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A B S T R A C T

Performance and reliability are important yet conflicting properties
of systems software. Software today often crashes, has security vul-
nerabilities and data loss, while many techniques that could address
such issues remain unused due to performance concerns.

This thesis presents elastic program transformations, a set of tech-
niques to manage the trade-off between reliability and performance
in an optimal way given the software’s use case. Our work is based
on the following insights:

• Program transformations can be used to tailor many software
properties: they can make software easier to verify, safer against
security attacks, and faster to test. Developers can write soft-
ware once and use transformations to subsequently specialize it
for different use cases and environments.

• Many classes of transformations are elastic: they can be applied
selectively to parts of the software, and both their cost and effect
scale accordingly.

• The trade-off is governed by the Pareto Principle: the right choice
of program transformations yields 80% of the benefit for 20% of
the cost.

This thesis makes four contributions that use these insights:

1. We developed -Overify, a strategy and technique for choos-
ing compiler optimizations to make programs easier to verify,
rather than faster to run. -Overify demonstrates that program
transformations have the power to reduce verification time by
up to 95×.

2. We show that known program transformations to detect mem-
ory errors and undefined behavior can be elastic. We developed
ASAP, a technique and tool to apply these transformations se-
lectively to make a program as secure as possible, while staying
within a maximum overhead budget specified by the developer.
For a maximum overhead of 5%, ASAP can protect 87% of the
critical locations in CPU-intensive programs.

3. We improve the performance of fuzz testing tools that rely on
program transformations to observe the software under test. We
present FUSS, a technique and tool for focusing these transfor-
mations where they are needed, improving the time to find bugs
by up to 3.2×.
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4. We show that elasticity is a useful design principle for program
transformations. In the BinKungfu project, we develop a novel
elastic transformation to enforce control-flow integrity. Exploit-
ing elasticity reduces the number of programs that violate per-
formance constraints by 59%.

The essence of our work is identifying elasticity as a first-class prop-
erty of program transformations. This thesis explains how elasticity
manifests and how -Overify, ASAP, FUSS and BinKungfu exploit
it automatically. We implemented each technique in a prototype, re-
leased it as open-source software, and evaluated it to show that it ob-
tains more favorable trade-offs between reliability and performance
than what was previously possible.

Keywords: systems software, program transformations, elasticity,
compilers, instrumentation, profiling
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A B S T R A C T ( D E U T S C H )

Geschwindigkeit und Zuverlässigkeit sind zwei wichtige, aber mitein-
ander im Konflikt stehende Eigenschaften von Systemsoftware. Heut-
zutage sind Crashes, Sicherheitslücken und Datenverlust traurige Rea-
litäten. Dennoch bleiben Techniken gegen solche Probleme häufig un-
genutzt, weil sie die Performance zu stark beeinträchtigen.

Diese Dissertation präsentiert elastische Programmtransformationen:
Techniken, um für jede Einsatzumgebung eines Programms die op-
timale Balance zwischen Zuverlässigkeit und Performance zu finden.
Unsere Arbeit basiert auf folgenden Erkenntissen:

• Programmtransformationen beeinflussen viele der Eigenschaf-
ten von Software; mit den richtigen Transformationen wird Soft-
ware einfacher zu verifizieren, sicherer gegen Attacken, und
schneller zu testen. Entwickler schreiben bloss eine Version ih-
rer Software, und spezialisieren sie dann mittels Transformatio-
nen für verschiedene Umgebungen und Anwendungsbereiche.

• Viele Klassen von Programtransformationen sind elastisch. Sie
können gezielt auf Teile eines Programms angewandt werden,
was sowohl die Kosten als auch den Nutzen reduziert.

• Das Pareto-Prinzip ermöglicht vorteilhafte Trade-offs: eine sorg-
fältige Auswahl der Transformationen erreicht 80% des Nutzens
mit bloss 20% der Kosten.

Diese Arbeit enthält vier Forschungsbeiträge, die sich diese Erkennt-
nisse zu Nutze machen:

1. Wir entwickelten -Overify: eine Strategie und Technik zur Aus-
wahl von Compileroptimierungen mit dem Ziel, Programme
einfacher zu verifizieren statt schneller auszuführen. -Overify
beweist, dass Programmtransformationen die Macht haben, die
zur Softwareverifizierung benötigte Zeit um bis zu 95× zu ver-
ringern.

2. Wir zeigen, dass Transformationen zum Entdecken von Spei-
cherzugriffsfehlern und undefinierten Verhalten elastisch sein
können. Wir entwickelten ASAP, eine Technik zur gezielten An-
wendung solcher Transformationen. ASAP macht Programme
so sicher, wie es für ein bestimmtes Overheadbudget möglich
ist. Für ein Overheadlimit von 5% kann ASAP 87% aller kriti-
schen Stellen in CPU-intensiver Software absichern.
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3. Wir erhöhen die Leistung von Fuzz Testing. Diese Testmethode
verwendet Programmtransformationen, um den Fortschritt des
Testvorgangs laufend zu analysieren. Unsere Technik FUSS fo-
kussiert diese Transformationen genau dort, wo sie nötig sind,
und reduziert dadurch die Zeit zur Fehlersuche um bis zu 3.2×.

4. Wir zeigen, dass Elastizität ein nützliches Designprinzip für
Programmtransformationen ist. In unserem BinKungfu-Projekt
entwickelten wir eine neuartige, elastische Transformation zum
Schutz der Control-Flow-Integrity eines Programms. Dank ihrer
Elastizität konnten wir die Anzahl Programme mit Performan-
ceproblemen um 59% verringern.

Der Kern unserer Arbeit ist die Erkenntnis, dass Elastizität eine zen-
trale Eigenschaft von Programmtransformationen ist. Diese Disserta-
tion erklärt, wie Elastizität auftritt und wie -Overify, ASAP, FUSS
und BinKungfu sie automatisch nutzen. Wir implementierten jede
dieser Techniken und veröffentlichten unsere Prototypen als freie Soft-
ware. Unsere Auswertung zeigt, dass sie eine bessere Kombination
von Geschwindigkeit und Zuverlässigkeit erreichen, als bisher mög-
lich war.

Schlagwörter: Systemsoftware, Programmtransformationen, Elasti-
zität, Compiler, Instrumentation, Profiling
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Alexandru Copoţ, Amer Chamseddine, Ana Sima, Arseniy Zaostro-
vnykh, Baris Kasikci, Benjamin Schubert, Bin Zhang, Cristi Zamfir,
Daniel Mahu, Francesco Fucci, Georg Schmid, João Carreira, Loïc Gar-
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Part I

S E T T I N G T H E S TA G E

Where we explain why we want systems that are both
fast and reliable, why such systems are hard to build, and
how program transformations can achieve a decent trade-
off between speed and reliability.

We also look thoroughly at related work in program trans-
formations, performance, reliability, and verification.





1
I N T R O D U C T I O N

Not getting lost in the complexities of our own
making, [. . . ] that is the key challenge computing
science has to meet.

E. W. Dijkstra, 1984 [44]

1.1 problem : building systems that are both fast and
reliable is hard

Software is arguably the most complex type of artifact that humans
have ever built. Its ability to solve complex problems makes software
so valuable. Thus, businesses, industry, governments and individuals
delegate more and more tasks to software and trust it to a great extent.
To be worthy of this trust, software must be reliable.

Software complexity tends to reduce reliability. Complex software
is often too large to be fully understood, and each additional 1000
lines of code introduce up to 50 new bugs [93]. Complexity also man-
ifests in the large number of possible inputs and the many possible
interactions between components. These factors lead to unforeseen
emerging behavior that can cause reliability problems.

The desire for performance further increases the difficulty of mak-
ing software reliable. To make systems fast, their authors use ad-
vanced algorithms, add a variety of caches and batch processing tech-
niques, and resort to low-level languages that make efficient use of
the hardware. Each of these techniques increases complexity and can
introduce new reliability problems.

The trade-off between reliability and performance is particularly
hard to resolve for systems software such as operating systems, web
browsers and libraries. This type of software is used by higher-level
applications, and thus its speed and reliability influences the entire
software stack.

1.1.1 Consequences of unreliable software

Unreliable software can cause great harm. In 2002, NIST published a
study that estimated the cost of bugs to be 0.6% of the US GDP. More
precisely, the study quantifies costs due to lost revenue, software up-
dates, data loss, etc., that could be saved if better tools were available
to prevent bugs.
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4 introduction

Figure 1: Prominent bugs discovered between 2011 and 2016

While performing the work presented in this thesis, we witnessed
the discovery of Heartbleed, Shellshock, Ghost, Stagefright, and Dirty
COW (Figure 1). Each of these is a software bug with sufficient im-
pact to receive a catchy name and a logo. These bugs are located in
widely deployed systems software, and thus affected a large number
of users. For example, a survey by Netcraft found half a million web
sites that were vulnerable to the Heartbleed vulnerability at the time
it was disclosed [101] Similarly, all versions of Android published
between 2010 and 2015 contained the vulnerable Stagefright code, af-
fecting nearly one billion devices [92]. Fixing these bugs required a
software update that typically caused service downtime.

In the case of Stagefright, performing a software update required
substantial effort. The vulnerability revealed a fractured Android
ecosystem, where software updates require collaboration between
Android developers, cell phone carriers, system-on-chip manufactur-
ers, and phone manufacturers. As a result, the Android team at
Google designed a new update process with monthly security fixes
for select phones [5].

A more positive consequence of software bugs is the research into
tools and techniques for increasing reliability, which we will look at
in the next section.

1.1.2 Existing tools do not solve the problem

Over time, software developers have built numerous tools to make it
easier to create reliable software. These tools include compilers and
their warnings, linters, static analyzers, dynamic analyzers, model
checkers, automatic testcase generators, hardware mechanisms to iso-
late and protect programs, replication for fault tolerance, randomiza-
tion, instrumentation techniques, and many more.

Tools do have the potential to make systems software more reliable.
For example, automated fuzz testing tools discovered variants of the
Shellshock bug that had remained after the original bug was fixed.
Developers used memory safety checkers to scrutinize OpenSSL’s
source code after the Heartbleed bug had been discovered, and found
more bugs. Tool-related publications usually contain impressive lists
of trophies (e.g., [118, 141]), i.e., bugs found using the tool.
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As a result of their successes, the use of tools for reliability is be-
coming more wide-spread. In the last years, an increasing number of
research tools were transformed into commercial products (e.g., [128,
118, 98]. Competitions like the Cyber Grand Challenge [40] raised
public awareness of software security issues. Bug bounty programs
offer increasing rewards for security issues, indicating that they be-
come harder to find [48]. These trends show that tools do contribute
to more reliable software.

Yet many tools live in small niches. Why is this so? What is the
difference between an ubiquitous technique and one that is rarely
used? In their survey of solutions for memory safety [124], Szekeres
et al. identify protection, cost and compatibility as the three criteria that
influence whether a technique is adopted.

Szekeres and his co-authors found that successful techniques have
a low performance cost and high compatibility. The protection of-
fered by successful techniques is often weak or probabilistic. Yet this
does not hinder their adoption, indicating that developers and system
builders are in principle willing to use any tool that helps. However,
performance is crucial: the study showed that no tool with more than
10% runtime overhead found widespread adoption in production sys-
tems. Compatibility is also a major concern. If a tool produces false
alarms during normal operation, or cannot work with legacy systems,
or limits how developers design their systems, this tool will remain a
niche tool.

Interestingly, existing tools can be classified based on their over-
head, protection, and compatibility. These values are fixed for a given
tool. Developers choose between using a tool and paying all its cost,
or not using the tool and getting none of its benefits. It is a binary
choice. This need not be the case, as we show in the next section.

1.2 the elasticity principle

The heart of this dissertation is the formulation of the Elasticity Prin-
ciple:

Elasticity Principle. The cost and benefits of program transformations can
be flexibly traded against each other, according to needs and use case.

The Elasticity Principle allows developers to use program trans-
formations selectively. It postulates that program transformations are
not monolithic, but rather the sum of numerous small changes. By se-
lecting a subset of these changes, developers can often achieve most of
the desired effect of a transformation while keeping its performance
impact low.

We call the Elasticity Principle a “principle” because we have ob-
served it for a large number of program transformations and in many
contexts. We have made use of it to reduce the overhead of run-time
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checking tools, to improve the overall performance of fuzz testers,
and to design a better protection mechanism against return-oriented
programming.

This thesis describes the insights behind the Elasticity Principle and
the applications that build on it, but also explores its limits. We must
keep in mind that systems are diverse and that making them reli-
able is a difficult problem. Program transformations offer a solution
for parts of this problem, particularly when unreliability is due to
low-level bugs. Selective instrumentation techniques based on the
Elasticity Principle are useful in a subset of these cases, when the per-
formance impact of program transformations is too high to use them
in their original form. When selective instrumentation techniques ap-
ply, developers can trade a small amount of performance for a large
part of the desired effect.

