROP (pkt)
7 end

8 function lpmGet (bit ip[32])
9 node = lpmRoot

10 for i in 0..31 do
11 b = ip[i]
12 if exists node.children[b] then
13 node = node.children[b]
14 else
15 break
16 end
17 end
18 return node.port

5.3 Extracting General Case Latency Interfaces

We now describe how the LINX back-end extracts general-case interfaces from NF source code.
We first describe the manual pre-analysis whose results are reused across NFs, before describing
the four stages illustrated in Fig. 5.2.

5.3.1 Pre-Analysis of Data Structures

To extract latency interfaces for any NF development framework, LINX requires the library of
data structures provided by the framework to be manually pre-analyzed, with the analysis cost
being amortized across all NFs that use the library. We believe such manual effort is reasonable
because it is a rare effort (e.g., once per update to the data structure library) and it is done by
the maintainers of the data structure library instead of its users. To illustrate, there were 34 new
commits in Linux’s eBPF maps last year [75] while the Cilium project [50] alone—just one
among hundreds of projects that leverage eBPF maps—had an order of magnitude more commits
during that same period [49]. Naturally, in this work, we played the role of the maintainers
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1 def latency_interface_lpmGet(ip):
2 # Metric: Instruction count
3 # LCV: l: matched prefix length
4 return 4*l + 2

1 def latency_interface_lpmGet(ip):
2 # Metric: Memory Accesses
3 # LCV: l: matched prefix length
4 return l + 1

Figure 5.3: Latency interfaces extracted for the lpmGet method from Algorithm 1

Algorithm 2: lpmGet function model.

1 function lpmGet ( bit i p[32] );
2 return <new symbol>

ourselves.

This pre-analysis involves three manual tasks for each method exposed by the library: (1) identi-
fying the LCVs relevant to the method’s implementation, (2) identifying unique execution paths
through the method as a function of the LCVs, and (3) writing a simple symbolic model for the
method.

While identifying LCVs and identifying unique execution paths as a function of these LCVs might
seem daunting, we found it to be fairly simple in practice (taking ≤ 1 person-hour for someone
familiar with the data structure code.). Our experiences corroborate those of independent prior
work [107] which observed that most data structures require only a “few” LCVs, and identifying
them is “straightforward”. For instance, the lpmGet method in our running example only requires
a single LCV “l”, which denotes the matched prefix length; this LCV is sufficient because it
fully captures how anything other than the input packet (in particular, the configuration of the
LPM table) influences latency. Finally, LINX makes it easier to identify execution paths by
providing developers with the control-flow graph of the method and have them express the path
as a function of the basic blocks.

Given the above information, LINX extracts a simple latency interface for each method call in
terms of the number of instructions and memory accesses as a function of the LCVs. Fig. 5.3
illustrates these interfaces for the lpmGet method from our running example.

Finally, writing a symbolic model is straightforward, since the model only needs to be detailed
enough to differentiate between the execution paths identified above. For instance, our symbolic
models for the eBPF map API required only 200 LOC in C across all API calls. Algorithm 2
illustrates the model for our running example.

5.3.2 Exhaustive Symbolic Execution (ESE)

In this step, LINX analyzes the NF source code to extract for each execution path a formula
for the number of instructions and memory accesses executed along that path. This formula is
expressed in terms of the LCVs specific to the implementation of the NF and the data structures
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it uses. We refer to these LCVs as hardware-independent LCVs henceforth.

To achieve this, LINX generates a special build of the NF code where all calls to stateful
methods are replaced at link time with calls to corresponding symbolic models. For example,
in our LPM router, the call to lpmGet is replaced with a call to the symbolic model shown as
Algorithm 2. Next, LINX symbolically executes this special build exhaustively and obtains all
feasible execution paths through the stateless NF code. For our LPM router, this results in 2
paths, one for valid IPv4 packets and one for invalid packets. For each execution path, LINX also
obtains symbolic path constraints, which consist of two categories of constraints: (1) constraints
on NF inputs that cause it to go down the particular execution path and (2) constraints on the
abstract state of each data structure, before and after each call to a stateful method. The second
category of constraints tells LINX how stateless and stateful code interact along the execution
path.

Once it has obtained all feasible execution paths and their path constraints, LINX analyzes each
path: First, it passes the path’s constraints to a solver to obtain concrete inputs that exercise the
path; these inputs include a packet, as well as values for any symbols generated by the symbolic
models of the stateful methods. For our LPM router, one path will yield a concrete invalid IPv4
packet, while the other will yield a concrete valid IPv4 packet and a concrete port that would
result from the LPM lookup (e.g., port 0). Next, for each of these concrete inputs, LINX replays
the NF execution and obtains a unique trace of machine instructions.

Finally, LINX characterizes the latency of each feasible execution path by stepping through the
corresponding instruction trace: it traverses the trace, adding the number of instructions and
memory accesses, until it hits a call to a modeled method; when this occurs, it picks the right
branch of the method’s latency interface based on the constraints on the abstract state of the data
structure. While our simple lpmGet example has no branches, this is typically not the case for
more complex data structures and methods. For example, the latency interface of a flowtable get
method will have different formulae depending on whether the flow is present or absent in the
flow table. In such a scenario, LINX uses the path constraints to pick the right formula.

5.3.3 Hardware Model for NFs

This step characterizes the latency of each execution path of the NF in terms of hardware-
dependent metrics (CPU cycles), by introducing hardware-dependent LCVs; i.e., LCVs that
capture the interaction between NF and hardware.

LINX uses the notion of a CPI (Cycles Per Instruction) stack [82] to compute the number of CPU
cycles of an execution path. A CPI stack breaks down the average CPI for a program executing
on a given microprocessor into a base CPI plus various CPI components that reflect “lost” cycle
opportunities due to miss events such as branch mispredictions and cache/TLB misses. In general,
replicating a perfect CPI stack is infeasible—it is equivalent to analyzing each execution path to
the depth provided by a cycle-accurate simulator.
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We leverage NF-domain knowledge to eliminate CPI components and pick only the necessary set
of hardware-dependent LCVs. When an NF runs pinned to a core and with limited contention for
hardware resources, the dominant hardware factor that influences its latency is the last-level cache
(LLC) [68, 156, 226]. Hence, LINX introduces only two hardware-dependent LCVs—base_CPI

and LLC_miss_latency—and expresses a path’s CPU cycle count as instructions ·base_CPI +
LLC_misses ·LLC_miss_latency. Note, while LINX uses the same two LCVs for all NFs, the
values of these LCVs vary with each <NF, HW> pair (§5.4). To track possible LLC misses,
LINX leverages taint-analysis [204] to identify independent heap accesses specific to the current
input; it then branches on each such access, with one outcome being an LLC miss and the other
an LLC hit.

5.3.4 Python Translation

The previous steps specify an NF execution path as a set of symbolic constraints on the input
packet and symbols arising from calls to data structures; this step translates these constraints
into human-readable Python code and outputs a general case latency interface of the NF with a
resolution of 1.

LINX translates symbolic constraints on the input packet using knowledge of the header format
of the popular networking protocols (e.g., IPv4, TCP, QUIC). For instance, the constraint
pkt[23 : 24] == 6 on a non-tunneled IPv4 packet is translated to pkt.isTCP since the packet’s
24th byte specifies the transport protocol, and value 6 corresponds to TCP.

LINX translates symbols arising from calls to data structures using call context and developer-
provided annotations (one annotation per instantiated data structure). Fig. 5.4 illustrates such a
translation: Line 2 shows a developer’s annotation for a data structure of type map: it indicates
that this NF uses this map as a "macTable", which maps "ethaddr" keys to "port" values;
these are human-friendly terms chosen by the developer to help the generation of simple latency
interfaces. Line 5 shows a constraint derived from the NF code that concerns this map. Line
7 shows how LINX rewrites this constraint because it knows that this is a call to bpf_map_-

lookup_elem() with an argument corresponding to bytes 7−11 of the input packet. Line 9
shows how LINX further rewrites the constraint because the developer’s annotation enables LINX
to identify the given bytes as the input packet’s source MAC address.

The annotation on Line 2 is the only annotation that the NF developer needs to provide. We
believe such one-line annotations are reasonable since they are similar to instantiating a type in a
higher-level language.

5.3.5 Resolution-Based Merging

While the interface is now an understandable Python program its cyclomatic complexity is still
equal to that of the NF’s implementation. This step uses the notion of resolution to simplify the la-

70



5.4 Extracting Deployment-Specific Latency Interfaces

1 # Developer annotation:
2 DS_INIT(&map,"macTable","ethaddr", struct eth_addr,"port", int);
3
4 # Starting condition derived from implem:
5 if bpf_map.unnamed_symbol
6 # Transform based on called library function
7 if bpf_map.contains(pkt[7:12])
8 # Transform based on developer annotation
9 if macTable.contains(pkt.src_mac)

Figure 5.4: Example of LINX’s constraint rewriting.

tency interface as follows: First, it calculates the maximum latency impact of each constraint, i.e.,
the maximum latency difference between two execution paths that only differ w.r.t this constraint.
The set of distinct “maximum latency impacts” forms the minimal set of resolution thresholds
that yield latency interfaces with different complexity. Then, it eliminates all constraints with an
impact smaller than the target resolution.

5.4 Extracting Deployment-Specific Latency Interfaces

To extract a deployment-specific interface, the LINX front-end takes as input the NF binary
and its general case interface2, provided by the NF developer/vendor; along with a (set of)
deployment-specific packet trace(s), provided by the NF operator. It then runs the NF binary
using the packet trace(s) as input, infers the deployment’s LCV distributions, and instantiates
the deployment-specific interface. Running the NF allows LINX to extract accurate deployment-
specific interfaces since it can precisely measure the impact of the NF’s environment on latency
as opposed to modeling it.

LINX infers three LCV distributions per NF, deployment:

Hardware-independent LCVs: For each packet in the provided trace(s) LINX computes the
values of each hardware-independent LCV. It then computes a joint probability distribution of
these LCVs, since they tend to be highly correlated. While this is not necessary for our LPM
router which only has one LCV, it is needed for complex NFs, such as the bridge in Fig. 4.1 since
its LCVs are highly correlated. (e.g., n_stale and n_evictions are both functions of occ).

Base CPI: LINX measures the base CPI using hardware performance counters [223] available on
all major processors today. Since the packet trace(s) may not exercise all execution paths, LINX
assumes the same base-CPI distribution across all paths, and it provides warnings if it detects
significant differences (e.g, some paths use expensive x86 instructions, like integer divide, while
others don’t). We think this is a reasonable assumption because the base CPI is only a function of
the instruction mix (it does not include any miss events). In §5.5.2, we experimentally validate
this.

2The operator cannot be certain that this general case interface is accurate for the production binary, but we
do not see this as a barrier to adoption: operators routinely deploy NF binaries while relying only on non-attested
configuration interfaces and vendor manuals [166].

71



Chapter 5. LINX: Automatically Extracting Latency Interfaces for Software Network
Functions

LLC miss latency: Measuring the distribution of LLC miss latency ideally requires sophisticated
NF-specific testing [188], to account for the NF’s particular instruction- and memory-level
parallelism. LINX avoids this because it targets NFs that keep all their state in a relatively small
set of pre-analyzed data structures. For each data structure, we craft a microbenchmark that
triggers LLC misses.3 LINX estimates the LLC-miss-latency distribution of each data-structure
call in a given deployment, by running the corresponding microbenchmark on the deployment’s
hardware. In §5.5.2, we experimentally show that our approximation performs well in practice
(avg. error of < 10%). Note, our approximation concerns the latency introduced by LLC misses,
not the number of LLC misses—the LINX back-end tracks LLC misses per path using taint
analysis (§5.3.3).

Finally, LINX instantiates each formula in the general case interface with these inferred distri-
butions to compute the requested latency statistic (e.g., 50th percentile in Fig. 4.3). We show
further examples of deployment-specific interfaces and their distributions in §5.5.

5.5 Evaluation

In this section, we address two main questions: (1) does LINX extract good latency interfaces,
and (2) can latency interfaces make NF developers and NF operators more productive? To
answer the former, we quantitatively evaluate the complexity of LINX-extracted interfaces, their
accuracy, and the time it takes to obtain them (§5.5.1, §5.5.2, and §5.5.3, respectively). To answer
the latter question, we show how developers can use LINX-extracted interfaces to catch latency
regressions and fix latency bugs (§5.5.4). We then show how operators can use interfaces to pick
the NF variant best suited for their target hardware and to perform root-cause diagnosis of latency
anomalies (§5.5.5).

We evaluate LINX on 12 dataplane NFs that cover a wide variety of functionality and network pro-
tocols (Table 5.1). These include the Katran load balancer used in production at Facebook [208],
the Natasha NAT used in production at Scaleway [169], the XDP packet filter from the Cilium
project [50] and an implementation of Google’s Maglev load balancing algorithm [79]. The
NFs were written using DPDK [70] and eBPF XDP [246], arguably the two most popular frame-
works today for building high-performance software NFs. VigNAT, Policer, Router and Bridge
come from the Vigor project [251], the CRAB load balancer from [141], and the hXDP firewall
from [32]. The Vigor and eBPF NFs are written in the commonly used stateless/stateful split
model, which makes them amenable to exhaustive symbolic execution. We modified Natasha and
DPDK NAT to also have such a clean split; this took ∼3 person-days per NF.