The formulation of the Elasticity Principle is novel, and this thesis
presents the first techniques that apply the principle to off-the-shelf
program transformations.

Two factors enabled our work: first, the recent rise in popularity
of program transformations and related techniques, and second, the
integration of ideas from different fields. Around the time our work
started, mainstream compilers gained support for program transfor-
mations to detect memory errors, data races, and undefined behav-
ior [118, 119, 36]. Their integration into compilers revealed a com-
mon structure and allowed us to build generic tools that would work
with multiple types of program transformations. Our work combines
these compiler techniques with ideas from security and operating sys-
tems, fields where our research group had prior experience. Overall,
this put us in the right place at the right time to discover the Elasticity
Principle.

1.2.1 Insights

In the course of our research, we found program transformations to
be widely applicable and powerful. We explored several techniques
to increase their effectiveness through elasticity. In that process, we
discovered the following three insights into the origin, the nature, and
the applicability of elastic program transformations.

1.2.1.1 Program transformations can specialize one program for many en-
vironments

Since the days of FORTRAN, developers have been using optimiz-
ing compilers. These employ program transformations that make
programs faster. The transformations range from localized simplifica-
tions (e.g., transforming x / 2 into x >> 1) to structural changes (e.g.,
swapping nested loops to take advantage of processor caches). Com-
piler optimizations were essential for the acceptance of FORTRAN.
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Because of their success, developers are accustomed to the fact that
transformations can make a program faster.

What surprised us is that the right program transformations can
also make software easier to verify, faster to test, and safer. Figure 2
shows an example. We adapted the example from Ball et al.’s paper
on the SLAM verifier [12], where it demonstrates that verifiers need
to carefully reason about control flow. The verifier tries to prove that
the program correctly pairs calls to lock and unlock. In the original
program in Figure 2a, this is indeed difficult: there exists a static
path through the program that calls unlock at lines 7 and 12 without
an intervening call to lock. The verifier needs to analyze the loop
condition to prove that this cannot happen.

The equivalent transformed program from Figure 2b is much easier
to verify. Its control flow has been simplified by a transformation
called jump threading. Modern compilers can perform jump threading,
but they use it sparingly because it duplicates code (snippet (1) in this
case) and increases program size.

The example shows how different environments and use cases call
for specialized versions of a program. We prefer version 2a in a space-
constrained environment (e.g., a CPU with a small instruction cache),
but prefer 2b for verification.

The specialization is best done after the code has been written, us-
ing automatic transformations. This means that developers only have
to write a single version of their code. In fact, at that time developers
might not even know all the environments where their program will
be used.

While the program versions 2a and 2b are equivalent, in general
program transformations can make arbitrary semantic changes. For
example, transformations can add code to the program to abort it
when bad behavior is detected. This flexibility makes program trans-
formations general, and applicable in more settings than just opti-
mization.

1.2.1.2 Many program transformations are elastic: costs and effects scale

We call a program transformation elastic if we can apply it selectively
to a program and obtain some of its benefit at reduced cost. Elasticity
means that a program transformation is scalable. Like scaling an
elastic cloud service by adding more servers, engineers can scale a
program’s reliability or performance by controlling the amount of
program transformations used.

Our insight is that many classes of program transformations are
elastic because they consist of many small and independent changes.
We call these transformation atoms. For example, a transformation that
protects programs from memory errors would modify all program in-
structions that access memory, inserting thousands of little checks to
ensure the addresses being accessed are valid. Because these checks
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1 void foo() {

2 do {

3 lock();

4 n_old = n;

5 /* (1) use shared data ... */

6 if (/* (2) some condition */) {

7 unlock();

8 n += 1;

9 /* (3) thread-local work ... */

10 }

11 } while (n_old == n);

12 unlock();

13 }

(a) A program for which we would like to verify that calls to lock and
unlock are properly paired. This is challenging because the verifier has
to find the relationship between condition (2) and n_old == n.

1 void foo_opt() {

2 lock();

3 /* (1a) use shared data ... */

4 while (/* (2) some condition */) {

5 unlock();

6 /* (3) thread-local work ... */

7 lock();

8 /* (1b) use shared data ... */

9 }

10 unlock();

11 }

(b) The same program after jump threading and dead code elimination trans-
formations. This is easier to verify, because all static paths through the
program call lock and unlock in pairs.

Figure 2: Program transformations can make programs easier to verify.
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are numerous and independent, choosing any subset leads to a valid,
selectively transformed program that obtains part of the benefit of the
transformation and the transformation can be elastic.

Traditionally, program transformations were thought to be mono-
lithic. The choice of enabling or disabling a transformation was a
binary choice that came with a fixed performance impact. In some
cases, users had manual control, e.g., by using a blacklist of functions
that should not be transformed; but systems that controlled transfor-
mations automatically, on a fine-grained level, were rare.

To be fair, elasticity is not universal. Even transformations that are
elastic may come with some fixed costs. For example, transforma-
tions to protect memory accesses might depend on instrumenting all
memory allocations without exception, which introduces extra costs
that do not scale with the number of memory access checks. Yet
there are a number of findings that make us think of elasticity as a
first-class concept:

• Costs scale: Particularly for CPU-bound applications, it is pos-
sible to reduce overheads to below 5% by exploiting elasticity.

• Effects scale: We found many instances where selective transfor-
mations preserve utility. For example, selective transformations
are sufficient to guide fuzzers and protect against security vul-
nerabilities in cold code.

• Elasticity is a useful design principle: Designing for elasticity
can sometimes eliminate fixed costs. We give an example of
a binary hardening transformation that benefited from such a
design in Section 4.4 of this thesis.

1.2.1.3 Elasticity enables exploitation of the Pareto Principle to achieve
better trade-offs

What happens when one scales down an elastic program transforma-
tion to obtain 80% of its effect? In our experience, its performance
cost reduces to 20% of the original cost. This disproportionality ap-
pears so consistently in many domains that it received a name: the
Pareto Principle.

The Pareto Principle states that in a population that contributes to
some common effect, most of that effect comes from a “vital few” par-
ticipants. Joseph Juran wrote about the universality of this principle,
and named it after Vilfredo Pareto, who had observed that the 20%
richest land owners owned 80% of the land in Italy [73]. Empirically,
many other phenomena follow similar distributions, also in software
systems:

For example, the Pareto Principle applies to software reliability:
Steve Ballmer said that data from Microsoft Error Reporting revealed
that 80% of all errors are caused by 20% of software bugs [15]. In



10 introduction

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●
●

●

●●

●

●
●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●●
●

●●

●●

●

●●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●●

●

●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●
●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0

1000

2000

3000

0 1G 2G 3G 4G
Approximate cost [CPU cycles]

A
to

m
s 

w
ith

 s
im

ila
r c

os
t

Figure 3: The 3,864 transformation atoms in the bzip2 benchmark. A dot’s
color and position on the x-axis corresponds to the corresponding
atom’s cost, i.e., the number of CPU cycles it consumed in the
experiment. The single most expensive atom is as expensive as the
3,414 cheapest atoms together.

performance engineering, 20% of a system’s code uses 80% of CPU
time [41].

An important caveat is that the choice of causes matters: 20% of all
bugs sampled at random would cause only 20% of errors. It is the fact
that Windows Error Reporting can identify the most severe bugs that
makes it so powerful. Similarly, to exploit the Pareto Principle, tools
need to identify those transformation atoms that have the biggest
effect.

To give an intuition for how these “vital few” atoms could be iden-
tified, Figure 3 plots the transformation atoms obtained when trans-
forming the bzip2 program with AddressSanitizer [118]. The effect
in this case is the atom’s performance impact, shown on the x-axis
and measured in billions of CPU cycles. We make three observations:

• Expensive atoms consume billions of CPU cycles. This makes it
possible to identify them using various profiling mechanisms.

• The effect distribution is highly skewed, with many cheap atoms
and few extremely expensive ones. This is the type of power-
law distribution that enables exploitation of Pareto’s Principle.

• Even a small program like bzip2 has thousands of atoms, so
that developers can choose many points in the trade-off between
performance and (in this case) memory safety.

1.2.2 Contributions

This thesis makes four contributions, which we will now introduce.
Each contribution uses the Elasticity Principle in a different way, and
demonstrates its applicability in a different setting.
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1.2.2.1 Program transformations for verification

We present -Overify, a technique for compilers to transform pro-
grams for easier verification. This addresses the problem that code
optimized for fast execution can be hard to digest for verification
tools. Compilers can use -Overify to identify those optimizations
that are beneficial for verification. With the right choice of optimiza-
tions, symbolic execution of the Coreutils UNIX tools completes up
to 95× faster.

More importantly, -Overify demonstrates that program transfor-
mations can have an orders-of-magnitude impact in a use case where
they have not traditionally been applied. Software has to perform in
a number of secondary environments besides production machines.
We identified the compiler as a sweet spot for optimizing these sec-
ondary use cases, because it has both access to the software in its
richest form, as well as knowledge of the target environment.

-Overify adapts the optimization process through the use of a cost
model. This model informs the compiler whether or not a transfor-
mation is beneficial, and thus controls how often any class of trans-
formations are applied. In retrospect, when developing -Overify we
became aware that transformations are trade-offs, and using them
selectively is beneficial.

We describe and evaluate -Overify in Chapter 3.

1.2.2.2 Selective sanity checks with high coverage and low overhead

We developed ASAP, a technique to manage the overhead of instru-
mentation code such as memory safety checks. ASAP applies this
instrumentation selectively to generate a program that is as secure as
possible while staying within a configurable overhead budget. This
addresses the problem that developers often cannot protect produc-
tion software with instrumentation because the instrumentation has
a high, fixed, overhead.

The main contribution of the ASAP project is the concept of elas-
tic instrumentation. ASAP works with a variety of instrumentation
mechanisms—AddressSanitizer, SoftBound, UndefinedBehaviorSani-
tizer, ThreadSanitizer, assertions—and shows that most of their over-
head is elastic. Empirically, this overhead is due to a few “hot” instru-
mentation atoms, and so ASAP benefits from exploiting the Pareto
Principle. Moreover, we studied known bugs and vulnerabilities that
are typically detected using instrumentation, and found that ASAP
can estimate how many of these would be detected in a selectively in-
strumented program. This means that developers can make informed
choices about the best points in the security/overhead trade-off space.

We explain the semantics of elastic instrumentation in Section 4.1.
We present ASAP itself in Section 4.2 and evaluate it, together with
other use cases of elastic instrumentation, in Section 4.5.
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1.2.2.3 Focused instrumentation for fast fuzzing

We developed FUSS, a technique that reduces the amount of pro-
gram instrumentation needed for coverage-guided fuzz testing. FUSS
solves the problem that this instrumentation is expensive: coverage-
guided fuzzers spend on average 54% of their time in instrumenta-
tion code. By exploiting the elasticity of instrumentation, FUSS re-
duces this time while preserving the instrumentation’s effect, which
enables fuzzers to find bugs up to 3.2× faster.

FUSS is an attractive technique for two reasons. First, fuzz testing
is a CPU-intensive process that is often parallelized on large clusters
of machines, and so there is a big potential for cost and energy sav-
ings through more efficient instrumentation. Second, by observing
the fuzzing process FUSS can predict precisely where in the program
instrumentation yields useful information and where it just slows
things down. Thus, FUSS can potentially achieve efficiency gains
without reducing the instrumentation’s effect at all. The main contri-
bution of FUSS is identifying and selecting the subset of instrumenta-
tion that is beneficial for fuzzing.

We present the design of FUSS in Section 4.3, and its evaluation in
Section 4.5.

1.2.2.4 Elastic binary hardening

We enhanced BinKungfu, a tool that protects binaries against control-
flow hijack attacks, using elastic program transformations. This ad-
dresses the problem that traditional control-flow enforcement has
fixed overheads, which exceed the limits of BinKungfu’s use case.
With elastic transformations, BinKungfu was able to add some (al-
beit partial) protection to programs while respecting the performance
bounds.

Our work introduces a novel check to enforce that functions return
to a valid call site. Unlike previous work, our check does not modify
call sites. All changes are local to the return instructions that are to be
protected. This gives BinKungfu the flexibility to add as many checks
as constraints permit, irrespective of the number of call sites.

This work gives an example where we make an existing transfor-
mation more elastic, and thereby achieve higher protection. In Sec-
tion 4.4, we present details of the check and discuss the trade-offs
between the elastic and fixed-cost version. We evaluate the perfor-
mance effects in Section 4.5.

1.3 summary

Software should be reliable, particularly systems software that is the
foundation for everything we do with computers. In this work, we
are interested in program transformations that make existing soft-
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ware more reliable. These transformations make software resilient
against bugs, faster to test, and easier to verify, at the cost of reduced
performance.

We formulate the Elasticity Principle, which postulates that we can
flexibly trade some of the benefit of program transformations for in-
creased performance. We present four techniques that make use of
the principle to apply transformations selectively, with precise con-
trol over their costs and effects. These techniques break transforma-
tions down into small atomic parts, and identify those transformation
atoms that are cheapest and most useful for the given use case. By
applying just the beneficial atoms, our techniques achieve favorable
trade-offs between speed and reliability.





2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter lays the groundwork for the rest of the thesis. In Sec-
tion 2.1, we define terms like systems software and reliability, and
explain how the C and C++ programming languages set the bar for
the performance and reliability of systems software. We then review
work that has influenced this thesis, grouped in two categories:

• Techniques to improve performance, e.g., optimizations that re-
duce CPU and memory usage, in Section 2.2

• Techniques to improve reliability and security, including run-
time checks, testing and verification techniques, and approaches
for fault tolerance, in Section 2.3

Throughout this chapter, we highlight program transformations
that can move software within the performance/reliability space. We
will pay particular attention to trade-offs made by such transforma-
tions.

2.1 definitions and background

This section defines systems software and reliability, and explains the
context in which systems software is built.

2.1.1 Systems software

In this thesis, we are concerned with systems software: foundational
software such as operating systems, compilers, servers, web browsers,
data bases, runtime libraries for higher level languages, hypervisors,
etc. We now describe systems software more precisely by looking at
what these examples have in common.

Systems software is often the basis for higher-level software. For
example, consider an application written in a high-level language like
Javascript. It relies on three layers of systems software: the Javascript
virtual machine, the web browser wherein the virtual machine runs,
and the operating system that executes the browser.

Systems software provides mechanisms to ensure the security and
reliability of the entire software stack. For example, isolation and
access control are crucial to contain malicious websites and prevent
them from harming users of a web browser. Browsers are designed
to enforce these properties, but also rely on sandboxes and isolation
at the operating system level to provide multiple layers of defenses.

15



16 background and related work

This architecture means that the reliability of systems software itself
is particularly important, since everything else builds on it.

Systems software requires precise control over hardware resources.
At the lowest layers, systems software such as drivers talks to hard-
ware directly, and therefore needs means to communicate at a low
level. Further up in the stack, precise control over resources is needed
for efficiency. Systems software needs to be fast [83] to be a versatile
layer on which higher-level applications can be built.

To summarize, systems software is an important class of software
that builds the foundation for other applications, and requires partic-
ular focus on reliability and performance.

2.1.2 Reliability

The term reliability encompasses notions of availability, dependability,
trustworthiness, safety and security. We would like systems that we
can always depend on and entrust with our valuable data. Systems
that will not harm us and are resilient against attacks.

To make these definitions more precise and practical, Section 2.3
will explain properties of reliable systems that are both precisely de-
fined and enforceable. These properties ensure the absence of certain
classes of bad behavior, e.g., the absence of data leaks due to invalid
memory accesses.

2.1.3 The C/C++ systems programming languages

The C and C++ programming languages are the dominant languages
used to implement systems software. All major operating systems
and web browsers use them; they are the world’s second and third
most popular programming languages according to the TIOBE in-
dex [129]. The design of these languages influences both the perfor-
mance and the reliability of systems.

C and C++ offer abstractions that give developers both high perfor-
mance and many responsibilities. Table 1 illustrates this for three lan-
guage features: memory management, concurrency, and undefined
behavior.

These features are at the heart of the performance/reliability trade-
offs. In the coming sections, we will review techniques that ease
the programmer’s burden and help detect memory errors, concur-
rency errors, or undefined behavior. The performance of these tech-
niques will be measured against the performance of “raw” C/C++,
and is a crucial factor in deciding whether a given technique will
find widespread use [124].
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Feature Performance Requirements

Memory man-
agement

Full control over object
size, field order, arrays,
and object lifetime

Avoid out-of bounds
accesses and use-after-
free

Concurrency Full flexibility for shar-
ing data and synchro-
nization

Avoid data races and
deadlocks

Undefined be-
havior

No unnecessary run-
time checks

Ensure all operations
are valid

Table 1: Language features of C/C++, with their implications for perfor-
mance and their requirements on developers.

2.1.3.1 Memory management

Systems languages give developers precise control over the memory
use of their programs. This allows developers to achieve high data
locality and reduce indirection, and leads to a small and predictable
memory footprint. In exchange, developers must allocate the right
amounts of memory for each object, respect object bounds, and deal-
locate memory when (and only when) it is no longer needed. This
is hard: the ANSI C standard [69] rules for memory management
are subtle, complicated, and often interpreted differently by compiler
vendors and developers [95]. As a result, memory errors are the #1
cause of software vulnerabilities, according to the National Vulnera-
bilities Database [105].

2.1.3.2 Concurrency

With the prevalence of many-core machines, systems software increas-
ingly needs to make use of concurrency. Originally, the C and C++
languages had no notion of concurrency [20]. They gained the ca-
pability to use multiple threads through operating system specific
libraries like PThreads [24]. These multithreading libraries were not
integrated into the language and the compilers, and so they came
with rules that programmers had to follow in order to not break as-
sumptions that compilers were making. Recent standards like C11
and C++11 [69, 68] incorporate concurrency and formally specify the
result of concurrent accesses to memory. However, the burden to
follow synchronization rules remains with the programmers. If pro-
grammers violate synchronization rules, programs can behave differ-
ently from what the programmer intended [19].

Concurrency thus brings new reliability problems. Not only are
concurrent programs harder to reason about, but programmers also
need to keep all synchronization rules. This is yet another trade-off
between performance and reliability.
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2.1.3.3 Undefined behavior

Memory safety violations and data races are instances of a more gen-
eral concept called undefined behavior [36, 136, 116, 59]. The idea is that
compilers may assume that certain behaviors (such as out-of-bounds
memory accesses, data races, divisions by zero, signed integer over-
flows, etc.) never happen. In other words, compilers trust program-
mers to use the language correctly.

Undefined behavior enables more efficient code generation. Com-
pilers can generate code to handle the good case only, and do not
need to build superfluous checks into the program to handle bad
cases such as overflows. Undefined behavior also enables more op-
timizations. For example, a C compiler may assume that x+1 > x is
true if x is a signed integer, because the statement can only be false if
the addition operation causes a signed integer overflow, which is an
undefined behavior in C.

Undefined behavior creates yet another tension between perfor-
mance and reliability, because understanding and avoiding undefined
behaviors is hard.

2.2 techniques for improving the performance of sys-
tems

In this section, we look at techniques that help systems use hard-
ware most efficiently. For the systems we are concerned with in this
thesis—foundational software such as operating systems, compilers,
servers, web browsers—efficiency is key. We look at how efficiency
can be improved through performance optimizations done by com-
pilers in Section 2.2.1, with a deeper focus on optimizations powered
by profiling in Section 2.2.2.

2.2.1 Optimizing compilers

The first complete compiler for a high-level language, FORTRAN I, al-
ready implemented many transformations to make programs fast. It
featured optimizations such as common subexpression elimination,
hoisting computations out of loops, and automatic register alloca-
tion [11].

Modern compilers perform even more analysis and optimizations.
A landmark in this area is LLVM [84]. This compiler framework in-
troduced three ideas. First, LLVM defined an intermediate language
to represent programs. Language-specific frontends would translate
the source language into LLVM intermediate representation (IR). All
optimizations then happen at the IR level, and can thus benefit all lan-
guages for which there is a frontend. Second, LLVM was designed to
support program transformations at multiple stages in the translation.
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In addition to compile-time optimizations, it also allows transforma-
tions to happen at link time, when all the components of the program
are known and more information on the target architecture is avail-
able. Third, LLVM sees the compiler as a framework and makes its
transformations easily accessible to third parties. This made it much
easier to create tools that analyze and transform programs, and so
LLVM was quickly adopted both in academia and industry.

The availability of compilers and program transformations is cru-
cial to this thesis. Three out of the four projects presented here are
built on the LLVM compiler and make use of its optimizations.

2.2.2 Profile-guided optimization

Modern compilers can use data obtained through profiling to guide
their program optimizations [31, 58]. This data contains information
about hot (i.e., frequently executed) vs. cold parts of the program, rel-
ative frequencies of branches, etc. Compilers use this data to optimize
the program layout and improve branch prediction [113], as well as
for profitability analysis: Profiling data helps compilers estimate the
gains obtained by a program transformation and focus optimizations
where they matter. For example, compilers can choose to inline only
hot functions, and to unroll or vectorize only hot loops.

Compilers obtain profiling data through instrumentation or sam-
pling. GCov [49] integrates data collection into the program itself, by
means of instrumentation code that it adds to each location of interest.
This code updates a counter whenever it is executed. When the pro-
gram finished running, GCov collects the counter values and derives
the number of times each location in the program has been executed.
Ball and Larus [14] achieve this with lower overhead, by computing a
minimal set of counters for a given control-flow graph, and inferring
values for those locations without counters. Statistical profilers [94,
86] don’t modify a program at all. Instead, they take samples of CPU
activity while the program is running, and record which locations are
currently being executed. This allows them to reconstruct a statistical
distribution of CPU time over locations in the program.

Profile-guided optimization relates to this thesis in two ways. First,
its use by compilers shows that many program transformations are
trade-offs. For example, inlining, loop unrolling, and loop vectoriza-
tion all trade speed for increased code size. Compilers need extra
information to decide whether this trade-off is worth being made.
The same is true for our techniques, which use program transforma-
tions in an elastic way that balances speed and reliability. Second,
we found that profiling data is a good way to estimate the cost and
benefit of a transformation, and so we use profilers in two of our
projects.
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The idea to focus efforts where they are most needed, and to iden-
tify these areas through profiling, appears frequently in the literature.
Donald Knuth [79] estimates that 3% of a system really matter for
performance, and recommends to optimize just these hot parts. Con-
versely, reliability issues tend to be located in cold parts of a system.
Yuan et al. [140] analyzed catastrophic failures in distributed systems,
and found that 30% of them were caused by wrong error-handling
code, which is by definition cold. Developers can use methods such
as bias-free sampling [74] or adaptive statistical profiling [33] to focus
debugging efforts and program analysis on cold code.

2.3 techniques for reliability and security of systems

In this section, we turn our focus to the reliability of systems. We
first divide reliability into concrete properties that we would like
our software systems to have in Section 2.3.1. Then, we discuss
strategies against reliability problems: detecting errors and prevent-
ing their consequences using program instrumentation (Section 2.3.2),
and eliminating errors through systematic testing (Section 2.3.3). We
also touch on whole-system approaches to achieve reliability in Sec-
tion 2.3.4.

2.3.1 Properties of reliable and secure systems

Reliable systems are those that can be trusted to perform their work
correctly. But what does this mean precisely? In the ideal case, the
system comes with a specification that formally describes what it
should do. In this case, a correct system is one that implements its
specification.

In practice, the properties that we expect from systems are often
weak, as weak as “it should not crash”. Even such weak properties
are valuable, because they are applicable to many systems and be-
cause existing systems do exhibit violations of these properties.

In-between these two extremes, there are a number of reliability
properties. Each of these has proven useful because it offers a unique
combination of strength, applicability, and ability to be automatically
enforced.

Code contracts and assertions are light-weight forms of specifications
that hold at specific points in the system. Code contracts [97] spec-
ify invariants that the program state must satisfy at interfaces, such
as at the start and end of a function call. Assertions are flexible
checks that developers can add anywhere in the program to verify
that its state is consistent, and abort the program otherwise. These
techniques go back to Alan Turing, who used assertions to simplify ar-
guments about a program’s correctness [130]. More recently in 2002,
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C.A.R. Hoare reported that the code for Microsoft Office contains over
250,000 assertions [64].

Type safety [114] is a property that specifies that all operations in
a program are consistent with the type of objects they operate on.
This is a strong property; it subsumes other properties mentioned
below. For example, type safety prevents programs from accessing
uninitialized or out-of-bounds memory, and from calling functions on
the wrong type of object. A type-safe program will never misinterpret
attacker-provided data as code or as internal objects.

The beauty of type safety is that it can be formalized in a type
system and enforced. Strongly type-safe languages verify during
compilation whether programs satisfy the type system, and reject all
programs with risky operations that could compromise type safety.
Languages like Java, C#, D, and Go achieve some of their type safety
guarantees through automatic memory management. They rely on
a garbage collector to keep track of used memory and decide when
objects are safe to release. These languages have a larger run-time
library and offer less control than languages with manual memory
management. On the other hand, languages like Rust provide zero-
cost abstractions for type safety, which gives developers a high degree
of control but has a steep learning curve.

Memory safety [106, 18, 103, 62] is a subset of type safety ensuring
that each operation only accesses memory that it is allowed to use. It
can be enforced at a lower level, where one only considers operations
that read or write memory. These memory accesses happen through
pointers. Memory safety enforcement solutions assign to each pointer
a memory region that it may access or point to, and enforce that the
program never uses the pointer to touch other areas of memory.