The latency metrics we use for DPDK-based NFs are x86 instruction count, x86 memory access
count, and x86 CPU cycles (thus wall-clock time). Note, LINX is not specific to x86 and can just
as easily predict the corresponding metrics for another ISA (e.g., ARM) if the LINX front-end is
given the corresponding binary. For eBPF NFs, we only analyze the NF itself, and not the eBPF

3The maintainer of the library must do this once per data structure, like the pre-analysis.
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Framework NF Functionality

eBPF
XDP

Katran LB
Per-flow state, per-VIP state, consistent
hashing, IPv6, ICMP, QUIC, tunneling

Cilium filter Longest prefix matching, IPV6
CRAB LB Read-only state

hXDP firewall Per-flow state

DPDK

Natasha NAT
Per-flow state, handles fragmentation,
UDPLite, ICMP, ARP

Maglev LB Per-flow state, consistent hashing
VigNAT Per-flow state, header rewriting
Bridge Packet duplication
Router Longest prefix matching
Policer Per-flow state, fine-grained timing

DPDK NAT Per-flow state, header rewriting, cksum offload
DPDK firewall Per-flow state

Table 5.1: Network functions used to evaluate LINX.

maps that are part of Linux, so we only report hardware-independent metrics.

Our testbed consists of two directly connected servers: a device under test (DUT) and a traffic
generator and sink (TG). The servers are identical, with an Intel Xeon E5-2667 v2 processor @
3.30 GHz, 32 GB of DRAM, and Intel 82599ES 10-Gbps NICs. The DUT runs one of the NFs
and measures the latency, while the TG uses MoonGen [80] to generate traffic.

5.5.1 Are LINX-Extracted Interfaces Easy to Read?

To evaluate the readability of the latency interfaces, we (1) measure their complexity in terms
of both lines of code (LOC) and cyclomatic complexity (CC) [233], and (2) evaluate whether
the primitives exposed by the latency interfaces are those that NF developers and operators are
familiar with.

Table 5.2 illustrates the complexity of the LINX-extracted interfaces measured as a fraction of
LOC and CC of the implementation. We see that the extracted interfaces have 26−210× fewer
LOC than the corresponding implementations and are 3−124× less cyclomatically complex,
ignoring CRAB, which is already simple to start with. The more complex an NF, the higher this
reduction in complexity, which argues for the real-world utility of latency interfaces.

Fig. 5.5 illustrates the impact of varying resolution on the complexity of Katran’s latency interface.
At the finest granularity, Katran’s instruction-count interface is fairly complex (LOC=9675,
CC=3226 independent paths) and contains more LOC than the implementation since LINX’s
Python translator explicitly lists each program path individually. At the other end of the spectrum,
since no two packets in Katran can incur an instruction count that differs by more than 854
instructions (number determined by LINX and verified by us), for resolutions above 854 the
interface becomes a simple upper bound. In between these two extremes, we see how low-level
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NF Implementation HW-independent
interface

HW dependent
interface

LOC CC LOC CC LOC CC
Natasha 2932 192 1.8% 8.9% 2.8% 15.1%
Maglev 3168 29 0.9% 37.9% 1.6% 65.5%
VigNAT 2770 22 0.7% 36.3% 0.9% 52%
Bridge 2837 219 0.5% 2.7% 2.1% 10.5%
Router 1260 17 0.4% 17.6% 1.0% 29.4%
Policer 2466 16 0.4% 31.2% 0.6% 37.5%
DPDK FW 2508 21 0.8% 38% 1.0% 45%
DPDK NAT 1780 35 0.6% 27% 0.9% 39%
Katran 2661 3226 2.8% 0.8% - -
Cilium filter 784 42 3.2% 14.3% - -
CRAB 437 4 2.0% 100% - -
hXDP FW 312 33 3.8% 15.1% - -

Table 5.2: Complexity of extracted interfaces vs NF implementation. “(x%)” means “x% of
implementation”. For each NF, the complexity is calculated for an interface with resolution equal
to 10% of the maximum latency variability the NF can exhibit.

details get abstracted away—for instance, at resolution=50 instructions, we see a 125× drop in
complexity (LOC=75, CC=26).

50

2.82%

0.81%

Figure 5.5: Impact of varying resolution on the size (LOC) and complexity (CC) of Katran’s
latency interface. Both axes are in log scale.

We conclude that LINX-extracted latency interfaces are significantly simpler than the NF imple-
mentations. The notion of resolution succeeds in abstracting a latency interface, giving the reader
a knob with which to control the amount of detail contained in the interface.
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1 def latency_vignat_gc(pkt):
2 # Metric: x86 instructions
3 # Resolution: 10
4 # NF state:
5 # flowtable
6 # LCVs:
7 # e - expired flows
8 # t - bucket_traversals
9 # c - hash_collisions

10
11 x = 19*e*t + 40*e*c + 227*e + 123
12
13 if not (pkt.is_IP) or not(pkt.is_TCP or pkt.is_UDP):
14 return x + 7
15 else:
16 if pkt.port != internal_network_port:
17 if flowtable.contains(pkt.flow):
18 return x + 289
19 else:
20 return x + 68
21 else:
22 if flowtable.contains(pkt.flow):
23 return x + 18*t + 30*c + 395
24 else:
25 return x + 31*t + 30*c + 547

Figure 5.6: Extracted general case interface for VigNAT.

We now evaluate how familiar the interface looks to a human reader. We show an example
of the general case interface for VigNAT in Fig. 5.6, restricted to TCP/UDP packets for space
considerations. The interface is a succinct, self-descriptive Python program. The conditions in
if statements are expressed in terms of fields in the input packet header (e.g., pkt.port) or
semantic operations on data structures (e.g., nat_flowtable.contains), which are primitives
we expect both developers and operators to understand. Being a stateful NF, VigNAT’s latency is
influenced by NF state, and the interface reflects this via LCVs, documented in the header.

Finally, we illustrate the impact of deployment-specific instantiation of interfaces on their read-
ability. Fig. 5.7 shows the interfaces for VigNAT’s 50th and 95th percentile latencies and the
distribution underlying them, for a particular <workload, HW> pair. The deployment-specific
instantiation turns each formula (expressed in terms of LCVs in the general case interface) into
concrete values specific to the environment and workload, thus tailoring the interface to an
operator’s needs. The latency CDF also enables interested operators to understand how VigNAT’s
percentile latency varies.

5.5.2 Do LINX-Extracted Interfaces Predict Latency Accurately?

We now evaluate the prediction error of LINX-extracted interfaces, i.e., the difference between
the latency predicted by the interfaces and the measured latency.

To do so, we use LINX to extract interfaces for all 8 DPDK NFs4 for two hardware-independent
metrics (x86 instructions and memops) and one hardware-dependent one (x86 cycles). For
each NF, we instantiate two deployment-specific interfaces corresponding to two very different

4LINX does not support HW-dependent metrics for eBPF NFs
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1 def latency_vignat_ds(pkt):
2 # Metric: CPU cycles
3 # Resolution: 200
4 # Statistic: 50th percentile
5 # NF state:
6 # flowtable
7

8 if flowtable.contains(pkt.flow):
9 return 301

10 else:
11 if pkt.port !=

internal_network_port:
12 return 92
13 else:
14 return 558

1 def latency_vignat_ds(pkt):
2 # Metric: CPU cycles
3 # Resolution: 200
4 # Statistic: 95th percentile
5 # NF state:
6 # flowtable
7

8 if flowtable.contains(pkt.flow):
9 return 395

10 else:
11 if pkt.port !=

internal_network_port:
12 return 97
13 else:
14 return 1037
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Figure 5.7: Deployment-specific interfaces for VigNAT (50th and 95th percentile) and the latency
CDF (resolution=200 cycles)

deployments—typical traffic representative of university networks [25] and adversarial traffic that
seeks denial-of-service [188]. The above deployments represent opposite ends of the spectrum
for absolute NF latencies [188]— e.g., adversarial traffic incurs 2.1× greater latency than typical
traffic in VigNAT. To instantiate each deployment-specific interface, we use PCAP traces of
100M packets each. These traces are similar to what an operator could obtain with tcpdump on
their domain gateway and are not specific to any particular NF implementation.

For ground-truth measurements, we manually generate synthetic packet traces for each <NF,
deployment> pair akin to Scaleway’s NAT test suite [168]. We play back these traces against the
NF and measure the latency of each packet (the ground truth). Note, the synthetic traces are only
used to measure the ground truth and not for predicting latency, thus avoiding any overfitting.

As a baseline for CPU cycles, we replace LINX’s empirically derived hardware model with a
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state-of-the-art Worst Case Execution Time (WCET) model [124]. For compute instructions, the
model conservatively assumes the worst case latency cost of each instruction as reported in the
Intel manual [120] due to the proprietary nature of out-of-order (OOO) instruction scheduling
within the processor. For memory instructions, thw WCET model conservatively assumes that
every memory access is serviced from main memory unless it can definitively prove otherwise,
based on previous memory accesses. Being a conservative model, it does not take into account
memory-level parallelism (MLP), or pre-fetching.

We present the prediction error for the 50th percentile, 90th percentile and 99th percentile latencies
(which is the point at which LINX’s limitations become evident). We compute all prediction
errors by subtracting the relevant statistic of the measured latency distribution from that of the
predicted latency distribution. The results reported are at resolution 1, where LINX does the
worst.

Table 5.3 reports the results for the two hardware-independent metrics—instruction count and
number of memory accesses. We find that, even in the worst case for LINX (i.e., finest resolution),
it can accurately predict these metrics (≤4% error) irrespective of the percentile. The small
prediction error arises due to small differences between the analyzed code (linked against models)
and the production build (linked against real data structure implementations). This error vanishes
at any reasonable resolution and LINX becomes 100% accurate.

Percentile
Instruction count Memory Accesses

Typical traffic Adversarial traffic Typical traffic Adversarial traffic

50th 1.5% (1.8%) 1.2% (1.7%) 1.6% (4%) 1.5% (3.7%)
90th 0.9% (1.4%) 0.9% (1.2%) 1.2% (3.6%) 1.2% (3.1%)
99th 0.9% (1.3%) 0.8% (1.2%) 1.1% (3.5%) 1.2% (2.9%)

Table 5.3: LINX’s average (maximum) prediction error for hardware-independent metrics for
typical (Typ) and adversarial (Adv) traffic.

Table 5.4 reports the results for CPU cycles, in comparison to the WCET-based model. At the
50th and 90th percentile, LINX has a prediction error that is larger than the error for the hardware-
independent metrics (≤26%). This increased error is due to the overhead of the instrumentation
used to measure the CPI and LLC miss latencies. Nevertheless, LINX’s accuracy is an order of
magnitude better than WCET’s since LINX reasons about hardware latency as a distribution,
while WCET only models the worst case.

LINX cannot accurately predict the latency at the very end of the tail (nor can WCET). LINX’s
predictions have an error of ≤61% (average 22%), while WCET’s predictions have an error of
≤45% (average 14%).

It is interesting to note that LINX underestimates the 99th percentile latency while WCET
overestimates it; this contrasting behavior is due to the different hardware models underlying
the two tools. LINX underestimates the 99th percentile latency since its simple hardware model
(instructions * CPI + LLC_misses * miss_latency) is invalid at this percentile where other
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hardware aspects also impact latency significantly. WCET, on the other hand, overestimates the
99th percentile latency since its hardware model is designed to estimate the absolute worst-case
latency. However, LINX’s simple hardware model enables it to accurately predict latency at all
percentiles except the tail, a task that the WCET model is incapable of.

Percentile Tool Typical traffic Adversarial traffic

50th LINX 11% (26%) 9% (24%)
WCET 164% (308%) 103% (186%)

90th LINX 10% (22%) 7% (19%)
WCET 122% (234%) 94% (153%)

99th LINX -19% (-54%) -22% (-61%)
WCET 14% (45%) 12% (39%)

Table 5.4: LINX’s average (maximum) prediction error for CPU typical in comparison to a
WCET-based model for typical (Typ) and adversarial (Adv) traffic.

5.5.3 How Long Does LINX Take to Extract Latency Interfaces?

Table 5.5 shows the time it takes LINX to extract the general case interfaces for all the NFs in
this evaluation. We believe that these numbers make it feasible to incorporate latency interfaces
extraction part of the regular NF development cycle, e.g., as part of continuous integration.

NF Time (mins)
Natasha 15
Maglev 5
VigNAT 4
Bridge 17
Router 0.73
Policer 3
DPDK FW 4
DPDK NAT 6
Katran 32
Cilium filter 0.43
CRAB 0.15
hXDP FW 0.23

Table 5.5: Time taken by LINX to extract the general case interfaces.

The time required to obtain the deployment-specific interface is largely a function of the time
required to run the provided workload. In our experiments, we ran PCAP files with 100M packets,
and it took LINX <= 5 mins to generate the deployment-specific interface for a given <workload,
HW> pair from the general-purpose interface, regardless of NF.

Our evaluation thus far supports the belief that LINX is practical: the complexity of extracted
interfaces is significantly lower than the NF implementation, their accuracy is high, and the time
to extract is reasonable.
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5.5.4 Are Interfaces Useful to NF Developers?

In this section, we present two workflows that NF developers can use to understand and debug
the latency behavior of their code, respectively.