Relaxed memory safety properties [43, 4, 3] specify a weaker form of
memory safety that can be enforced more cheaply. One way to do
this is to approximate the memory regions that a pointer may access.
We give several examples later in Section 2.3.2, when we discuss tools
that enforce memory safety. Another way is to enforce safety only for
critical memory areas: Code-pointer integrity [82] ensures that point-
ers to executable code (i.e., function pointers and return addresses)
cannot be overwritten by mistake. This splits memory into a data
area and a control area, with the idea that protecting the control area
will prevent catastrophic bugs that would allow an attacker to take
complete control over the program.

Control-flow integrity [1, 143, 142, 135, 39, 127] thwarts attackers in
a different way: instead of protecting operations that access memory,
it protects operations that affect the program’s control flow. These in-
clude calls to functions, returns from functions, and indirect branches.
Control-flow integrity ensures that these operations always have a
valid target, one that is allowed according to the static control-flow
graph of the program. For example, this prevents calls to the middle
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of a function, or returns to a location other than the proper func-
tion call site. All these control-flow transfer operations are at risk
because they use computed target addresses. While memory safety
protects the way these addresses are computed, control-flow integrity
just checks whether the result looks valid.

Freedom from undefined behavior [116, 59] means that programs fol-
low the rules of their programming language, and avoid any opera-
tion that is undefined according to its semantics. Undefined behavior
overlaps with many of the categories above (for example, an out-of-
bounds memory access is undefined) but also includes other cate-
gories of problems, e.g., overflows in arithmetic operations [36] and
data races [20].

2.3.2 Run-time safety checks

Many reliability properties from the previous section can be checked
while the program is running. In fact, some of the properties, e.g.,
relaxed memory safety, have been invented because they offer a par-
ticularly sweet spot for run-time checks.

Run-time checking techniques face different trade-offs depending
on their goals. One one hand, techniques for use during testing and
bug finding focus on compatibility and the ability to detect as many
problems as possible (Section 2.3.2.1). On the other hand, techniques
to protect programs against the consequences of errors focus on low
overheads (Section 2.3.2.2). In what follows, we review techniques
from both categories.

We then look at automated ways to adapt a technique’s cost and
effect, in Section 2.3.2.3. These adaptation techniques are at the heart
of all work related to this thesis. They share our goal of leveraging
existing run-time checking tools, and find ways to do so in situations
that require low overhead.

2.3.2.1 Checks for bug finding and testing

Run-time checks are popular for finding low-level reliability issues.
Some of the earliest tools like BCC [76], rtcc [122], SafeC [8], and
CCured [106] targeted memory safety errors. Compatibility was a ma-
jor challenge for these tools, because they changed the representation
of pointers in memory in order to track which memory area a pointer
could access. Later tools like the Jones and Kelly bounds checker [72],
Valgrind [120, 107], SoftBound CETS [104, 103] and Intel MPX [67,
110] store pointer metadata in a separate data structure, which im-
proves compatibility but incurs higher overhead. Deputy [38] com-
pletely eliminates the need for metadata and instead relies on annota-
tions provided by the developer. This achieves compatibility at high
performance, but reduces the ease of use of the tool.
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Besides memory safety, there are tools to automatically check all
memory accesses for data races [119, 91, 75], and to check operations
for overflows and other types of undefined behavior [36].

These tools share with our work the desire to improve the reliability
of existing software. Our work, particularly ASAP, builds on such
tools and adapts them, so that they can be used in more situations
than just bug finding and testing.

2.3.2.2 Checks as protection mechanisms

To use run-time checks as protection mechanisms for production sys-
tems, the problem of overhead must be solved.

One approach to reduce overhead is to provide weaker guarantees:
Baggy Bounds Checking [4] uses a memory allocator that rounds ob-
ject sizes up to the next power of two. This allows for faster checks
that require less metadata, but also means that overflows can only
be detected if they exceed the object’s padding. SAFECode [43] and
WIT [3] statically partition program memory into sets of disjoint ob-
jects, and can detect erroneous memory accesses if the target is in
the wrong set. In exchange for weaker guarantees, these approaches
reduce overhead from 70%-116% (MPX, SoftBound) to below 10%.

AddressSanitizer [118] provides approximate memory safety by
detecting invalid accesses to “poisoned” memory zones. Its alloca-
tor adds such zones between objects, and also marks recently freed
memory areas as poisoned. This approach might miss some invalid
accesses, but is highly compatible and has a lower time/memory over-
head than complete memory safety solutions.

Another approach to achieve a better trade-off between performance
and reliability consists in focusing protection where it matters most.
Code-Pointer Integrity (CPI) [82] is a technique that provides memory
safety, but only for memory locations that, directly or indirectly, lead
to code pointers. These locations are particularly sensitive, because
overwriting them can arbitrarily change a program’s control-flow. Yet
only about 6.5% of all memory accesses target these locations and
need to be checked by CPI instrumentation. DataShield [29] uses a
similar idea, but lets the programmer annotate sensitive data types in
her programs, and limits protection to these types.

Focusing the scope further leads to even higher performance. The
authors of CPI describe a variant called Code-Pointer Separation. It
protects only code pointers themselves, but does not extend the pro-
tection to those locations that indirectly lead to code pointers, for a
4.3× reduction in overhead compared to CPI. The SafeStack variant
further limits protection to the stack, where it separates safe and sen-
sitive values from unsafe buffers. This protects against attacks like
return-oriented programming at zero overhead, because the cost for
maintaining the separation is offset by better data locality.
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Another way to achieve protection at low overhead is to allow
memory errors to happen, but prevent them from being exploited.
Diehard [18] and ASLR [126] rely on randomization to prevent attack-
ers from guessing object locations in memory. Control-Flow Integrity
(CFI) [1, 143, 142, 135, 39, 127] prevents control-flow transfers if the
target address has been corrupted due to a memory error.

The large number of techniques show that trade-offs are ubiqui-
tous. Szekeres et al. [124] explore this trade-off and find that whether
a technique gains adoption depends on its protection, compatibility,
and overhead. The techniques in this section and our elastic program
transformations share the goal of balancing protection and overhead.
In contrast to the specialized solutions presented here, our work does
so in a generic way, exploiting the elasticity that is present in many
existing program transformations.

2.3.2.3 Controlling the trade-offs for run-time checks

We now describe manual and automated solutions to gain more con-
trol over the trade-offs faced by run-time checking techniques. These
share the same goal as our elastic instrumentation techniques, and
are closely related to our work.

Several of the tools presented so far allow developers to specify
parts of the program that should not be instrumented, e.g., using
a blacklist [118, 119, 36]. These approaches are relatively coarse-
grained, and usually enable/disable instrumentation for entire files
or functions.

Automatic approaches based on sampling are more fine-grained
and allow for a variety of sampling strategies. Arnold and Ryder [6]
switch between instrumented and non-instrumented versions of the
same code such that each executed basic block has the same probabil-
ity of running under instrumentation. Bursty Tracing and its exten-
sions [63, 33] can instrument long execution traces and focus instru-
mentation on infrequently executed code. LiteRace [91] also focuses
instrumentation in cold code, and like us exploits the Pareto Princi-
ple. Its authors find that monitoring 2% of all memory accesses is
sufficient to detect 70% of the data races that could have been de-
tected with full monitoring.

We know of one project that uses profiling to guide selective instru-
mentation. The Multicompiler [65] transforms programs to increase
software diversity, and modifies only cold program areas that are not
critical to performance.

All previous approaches reduce overhead by sacrificing instrumen-
tation coverage. In contrast, RaceMob [75] achieves full coverage at
low overhead through crowdsourcing. Each crowd participant re-
ceives a selectively instrumented program with sufficiently low over-
head to enable in-production use.
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This thesis presents several techniques that generalize these ideas
and allow trade-offs to be optimized fully automatically, for off-the-
shelf program transformation tools, in a fine-grained way, and in-
formed by profiling data.

2.3.2.4 Summary of run-time checking techniques

Run-time safety checks can enforce a large number of reliability prop-
erties. Many techniques add such checks automatically to software.
These techniques need to satisfy high demands for compatibility, per-
formance, and safety guarantees, and no existing technique excels in
all these areas. Compared to the number of techniques that add run-
time checks, there is relatively little work to automatically adjust their
compatibility, performance, and safety.

2.3.3 Systematic testing and verification

Techniques to systematically test and verify software aim to elimi-
nate reliability problems before the software is being used in produc-
tion. In our work, we find that program transformations can make
these techniques faster. This is particularly true for automated ap-
proaches like fuzz testing and symbolic execution; those are CPU-
intensive tasks, the performance of which depends on the structure
of the program under test. In this section, we review such techniques
and how our work relates to existing methods for faster testing and
verification.

2.3.3.1 Fuzz testing

Fuzz testing is a systematic way to test programs, using quasi-random
inputs. The origins of fuzzing go back to a 1988 idea of Miller. On
a “dark and stormy night” when static discharges randomly flipped
bits on a modem line, Miller observed that these random modifica-
tions caused UNIX utilities to crash. He proposed a student project
to systematically explore random input mutations, and discovered
several bugs in core systems programs [100, 99].

Nowadays, many fuzz testing techniques make heavy use of in-
strumentation to observe the software under test and generate high-
quality inputs. The technique was first described by Ormandy [112].
He used coverage instrumentation to minimize a corpus of test in-
puts. He obtained these inputs from crawling the Internet, but kept
only files that triggered previously unseen code. In a second stage,
he generated test inputs by randomly mutating elements from this
corpus.

This line of feedback-driven fuzzers continues today with tools
such as AFL [141] and LibFuzzer [88]. Feedback-driven fuzzing is
also frequently used to find security-relevant bugs in closed-source
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binaries. To apply coverage instrumentation, AFL-DynInst [109] and
Murphy use static binary rewriting, whereas AFL-QEMU [57] and
GRR [53] use dynamic binary translation.

Thanks to coverage instrumentation, fuzzers can find inputs that
reach deep parts of the software under test. This comes at the expense
of throughput, i.e., fuzzers can test fewer inputs. This kind of trade-
off between speed and test quality is where elastic instrumentation
shines; we explore this scenario in Section 4.3.

2.3.3.2 Symbolic execution

Symbolic execution [77, 50, 27, 26, 23, 34, 21, 30, 121] has the same
goal as fuzz testing, namely to generate inputs which explore as
much of a program under test as possible. However, symbolic exe-
cution analyzes the program much more deeply than fuzzers.

The idea is to track precisely how input flows through a program.
Normal, non-symbolic, execution uses concrete data as input (e.g.,
42), processes it, and stores concrete computation results in memory
(e.g., y=21). In symbolic execution, the program is interpreted by a
symbolic execution engine that treats inputs as symbols (e.g., λ), and
computation results as symbolic expressions (e.g., y=λ/2).

A symbolic execution engine can solve symbolic expressions to find
interesting inputs. Consider a program statement like if (y == 65)

{...} else {...}. A symbolic execution engine can generate the for-
mula λ/2 = 65, and use a constraint solver to find inputs for each
outcome of the branch.

By repeating this process for every branch, symbolic execution to
enumerate all paths through the program, and explore each path in
turn. In contrast to fuzz testing, where each randomly generated
input has only a small chance to trigger new program behavior, each
successful invocation of the constraint solver discovers a new path
through the program.

The effectiveness of symbolic execution depends on the structure
of the program, the number of paths through it, and the complexity
of the expressions computed by the program. Program transforma-
tions affect all these aspects. In Chapter 3, we make use of program
transformations to speed up symbolic execution.

2.3.3.3 Static checking

Static checking [37, 61, 12, 96, 45, 10], like symbolic execution, rea-
sons symbolically about the computations performed by a program,
the possible values of program variables, the reachability of a given
program location, etc. The main difference between the approaches is
that static checking does not reason about individual paths through
a program, but considers all paths that could lead to a location of
interest together.
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Several approaches use aspects from both techniques. For example,
Godefroid [51] uses function summaries, i.e., formulas that compactly
represent all paths through a function, within a symbolic execution
engine. Kuznetsov et al. [81] describe how symbolic execution en-
gines can merge multiple paths together to analyze them as a single
unit, and give a heuristic to decide when this would be profitable.
Veritesting [9] detects during symbolic execution program parts that
are easy to reason about as a whole, and switches from symbolic
execution mode to static checking mode for these parts.

All these approaches try to reason about the program in an effi-
cient way. Program transformations that affect program structure can
make this easier or harder. Chapter 3 gives many examples of this.
Similarly, adding or removing safety checks from a program affects
how many reliability properties these approaches can verify, and how
difficult that task is.

2.3.3.4 Formal verification

The strongest formally verified software is built from the ground up
with verification in mind. Developers of projects like seL4 [78], Comp-
Cert [85], and IronClad [60] write specifications, code, and proofs
that the code implements the specification. This approach achieves
strong reliability guarantees and, in addition, makes formal state-
ments about the functionality of systems. In contrast, our work tar-
gets existing software, but can at most verify the absence of certain
classes of bugs or failures.