Flagging latency regressions

Programmers often introduce involuntary latency regressions. Using test suites to catch such
regressions is not easy, because they require environment setup, are fragile, and take long to run.
We show here how a developer or a tool can instead compare the latency interface before and
after a commit to identify latency regressions more quickly, conveniently, and precisely than with
a latency test suite.

We wrote a script that retrieves each Katran commit and uses LINX to extract the corresponding
instruction-count interface, at resolution=1. For each pair of commits a and b, there is a
corresponding pair of interfaces Sa and Sb . The script finds the maximum latency (in terms of
LLVM instruction count) predicted by each of the two interfaces and compares the two. We
report LLVM (not eBPF bytecode) instructions since LINX builds on KLEE which interprets
LLVM IR. Reporting eBPF instructions would require us to build on a tool that interprets eBPF
bytecode (e.g., Serval [170])—this is an engineering task we leave to future work. We run LINX
on all commits to the eBPF portion of Katran’s code.

Table 5.6 shows the commits where a latency regression occurs. Over the past three years, the
maximum latency for new flows regressed by 14.6%.

Commit ID Latency before
[LLVM instrns]

Latency after
[LLVM instrns]

Latency
regression [%]

Orig commit - 1771 -
873d0501695c 1765 1896 7.42%
39e58b530a8a 1896 1914 0.95%
458aa0907b68 1914 1933 0.99%
15f81d0e7ec6 1930 1946 0.83%
74c3338c2f7e 1952 1983 1.59%
d0790d3a3823 1983 2030 2.37%
All commits 1771 2030 14.62%

Table 5.6: Latency regressions in Katran (handling new flows).

We imagine using this workflow as part of continuous integration (CI) to automatically identify
unintended latency regressions. The CI system can present to the developer a before-and-after
comparison of latency that directly highlights for which classes of inputs the regression occurs
and what the magnitude of the regression is. Compared to performance tests, this workflow
consumes less developer time and fewer resources and offers better completeness.
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Fixing performance bugs

By helping developers understand the code’s latency more quickly and deeply, interfaces can
help fix performance bugs. We illustrate this with two examples of performance bugs in the map
used by Vigor NFs [151].

The top of Fig. 5.8 shows a snippet of the latency interface of the contains operation in libVig’s
map.

1 if map.contains(key): # --- BEFORE ---
2 if not(cached(key)):
3 # Warning: 2*t integer divides
4 return (4*t)*miss_latency + (21*t+27)*CPI
5 ....

1 if map.contains(key): # --- AFTER ---
2 if not(cached(key)):
3 return (1*t)*miss_latency + (18*t+27)*CPI
4 ....

Figure 5.8: Interface for map_contains() before and after the bug fix. t is the LCV for
traversals in the hash ring.

The first red flag is the warning issued by LINX itself, based on tracking of expensive x86
instructions that adversely impact CPI. Looking for integer divides in the map code, we found
that, on each traversal, it uses two costly modulo operations. To fix the issue, we replaced them
with one bitwise and.

The second red flag is that each traversal requires 4 independent heap accesses (4*t). It turns
out that key metadata is being stored in four distinct arrays of int elements. Our fix was to
encapsulate key’s metadata in a single struct and use a single array with elements of this
struct type. The rest remained unchanged.

Table 5.7 shows the impact of our fixes, based on Vigor’s benchmarks: the two fixes, together,
improve NF latency by 22% on average, and throughput by 19%.

NF
Throughput [Mpps] Latency [ns]
Orig Fix 1 Fix 2 Change Orig Fix 1 Fix 2 Change

VigNAT 3.88 4.36 4.68 20.62% 317 276 236 25.55%
Bridge 3.05 3.59 3.62 18.69% 410 332 323 21.22%
Maglev 2.58 2.86 3.04 17.83% 482 423 391 18.88%

Table 5.7: Throughput and latency of three NFs using map, shown before/after each performance
bug fix.

This example shows how latency interfaces can not only flag possible performance issues but
also guide the developer in where to look to improve performance.
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5.5.5 Are Latency Interfaces Useful to NF Operators?

Operators typically care about how an NF performs in their specific deployment, not in general
for everyone’s deployment. We show how operators can use latency interfaces to pick the NF
variant best suited to their hardware and to do a root-cause diagnosis of deployment-specific
performance anomalies.

Which NF variant for my NIC?

Modern NICs provide the ability to offload specific tasks (like checksums and encryption) to
specialized hardware. It is therefore useful to know which variant of an NF takes max advantage
of the offloads available on a NIC.

Fig. 5.9 shows the interfaces for two variants of a NAT, and the interaction with checksum offload
on Mellanox ConnectX-4 [162] and Intel ixgbe [122] NICs. The formally verified VigNAT does
not do any offloading, whereas DPDK NAT does. The strings in the if conditions on lines 3 and
6 are identical to the one used by the NIC driver to identify itself [71]. The interface also shows
the difference in latency: ixgbe requires the software to compute a pseudo-header checksum,
whereas ConnectX-4 allows full offload, so it has lower latency.

1 # Snippet from VigNAT interface
2 if flowtable.contains(pkt.flow):
3 return 18*t + 30*c + 518 # No offload
4 else:
5 ....
1 # Snippet from DPDK NAT interface
2 if flowtable.contains(pkt.flow):
3 if(NIC_family == "net_mlx5"):
4 return 18*t + 30*c + 265 + cksum_offload()
5 else:
6 if(NIC_family == "net_ixgbe"):
7 return 18*t + 30*c + 478 + cksum_offload()
8 else:
9 return 18*t + 30*c + 564

10 else:
11 ....

Figure 5.9: Interfaces for VigNAT (top) and DPDK NAT (bottom): VigNAT does checksums in
software, while DPDK NAT offloads checksums to the NIC as much as possible.

Based on this latency interface, an operator can make an informed deployment decision: if using
ixgbe NICs, choosing the verified VigNAT makes sense; else, it’s a trade-off to make carefully.
The example also illustrates the benefit of performance abstraction in interfaces: even if an
operator has access to NF source code, reading an interface that is orders of magnitude simpler
helps answer questions more quickly.

Why do I get bad performance?

NFs running in production can face workloads that trigger surprising performance degradation.
To address such anomalies, operators must first diagnose the root cause, and this often takes a lot
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of work.

LINX helps the search for a root cause by providing a list of possible explanations for the
observed performance, ranked by likelihood. Given a problematic workload and an NF (or its
general case interface), LINX instantiates the LCVs in a deployment-specific manner and then
measures the distributions for each LCV and the NF latency. It then ranks the LCVs based on
the correlation between the latency distribution and that of the LCV (using least-square fit linear
regression).

To illustrate this workflow, we refer to three performance bugs that span both hardware and
software root causes, shown in Table 5.8. The first bug occurs due to the uniform random
workload causing hash collisions in a widely used hash function [128] used by Bridge; typical
workloads with Zipfian distributions do not suffer from hash collisions. The second bug is
caused by VigNAT’s batches expiry of flows, which results in a latency spike that only becomes
evident for traffic with high churn. The third bug occurs when the active flowtable in Maglev
overflows the last-level cache of the server; this makes the latency spike highly dependent on
LLC configuration.

Bug Root cause Identified as
most-likely cause?

Spike in median latency of Bridge
hash-collisions Yes

for uniform random workload
Spike in tail latency of VigNAT expired-flows

Yes
due to high churn (batched)

Spike in median latency of Maglev active-flowtable-
Yes

on a particular x86 server size

Table 5.8: Performance bugs used for root-cause diagnosis.

For each bug, we generated a workload that triggers it and provided the PCAP file to LINX,
along with the general case interface of the corresponding NF. For each bug, LINX correctly
reported the culprit LCV as the most likely root cause. Of course, LINX can only track bugs that
arise from LCVs it accounts for. It would be unable, for instance, to identify the root cause for a
latency spike due to LLC evictions caused by a noisy neighboring process, since LINX does not
account for contention.

This example illustrates how LINX can help focus the operators’ attention on likely explanations
for the performance they observe, thereby reducing the amount of work needed to find the root
cause.

In conclusion, our evaluation shows that LINX is practical: the complexity of extracted interfaces
is significantly lower than the NF implementation, their accuracy is high, and the time taken
to extract them is reasonable. Further, NF developers and operators can use these interfaces to
identify performance regressions, diagnose and fix performance bugs, and pick the NFs that are
best suited to their hardware.
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5.6 Does LINX Generalize Beyond NFs?

In this section, we explore how LINX can generalize in two directions: (1) programs other than
NFs, that are nevertheless still amenable to ESE; and (2) NFs that are not amenable to ESE.
Overall, we find that the design of LINX—split into a modular back-end and front-end that
produce general case and deployment-specific interfaces, respectively—enables generalization
by adapting just the necessary modules in the LINX pipeline.

Beyond NFs:We have successfully applied LINX to the OpenSSL library, to uncover digital
side-channels, and to eBPF extensions for user-space file systems.

Extracting interfaces for finding digital side-channels required modifying only LINX’s hardware
model (i.e., step 1 in the back-end). Implementing a new model focused on sources of constant-
time violations (using the exhaustive list in [8]) took us 2 person months. We ran LINX on 12
cryptographic primitives from OpenSSL 3.0 [181] and found a constant-time violation in the AES
cipher unpadding function. This violation was acknowledged by the OpenSSL maintainers [183].
We have submitted a pull request [184] that has undergone multiple rounds of review and is in
the final stages of getting merged.

Our experience with OpenSSL reinforced our belief (from §5.5.4) that a tool that automatically
extracts latency interfaces would be of great use to developers. For example, we learned that
the violation we uncovered had been latent since OpenSSL 1.1.1 because the developer “just
reused the code” and had somehow been missed despite the extremely thorough code reviews
that OpenSSL goes through. If latency interfaces of the OpenSSL code were extracted regularly,
e.g., as part of continuous integration, it is unlikely that this violation would have persisted for
this long.

Extracting interfaces for eBPF file system extensions was more straightforward since the code
is similar to that of eBPF NFs. Here, we only had to add translation rules (step 2 in the LINX
back-end) corresponding to the supported system calls. This took 4 person-days, after which
LINX was able to automatically extract interfaces for the extFUSE extensions [27].

Code not amenable to ESE:To evaluate the limits of LINX’s ESE-based approach, we used
LINX on Snort [213], a popular IDS that independent prior work has shown to not be amenable
to ESE [161, 244]. Our results corroborated those from prior work; while LINX did extract
latency interfaces for the networking stack and all detection rules that look only at packet headers,
attempting to extract a complete interface caused LINX to time out. Extracting an interface
from Snort with LINX requires either that we modify its code to cleanly separate the stateful
components, or that we replace the symbolic execution engine in the LINX back-end with a
manual theorem prover.
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5.7 Comparison to Freud

The work closest to ours is Freud [201] which takes as input a binary and a test suite, and
outputs an expression of latency as a function of input and global variables. Freud strikes a
different generality/accuracy balance than LINX: It is more general, in the sense that it can run
on any program—not just NFs that are amenable to ESE—and requires no source code and
no data-structure pre-analysis. However, it is less accurate, in two ways: (a) It cannot reason
about the performance of execution paths that are not triggered by the test suite (since it does
not analyze the source code). (b) It cannot reason about how past inputs affect performance in
stateful code (since it does not know anything about the data structures where the state is stored).

Nevertheless, we evaluated Freud to see whether it could indeed extract latency interfaces,
especially in the context of NFs. We used the publicly available Freud code [90] at commit ID
e6e7a91006.

We used Freud on three classes of programs: (a) A stateless program that spins for a period of
time proportional to the input length. (b) Data structures commonly used by NFs: a longest prefix
match (LPM) trie and a hash map. (c) NFs: VigNAT (academic prototype), Natasha (production
NAT used at ScaleWay), and Maglev (DPDK implementation of Google’s load balancer). Natasha
comes with an open-source performance test suite [168], making it an ideal fit for Freud. For the
remaining programs, we used as test suites the packet traces on which we evaluated LINX.

Table 5.9 summarizes our results, discussed below.

Freud-vanilla: First, we ran Freud on unmodified programs, and it behaved as expected: It
successfully characterized the spinning program’s runtime as a function of the input length, but it
could not produce meaningful performance annotations for the data structures or NFs. This is nor-
mal, since, in the latter programs, the latency is a function of implicit variables that capture the in-
teraction between current and past inputs (e.g., number of iterations of while(bucket[i].is_-
full ==1)).

Freud-nf: Next, to compare with LINX more fairly, we explicitly modified our programs to work
with Freud: we identified conditions that we knew impacted performance (essentially LCVs) and
manually added them as global variables (which Freud tracks). For instance, in the hashmap, we
added a global variable to explicitly track the number of collisions; in the LPM trie, we added a
global variable to explicitly track the depth traversed.

The results for the data structures were mixed: For the LPM trie, Freud produced an accurate
performance annotation. For the hashmap, Freud mistook a correlation for a causation: when a
test caused every packet to experience a collision, Freud concluded that runtime was determined
by occupancy, as opposed to the number of collisions. We expect that this issue can be resolved
at the cost of extra developer effort (to produce a smarter test suite).

For the real NFs, Freud could not produce meaningful performance annotations (despite our
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Freud mode Program Accurate annotation?