Verified software is proven to be correct at a given abstraction level,
like source code or assembly code. Projects that verify source code
(seL4, CompCert) then rely on the correctness of compilers to pre-
serve the guarantees when transforming the program into an exe-
cutable binary. Fortunately, compilers and their transformations are
increasingly verified themselves: CompCert is formally proven to cor-
rectly translate a large subset of C into assembly code, and ALIVE [89]
is a technique to prove the correctness of peephole transformations
used by the LLVM compiler.

2.3.4 Isolation, redundancy, defense in depth

We have so far described reliability in terms of low-level properties,
such as the absence of memory-related bugs. This is the kind of reli-
ability most related to our work, because it can be increased through
program transformations. Yet, when designing large software sys-
tems, there are many higher-level properties that influence reliability.

Consider modularity and isolation. These are primarily achieved
through good design. Techniques from operating systems, compil-
ers and program transformations can be building blocks for such
a design. For example, web browsers use process-level isolation to
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separate website rendering from core browser tasks [17], the Singu-
larity research operating system uses type systems to isolate pro-
cesses [66], and program transformations can isolate different pro-
gram parts within a process [134, 139]. Designers need to carefully
choose how much of these techniques to use, because there is a trade-
off between isolation granularity and performance. For example, per-
formance is the reason why the Chromium browser shares a single
renderer process among multiple websites [71].

Redundancy is another general approach to improve a system’s re-
liability in the presence of unpredictable and uncorrelated failures.
Like modularity, it is typically handled at a higher design level, and
performed manually rather than using automatic transformations. Re-
dundancy also faces trade-offs between reliability and performance,
e.g., when choosing the number of replicas and the consistency model
[42]. In addition to high-level redundancy, designers can use auto-
matic program transformations to obtain redundancy at a low level,
e.g., replicating individual assembly instructions to mask transient
CPU errors [80].

Defense in depth means adding multiple layers of defense against
reliability problems, in order to be protected even if one technique
fails. For example, developers might harden a vulnerable server pro-
gram using program transformations, and run it in a restricted sand-
box. This is a good idea in general, because it increases the difficulty
of compromising a system. For example, the exploit that controlled
Chrome OS and won the Pwnium 4 competition required no less
than five different bugs in various parts of the Chrome browser and
operating system [35]. Defense in depth is also a good idea when
program transformations are used as a defense layer, because pro-
gram hardening mechanisms are often approximate due to overhead
or compatibility concerns [124].

2.4 summary

This chapter started by defining systems software and providing back-
ground information on the program languages using which systems
are built. We also defined reliability in terms of properties we would
like our systems to have: correctness with respect to specifications, as-
sertions, and code contracts, and freedom from memory errors, data
races, illegal control flow and undefined behavior.

Throughout this chapter, the trade-off between reliability and per-
formance appeared frequently. We saw it in systems programming
languages, where features like low-level memory management and
concurrency are necessary for performance but problematic for reli-
ability. The trade-off also appeared when using run-time checks to
increase reliability, where the techniques with the strongest guaran-
tees have the highest overhead. We found the same trade-off when
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we presented fuzz testing, symbolic execution, and static checking:
Those techniques that reveal the most reliability problems are also
the most CPU-intensive.

We identified program transformations both for improving perfor-
mance and reliability, as well as transformations used during testing
and verification. So far, relatively little work exists that makes use of
the elasticity of these transformations to tailor them for a given use-
case. Existing techniques are based on either sampling or profiling.
These techniques are the ones most closely related to the work in this
thesis.





Part II

T R A N S F O R M I N G S O F T WA R E F O R
V E R I F I C AT I O N , S P E E D , A N D R E L I A B I L I T Y

Where we look at three use cases for automatic program
transformations: making software systems easier to verify,
protect systems from vulnerabilities while satisfying per-
formance constraints, and smarter fuzz testing. In each
case, we explain the trade-off at hand, present the design
and implementation of program transformation to turn
this trade-off in our favor, and evaluate its effect on the
program.





3
- O V E R I F Y : S E L E C T I N G P R O G R A M
T R A N S F O R M AT I O N S F O R FA S T V E R I F I C AT I O N

3.1 desired property : fast verification

Automated program verification tools are essential to writing good
quality software. They find bugs and are crucial in safety-critical
workflows. For example, for a bounded input size, symbolic execu-
tion engines like KLEE [26] and Cloud9 [23] can verify the absence
of bugs in systems software like Coreutils, Apache, and Memcached;
the SAGE [21] tool found many security vulnerabilities in Microsoft
Office and Windows. Unfortunately, verification tools are not used
widely in practice, because they are considered too slow and impre-
cise.

Many verification tools, including the ones mentioned above, ver-
ify compiled programs. The observation underlying the work pre-
sented in this chapter is that verification complexity could be sig-
nificantly reduced if only a program was compiled specifically for
verification. Building on this point, we argue that compilers should
have an -Overify option, which optimizes for fast and precise verifi-
cation of the compiled code.

In the following sections, we first show how the requirements of
verification differ from those of fast execution on a CPU. The differ-
ences arise because verification is complete: verification tools con-
sider all possible executions, all possible variable values, or all fea-
sible paths through a program. For the purpose of this work, we
consider tools that completely explore a program to be verification
tools. This includes static analyzers, model checkers, tools based on
abstract interpretation, and exhaustive symbolic execution (see Sec-
tion 2.3.3 for a description of these techniques).

We then identify program transformations that reduce verification
complexity, and others that increase it. We also present ideas for
new transformations that, although not commonly performed by to-
day’s compilers, would be of great benefit to verification tools. These
transformations have two types of effects: they simplify program op-
erations, and they reduce various program features that cause veri-
fication complexity, such as function calls, loops, or branches. We
believe that a wide range of verification tools can benefit from these
transformations because they affect many aspects of a program.

Finally, we present the design and evaluation of our -Osymbex pro-
totype. It generates programs optimized for a specific type of verifi-
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int wc(unsigned char *str, int any) {

int res = 0;

int new_word = 1;

for (unsigned char *p = str; *p; ++p) {

if (isspace(*p) || (any && !isalpha(*p))) {

new_word = 1;

} else {

if (new_word) {

++res;

new_word = 0;

}

}

}

return res;

}

Figure 4: Count words in a string; they are separated by whitespace or, if
any != 0, by non-alphabetic characters.

cation, namely symbolic execution, by applying those program trans-
formations that we identified as profitable for this use case.

-Overify is a step toward enabling wide-spread use of verification
tools: it gets developers the verification results faster, is easy to in-
tegrate into existing build chains and, since it uses time-tested com-
piler technology, it generates reliable verification results. Moreover,
-Overify shows that program transformations are powerful tools that
are applicable to more use cases than we perhaps thought.

3.1.1 Motivating example

The example in Figure 4, a function that counts words in a string,
illustrates the effect of compiler transformations on program analysis.

This simple function is challenging to analyze for several reasons:
It contains an input-dependent loop with an unpredictable number
of iterations. Inside the loop, the control flow branches on the type of
the current input character. This leads to an explosion in the number
of possible paths: there are O(3 length(str)) paths through this function.
On top of that, wc calls the external library functions isspace and
isalpha; their implementations further complicate the analysis of wc.

We exhaustively tested all paths through wc for inputs up to 10
characters long using KLEE [26], and Table 2 shows the results for
four different compiler settings. Aggressive optimizations can dra-
matically reduce verification time. At level -O2, the reduction comes
mostly from algebraic simplifications and removal of redundant op-
erations, which lead to a reduced number of instructions to interpret
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Optimization -O0 -O2 -O3 -Overify

tverify [msec] 13,126 8,079 736 49

tcompile [msec] 38 42 43 44

trun [msec] 3,318 704 694 1,827

# instructions 896,853 480,229 37,829 312

# paths 30,537 30,537 2,045 11

Table 2: Using symbolic execution to exhaustively explore all paths in the
code of Figure 4 for strings of up to 10 characters: time to verify
(tverify), time to compile (tcompile), and time to run on a text with
108 words (trun).

int sp = isspace(*p) != 0;

sp |= (any != 0) & !isalpha(*p);

res += ~sp & new_word;

new_word = sp;

Figure 5: Branch-free version of wc’s loop body.

in KLEE. The number of explored paths remains the same as for -O0,
indicating that -O2 does not fundamentally change the program’s
structure.

At level -O3, the compiler unswitches the loop: The loop-invariant
condition any != 0 is moved out of the loop, and simplified copies
of the loop body are emitted for any == 0 and any != 0, respectively.
This enables algebraic simplification of the branch condition, which
in turn reduces the number of paths to O(2 length(str)) and thus reduces
verification time. The price for this reduction is an increase in the size
of the compiled program, due to the duplicated loop body.

Compiling the program using -Overify goes beyond the optimiza-
tions performed by -O3, and results in the code in Figure 5, which
contains no more branches. This reduces the number of paths to
O(length(str)), and symbolic execution time decreases by 15×.

A traditional compiler would not perform this optimization, be-
cause the cost of executing a branch on a CPU is small. It is cheaper
to perform a branch that skips some instructions than to uncondition-
ally execute the entire loop body. Indeed, when actually executed,
the branch-free version takes 2.5× as long as the -O3 branching ver-
sion (Table 2). This illustrates the conflicting requirements of fast
execution and fast verification.
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3.1.2 How verification differs from execution on a CPU

In a nutshell, verification reasons about the semantics of all possible
program executions, whereas a CPU is concerned about running typ-
ical executions as quickly as possible.

When transforming programs for fast execution, it makes some-
times sense to add complexity. For example, a program may distin-
guish fast from slow paths if this speeds up the average case. Sim-
ilarly, re-ordering operations or re-arranging objects in memory can
lead to better cache behavior.

For fast execution, it is OK to obfuscate semantics, drop high-level
types, etc. For example, batching might combine unrelated memory
operations into a single wide load or store. Similarly, using a pre-
computed table can replace a costly operation by a memory access,
but this makes it harder to reason about that operation’s semantics.

Verification is different. The time to verify a program is dominated
by the number of branches it has, the overall number of loop itera-
tions, memory accesses, and various arithmetic artifacts. The preci-
sion of the analysis can also depend on the program structure, e.g.,
on the number of control-flow join points or the kinds of operations
the program performs. Verification tools can often exploit high-level
knowledge of the program, like information about types of variables
or about the program’s use of the standard library.

Program transformations affect all these aspects. Thus, compilers
can make programs more verification-friendly using program trans-
formations described in Section 3.2.

3.2 program transformations that affect verification

While a compiled program must be semantically equivalent to its
source code representation, a compiler still has a lot of room for opti-
mizations. In Table 3 we show the various options a typical compiler
could offer today to -Overify, as well as options it does not offer.

We now give a few examples of the large body of possible program
transformations and illustrate the effect they have on verification com-
plexity.

3.2.1 Simplifying computation: arithmetic simplifications

Standard simplifications, such as copy propagation and constant folding,
are good for execution speed, but can be even better for verification.
Consider a tool that reasons about value ranges for variables: When
encountering code such as x = input(); y = x; x -= y; the tool
might think that x could have any value. Yet standard simplifications
can turn this code into the equivalent but easier version input(); x

= 0.
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Transformation Verification Execution Available

Arithmetic simplifications + + �

Remove/split memory accesses + + �

Simplify control flow + +/− �

Function inlining, loop unrolling +/− +/− �

Improve cache behavior etc. − + �

Program annotations + − few

Generate runtime checks + − some

Table 3: Compiler optimizations and their impact (positive +, or negative −)
on Verification time and/or Execution time. The last column shows
to what degree the optimizations are readily available in today’s
compilers.

3.2.2 Simplifying memory accesses

Memory accesses complicate the data-flow graph of a program, re-
quiring verification tools to analyze which accesses may correspond
to the same memory location vs. which cannot (alias analysis). The
complexity of this analysis typically grows exponentially with the
number of related memory accesses.

A compiler can easily help by converting values that reside in
memory to register values, and by splitting large objects into inde-
pendent smaller objects, thereby reducing the opportunities for mem-
ory access aliasing. On the other hand, transformations that group
unrelated accesses (e.g., packing a structure into a single wide inte-
ger) may hide semantics and introduce additional dependencies that
make programs harder to analyze.

3.2.3 Simplifying control-flow: if-conversion, loop unswitching, function
inlining

Program verification often becomes drastically easier if the program’s
control flow is simplified by a compiler. An optimization called jump
threading checks whether a conditional branch jumps to a location
where another condition is subsumed by the first one; if yes, the
first branch is redirected correspondingly, turning two jumps into
one. Another example is loop unswitching, as seen in Section 3.1.1.

These are especially important for verification tools that reason
about multiple execution paths through a program (either individ-
ually or grouped in some way). For such tools, the complexity of
verifying a program depends on the number of possible execution
paths through it, which in turn grows exponentially with the number
of conditional branches and the number of possible loop iterations.
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As a result, branches and loops have a much higher cost for verifica-
tion than for normal execution.

Control flow can be further simplified by transforming condition-
ally executed side-effect-free statements into speculative branch-free
versions. This transformation is called if-conversion. Compilers per-
form it when saving one branch instruction outweighs the cost of
speculation (e.g., GCC converts if (test) x = 0; into x &= --(test

== 0); ). When using -Overify, this simplification is pursued more
aggressively, because the cost of a branch is higher.

Simplifying control-flow can increase the precision of verification
tools based on abstract interpretation. These tools reason about pro-
grams at the granularity of program locations. If multiple paths lead
to one location, merging the path information can lose precision. Un-
switching a loop can improve precision, because such information
merging now occurs only once, after the loop, instead of after every
iteration.

Transformations that re-structure the program often open up addi-
tional opportunities for simplification. For example, function inlining
replaces a function invocation by a copy of that function’s body. The
compiler can now specialize this copy for the particular context where
the function was inlined. Loop unrolling has a similar effect.

Function inlining can also increase verification precision in another
way. It adds context-sensitivity to verification tools that might other-
wise be intraprocedural. Similarly, both loop unrolling and function
inlining increase the number of program locations. That way, verifica-
tion tools can analyze individual loop iterations or function instances
separately, with increased precision.

3.2.4 Caching and CPU-specific optimizations

To generate code that executes fast, compilers must optimize for the
target CPU’s cache structure and pipeline: keep loops small (to avoid
instruction cache misses), pad objects (to keep them aligned in mem-
ory), and reorder instructions (to reduce pipeline stalls and to im-
prove branch prediction).

Modern CPUs offer vectorized instructions, which can apply an
operation to multiple data values in parallel. Exploiting these instruc-
tions speeds up programs but complicates program structure. For
example, when the compiler vectorizes a loop, it usually creates two
sub-loops: one that processes data in vector-sized chunks and one
that handles the remainder of the data when the data size is not a
multiple of the CPU’s vector size.

All these issues are irrelevant to many classes of verification tools,
and some of these optimizations can even slow down verification.
Thus, they are omitted under the -Overify switch. This offers the
further benefit of considerably more freedom in generating code.
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inline int isspace(int c) {

return (__ctype_ptr__[c+1] & _S);

}

(a) A typical implementation of isspace function in a standard C library.
__ctype_ptr__ is a constant array containing character type flags for
each character.

inline int isspace(int c) {

assert((unsigned)c < 256);

return (c == ’ ’) | ((unsigned)(c - 0x09) < 5);

}

(b) isspace function in the C standard library for -Overify. The absence of
memory accesses simplifies program analysis.

Figure 6: Two variants of isspace with different verification complexity

3.2.5 Simplifying semantics: verification-friendly standard library func-
tions

For programs that use the C/C++ standard library, the analysis effort
depends significantly on the complexity of library functions. This is
why some tools, such as KLEE and KLOVER [87], ship with a custom
version of the C/C++ standard library.

As part of -Overify, we sought to develop a version of libC that
is tailored to the needs of program analysis in general, and thus
reusable for many tools. This library provides versions of the stan-
dard functions designed to minimize analysis costs. These simplifica-
tions entail high-level reasoning and semantic understanding of the
code that is beyond what modern compilers can do automatically.

For example, consider the isspace function shown in Figure 6,
which checks whether its argument is a space-like character. The
common implementation of that function uses a lookup table (shared
between multiple similar functions). We found that in most cases,
the version of isspace shown in Figure 6b is easier for symbolic ex-
ecution tools to handle, as it avoids a (potentially) input-dependent
memory access to a large array.

Functions in our verification-friendly C library contain run-time
checks to verify their preconditions. Such checks are often absent
or disabled in production code. For testing and verification, these
checks improve the tools’ ability to find bugs, and they also lead to
better error reports, because bugs are found closer to their root cause.

3.2.6 Preserving information: annotations and run-time checks

The output of today’s compilers does not preserve all information
present in the source code of the program, such as high level types
or the separation of a program into modules. Compilers also do not
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keep information computed during compilation, such as alias infor-
mation, variable ranges, loop invariants, or trip counts. This infor-
mation however is priceless for verification tools, and could be eas-
ily preserved in the form of program metadata. Some of these are
available today, e.g., the Clang compiler [125] can annotate memory
accesses with types.

Similarly, compilers know the exact semantics of the program in
its source language. For example, an integer overflow is a perfectly
well-defined operation in the X86 ISA. Whether it is well-defined in
the original program depends on the data type of the overflowing
variable.

Compilers can make that semantic information available to verifica-
tion tools through run-time checks, which transform illegal behavior
into crashes. Recent versions of Clang and GCC can emit run-time
checks for various forms of illegal behavior, such as overflows, mem-
ory corruption, data races, or the use of uninitialized data. These
checks empower verification tools and make verification simpler, as
tools now only need to check for one type of failure (i.e., crashes).

3.3 design and implementation of -overify

We designed -Overify as a compiler switch that enables program
transformations for fast verification. -Overify modifies the compila-
tion process in four complementary ways: (1) it selects a set of com-
piler passes suitable for verification tools, and it inhibits compiler
passes that would increase verification complexity; (2) it adjusts cost
values and parameters (such as the maximum size of a function to in-
line) to optimize compilation for fast verification, not fast execution;
(3) it causes more metadata to be preserved in the program; and (4) it
links the program with a specialized version of the C standard library
optimized for verification.

We next motivate this design and discuss its trade-offs, show how
developers use it, and present our prototype implementation.

3.3.1 -Overify belongs in the compiler

Why perform verification optimizations inside compilers? Why not
let every verification tool transform source code using its own special-
ized transformations?

Making -Overify part of a compiler has three key advantages: First,
compilers are in a unique position in the build chain. They have
access to the most high-level form of a program (its source code) and
control all steps until the program is in the low-level intermediate
form that is to be analyzed.
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Second, the program needs to be compiled anyway, and so -Overify
gains access to a wealth of information, like call graphs and alias
analysis results, at no additional cost.

Third, with -Overify, verification tools need not be aware of com-
plex build chains, and need not re-implement common transforma-
tions.

We do not advocate a monolithic approach in which compilers and
verifiers are tightly coupled. Instead, we want to put to more effective
use the services that a compiler offers, and reduce the amount of
information lost during compilation.

3.3.2 Risks and generality of -Overify

Verifying a verification-optimized version of the program and then
shipping a performance-optimized version means that end-users get
not exactly what was tested and verified. However, -Overify relies
on compiler transformations that are anyway used (perhaps differ-
ently) in the rest of the build chain, and this offers confidence in the
equivalence of the verified and shipped versions. Moreover, these
transformations are themselves extensively tested [138] and even par-
tially verified [89].

Programs that contain undefined behavior face the largest risk. For
example, a function that returns the address of a local variable might
behave differently when the function is inlined. Compilers can often,
but not always, detect such cases and warn the developers.

One could argue that each verification tool requires its own spe-
cialized version of -Overify. Yet the idea behind -Overify gener-
alizes, and we expect that developers of verification tools can read-
ily decide—intuitively and based on our examples—which optimiza-
tions would be advantageous. Compilers can help them by providing
access to built-in heuristics (e.g., to decide when a function should be
inlined), as well as heuristics specialized for -Overify (e.g., heuris-
tics for estimating when speculative execution would reduce analysis
time [81]).

These considerations open new questions for the systems commu-
nity, spanning the entire process from software development to ver-
ification: At what levels should verification be performed? What
abstractions should compilers export, so that clients can express their
needs and customize the build process? What data should be pre-
served across the different program transformation steps, and in what
format? How can we guarantee the correctness of program transfor-
mations?
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Figure 7: Adding -Overify to an existing build chain, to enable fast auto-
mated program analysis and testing.

3.3.3 Using -Overify in practice

Developers usually create different build configurations for software
systems. During development, a program is compiled with debug in-
formation, assertions, and possibly reduced optimization to aid test-
ing and debugging. At release time, the program is compiled with
the highest optimization level. Our proposed -Overify option adds
a third build configuration, aimed at automated testing and verifica-
tion. This process is illustrated in Figure 7.

An -Overify-enabled compiler can be directly leveraged by a num-
ber of program analysis tools. We built a prototype that can generate
special binaries optimized for analysis using the S2E system [34] or
SAGE tool [52], which perform symbolic execution on x86 binaries.
Alternatively, it can generate LLVM IR bitcode optimized for analy-
sis by tools like KLEE and its descendants [26, 87, 23]. We expect
our ideas to apply broadly to many other tools, such as FindBugs for
Java [47], or Microsoft Pex [128] for .NET.

-Overify makes it possible to use verification-specific optimiza-
tions with minimal changes to a build chain, lowering the entry bar-
rier to the use of verification tools available today. We envision future
project creation wizards and build systems creating -Overify con-
figurations by default, thus encouraging wide adoption of powerful
verification tools, which in turn can help build better software and
improve developer productivity.
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3.3.4 Prototype

We implemented a prototype of -Overify, called -Osymbex, that makes
verification easier for symbolic execution tools like SAGE, KLEE, and
others. These tools follow the approach outlined in Section 2.3.3.2.
They analyze programs one path at a time, treating program inputs as
symbolic, i.e., they assume inputs can have any value (up to a bounded
size). As it interprets the program, a symbolic execution tool keeps
track of all the symbolic expressions computed by the program. At
conditional branches, the tool invokes a constraint solver to check
whether the symbolic condition could be true, false, or both. In the
latter case, the tool explores both paths independently, adding the
branch condition (or its negation, respectively) as a constraint on the
inputs for the current path.

The performance of symbolic execution tools is determined by the
number of paths to explore and by the complexity of input-dependent
branch conditions. Our prototype -Osymbex reduces both, thereby
improving the performance of symbolic execution tools without re-
quiring the tools themselves to be modified.

We chose symbolic execution because of its importance and popu-
larity, which means that tools and benchmarks to evaluate our pro-
totype are readily available. A prototype for a different verification
technique would need to choose a different set of program transfor-
mations, according to the factors that drive verification cost for the
target technique. Note also that while -Osymbex speeds up symbolic
execution in general, we may only consider a program to be soundly
verified if symbolic execution terminates, i.e., exhaustively explores
all the paths through the program. This is in general only possible
for a bounded (and typically small) input size.

We built -Osymbex on top of the LLVM compiler infrastructure.
Compared to -O3, -Osymbex: (1) considers the cost of a branch to
be higher than on a CPU, to avoid branches through speculative ex-
ecution and loop unswitching; (2) removes loops from the program
whenever possible, even if this increases the program size; and (3)
aggressively inlines functions in order to benefit from simplifications
due to function specialization.

3.4 evaluation of -overify

We evaluated our prototype -Osymbex on real systems code: we ran
it on the Coreutils 6.10 suite of UNIX utilities, in essence repeating
the case-study from [26].
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Optimization -O0 -O3 -Osymbex

jumps threaded 0 7,678 65,618

loops unswitched 0 377 3,022

branches converted 0 959 5,405

functions inlined 0 7,746 16,505

loops unrolled 0 1,615 3,299

Table 4: Compiling Coreutils with different options.

3.4.1 Static impact: how -Overify affects program structure

Table 4 shows how -Osymbex affects the number of program trans-
formations performed by the compiler. We obtained this data by
compiling Coreutils and counting the number of times each transfor-
mation was performed. The data shows that compilers do transform
programs selectively. Even compared to the compiler’s strongest op-
timization level, -Osymbex increases the amount of transformations
that are beneficial for symbolic execution by almost an order of mag-
nitude.

3.4.2 Dynamic impact: how -Overify affects verification times

Figure 8 shows the effect -Osymbex has on the verification of Core-
utils. For each of the 93 tested programs, we measured how long it
takes to compile and analyze all paths with KLEE, using 2 to 10 bytes
of symbolic input. We did this with -O0, -O3, and -Osymbex, respec-
tively. We kept all experiments where KLEE terminates within one
hour on at least one of the three versions. This set includes experi-
ments from 79 out of 93 tested programs.

On average, -Osymbex reduces overall compilation and analysis
time by 58% compared to -O3, and by 63% over -O0. The maximum
benefit is a 95× reduction in total time (right side of Figure 8). The
verification of 6 programs runs out of time with -O3 (and 11 with
-O0), but completes with -Osymbex. In a few cases, -O3 outperforms
-Osymbex, because it takes longer to compile with -Osymbex than -O3;
this effect vanishes in longer experiments.

The reductions in symbolic execution time are due to exploring
fewer paths and spending less time per path. This follows from our
evaluation of KLEE statistics, for those experiments where both the
-Osymbex and -O3 versions terminate; we could not obtain statistics
for experiments that timed out. In total, -Osymbex reduces the num-
ber of explored paths by 57% compared to -O3.