Freud-vanilla
Synthetic stateless NF Yes
LPM trie No
Hashmap No
Real NFs No

Freud-nf
Synthetic stateless NF Yes
LPM trie Yes
Hashmap No
Real NFs No

Table 5.9: Summary of our experiments with Freud.
modifications to the NF source code). This is not surprising, given that Freud does not analyze the
source code, hence is unable to track how a sequence of state-accessing calls affects runtime. For
instance, in Maglev, known client packets that are destined to a now-stale backend-server undergo
consistent hashing once again, to pick a new backend. Since Freud does not analyze the source
code, it cannot track how this call sequence affects runtime, looking instead to express runtime as
a function of individual variables—which does not work. We observed similar scenarios in the
other NFs.

Conclusion: In its current form, Freud cannot produce accurate performance annotations for
stateful NFs. To do so, it would need to track how a sequence of state-accessing calls affects
performance. We think that that would necessarily require (a) some assumption about the
structure of the code (akin to our clean state assumption), (b) a nuanced test suite for the NF’s
data structures to reveal which aspects of state affect performance (which is done, in our approach,
with the manual extraction of LCVs during pre-analysis), and (c) leveraging call context. We
think that adding these elements to Freud would bring it very close to LINX; we expect it would
achieve similar accuracy but at the cost of its current generality.

5.8 Related Work

Performance analysis for SmartNIC-based NFs: Krude et al. [144] use SMT solvers to
analyze NF code written for processor-based SmartNICs and provide lower bounds on throughput.
Focussing solely on throughput lower bounds results in their approach being limited to analyzing
worst-case latency, much like WCET. Clara [197] uses machine learning to analyze NF code
written in C to identify “effective porting strategies” that result in low latency when the NF is
ported to a SmartNIC. Unlike LINX that focusses on accurately predicting the NF latency, Clara
focusses on identifying how the NF implementation can make best use of the SmartNIC hardware
(e.g., accelerator usage, NF state placement strategies, etc).

Program analysis for NF code running on commodity hardware: Several instances of prior
work have proposed using program analysis to help understand, debug, and verify the semantic
behavior of software NFs [37, 38, 67, 138, 192, 218, 252, 255]. LINX builds upon the experience
of all of this prior work, but analyzes NF performance.

NF performance monitoring and diagnosis: Several instances of prior work [86, 101, 167, 243]
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diagnose performance issues such as packet drops or low throughput in NF deployments. Such
work is complementary to LINX since it helps diagnose performance issues once they occur in
production, while LINX provides a summary of NF performance before the NF is deployed.

5.9 Conclusion

In this chapter, we described LINX, a tool that automatically extracts latency interfaces from NF
implementations. and evaluated it on 12 NFs, including several used in production. Our results
show that LINX is practical—the complexity of extracted interfaces is significantly lower than
the NF implementation, their accuracy is high, and the time to extract them is reasonable. Finally,
we show how NF developers and operators can use these interfaces today, to identify performance
regressions, diagnose and fix performance bugs, and pick the NFs that are best suited to their
hardware.
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6 From Latency to Side-Effects: Au-
tomatically Reasoning About How
Systems Code Uses the CPU Cache

Since a program’s semantic interface describes not only its expected output(s) but also any related
side effects (modifications to shared state that may lead to differences in externally observed
behavior) [210], the program’s latency interface must also describe its expected latency side
effects in addition to the processing latency (described in Chapter 5).

Latency side effects arise due to shared micro-architectural state. Since all programs running on
the same CPU core (e.g., caller and callee, application and operating system) share all core-local
micro-architectural resources (e.g., data and instruction caches, TLB, branch predictor, etc.)
calling into a piece of code has not only a direct impact on latency (via the execution latency of
callee) but also an indirect cost that depends on how the callee perturbs shared micro-architectural
state. This indirect cost is a frequently observed source of latency variability. For example,
FlexSC [215] showed how a system call can take up to 3× longer depending on the invoking
program’s micro-architectural resource usage, while the invoking program may run up to 4×
slower after the system call, depending on the system call’s micro-architectural resource usage.
Similarly, Cerebros [254] showed how microservices can spend up to 50% of their total cycles
simply stalling on the instruction cache due to gRPC’s large instruction footprint.

In this chapter, we focus on a dominant source of micro-architectural side effects, namely the
CPU cache. Our goal is to enable developers to answer frequently asked questions about how a
piece of systems code interacts with the cache, such as: How does the code’s cache usage vary
with workload (e.g., as a function of the number of network connections)? [24, 68, 85, 219, 226]
What is the code’s cache hit/miss profile? [45–47, 238, 257] Which workloads make the working
set exceed the cache size? [145, 188]

To answer the above questions, developers require visibility into what the code does to the
microarchitecture as a function of the workload, i.e., visibility into how the code processes an
abstract workload. For instance, understanding the cache usage of a network stack requires
understanding the layout of various structs and how these are accessed as the number of
network connections changes.

Existing performance-analysis tools such as profilers and cycle-accurate simulators do not provide
such visibility; they can draw conclusions about the concrete workloads with which the code
is profiled or simulated, but not about abstract unseen workloads. Profilers [35, 153, 189,230]
treat the code as a black box and measure its performance for a given workload. Cycle-accurate
simulators [28, 33] are similar: they provide greater visibility into micro-architectural events
than profilers, but, once again, only for the given workload. So for instance, while they can tell
developers which memory accesses result in a cache miss for the given workload, they cannot
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provide predictions about which workloads will thrash the cache and cause an unacceptable miss
rate. As a result, developers are forced to manually reverse-engineer the answer to their key
questions. This process is time-consuming and error-prone [115], particularly for code that the
developers did not write themselves.

We present CFAR (Cache Footprint AnalyzeR), a tool that processes a piece P of systems code
into answers to developers’ questions about how that code uses the cache. CFAR’s processing
consists of two phases: In the former, CFAR takes as input the code and outputs an intermediate
representation (a “distillate”) that contains all the information on how the code accesses memory.
In the latter, developers can write simple programs (“projectors”) that use the distillate to
compute answers to specific questions they have about P’s cache usage. CFAR relies on a
combination of static analysis, symbolic execution, and binary instrumentation to automatically
extract distillates. We chose these particular program-analysis techniques because, despite their
limitations (discussed in §6.3.3), they enable precisely the visibility we seek—reasoning about
what the code does to the micro-architecture for abstract workloads.

The current CFAR prototype comes with three projectors that answer frequently asked questions
about cache usage: (1) Pscale shows how the amount of data the code brings into the cache (i.e.,
the number of unique cache lines touched) varies with workload (e.g., with the number of active
network connections). (2) Ph/m shows whether each memory access will hit or miss in the cache
as a function of workload, and (3) Pcrypt flags cryptographic code that branches or accesses
memory addresses depending on secret inputs, thereby flagging potential branch and cache-based
leakages. Pcrypt in particular, demonstrates the flexibiilty of CFAR’s two-phased process: since
the distillate contains all information relevant to how the code accesses memory, developers
can write projectors to analyze more than just performance properties. We envision developers
contributing more such projectors, expanding CFAR’s collection as needed to get the answers
they seek.

In the rest of the chapter, we motivate CFAR through an example cache-usage question that exist-
ing tools cannot answer (§6.1), provide an overview of CFAR (§6.2), describe its design (§6.3),
evaluate it experimentally (§6.4), discuss related work (§6.5), and conclude (§6.6).

6.1 Motivation

In this section, we give an example of the kind of questions that systems developers ask about
their code’s cache usage (§6.1.1), describe why existing tools cannot answer such questions
(§6.1.2), and argue that answering them requires reasoning about the code (§6.1.3).

6.1.1 Example

Suppose Alice is building a simple in-memory key-value store that uses a hashtable (for storing
the key-value pairs) and runs atop a user-space, kernel-bypass transport stack. Alice has modified
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an existing hashtable implementation to suit her needs and thus understands that part of the code
well. At the same time, she is using an off-the-shelf transport stack [74, 137, 256], of which she
understands little beyond the semantic interface it exposes.

In such a system, processing latency (and thus throughput) is typically determined by the number
of LLC misses per request [152,219,258]; hence, to optimize her system’s throughput, Alice needs
to know how the different parts of her code use the cache and how they affect the LLC misses
and working set as a function of workload. For example, if her system fails to reach the expected
throughput due to persistent LLC misses, which is the predominant cause? that the hashtable
code touches too many cache lines per put and/or get request? or that the transport stack’s buffer-
management code touches too many cache lines per connection [24]? In the former case, Alice
should spend her time further optimizing the memory layout of the hashtable [45–47], whereas in
the latter, she should port her code to alternative stacks with lower memory footprints [74, 219].
Finally, if both codebases were already highly optimized, she should avoid wasting time on code
optimizations and replicate her service across machines [15].

6.1.2 Existing Tools Are Insufficient

Answering this question today is inefficient: Alice would run her system with many workloads,
use a profiler [35, 153, 189, 230] or a simulator [28, 33] to measure micro-architectural events and
reverse-engineer the predominant cause of LLC misses. In particular, she would try to identify
the properties of workloads that led to higher throughput: were they those that led to fewer
put/get accesses per request? or those that led to fewer concurrent connections? This is similar
to what Google developers do to answer such questions, e.g., they run their code for multiple
workloads, use profilers to count the total number of unique cache lines touched, and extrapolate
how workload affects their code’s cache footprint [18].

This profiling+extrapolation process not only is inefficient but can be incomplete, especially when
the analyzed system includes third-party code. Alice (who knows little of the transport stack’s
implementation) may not even think to run workloads that lead to different numbers of concurrent
connections. In general, performance profiling suffers from the “large input problem” [157, 180],
i.e., the fact that unexpected performance behaviour often manifests only when input size (e.g.,
the number of concurrent connections) exceeds some limit that may seem arbitrary to those who
are not intimately familiar with the code. So, designing a test suite that completely covers a
system’s performance behaviors is hard, and developers don’t even have well-defined coverage
metrics. For example, line coverage is used as a proxy for coverage of semantic behaviors;
performance profiling does not even benefit from such an approximate metric.

As a result, developers often fail to identify workload properties that significantly impact cache
usage, causing performance cliffs to manifest in production. For instance, initial work on predict-
ing the working set of network functions ignored the impact of different packet sizes [68], while
a recent study of Linux’s system call performance showed how a newly introduced configuration
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parameter can destroy spatial locality and lead to increased LLC misses [200]. In practice, to
avoid suffering from unexpected throughput degradation due to incomplete performance profiling,
Alice would over-approximate her system’s cache usage and overprovision resources for her
service, for instance by replicating more than necessary. Recent work from Azure showed that
most customer VMs over-approximate their memory footprints by 30−50% [92].

6.1.3 An Interface for Cache Usage?

Ultimately, Alice needs to understand how her code uses the cache in order to answer her
question. It is first the code (e.g., the layout of different structs and how they are accessed),
and only then the cache algorithm that determines how many cache lines are touched per unique
key and per connection. Hence, tools that treat the code as a black box are fundamentally
inefficient in answering questions about how the code uses the cache—or any component of the
micro-architecture.

A natural question is whether the general-case latency interface for the program can answer the
above questions. The answer is that while the definition of general-case interfaces (Chapter 4)
certainly allow for the possibility, the interfaces extracted by LINX cannot. The former is possible
because one can think of each question about cache usage as defining a new latency metric (e.g.,
total number of unique cache lines touched by the program, number of cache lines unique to the
connection, etc.), and so a general-case interface that returns that particular metric is precisely
what Alice requires. However, LINX-extracted interfaces are not flexible enough to answer this
question. This is because LINX, which was designed for NFs that run pinned to CPU cores
assumes that the NF always executes in a “steady” micro-architectural state, i.e., processing a
packet always leaves the cache in an equivalent state. So, LINX-extracted interfaces can reason
about latency without considering the NF’s cache usage and thus discard the information required
to answer Alice’s questions.

The more relevant question is: How do we extract an interface that describes the program’s cache
usage in terms of the metric that the developer is interested in? Is there an abstraction that retains
enough information to answer arbitrary questions about cache usage, or must the program be
re-analyzed each time? In the next section, we describe our abstraction (which we call the CFAR
distillate) and show how it is flexible enough to answer arbitrary questions about cache usage.

6.2 The CFAR Approach

CFAR analyzes a piece P of systems code (such as a system call in an OS kernel) and produces
an intermediate representation that captures rich information on how that code accesses memory.
On top of this IR, developers can write simple programs that compute answers to questions they
have about how P uses the cache. CFAR provides an engine that produces this intermediate
representation and a few example programs that answer questions like how does P’s cache
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footprint scale across a range of inputs, what is the cache hit/miss profile of P , or does P access
the cache in a way that depends on secret inputs. We envision developers contributing more such
programs, to expand CFAR’s collection over time. Eventually, developers will just use whatever
ships with CFAR, extending it only when they cannot get the answer they seek.

P can be any well defined part of a system that can be invoked individually, such as a system
call in an OS kernel or a function in a library, or even a standalone program. Fig. 6.1 illustrates
CFAR’s workflow.

......

Distillation Projection
Answer to Q1

Answer to Q2

Answer to Q3

Figure 6.1: The CFAR workflow.

CFAR’s processing of P has two phases: The first phase abstracts the code of P into a Pdist

(a distillate) that contains all information relevant to how P accesses memory and discards
everything else. The second phase abstracts Pdist into Pproj (a projection) that contains only
information relative to the developer’s specific question and nothing else. Pdist may contain too
much low-level detail for human consumption, so we consider it an intermediate representation.
Pproj, which we call a projection, answers a developer question, and so must be human-readable.