Figure 9 plots the reduction in explored paths and symbolic execu-
tion time for each experiment individually. Each dot represents an
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Figure 8: Time to compile and test Coreutils; each bar represents one exper-
iment. Blue (sorted on the right) represents time gained by using
-Overify over -O3; red (on the left) shows when -O3 is faster than
-Overify; yellow shows the time of whichever one is fastest.

experiment and is positioned according to -Osymbex’s effect on sym-
bolic execution time and on the number of explored paths, relative
to -O3. The points are close to the diagonal, indicating that the re-
duction in execution time is correlated to the reduction in explored
paths. However, many long-running experiments are below the diag-
onal, which indicates that -Osymbex also reduces the time spent per
path. For 41 out of 79 programs, -Osymbex does not affect the num-
ber of paths. These experiments correspond to the points at x = 1.0
in Figure 9. Some of these experiments nevertheless terminate faster
with -Osymbex because the simplifications performed by -Osymbex
reduce the amount of per-path work. There are also experiments for
which -Osymbex increases symbolic execution time; most of these ter-
minate quickly, e.g., due to small input sizes. Thus, their influence
on the overall symbolic execution time is small.

We verified that indeed all bugs discovered by KLEE with -O0 and
-O3 are also found with -Osymbex.

3.5 summary

-Overify reveals the power of program transformations. It uses com-
piler optimizations to transform programs into a form that is seman-
tically equivalent, but easier for verification tools to handle. -Overify
inhibits optimizations that make verification harder, adds novel trans-
formations that make verification easier, and controls the amount of
existing optimizations by modeling the cost of program features (e.g.,
branches). This reduces the time to symbolically execute the resulting
programs by up to 95×, and 58% on average.
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Figure 9: Effect of -Osymbex on symbolic execution time and the number of
explored paths. Each dot represents an experiment. Its size cor-
responds to the duration of the experiment with -O3. Its position
corresponds to the fraction of time needed when using -Osymbex
relative to -O3, and the fraction of paths explored in this case. The
reduction in explored paths correlates with reduction in time, but
is not the only cause, as evidenced by the points below the diago-
nal.



4
E L A S T I C I N S T R U M E N TAT I O N

4.1 instrumentation and the pareto principle

In this chapter of the thesis, we are interested in instrumentation. This
is a common form of program transformation, whereby a human or
tool adds extra instrumentation code to software to enhance its orthogo-
nal properties: robustness, reliability, security, the ability to trace and
understand a program, etc.

To start, we define instrumentation code and give examples how it
is used (Section 4.1.1). Then, we introduce elasticity, i.e., the observa-
tion that instrumentation can scale its cost and effects (Section 4.1.2).
Elasticity is a useful concept because it enables exploitation of the
Pareto Principle (Section 4.1.3), and thus obtain most of the benefits
of instrumentation at low overhead.

4.1.1 Semantics of instrumentation code

Software needs to be functional, but this is not enough. We care about
many other properties that are orthogonal to the core functionality of
software. Software should:

• be safe in unforeseen circumstances,
• detect problems quickly,
• provide developers with logs, traces or other information for

troubleshooting and reporting,
• be easily testable,
• protect its integrity and security when under attack.

These properties are orthogonal in the sense that the software would
still work without them. In fact, developers typically have multiple
build configurations where they enable or disable different transfor-
mations to choose the best trade-off between orthogonal properties
and speed. These configurations do not affect the correctness of the
software because orthogonal properties are not part of the software’s
specification; they add a different kind of value.

Instrumentation code is code that has been added to the program
solely to enhance orthogonal properties. It can be added manually by
developers, or automatically by a tool. Instrumentation differs from
other program transformations, like those seen in Chapter 3, in that
it is purely additive.

Examples of instrumentation code:

47
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• Assertions are developer-written checks that verify the consis-
tency of a program’s state. They check for “impossible” con-
ditions that should never happen, except due to software bugs.
Because assertions are orthogonal, they are often compiled con-
ditionally and removed from release builds where performance
matters and bugs are presumably rare.

• Logging code records information about the program’s execution
for auditing and understanding the program. Like assertions,
logging code is typically added by developers and can be dis-
abled at run-time.

• Safety checks detect many forms of illegal behavior in the pro-
gram, such as memory safety violations, deviations from regu-
lar control flow, integer overflows, or data races. We describe
a number of automated tools to add safety checks to programs
in Section 2.3.2. Automated tools can add these checks exhaus-
tively to all program locations where a given type of illegal be-
havior could occur, thus ruling out entire classes or problems.

• Coverage measurement code detects which parts of a program have
been executed. This information is useful during manual and
automated testing, where it provides feedback on the quality of
the tests.

4.1.2 Elasticity and why it matters

Program instrumentation is always a trade-off, because instrumenta-
tion code comes at a cost. This cost comes in the form of increased
CPU usage, increased memory usage, increased binary size, disk
space required to store logging/profiling data, etc. This cost is a
severe problem that limits the applicability of instrumentation. In the
sections to follow, we will see cases where instrumentation cost is a
bottlenecks for overall system performance, and cases where develop-
ers forgo the use of instrumentation altogether because its overhead
exceeds what they are willing to pay.

Elasticity is the characteristic of instrumentation that determines
whether we can control this trade-off. We define elasticity as the
ability to scale the costs and effects of instrumentation. The term
is used similarly for example in cloud computing, where an “elastic
cloud” allows developers to scale computing resources according to
demand. Elasticity enables selective instrumentation: it allows de-
velopers to add instrumentation code to selected parts of a program
only, in order to gain partial protection at a reduced overhead.

Elasticity of instrumentation combines two properties: First, it cap-
tures the granularity at which the amount of instrumentation can be
adjusted. The best case is when instrumentation consists of many



4.1 instrumentation and the pareto principle 49

small independent pieces, because these can be enabled individually
at fine granularity.

Second, elasticity captures the cost-proportionality of instrumenta-
tion. For truly elastic instrumentation, the cost is solely a function
of the amount of instrumentation that is enabled (“pay for what you
use”) with little or no fixed costs.

Our first observation is that instrumentation, whether added by
humans or by tools, is indeed often elastic. Instrumentation has a fine
granularity it consists of many parts that are small, independent, and
localized. For example, instrumenting the FFMPEG benchmark with
AddressSanitizer adds almost 400,000 memory safety checks to the
program. Each of these protects its own memory access instruction.
We call these independent parts instrumentation atoms.

However, some types of instrumentation are only partially cost-
proportional. For example, memory safety checks typically perform
book-keeping to keep track of which memory addresses the program
may legally address. Even a partially-instrumented program must
perform this book-keeping completely, so that checks are accurate.
The overheads due to such book-keeping limit the speedups gained
using selective instrumentation techniques, a limitation which we dis-
cuss in Section 4.6.5.

Our second observation is that selective instrumentation yields use-
ful effects. At first, one could argue that partial protection is use-
less. For example, could not a single unprotected buffer overflow be
enough for an attacker to take control over a program? We find time
and again that this is not so. Our evaluation will show, for example,
that selective use of memory safety checks prevents vulnerabilities,
and that partial coverage instrumentation produces enough informa-
tion to guide coverage-driven fuzz testing.

Our third observation is that different instrumentation atoms often
have very different characteristics. This enables exploitation of the
Pareto Principle, as described in the next section.

Elasticity matters for two reasons. First, it enables selective instru-
mentation. This gives developers the possibility to control the cost of
instrumentation, rather than the binary choice of using instrumenta-
tion at its full cost or forgoing it altogether. As a result, developers
can use instrumentation tools in situations where it would be impos-
sible without elasticity.

Second, elasticity is a design principle that provides benefits in its
own right. In Section 4.4, we analyze an example of this in detail. We
replace a check for control-flow-integrity by a new form that is fully
cost-proportional. This alone reduces overhead by 71%, and enables
further benefits due to selective instrumentation.
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4.1.3 The Pareto Principle for instrumentation code

Thanks to elasticity, we can think of instrumentation as a set of atoms,
with each atom having a cost and an effect. Further analysis shows
that atom costs tend to vary greatly between atoms. A few atoms
are expensive and a large majority of atoms are cheap. In one of our
experiments, where we used CPU overhead as a cost metric, we found
that almost half of the overhead in compute-intensive benchmarks
comes from only 1% of all atoms (Section 4.5.1.3).

This observation that a small number of causes contribute most of
the effects is called the Pareto Principle. Another name for the princi-
ple is the 80/20 Rule, because typically, 20% of all causes account for
about 80% of the effects.

When applied to instrumentation code, the Pareto Principle implies
that the trade-off achieved by selective instrumentation is favorable.
By identifying the atoms with the highest benefit/cost ratio, we can
quickly obtain 80% of the total benefit while paying only 20% of its
cost. Adding more instrumentation on top of that yields diminish-
ing returns, because the remaining instrumentation atoms are increas-
ingly expensive.

Interestingly, the Pareto Principle applies even in situations when
we cannot precisely quantify the benefit of instrumentation atoms.
The reason is that the cost distribution is so highly skewed. When
comparing two atoms, the difference in their cost can be several or-
ders of magnitude, and this tends to dominate the difference in their
benefit. Thus, instead of considering the benefit/cost ratio to select
the best atoms, using the approximation 1/cost works just as well.

That said, we have found cases where cheap atoms have particu-
larly high benefits. For example, many security vulnerabilities seem
to be in rarely-executed code, where they can be prevented by cheap
memory safety checks (Section 4.5.1). Similarly, fuzzers that use
cheap coverage instrumentation to guide them toward new program
parts are effective at finding bugs (Section 4.5.2). This makes the
trade-off achieved using selective instrumentation even more favor-
able.

At this point, a word of caution is due: even the most favorable
trade-off remains a trade-off. Applying instrumentation partially does
reduce its effects on the program. We have seen cases where this did
harm. For example, our evaluation of FUSS contains one benchmark
where aggressive selective instrumentation prevents a fuzzer from
finding a bug. Thus, in the absence of cost constraints, using full
instrumentation is the best choice.

However, if there are cost constraints and if a trade-off needs to be
made, then elasticity implies that there are many points in the trade-
off space to choose from, and the Pareto Principle implies that there
exist favorable points that obtain high benefit and large cost savings.
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4.2 use case : optimizing system-code security vs . over-
head

This section of the thesis is about a specific type of program transfor-
mation: instrumenting a program using sanity checks to detect bugs
and vulnerabilities. In the following pages, we:

• motivate the use of sanity checks and introduce the notion of
“overhead budget” to control their overhead;

• explain the semantics of sanity check instrumentation and why
they belong to the class of elastic program transformations;

• present ASAP, a tool to automatically tailor sanity checks to
achieve a good trade-off between system-code security and over-
head.

4.2.1 Desired property: high system-code security subject to a cost budget

Security is undeniably important. To focus the present work, we con-
sider security with three restrictions. We target systems software,
achieve security through sanity checks, and require that we can con-
trol the overhead of these checks. Here is why:

Systems software is particularly subjected to conflicting demands
of security, productivity, and performance. A lot of systems code
is written in unsafe languages, like C/C++, because they have low
runtime overhead, they enable low-level access to hardware, and be-
cause they are sometimes the only way to use legacy libraries or tool
chains. The drawback is that unsafe languages burden the program-
mer with managing memory and avoiding the many behaviors left
undefined by the language specifications. This makes it especially
hard to write secure software; but the security of the entire software
stack depends on input parsers, language runtimes, cryptographic
routines, web browsers, OS kernels, and hypervisors written in these
languages. Even extensive test suites and the use of tools like Val-
grind still leave holes in the code. It is thus not surprising that buffer
overflows are still the #1 vulnerability exploited by attackers [105]
and that new ones have been revealed to take control of browsers
and OSs in every edition of the Pwn2Own contest [115] since 2007.

Developers do have techniques available for “retrofitting” security
and safety into their software. Tools like AddressSanitizer [118], Un-
definedBehaviorSanitizer [36], ThreadSanitizer [119] etc. insert sanity
checks into the code to verify at run-time that desired safety properties
hold. These checks might verify that array indices are in bounds, that
arithmetic operations do not overflow, or that no two threads write to
a variable concurrently. If a sanity check fails, it typically is unrecov-
erable, and the program is aborted. Other than that, sanity checks do
not affect the program state.
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Unfortunately, such approaches are hardly ever used in production
because of their overhead. The introduced sanity checks slow down
the program. The strongest forms of protection introduce over 100%
overhead, which is often more than developers are willing to pay in
production environments.

It seems that the conflict between security, productivity and perfor-
mance is inescapable. With existing solutions, developers can choose
at most two of the three properties.

We propose to abolish the binary choice between high and low
performance, and instead let developers specify precisely how much
overhead they are willing to pay for security. We then generate a
selectively instrumented program containing a subset of the available
sanity checks that satisfies the developers’ constraints. We measure
our success by computing the sanity level, i.e., the fraction of sanity
checks that we have preserved.