Splitting the processing into two phases offers flexibility and customizability. For any given P ,
there exists a single Pdist , uniquely determined by P , but there can be as many Pproj as there
are questions about P’s cache usage. For example, one projection could compute the number of
cache lines touched by P , while another projection could determine whether P’s cache access
pattern is influenced by secrets, and so on. Most importantly, developers themselves can write
programs (projectors) that generate projections, and CFAR essentially offers a framework for
programmatically answering any number of cache-usage questions. This enables CFAR to be
expanded with little effort, becoming more useful over time.

CFAR’s approach is similar to that of LINX in two notable ways.
First, both analyze the input program separately from the environment in which it runs. For
any given P , they first extract a representation that is uniquely determined by P—general-case
interfaces and distillates, respectively—and then analyze how that representation interacts with
its environment (e.g., different underlying hardware, different cache architectures, etc.). This
split analysis ensures flexibility and allows the general-case interface to be tailored to arbitrary
deployment environments and the distillate to answer arbitrary questions about the program’s
cache usage. Second, both represent the property of interest—processing latency and answers
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about cache usage, respectively—as programs that accept the same input(s) as P . Like latency
interfaces, both Pdist and Pproj are programs. Pproj in particular, can be thought of as being an
interface that describes the latency of P in terms of the metric defined by the developer’s specific
question.

1 int sys_create(int fd, fn_t
fn, uint64_t type,

uint64_t value, uint64_t
omode) {

2
3 struct file *file;
4 if (type == FD_NONE)
5 return -EINVAL;
6 if (!is_fd_valid(fd))
7 return -EBADF;
8 if (get_fd(current, fd)

!= 0)
9 return -EINVAL;

10 if (!is_fn_valid(fn))
11 return -EINVAL;
12 file = get_file(fn);
13 if (file->refcnt != 0)
14 return -EINVAL;
15
16 file->type = type;
17 file->value = value;
18 file->omode = omode;
19 file->refcnt = file->

offset = 0;
20 set_fd(current, fd, fn)

;
21 return 0;
22 }

1 def sys_create_dcache(fd, fn, type, value,
omode):

2 # State: pid, proc_table, filetable
3
4 if type == FD_NONE: #6 accesses
5 return [(w,rsp-8),(w,rsp-16),..,(r,rsp

-8)]
6
7 if not(fd >=0 and fd < NOFILE): #6

accesses
8 return [(w,rsp-8),(w,rsp-16),..,(r,rsp

-8)]
9

10 if [proc_table+256*pid+64+8*fd]: #7
accesses

11 return [(w,rsp-8),(w,rsp-16),..,(r,
proc_table+256*pid+64+8*fd),..,(r,rsp-8)]

12
13 if not(fn >=0 and fn < NOFILE): #7

accesses
14 return [(w,rsp-8),(w,rsp-16),..,(r,

proc_table+256*pid+64+8*fd),..,(r,rsp-8)]
15
16 if [filetable+40*fn+8]: #9 accesses
17 return [(w,rsp-8),(w,rsp-16),..,(r,

proc_table+256*pid+64+8*fd)..,(r,filetable
+40*fn+8),..,(r,rsp-8)]

18
19 # Succesful create. 17 accesses
20 return [(w,rsp-8),(w,rsp-16),..,(r,

proc_table+256*pid+64+8*fd),..,(r,filetable
+40*fn+8),(w,filetable+40*fn),(w,filetable
+40*fn+16),..,(w,proc_table+256*pid+64+8*fd)
,..,(r,rsp-8)]

Figure 6.2: Example P on left (Hyperkernel’s sys_create system call that creates a new file)
and the corresponding P data

dist distillate.
.

1 def sys_create_icache(fd, fn, type, value, omode):
2 # State: pid, proctable, filetable
3 # sys_create abbreviated as s
4
5 if type == FD_NONE: #10 insns
6 return [(r,s),..,(r,s+168),..,(r,s+176)]
7
8 #Error paths elided for representation
9 ......

10
11 # Succesful create. 45 insns
12 return [(r,s),(r,s+8),..,(r,s+160),(r,s+168),(r,s+176)]

Figure 6.3: P instr
dist distillate for sys_create.

6.2.1 Phase 1: Distillation

For a program (or function, or method) P that takes input I and whose state is S0 at the time of
invocation, the distillate Pdist is another (simpler) program that also takes input I but returns an
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ordered sequence Ω of P’s memory accesses. Ω is expressed as a function of I and S0 (where
S0 is the value of P’s memory objects in the heap and the stack up to %esp). Accessing data vs.
instructions exhibits distinct patterns so we distinguish a data-accesses distillate P data

dist and an
instruction-accesses distillate P instr

dist . The former describes the sequence of data-memory accesses
that would be observed if executing P with input I starting from state S0, while P instr

dist describes
the instruction-memory accesses. A distillate is essentially a program that computes function
<I ,S0> →Ω.

Each entry in Ω is a memory access <type,addr> where type can be either read (r) or write (w),
and addr is a memory address. Fig. 6.2 and Fig. 6.3 give two examples, where P is the sys_-
create system call in the Hyperkernel [171]. For a data-accesses distillate (Fig. 6.2), addresses
are described in terms of standard state components, like the stack pointer rsp, as well as state
components specific to P : line 11 describes accesses that are a function of proc_table, pid,
and fd, caused by the &proc_table[pid]->ofile[fd] lookup done by sys_create. If an
address is independent of I and S0 (not shown in the example), such as that of a struct allocated
by P in the heap and then freed before returning, the corresponding entry in Ω has a named
constant, e.g., mallocRetVal@file.c:342. For an instruction-accesses distillate (Fig. 6.3),
the addresses are given as aligned offsets relative to the memory address of the first instruction in
P . In this example, the compiler inlines all helper functions, hence there is only one base address
s.

The Pdist distillate is a precise and complete representation of P’s memory usage. It is precise
because it correctly predicts the actual memory usage of P during an execution. The symbolic
expressions for data- and instruction-memory accesses as a function of I and S0 are precise by
construction, and therefore correct for any concrete instantiation of I and S0. The distillate is
complete in that it contains all information on P’s memory usage that can be found in P . No
matter what the concrete values of I and S0, how the address space is randomized [2], or where
in memory the code is loaded, a distillate will always be able to produce the exact sequence of
memory accesses that P makes when executing from S0 with input I .

6.2.2 Phase 2: Projection

A projection Pproj is a program similar to Pdist but that, instead of returning Ω, returns a function
π(Ω). For example, a simple projection might replaceΩ in Pdist with |Ω| to compute the number of
memory accesses performed by P . Another projection might replaceΩwith |{λ(r ) = r /64 : r ∈Ω}|
to compute the number of unique 64-byte cache lines accessed by P . Where a distillate computes
function <I ,S0> →Ω, a projection computes <I ,S0> →π(Ω)

The π function can generalize to take additional input, beyond just Ω. For example, a projection
can use a π(Ω,$M) function to combine the access sequence Ω with a cache model $M and
produce a program Pproj that computes the number of hits and misses incurred in the L1 data-
cache by code P .
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In conclusion, CFAR’s two-phase approach—Pdist as an intermediate representation and projec-
tions Pproj layered on top of it— offers the flexibility to answer any number of questions about
P’s cache usage. The key is that the P → Pdist abstraction captures correctly and fully all of P’s
memory access information, and offers an intermediate representation that can easily be projected
into answers to developers’ questions.

6.3 CFAR Design

CFAR abstracts P → Pdist → Pproj. In the first phase—distillation—CFAR processes the code P

into a distillate Pdist in four steps (shown in Fig. 6.4): it (i) enumerates all feasible executions
paths in P ; then (ii) obtains a binary execution trace for each such path; then (iii) based on the
two outputs, it prepares an execution tree for the distillate; and lastly (iv) optimizes this tree
and produces Pdist . This distillate is a program that describes symbolically P’s memory trace Ω
for every possible input to P . The second phase—projection—transforms Pdist into Pproj that
directly answers the developer’s specific cache-usage question. It does so by summarizing Ω
and possibly also transforming the control flow of the Pdist program, producing a much simpler
program that is better able to answer the posed question.

The four steps in CFAR’s distillation phase are similar to those in the LINX back-end (Fig. 5.2),
and our implementation reused large parts of the LINX codebase. However, there are two
important differences. First, as we will show, extracting the distillate requires extracting additional
information during the path enumeration stage. Second, since CFAR is not designed for NFs
in particular, and aims to be fully automatic, it cannot rely on manual analysis to extract loop
summaries using LCVs. To overcome this, CFAR performs best-effort loop summarization in the
code synthesis stage.

Source 
code DistillatePath 

enumeration

Binary 
replay

Exec tree
synthesis

path constraints, 
symbolic addresses

concrete
input   exec

trace
Binary

Code 
synthesis

Figure 6.4: The four components of CFAR’s analysis.

6.3.1 Distilling P into the Pdist representation

A distillate Pdist is a program that returns, for every relevant case, the corresponding memory
trace Ω of P . The control flow of Pdist reflects the different cases that would influence Ω, and so
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Pdist will naturally have P’s control flow. The examples in Fig. 6.2 and Fig. 6.3 show what the
output of this phase looks like.

Step 1: Enumerating all paths in P

To obtain all the paths in P , CFAR uses exhaustive symbolic execution to enumerate them.
Symbolic execution [36,98,140,206] is a program analysis technique that automatically traverses
the feasible execution paths of a body of code, enabling a comprehensive analysis of its control
flow. The technique is powerful, but also faces challenges related to loops and pointers, which
we discuss in §6.3.3. We use an exhaustive form of this technique, which yields all feasible paths
in P .

For each enumerated path Π, CFAR saves four key pieces of information: (1) the precise path
constraint CΠ that uniquely defines this path, i.e., CΠ is the conjunction of the outcomes of
evaluating each if predicate along Π; (2) a concrete input IΠ that exercises this path, obtained
by feeding CΠ to an SMT constraint solver and asking for a satisfying assignment to the input
variables in CΠ; (3) for each data/instruction memory location accessed, the symbolic expression
corresponding to the address, as a function of the inputs and/or P state; (4) for each memory
operation, a corresponding filename:linenum identifier, to be used later. The sequence of
these symbolic expressions is ωΠ.

Step 2: Obtaining the binary execution trace

What actually executes on the hardware is not the source code or the IR. Compiler optimizations,
such as link-time optimization, cause the executing machine code to not directly correspond to
what is in the IR. Furthermore, many IRs are Static Single Assignment (SSA), in which each
variable is assigned exactly once. This makes the data flow and dependencies among variables
more explicit and easier for the compiler to analyze, but it also implies an infinite register file.
However, processors do not have infinite register files, so during an actual execution register
values often need to be spilled to the stack. But P in the IR form does not push or pop the stack,
so the corresponding memory accesses will not appear in ωΠ.

Therefore, CFAR replays an instrumented version of the P binary for each IΠ, to obtain the
corresponding concrete execution trace XΠ. For each machine instruction executed in XΠ, CFAR
saves: (1) the program counter; (2) the instruction opcode, such as push or pop; (3) the concrete
memory addresses accessed; (4) the corresponding filename:linenum debug information
inserted into the binary by the instrumentation.

We deliberately split the analysis into a source-based and a binary-based step. It is easier to extract
symbolic expressions for memory operations by analyzing the source or the IR. On the other hand,
analyzing the binary enables CFAR to be fully precise with respect to compiler optimizations
and which instructions lead to memory accesses and do not merely manipulate CPU registers. In
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theory, these two steps could be combined into a single one by directly symbolically executing
the binary. To answer with certainty, one would need to assess how CFAR is affected by the loss
of type information when going from source code to binaries, and find a good way to deal with
the lack of debug symbols in production binaries.

Step 3: Synthesizing Pdist’s execution tree

In this step, CFAR combines the information extracted in the previous two steps. For each path Π
in P , it combines the symbolic memory trace ωΠ with the corresponding binary execution trace
XΠ. To produce a data-memory access trace, CFAR takes the sequence of concrete addresses
from XΠ and replaces (using debug information) all input- and state-dependent accesses with the
corresponding symbolic expressions from ωΠ, thus producing Ωdata

Π . To produce an instruction-
memory trace, CFAR uses the program counter values and the call stack in XΠ to compute the
symbolic offset of each instruction from the start of P (e.g., its entry point, if it is a function or a
system call) and produce Ωinstr

Π . The call stack gives CFAR information on which function the
instruction belongs to, so that it can compute the function-specific offset.

Next, CFAR assembles an execution tree out of the path constraints CΠ. It arranges all the paths
into a tree based on their common prefixes; for every path Π there exists a path from tree to leaf
in the tree, and vice versa. Each internal node n in the tree contains the predicate corresponding
to the original branch in P . The conjunction of the predicates for all internal nodes along a
root-to-leaf path forms the corresponding path constraint CΠ.

Step 4: Producing the Pdist distillate

The final step consists of best-effort summarization of loop-related memory access patterns and
other, more minor, improvements for human readability of Pdist . Symbolic execution, by default,
unrolls loops and thus produces a different execution path for each loop iteration. This leads
to bloated distillates that contain redundant information and are hard to read, particularly if the
access pattern of the code does not change across loop iterations.

Automatically summarizing loops in general is undecidable [93], but fortunately studies have
shown that there exist four common categories of loops that relate to data locality issues in
systems code [139]. Therefore, CFAR contains loop-summary templates for these four categories
of loops—two that traverse array-like data structures, and two that traverse pointer-chasing data
structures (e.g., linked lists, trees). All four categories of loops require the loop body to not
branch on the precise value of the iteration counter, and for the loop to have a maximum of two
termination predicates, one in the loop definition and at most one break in the body. In case
CFAR is unable to infer that this holds, the distillate presents the unrolled loop.

Finally, CFAR transforms the optimized tree into a program that represents Pdist . This program
takes the same input as P . Every internal tree node n leads to an if statement in the program,
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branching on the predicate contained in that node. Each path through the program/tree ends
with a return of the corresponding ΩΠ—depending on the memory-type of the distillate, this is
either Ωinstr

Π or Ωdata
Π .

Our CFAR prototype uses Python to represent distillates, because it is one of the most widely
used languages [179] and has an easy-to-understand syntax.

Fig. 6.5 illustrates the loop-summarization optimization with a snippet for memcmp’s P data
dist

distillate. The corresponding loop belongs to the first category mentioned above. Our CFAR
prototype uses first-order logic to summarize loops with primitives from Z3’s Python API [250].
The predicate that starts on line 3 identifies the smallest index i at which the two strings differ.
The distillate then states (starting at line 8) that the memory accessed corresponds to every
element of the two arrays up to i.

1 def memcmp_dcache(s1,s2,len):
2
3 if Exists(i,And(0<=i<len,
4 [s1+i]!=[s2+i],
5 ForAll(j, Implies(0<=j<i),
6 [s1+j]==[s2+j]))):
7
8 return ForAll(k, Implies(0<=k<=i),
9 [(r,s1+k),(r,s2+k)])

10
11 return ForAll(k, Implies(0<=k<=len),
12 [(r,s1+k),(r,s2+k)])

Figure 6.5: P data
dist for memcmp.

6.3.2 Projecting the Pdist IR into Pproj Answers

The distillate produced by the previous phase is a precise and complete description of P’s
memory-access behavior. While the answers to developers’ cache-usage questions can be found
in the distillate, they are buried in details that may not be relevant to the specific question being
asked. The projection phase turns distillates into actual answers.

Defining Projectors

With CFAR, developers can define projectors, programs that take as input Ω (as a Python
list [195] in our prototype) and compute specific properties related to cache usage. Computing
these properties is equivalent to computing function π(Ω). CFAR then puts together the specific
properties returned by the distillate for each path, into a program that we call a projection (Pproj).
This program has the same control flow as Pdist , but returns π(Ω) instead of Ω. As described
in §6.2.2, a simple projector might compute the number of memory accesses or the number of
unique cache lines accessed by P .

A projector is free to take in additional parameters, not just Pdist . For example, it can often be
useful to pass in a cache model, in order to answer questions like what is the number of cache
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hits and misses incurred for each class of inputs, or when does P’s working set fit in L1 vs. not.

Advanced developers can produce arbitrarily sophisticated Pproj. A program-specific projector
could focus on just a subset of the input classes by conditioning π(Ω) on program-specific predi-
cates. For example, a version of sys_create_dcache (Fig. 6.2) focused on only successful
sys_create calls would have a single if statement with the conjunctive negation of the first 5
predicates in Fig. 6.2, followed by line 20.

Program-specific projectors help developers reason succinctly about groups of inputs to stateful
code with loops, by specifying aggregate abstract state that the inputs are likely to encounter. For
instance, consider a hash table implemented using linked lists for which the number of memory
accesses per call is a linear function of the number of hash collisions, which itself is expressed as a
first-order logic predicate. A precise program-independent sum across a group of N inputs would
have to be expressed as a sum of N such predicates, which is hard for both humans and solvers to
reason about. Instead, by constraining the number of collisions to particular values, developers
can focus on how the footprint scales as a function of N . Such constraining is reasonable because
developers care about different properties for individual inputs vs groups of inputs. For the
former, they are interested in how many collisions the code can suffer, which they reason about
using individual predicates. For the latter, they are typically happy to reason about aggregate
statistics that the group of inputs encounter [123].

CFAR-provided projectors

CFAR comes with three example projectors: (1) Pscale produces a projection P scale
proj that shows

how the cache footprint scales across an entire range of previously unseen inputs (e.g., how it
varies with the number of active network connections). (2) Ph/m produces a projection P h/m

proj

that shows the cache hit and miss profiles per class of input as opposed to per specific input; and
(3) Pcrypt produces a projection P crypto

proj that flags cryptographic code that accesses the cache in a
way that depends on secret inputs; this can be used to flag potential vulnerabilities.

To compute how the footprint scales for each input to P , Pscale first determines the number of
symbolic addresses in the list that would differ if only the value of that input changed. It then
checks the alignment of those bytes using a solver query, to check the number of unique cache
lines touched by these addresses. It presents the results to the user as formulae. For instance, the
output of Pscale for sys_create is: 8*fd + 32*fn which is precisely what Alice wanted to
know for keys and connections in §6.1. Developers can use this information to estimate when
their working set overflows the cache.

Ph/m allows developers to go a step further and reason about the possible cache misses that their
code might incur. Ph/m takes in three inputs: trace of memory accesses Ω, a cache model, and an
input set size. Ph/m’s default cache model is a 3-level inclusive cache with a next-line prefetcher
and the sizes and set associativity of each level being configurable parameters. The input set
size refers to the number of unique inputs (e.g., number of active connections) that the program
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expects to receive and is used to warm up the cache. P h/m
proj passes the input set size to P scale

proj ,
obtains the total number of cache lines it must account for, and inserts a corresponding number
of symbolic addresses into the cache in random order. Finally, it runs the memory trace with
symbols corresponding to a random input from the input set and measures the number of hits
and misses. To ensure that the effects of the random selection are properly accounted for, P h/m

proj

repeats the last step multiple times until the set of possible misses stabilizes.

Ph/m can be thought of as a symbolic, trace-based cache simulator that allows developers to study
cache events just like traditional trace-based memory simulation supported by all cycle-accurate
simulators but without having to write concrete benchmarks to initialize cache state. The only
difference is that Ph/m is forced to deal with symbolic addresses, and so cannot accurately
compute set-associativity conflicts in the cache. Instead, Ph/m allocates unconstrained memory
addresses to a random set in the cache, and ensures that addresses computed using that symbol as
a base are assigned according to their least-significant bits. In our evaluation, we show how this
approximation works reasonably well in comparison to real hardware.

Pcrypt produces a P crypto
proj that requires the developer to define the program inputs that are secrets,

and then uses a Z3 [64] solver query to determine whether any if conditions (program branches)
or memory addresses in the distillate are functions of secrets. If this is the case, it returns debug
information filename:linenum corresponding to the branch/memory-access as well as the
path constraints under which it occurs. Note, Pcrypt does not account for all cache-based leakages,
it only accounts for leaks due to secret-dependent branches or memory accesses.

In our experimental evaluation (§6.4) we use these three projectors to evaluate CFAR.

6.3.3 Limitations and Assumptions

Symbolic execution: CFAR’s reliance on symbolic execution (SE) makes it subject to SE’s own
limitations. Depending on which SE engine is used, certain kinds of loops, or symbolic pointers,
or multi-threading could prevent obtaining all execution paths [30]. However, there is active
research on this topic, and recent SE engines have brought various enhancements that overcome
these challenges, such as state merging [146], loop-extended symbolic execution [203], loop
summaries [99, 247], loop invariants [127], and symbolic abstract transformers [143].

A CFAR prototype will ultimately be as powerful as its underlying SE engine. Since our prototype
relies on KLEE, code whose loops do not have statically computable bounds, or that is multi-
threaded, or that has arbitrary symbolic pointers is not an ideal match because path exploration
may take too long.

Input constraints: One way to use CFAR on code that cannot be exhaustively symbexed is by
constraining the input space. A reasonable approach is to constrain it to inputs that are meant to
trigger the “fast path” through the code, since that is a common object of performance analysis.
For instance, if the target code is an IP forwarding function, it is reasonable to constrain the
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input space to packets without IP options; this reduces dramatically the size of the execution tree
(because it eliminates the part of the code that loops through the variable-length IP options), and
it still yields practically useful results (because performance-sensitive traffic does not typically
carry IP options). Of course, this approach has a drawback: a distillate computed this way is
complete only for inputs that belong to the selected input space. Nevertheless, we followed this
approach to use CFAR on TCP stacks, and our evaluation demonstrates that the results can be
useful despite the constrained input space.

Time Limit: Another way to use CFAR on code that cannot be exhaustively symbexed is to
allow the developer to specify a time limit for the analysis; when the time limit expires, CFAR
outputs a partial distillate that iss precise but incomplete: it returns the exact sequence of memory
accesses performed by the code along the explored execution paths. Our CFAR prototype offers
this capability, however, we did not use it for any of the results shown in our evaluation.

Binary Instrumentation: CFAR employs binary instrumentation to obtain an execution trace.
Unfortunately, such instrumentation can only reveal instructions that the processor finished
executing (retired); it does not reveal instructions that were executed as a result of incorrect
speculation (e.g., a mispredicted branch). Such instructions nevertheless could impact the cache
and, since CFAR does not see them, the answers computed by projectors may not be fully
accurate. We are not aware of any tool that can precisely report such mis-speculated instructions
during an execution; existing work that does so relies on micro-architectural simulators and
models [110, 232, 248]. Future work may however remove this limitation.

Preemption: In a similar vein, we assume that P is small enough to not have its execution
interrupted by preemption. In the absence of this assumption, the distillate produced by CFAR
(i.e., Pdist) is still correct, but the projection result might not be, because it could be missing
third-party cache accesses that occurred during the preemption. In other words, in the presence of
preemption, when a projector looks at the symbolic memory trace, it may not get a fully accurate
picture of all cache accesses.

6.4 Evaluation

In this section, we evaluate the CFAR prototype by answering two main questions:

• Does it work? We show that CFAR extracts 100%-accurate data- and instruction-cache
distillates, and that this extraction completes in minutes for various kinds of systems
code (§6.4.1).

• Is it useful to system developers? We describe use cases that demonstrate how CFAR
provides developers with visibility into cache usage in a way that profilers and simulators
cannot (§6.4.2).
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Evaluated programs. We used CFAR to analyze: the fast path of the transport layer of 3 TCP
stacks—the Linux stack (v6.0)1, a TCP stack used by recently proposed kernel-bypass OSes [24],
and the lwIP TCP stack for embedded systems [74]—as well as 2 hash table implementations [192,
251], all 51 of the Hyperkernel’s system calls [171], and 7 algorithms from OpenSSL 3.0.0 [181].
All of this code is publicly available and unless specified, we analyze the latest stable version.
Note, the kernel-bypass stack uses the lwIP stack as a starting point, but heavily modifies the
internal datastructures and timer management.

Put together, these programs challenge CFAR’s automated program analysis approach to different
extents. At one end of the spectrum are the Hyperkernel and OpenSSL, both of which are
amenable to automated program analysis. The hash table implementations occupy the middle of
the spectrum, since they are both amenable to manual (not automated) program analysis. Finally,
at the other end are the three transport layer implementations, which were not written to be
amenable to any form of program analysis.

Despite these challenges, we demonstrate that CFAR can provide actionable information about
cache usage for each of these programs, by constraining the input space (as discussed in §6.3.3).
To analyze the transport layer of the three TCP stacks, we constrained CFAR to only explore
execution paths corresponding to packets processed in the TCP fast path, i.e., packets that belong
to an established TCP connection, are received in order, and do not suffer hash collisions with
packets from other connections. We picked this particular packet class because it represents a
large fraction of packets processed by TCP stack and is the path for which performance matters
the most; so, even though the resulting distillate is not complete, we think that it is still useful to
developers building atop the TCP stack. To analyze the hash tables, we had to fix the maximum
capacity of the table to a concrete value (we picked 65536)—so, our conclusions about this code
hold only for this maximum capacity. Given that the implementations take in the capacity as
a configurable parameter, we are certain that the memory access pattern is independent of the
capacity; we just cannot prove it using symbolic execution.

Setup. We ran all our analysis on an Intel Xeon E5-2690 v2 CPU, clocked at 3.30GHz and
provisioned with 25.6MB of LLC and 252GB of DRAM.

6.4.1 Does CFAR Work?

There are two key aspects to determining whether a tool like CFAR works and is practical: does
it obtain an accurate intermediate representation of performance out of the code, and is the time
to do so reasonable.

1The Linux TCP fast path was analyzed after the thesis was defended
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Accuracy of Extracted distillates

To measure the accuracy of our prototype’s distillates, we randomly picked 50% of the execution
paths of each program, constructed inputs that exercised each path, counted the number of
instructions and memory accesses executed while running each program with each input, and
compared this number to the one predicted by the program’s d-cache and i-cache distillates. In
particular, the number of instructions counted during execution should be equal to the number of
memory accesses predicted by the i-cache distillate (for the given input), while the number of
memory accesses counted during execution should be equal to the number of memory accesses
predicted by the d-cache distillate.

The error was always zero, across programs and inputs: CFAR’s distillates correctly predict every
single instruction and memory access executed by the code. This is not surprising: CFAR does
not rely on models to predict the sequence of instructions and memory accesses, it measures them
by replaying the binary. Since CFAR does not modify the binary in any way, the value measured
during replay is identical to the one measured in production.

Time to Extract Distillates

Table 6.1 lists how long our prototype takes to extract distillates: for all programs, the analysis
completes within 30 mins. The programs that take longest (and the only ones that take more than
15 min) are the Vigor hash table and the echde key-generation algorithm in OpenSSL; this is
because in both, symbolic execution needed to unroll long loops that iterate over the data structure
and compute co-prime numbers respectively. For all programs, the binary replay, execution tree
synthesis, and code synthesis take approximately 2-3 mins in total; as expected, the dominant
component—and the one that varies across programs—is symbolic execution.

Program Extraction time (mins)
Linux TCP ingress 11
Linux TCP egress 14
Kernel-bypass TCP ingress 5
Kernel-bypass TCP egress 7
lwIP TCP ingress 4
lwIP TCP egress 5
Hyperkernel syscalls (51 total) Avg: 4, Max: 7
OpenSSL primitives (7 total) Avg: 9, Max: 22
Vigor hash table 28
Klint hash table 12

Table 6.1: Time taken by CFAR to extract distillates.
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6.4.2 Is CFAR useful for system developers?

We demonstrate usefulness by presenting four use cases of CFAR answering important questions
that developers cannot readily answer with the state of the art: How does the code’s working
set change with workload? How does the layout of data structures I call interact with my code?
Does my code lead to inefficient memory access patterns ? Can I prove/disprove the absence of
secret-dependent memory accesses?

How Does the Working Set Change with Workload?

We used the Pscale and Ph/m projectors to analyze the cache usage of the fast path of the transport
layer of the 3 TCP stacks. This is the kind of analysis that Alice would do to (partly) answer her
question in §6.1: is the predominant cause of persistent LLC misses the TCP stack?

First, we used Pscale to predict the number of unique cache lines touched by the TCP fast path
assuming symbolic packet contents. The answer was 4,5, and 19 unique cache lines for the lwIP,
kernel-bypass and Linux stack, respectively. Note, this is not information that one can glean by
merely observing the size of the connection-specific struct. For instance, in Linux this struct
(tcp_sock) occupies 44 cache lines in total, but only 19 of them are accessed on the fast path.

We then passed this information to Ph/m and asked it to predict when incoming packets were
likely to suffer persistent cache misses due to the working set overflowing the LLC (25.6MB on
our machine). The answer was that this would occur at approximately 91k, 76k and 18k concurrent
connections for the lwIP, kernel-bypass and Linux stack, respectively. The slight differences in
these predictions as compared to simple capacity-based calculations (e.g., 25.6M/(64*4) = 100k
connections for lwIP) is due to Ph/m taking into account conflict misses in addition to capacity
misses.

To verify these predictions, we ran a set of experiments where the transport layer receives
and sends packets from/to a fixed set of established connections, and we varied the number
of connections across experiments. To isolate just the transport layer (which is the code we
analyzed), we wrote simple shims for the application and IP layers ourselves. In each experiment,
we measured the average latency incurred by packets within the transport layer.

Fig. 6.6 plots latency as a function of the number of connections. For each of the three stacks,
we see a clear shift around the number of connections predicted by Ph/m. For instance, the
latency for the Linux stack increases by only 45ns from 1k to 16k connections, but increases
by 183ns from 16k to 32k connections. Likewise—although less visible in the graph due to
Linux’s dominant latency—the latency for the lwIP stack increases by only 13ns from 1k to 86k
connections, it increases by 50ns from 86k to 125k connections. Note, the shift does not occur
exactly at the predicted number of connections, but very close to it; compared to the predicted
values of 18,76k, and 91k, we observed the shifts at 16k, 72k, and 86k, respectively. This is
expected, since cache-mapping policies are proprietary and Ph/m only approximates them.
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Figure 6.6: Measured latency for TCP packet processing as a function of the number of connec-
tions. 18k, 76k and 91k are the number of connections at which CFAR predicts persistent LLC
misses for Linux, the kernel-bypass stack and the lwIP stack, respectively.

Conclusion: Based on these results, we conclude that CFAR’s Pscale and Ph/m projectors enable
developers to accurately identify how the working set of third-party or their own code changes as
a function of the workload. Given that CFAR can extract distillates in < 30 mins, we envision
such extraction and analysis of cache distillates to be a part of the regular development cycle
(e.g., continuous integration), enabling developers to identify surprising performance behavior
without having to write elaborate test suites.

How Does Data Structure Layout in Code I Call Interact with My Code?

Finally, we used the Pscale and Ph/m projectors to analyze the cache usage of the hash table
implementations from Vigor [251] and Klint [192]. We did not write this code, but we read it and
thought we understood it fairly well. This is the kind of analysis that Alice would do to answer
the other part of her question in §6.1: is the hash table the predominant cause of persistent LLC
misses?

The projections proved our expectations about the performance of the two tables wrong: The
two hash tables organize keys, values, and 4 metadata fields in slightly different ways: Vigor
stores them as 6 distinct arrays, while Klint encapsulates all 6 fields into a single 64B struct

and maintains a single array with elements of this struct type. At first glance, it appears—and
did to us too—that the latter always leads to better locality and improved performance. However,
it turned out that this is not always true.

Applying Pscale and Ph/m on the put, get, and delete operations of the two implementations
predicts the following: For a put() or get() call, both implementations bring 64B of data into
the cache, but while Klint does so in one cache line, Vigor does so across 6 cache lines. When
the table does not fit in the LLC, Klint suffers one LLC miss, while Vigor suffers 6. On the other
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Figure 6.7: Relative latency (measured) of the Vigor hash table as compared to Klint’s for put()
and delete() calls. Positive (negative) numbers indicate that the Vigor table is slower (faster).

hand, for a delete() call, both implementations touch 32B, but while Vigor brings only these
32B into the LLC, Klint brings in 64B. On closer inspection, this is because Klint must bring in
at least one entire cache-line-aligned struct (it cannot bring in half a cache line); hence, it always
brings in the value and 2 other metadata fields, even though it never accesses them. As a result,
for a range of table occupancies, Klint overflows the LLC and suffers 1 miss, while Vigor fits in
the LLC and suffers none. Ph/m predicts that this range begins at approximately 400k keys and
ends at approximately 800k keys, at which point both implementations overflow the LLC.

To verify these predictions, we measured the latency and LLC misses incurred by the put and
delete calls of the two implementations, for different map occupancies. Fig. 6.7 plots Vigor’s
latency overhead relative to Klint, as a function of map occupancy. As predicted: Klint put
is consistently faster due to better locality. For occupancies of 400-800k keys, Vigor delete
incurs 30% lower latency than Klint; moreover, Vigor incurs no misses, while Klint incurs 1.
There was one discrepancy between Ph/m’s predictions and the outcome of our experiments: for
occupancies above 860k, Vigor continued to incur 1 miss, whereas Ph/m predicted 3. We believe
that this is due to Intel’s stride prefetcher, which our current cache model does not consider.

Conclusion: Data-structure developers often tailor their memory layout to different work-
loads [45–47]; CFAR’s projections can make such subtle differences accessible to data-structure
users, allowing them to pick the implementation best suited for their expected workoad without
elaborate benchmarking.

Does My Code Lead To Inefficient Memory Access Patterns?

We now describe how CFAR’s projections helped us uncover two inefficient cache access patterns
in the kernel-bypass stack and the Hyperkernel’s mmap() syscall, respectively.
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Kernel-bypass stack: The inefficient access pattern in the kernel-bypass stack was due to the
organization of the TCP process control block (PCB). The TCP PCB stores per-connection state
and corresponds to the 4,5, and 19 cache lines touched per-connection. To understand what data
was being accessed within the PCB for each stack, we wrote a simple projector that returned the
offset (in cache lines) of each access within the PCB from the base of the PCB. Fig. 6.8 shows
the projector.

1 def pcb_offset(seq):
2 pcb = sympy.Symbol(’pcb’)
3 # if address is an offset from only the PCB,
4 # return (address-PCB)/64
5 return [(x-pcb)//64 for x in seq if sympy.is_constant(x-pcb)]

Figure 6.8: Projector that returns offsets accessed within the TCP Process Control Block (PCB).

Applying this projector to the fast path’s rcv and snd calls, made us realize that there was only
a single access to the 5th cache line in the PCB. Fig. 6.9 shows the list of cache-line accesses
returned for the above calls:

1 # Receive fast path: KB stack
2 # Only one access to 5th cache line
3 [1,1,0,0,2,2,3,4,1,2,2,3]
4
5 # Send fast path: KB stack
6 # No access to 5th cache line
7 [2,3,3,1,1,3,3,3,3,1,2,3,2,2,1,1,1,1,0,0,2,1,2,2,1,0,2]

Figure 6.9: Offsets accessed within the PCB for the kernel-bypass stack’s fast path.

Using the filename:linenum information that CFAR logs during symbolic execution (§6.3),
we realized that the field being accessed was keep_cnt_sent, which was being updated on the
rcv path to indicate that the connection was still live. We used this information to re-organize
the PCB struct—we moved keep_cnt_sent into the first 4 cache lines and moved some of
the timer fields (primarily used during retransmissions) to the 5th line. Fig. 6.10 shows the list
returned by the PCB offset-computing projector after the change, which confirmed that the fast
path only accessed the first 4 cache lines.

1 # Receive fast path: KB stack
2 # No access to 5th cache line
3 [0,0,0,0,1,1,2,1,0,1,1,2]
4
5 # Send fast path: KB stack (updated)
6 # No access to 5th cache line
7 [1,2,2,0,0,2,2,2,2,0,1,2,1,1,3,3,3,3,3,3,1,3,1,1,0,0,1]

Figure 6.10: Offsets accessed within the PCB for the kernel-bypass stack’s fast path after our fix.

We evaluated the impact of this change by running the same experiment we ran previously, where
we measured the latency of the fast path as a function of the number of connections; Fig. 6.11
illustrates the results. We see that our fix has a significant impact on the fast path’s connection
scalability: touching one less cache line ensures that the stack can support 88k concurrent
connections (as opposed to 72k) before suffering from a latency spike due to LLC misses.
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Figure 6.11: Measured latency as a function of the number of connections for the kernel-bypass
stack, before and after our fix.

Hyperkernel mmap(): CFAR’s Pscale projector enabled us to uncover and fix a subtle perfor-
mance bug in Hyperkernel’s mmap() implementation. The mmap code performs a four-level page
walk, checking for permissions only before it allocates the final page. So, if it is called with
invalid permissions, it does not exhibit incorrect behavior (it does not allocate the final page), but
it still performs significant unnecessary work (allocates and zeroes out up to 3 new page-table
pages, depending on where the walk fails). This brings up to 12K B of data into the L1 cache;
given that most servers today have an L1 cache of 32KB, this code unnecessarily pollutes up to
roughly 40% of the cache.

Figs. 6.12 and 6.13 show parts of mmap’s projections before and after we fixed the above behavior.
Consider Fig. 6.12: Line 6 corresponds to the scenario where the walk fails at level 1 (no page-
table page is allocated at that level for the target address), and the permissions are invalid; line 12
corresponds to the scenario where the code fails at level 2, and the permissions are valid. In the
former case, the projection returns “201,” while in the second, “202.” So, the code touches almost
the same number of cache lines, even though it should be accessing very different amounts of
memory: in the former case it doesn’t need to allocate any pages, whereas in the latter case it
needs to start allocating at level 2. Now consider Fig. 6.13: Line 4 corresponds to the scenario
where the permissions are invalid; in this case, the projection always returns “3,” i.e., the code
touches only 3 cache lines.

For the developer of this code, a read of the projection (before the fix) would immediately reveal
that there is a performance problem: code paths that should be accessing very different amounts
of memory touch almost the same number of cache lines.

Conclusion: The CFAR distillate, coupled with simple projectors enables developers to quickly
inspect their code and identify inefficient cache access patterns without having to run elaborate
benchmarks.
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1 def mmap_dcache(va,perm):
2 #State: pid, proctable, pages
3
4 if [pages + [proctable+320*pid+16]*4096 + 8*((va>>39)&511)]:
5 if not (perm & PTE_PERM_MASK):
6 return 201
7 return 265
8
9 if [pages + [proctable+320*pid+16]*4096 + 8*((va>>30)&511)]:

10 if not (perm & PTE_PERM_MASK):
11 return 138
12 return 202
13 ....

Figure 6.12: Projection for buggy mmap code showing number of unique cache lines.

1 def mmap_optimized_dcache(va,perm):
2 #State: pid, proctable, pages
3
4 if not (perm & PTE_PERM_MASK):
5 return 3
6
7 if [pages + [proctable+320*pid+16]*4096 + 8*((va>>39)&511)]:
8 return 265
9

10 if [pages + [proctable+320*pid+16]*4096 + 8*((va>>30)&511)]:
11 return 202
12 .....

Figure 6.13: mmap projection after fix.

Can I Prove/Disprove the Absence of Leaks Due to Secret-Dependent Memory Accesses?

We used CFAR’s Pcrypt projector to analyze the 8 OpenSSL algorithms listed in Table 6.2. The
first 7 are the ones mentioned in the beginning of §6.4, while the last one is from a previous
version of OpenSSL (1.1). We included the latter because it is known to exhibit cache-based
leakage (CVE-2018-0737 [182]), and we wanted to demonstrate CFAR’s capability to identify
this behavior (and none of the algorithms that we analyzed from the latest version of OpenSSL
exhibit it).

Program Remarks

OpenSSL 3.0 AES Identified previously unknown branch-based leak

OpenSSL 3.0 ChaCha Verified absence of secret-dependent branches, memory accesses

OpenSSL 3.0 ECDHE Verified absence of secret-dependent branches, memory accesses

OpenSSL 3.0 MD5 Verified absence of secret-dependent branches, memory accesses

OpenSSL 3.0 MD4 Verified absence of secret-dependent branches, memory accesses

OpenSSL 3.0 Poly1305 Verified absence of secret-dependent branches, memory accesses

OpenSSL 3.0 SHA-256 Verified absence of secret-dependent branches, memory accesses

OpenSSL 1.1 RSA

(CVE-2018-0737)
Reproduced known cache-based leak

Table 6.2: OpenSSL programs analyzed using CFAR’s Pcrypt.
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1 def ossl_cipher_unpadblock(buffer, buffer_length, block_size):
2
3 if buffer.padding_length == 0:
4 return 44
5 if buffer.padding_length > block_size:
6 return 48
7 return 57 + 19*buffer.padding_length

Figure 6.14: Projection showing how instruction count for AES’s cipher unpadding function is a
function of buffer.padding_length, which must remain secret.

1 def ossl_cipher_unpadblock(buffer, buffer_length, block_size):
2 return 2985

Figure 6.15: Projection showing instruction count for AES’s cipher unpadding function after our
fix.

The Pcrypt projector enabled us to confirm the cache-based leakage in OpenSSL 1.1, and also
uncover a previously-unknown branch-based leakage in OpenSSL 3.0.0. In particular, the output
projection revealed that the cipher-block unpadding function used by AES branches depending
on secret input. To further investigate, we wrote another projector that shows the number of
executed instructions; this revealed that the number of instructions executed by the function in
question depends on the length of the input buffer’s padding, making the code vulnerable to
padding oracles. We reported this leakage to the maintainers who confirmed it [183], and we
have submitted a pull request [184] that has undergone multiple rounds of review and is in the
final stages of getting merged.

Figs. 6.14, 6.15 show the output projection of the latter projector for the unpadding function
before and after the fix. The former clearly indicates that the number of instructions depends on
padding length, whereas the latter returns the same value independent of the input.

Our experience with OpenSSL suggests that incorporating CFAR and its projectors into the
development cycle could be useful to developers. For instance, we learnt that the specific branch
leakage had been latent since OpenSSL 1.1.1 (released in 2019) because the developer “just
reused the code,” and it had been missed despite the thorough code reviews that OpenSSL
undergoes. Yet for the developer, a quick glance at the projection (before the fix) would have
immediately revealed the problem. So, perhaps if distillates and projections were extracted
regularly, e.g., as part of continuous integration, branch and cache leakage would be detected
before making their way into production.

Conclusion: Since the distillate captures all information relevant to how a piece of code accesses
memory, CFAR can help developers efficiently reason about more than just performance proper-
ties; Pcrypt can help identify both branch- and cache-based leakage in cryptographic code (or
prove their absence).
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6.5 Related Work

Given the ever growing gap between processor and memory speeds, understanding how systems
code uses the cache has been extensively studied. However, we are not aware of any tool that
(like CFAR) possesses predictive power across workloads. All prior tools we know of are limited
to providing insights only about the workloads that the tool was run on.

We drew significant inspiration from work in the early 90s on abstract execution [148] and
memory tracing [78]. Both these systems were designed to be able to replay the memory trace of
a piece of systems code (just like CFAR’s distillates), but only for concrete inputs. This is because
their goal was to avoid having to store large memory traces required for computer architecture
simulations, instead they sought to generate this trace on the fly. CFAR’s distillate thus represents
a generalized version of their work, that builds on advancements in automated program analysis.

More recent work has focussed on building better profilers [35,59,139,153,158,189,230] to help
developers fix performance issues that they observe due to poor cache utilization. The key trade-
off that such systems explore is between ease of use, performance overhead and the level of detail
at which they can analyze the execution of the given input workload. The most detailed memory
profiler we know of is Memspy [158]. MemSpy uses a system simulator to execute an application
which allows it to interpose on all memory accesses and build a complete map of the cache. Thus,
MemSpy can account for and explain every single cache miss and using a processor accurate
model can approximate memory access latencies. However, Memspy requires applications to
be ported to its simulator which can be a painstaking task. Additionally its high performance
overhead ensures that it can only be used to profile a limited number of input workloads. At the
other end of the spectrum are profilers such as DMon [139] which work-off-the-shelf for almost
all systems code, and have very low-enough overheads to run continuously in production. The
downside is that they can only be used to monitor a very specific subset of events and cannot
provide the visibility that MemSpy does. We see profilers as complementary to CFAR. CFAR’s
distillate and projectors allow developers to quickly understand which workloads might be of
interest and cause unexpected cache behavior. Once they narrow this search space, they can use
state-of-the-art profilers to study these workloads in great detail.

Lastly, DTrace [39], eBPF [56] and DeBox [202] allow developers to not only profile their
applications, but also the kernel to observe, among other information, its cache usage behavior.
DTrace and eBPF achieve this by allowing developers to write their own instrumentation code
that is loaded in the kernel. DeBox takes a different approach and has the kernel expose
performance information (including cache usage) after each system call is completed in a
DeBoxInfo struct , just like the kernel exposes semantic information via error codes today.
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6.6 Conclusion

In this chapter, we presented CFAR a tool that enables developers to scrutinize and answer
arbitrary questions about the CPU cache usage of their own, as well as third party code. CFAR’s
key contribution is the CFAR distillate: a precise intermediate representation that contains all
information about how the code in question accesses memory, and discards everything else.
CFAR allows developers to write simple programs (projectors) to query the CFAR distillate and
answer specific questions about cache usage. This enables them to understand, among other
things, the micro-architectural side effects of invoking a piece of code, and thus gain greater
visibility into the latency impact of using third-party code.

CFAR’s approach is similar to that of LINX in two notable ways. First, both analyze the in-
put program separately from the environment in which it runs. For any given P , they first
extract a representation that is uniquely determined by P—general-case interfaces and distillates,
respectively—and then analyze how that representation interacts with its environment (e.g., differ-
ent underlying hardware, different cache architectures, etc.). This split analysis ensures flexibility
and allows the general-case interface to be tailored to arbitrary deployment environments and the
distillate to answer arbitrary questions about the program’s cache usage.

Second, both represent the property of interest—processing latency and answers about cache
usage, respectively—as programs that accept the same input(s) as P . Like latency interfaces,
both Pdist and Pproj are programs. Pproj in particular, can be thought of as being an interface that
describes the latency of P in terms of the metric defined by the developer’s specific question.
Thus, our work on CFAR reinforces our belief that simple, executable programs are best suited to
summarizing the latency behavior of systems code in a manner that is simultaneously readable
and accurate.
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7 Future Work

Both LINX and CFAR faced two constant challenges. First, the unpredictability introduced by
general-purpose hardware, which makes it challenging for LINX to reason about NF tail latency
and introduces inaccuracies in CFAR’s cache projections. Second, the limitations of automated
program analysis which impact the scalability of both LINX and CFAR and often cause them to
timeout while analyzing complex systems code.

We now describe two directions for future work aimed at overcoming each of the above challenges.

7.0.1 Performance Interfaces for Hardware Accelerators

With the decline of Moore’s law, systems developers are increasingly reliant on hardware
accelerators for performance improvements. From datacenters to hand-held devices, hard-
ware accelerators are used to speed up a wide variety of applications such as machine learn-
ing [16,132,133,173], video processing [84,198], compression, encryption [48,118] and systems
infrastructure tasks [17, 89, 102, 136].

While the ship has arguably sailed with respect to precise performance interfaces for general-
purpose hardware [82,105], we are optimistic that such interfaces are feasible for accelerators for
two reasons: First, accelerators are much simpler than today’s general-purpose servers, and so we
can rely on a plethora of high-fidelity models from the 80s-90s (summarized in [77]) to analyze
them. Second, initial discussions with accelerator builders indicated that they have an intuitive
understanding of the factors that impact performance, and for them, writing a performance
interface for their hardware is on par (in terms of difficulty) with a software developer writing
a semantic interface for their software. So we see hardware accelerators providing a golden
opportunity for researchers to rethink performance modularity from the ground up and provide
firm foundations for the design of systems with predictable performance.

That said, performance interfaces for hardware accelerators will likely need a rethink of what
the right representation for performance behavior is. This is because hardware, unlike software,
has an inherently parallel execution model, with multiple circuits (e.g., different pipeline stages)
executing in parallel to the same system clock. It is likely that to accurately predict performance
for such a model, the interface will need to reflect this parallelism which raises the question of
whether programs (which are easiest to read when sequential) remain the right representation.

7.0.2 Latency Verification Tools That Cut across the Stack

To make latency interfaces immediately useful, we focused on being able to extract them au-
tomatically from systems code and relied on automated program analysis techniques to do so.
However, this comes with the caveat of being unable to scale to complex systems (e.g., Linux)
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which limits the applicability of our techniques.

We are particularly interested in augmenting state-of-the-art proof assistants (e.g., Coq [55],
Isabelle [121]) with the ability to reason about the latency in machine instructions of systems
code to enable latency interfaces to scale to more complex code. That is, we wanted developers
to be able to interactively verify post-conditions about the execution latency, just as they do
today for semantics. We are optimistic that this will help us scale our latency interfaces to more
complex code since proof assistants are increasingly scaling to complex systems code such as file
systems [43] and even key-value stores similar to the ones we used in Concord [109].

The key challenge here is that of abstraction. Proof assistants currently do not possess visibility
into the executing binary. This is because they do not require it; they can reason about more high-
level representations of the program (e.g. the abstract syntax tree) which provide richer semantic
information, safe in the knowledge that the semantics will remain unchanged as the code is
translated to lower-level representations. In contrast, performance properties are rarely preserved
as the code is translated to lower-level representations, so being able to verify performance
properties will require a verification tool that can reason about multiple representations of the
code simultaneously.
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8 Conclusion

In this thesis, we presented a three-part approach to enable developers to reason more precisely
about the latency behavior of systems code.

First, we worked within the confines of existing representations for system latency and studied
the problem of ensuring that datacenter applications meet their microsecond-scale tail-latency
SLOs. We showed how this problem necessitated low-overhead scheduling mechanisms and
proposed Concord: an efficient scheduling runtime for microsecond-scale datacenter applications.
Concord demonstrates that careful approximation (as opposed to canonical implementation)
of theoretically optimal scheduling policies enables new microsecond-scale mechanisms that
provide significant throughput benefits while ensuring the applications continue to meet the same
tail latency SLO. Concord introduced two novel mechanisms: (1) compiler-enforced cooperation
which enables preemptive scheduling at 4× lower overhead than the state of the art, and (2) a
work-conserving dispatcher which enables the dispatcher thread (previously responsible only for
scheduling requests) to contribute to application goodput.

We then advocated that systems code must have a latency interface that describes its latency
behavior and related side effects for all inputs, just like the code’s semantic interface describes its
functionality and related side effects.

We proposed that the latency interface for a system be represented as a program that accepts the
same input(s) as the system and returns its processing latency. We introduced three key ideas
that enable latency interfaces to summarize latency in a manner that is simultaneously accurate
and readable: (1) Latency-critical variables (LCVs) that succinctly summarize the impact of
latency of all factors other than the current input (e.g., prior inputs, system state, configuration,
and runtime environment), (2) Latency resolution which provides readers of the interface with
explicit control over the trade-off between accuracy and readability, and (3) Deployment-specific
interfaces that enable developers unfamiliar with the system’s implementation details to reason
about its latency behavior in their specific use-case scenario.

Finally, since a latency interface is incomplete without a description of side effects, we studied
the problem of helping developers reason about the micro-architectural (specifically CPU cache)
side effects of systems code. We present CFAR (Cache Footprint AnalyzeR), a tool that processes
a piece P of systems code into answers to developers’ questions about how that code uses the
cache. CFAR’s processing consists of two phases: In the former, CFAR takes as input the code
and outputs an intermediate representation (a “distillate”) that contains all the information on how
the code accesses memory. In the latter, developers can write simple programs (“projectors”) that
use the distillate to compute answers (“projections”) to specific questions about P’s cache usage.

CFAR’s approach is similar to that of LINX in two notable ways.
First, both analyze the input program separately from the environment in which it runs. For
any given P , they first extract a representation that is uniquely determined by P—general-case
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interfaces and distillates, respectively—and then analyze how that representation interacts with
its environment (e.g., different underlying hardware, different cache architectures, etc.). This
split analysis ensures flexibility and allows the general-case interface to be tailored to arbitrary
deployment environments and the distillate to answer arbitrary questions about the program’s
cache usage.

Second, both represent the property of interest—processing latency and answers about cache
usage, respectively—as programs that accept the same input(s) as P . Like latency interfaces,
both Pdist and Pproj are programs. Pproj in particular, can be thought of as being an interface that
describes the latency of P in terms of the metric defined by the developer’s specific question.
Thus, our work on CFAR reinforces our belief that simple, executable programs are best suited to
summarizing the latency behavior of systems code in a manner that is simultaneously readable
and accurate.

We are optimistic about what the future holds for latency interfaces. We believe that the
widespread adoption of such interfaces could be the first step towards a future where we can build
systems with well-understood performance, just like types and object-oriented programming
enabled us to build programs that were orders of magnitude bigger, better, yet safer than any that
came before.
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