The elasticity of sanity checks suggests that this may be possible.
The Pareto principle gives hope that this technique may even achieve
high security at low overhead. Moreover, we will show that it can be
completely automated and used with a wide range of sanity check
instrumentation tools, so that developer also retain productivity.

The next sections will introduce ASAP, the first fully-automated
approach for instrumenting programs subject to performance con-
straints. It allows developers to specify an overhead budget, and then
automatically profiles and selects checks such as to build a program
that is as secure as possible for the given budget.

We will first explain the semantics of sanity check instrumentation
that the technique relies on (Section 4.2.2), and then describe how we
designed our system to reason about the cost and effect of checks and
optimize them in a principled way (Section 4.2.3).

4.2.2 Semantics of program transformations that affect security

Our technique ASAP works with program transformations that make
software more secure by adding sanity checks to critical operations.
These checks verify that the preconditions of an operation are satis-
fied. For example, sanity checks can guard memory accesses to en-
sure that the target location is valid, or guard arithmetic operations
to ensure that the operands cannot cause an overflow. If the precon-
ditions hold, the operation proceeds, otherwise the check aborts the
program.

A range of properties can be enforced using sanity checks. ASAP
works with checks for memory safety, checks that detect undefined be-
havior, and checks that detect data races. Support for other types of
checks can be easily added.

Developer can choose from a range of tools to add such checks to
programs automatically. Automation is useful because such tools can
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Type Tool Overhead ASAP

Memory WIT 7%

CPI 8%

SAFECode 10%

BaggyBoundsChecking 60%

AddressSanitizer 73% �

SoftBound/CETS 116% �

UB UndefinedBehaviorSanitizer 71% �

Data races ThreadSanitizer 400% �

Table 5: Automatic solutions to enforce program safety. Overheads are those
reported in the corresponding publications. A check mark in the
last column indicates that our ASAP prototype includes support
for the tool.

exhaustively protect operations of a certain type, e.g., memory loads
and stores. This adds a large number of checks but guarantees that
the corresponding reliability property cannot be violated. Table 5 lists
popular tools along with their safety property and CPU overhead. We
reviewed these tools in more detail in Section 2.3.2.

To understand how ASAP works and what it assumes, we define a
sanity check to be a piece of code that tests a safety condition and has
two properties: (1) a passing check is free of side-effects, and (2) a fail-
ing check aborts the program. This characterization of sanity checks
has important implications: First, ASAP can automatically recognize
sanity checks in compiled code. Second, removing a sanity check is
guaranteed to preserve the behavior of the program, unless the check
would have failed.

The sanity checks seen by ASAP do not necessarily correspond
exactly to operations in the program source, since sanity check in-
teract with other transformations and optimizations performed by
the compiler. ASAP benefits from its tight integration with the com-
piler. Depending on their type, the compiler may be able to eliminate
certain sanity checks on its own when they are impossible to fail.
Other transformations such as function inlining can duplicate static
sanity checks in the compiled program. This refines the granularity
of ASAP: if there are multiple copies of the same function, ASAP can
distinguish the individual call sites and may choose to optimize only
some of them.

Some types of sanity checks depend on additional program trans-
formations. Memory safety checks work in tandem with changes to
the memory allocator. The allocator performs extra work to record
which regions in memory are currently accessible to the program, or
to store metadata for pointers to keep track of the range of addresses
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they may access. Some techniques also change the layout of objects in
memory: WIT [3] and AddressSanitizer [118] insert “poisoned” bytes
in-between objects and report an error when the program accesses
them. Baggy Bounds Checking [4] pads object sizes to the next power
of two, because this enables more efficient lookup of metadata. These
changes are not part of sanity checks by our definition. The over-
head they introduce remains as residual overhead and is unaffected
by ASAP.

Dynamic data race detectors, like ThreadSanitizer [119], combine
checks and metadata management as follows: ThreadSanitizer adds
a check to each memory access to determine whether another thread
has accessed the same location concurrently without synchronization.
It also logs the access, thereby gathering the metadata needed for
future checks. In addition, ThreadSanitizer monitors all synchroniza-
tion operations to determine cases where accesses by multiple threads
are legal.

When using ThreadSanitizer with ASAP, it is worth relaxing the
definition of sanity check to increase elasticity. We can consider the
tracking of memory accesses to be an elastic operation, because a tool
that tracks only some memory accesses has false negatives but never
suffers from false positives. In other words, the consequence of re-
moving tracking is the same as the consequence of removing checks:
some data races may no longer be detected. The monitoring of syn-
chronization operations however needs to be complete, otherwise the
data race detector can report false positives.

4.2.3 Design and implementation of ASAP

We now present ASAP, a technique to automatically adapt the over-
head of sanity check instrumentation. ASAP takes as input a software
system and a workload, as well as one or several instrumentation
tools. It then applies these tools to obtain a full set of available sanity
checks. After estimating the cost of checks by profiling, ASAP then
selects and applies a maximal subset of checks, such that the com-
bined overhead is within budget. Figure 10 illustrates this workflow
and shows the inputs and outputs of each step.

ASAP is the first technique to automatically exploit elasticity to en-
hance existing instrumentation tools. As such, it is the ancestor of
FUSS and BinKungfu, which we present later in this thesis. ASAP
shares with these techniques parts of the overall workflow and op-
timization process. We next describe this workflow in more detail,
and then present the ASAP prototype in Section 4.2.3.2. We defer a
discussion of other design points to Section 4.6, where we compare
all three techniques.



4.2 use case : optimizing system-code security vs . overhead 55
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Figure 10: The three steps of ASAP’s workflow. Yellow boxes represent in-
puts provided by the user, whereas blue dotted boxes are artifacts
and results computed by ASAP.
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Figure 11: Recognizing sanity checks and measuring their cost. The fig-
ure show an example control-flow graph fragment of an instru-
mented program. ASAP first recognizes all the sanity checks
(shown in red) by their structure. During profiling, ASAP counts
how often each instruction in these checks is executed. It then
uses these counts to estimate the amount of time spent due to
each check.

4.2.3.1 The ASAP workflow

A user of ASAP starts with a software system that is to be protected
using one or several instrumentation tools. We designed ASAP to be
part of the software’s compilation process, just like the instrumenta-
tion tools that it works with. Compilation using ASAP consists of
three steps: instrumentation, profiling, and check selection.

instrumentation The user starts by compiling the target pro-
gram with full instrumentation enabled. This step depends on the
specific instrumentation tool, but can be as simple as adding an ad-
ditional compilation flag (e.g. -fsanitize=address for AddressSan-
itizer). This leads to a binary (or several) that is protected, but too
slow to run in production.

ASAP can recognize sanity checks in the instrumented program by
looking for code that aborts the program under some condition, and
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is free of side-effects otherwise. The left half of Figure 11 illustrates
an instrumented program. A red annotation in the second column
shows which parts ASAP recognizes as sanity checks.

profiling The second step consists of profiling the application
against a suitable workload and computing the cost of each check. To
obtain profiling data, ASAP further instruments the program from
step 1 with profiling counters. Similar to GCOV [49], it adds one
counter per edge between basic blocks. At each branch, ASAP inserts
an increment of the corresponding counter.

Once the profiling run finishes, ASAP computes from the counter
values the number of times any given instruction in a sanity check
has been executed. By multiplying this value with a static estimate of
the CPU cycles required to execute that instruction, it computes the
accumulated cost for that instruction. The total cost in CPU cycles of
a given sanity check is then the sum of the costs of the instructions
inserted by that check. The sum of the costs of all sanity checks in the
program gives the total number of cycles spent in checks while exe-
cuting the profiling workload with the fully instrumented program.
This is shown in the right half of Figure 11.

Knowing the total amount of CPU cycles spent by checks, ASAP
can now compute what fraction of the cost it can preserve to achieve
a given target overhead. We call this number the cost level c. For this,
ASAP needs two additional pieces of data, namely the maximum
overhead omax and the residual overhead omin. It can obtain these by
measuring the software with full instrumentation and with all checks
removed, respectively. The overhead o is a linear function of c, and
so ASAP uses the following formula to compute the cost level for a
given overhead budget:

o = omin + c · (omax − omin) ⇒ c =
o− omin

omax − omin

check selection Knowing the cost of each check and the target
cost level, ASAP now uses a simple greedy algorithm to compute a
maximal set of checks to preserve, while staying within the overhead
budget. It orders checks by cost and preserves them starting with the
cheapest check, as long as the fraction of the total check cost allowed
by the cost level c is not exceeded. Because the distribution of check
cost is highly skewed, it is possible to preserve a fraction of checks
that is much larger than the fraction c of the total cost.

ASAP eliminates all checks that have not been preserved by re-
moving them from the instrumented program generated in step 1.
It then re-optimizes the program using standard compiler optimiza-
tions. This ensures that all data computed solely for use by those
sanity checks is also removed from the program. The result is an
optimized, production-ready executable.
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When production workloads have significantly changed from what
was used during profiling, steps 2 and 3 can be repeated with an up-
dated workload to re-estimate the performance trade-off and produce
a newly adapted binary.

4.2.3.2 Implementation

This section presents the architecture of ASAP, and its core algorithms
for detecting sanity checks, estimating their cost, and removing ex-
pensive ones from programs.

ASAP is based on the LLVM compiler framework and manipulates
programs in the form of LLVM bitcode, a typed assembly-like lan-
guage specifically designed for program transformations. It supports
source-based instrumentation tools and those that have themselves
been built on LLVM, which covers the majority of modern static in-
strumentation tools for C/C++/Objective C.

Users use ASAP through a wrapper script, which they invoke in-
stead of the default compiler. In addition to producing a compiled
object file, this wrapper also stores a copy of the LLVM bitcode for
each compilation unit. This copy is used during subsequent stages to
produce variants of the object with profiling code, or variants instru-
mented for a particular overhead budget.

ASAP works on programs one compilation unit at a time. It keeps
no global state (except check data described later) and does not re-
quire optimizations at link-time. This is important for supporting
large software systems that rely on separate and parallel compila-
tion. The only phase in the workflow that requires a global view is
the check selection phase, where ASAP computes a list of all sanity
checks in the software system and their cost. This phase uses an effi-
cient greedy selection algorithm described in Section 4.2.3.1 and has
little impact on compilation time.

ASAP automatically recognizes sanity checks. Recall from Sec-
tion 4.2.2 that a sanity check verifies a safety property, aborts the pro-
gram if the property does not hold, and is otherwise side-effect-free.
ASAP searches for sanity checks by first looking at places where the
program aborts. These are recognizable either by the special LLVM
unreachable instruction, or using a list of known sanity check han-
dler functions. The sanity checks themselves are the branches that
jump to these aborting program locations. Figure 12 shows an exam-
ple, a memory safety check generated by the AddressSanitizer tool.

The listing is shown in the LLVM intermediate language, which
uses static single assignment form (SSA); each line corresponds to
one operation that computes a result and stores it in a virtual register,
numbered sequentially from %1 to %19. The sanity check in the listing
protects a load from the address stored in register %3. It computes the
metadata address (%7), loads shadow memory (%8) and performs both
a fast-path check (the access is allowed if the metadata is zero) and
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; <label>:0
%1 = load i32* %fmap_i_ptr, align 4
%2 = zext i32 %1 to i64
%3 = getelementptr inbounds i32* %eclass, i64 %2
%4 = ptrtoint i32* %3 to i64
%5 = lshr i64 %4, 3
%6 = add i64 %5, 17592186044416
%7 = inttoptr i64 %6 to i8
%8 = load i8* %7, align 1
%9 = icmp eq i8 %8, 0
br i1 %9, label %18, label %10

; <label>:10
%11 = ptrtoint i32* %3 to i64
%12 = and i64 %11, 7
%13 = add i64 %12, 3
%14 = trunc i64 %13 to i8
%15 = icmp slt i8 %14, %8
br i1 , label %18, label %16

; <label>:16
%17 = ptrtoint i32* %3 to i64
call void @__asan_report_load4(i64 %17) #3
call void asm sideeffect "", ""() #3
unreachable

; <label>:18
%19 = load i32* %3, align 4

%15

Figure 12: A sanity check inserted by AddressSanitizer, in the LLVM
intermediate language. The corresponding C code is cc1 =

eclass[fmap[i]] and is found in blocksort.c in the bzip2 SPEC
benchmark. Instructions belonging to the check are shaded. The
red circle marks the branch condition which, when set to true,
will cause the check to be eliminated.
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a slow-path check (the access is also allowed if the last accessed byte
offset is smaller than the metadata). If both checks fail, the program
is aborted using a call to __asan_report_load4.

ASAP computes the set Ic of instructions belonging to the check
starting with the aborting function (__asan_report_load4 in our ex-
ample). It then recursively adds all operands of instructions in Ic to
the set, unless they are also used elsewhere in the program. It also
adds to Ic all branch instructions for which the target basic block is in
Ic. This is repeated until Ic reaches a fixpoint. In Figure 12, a shaded
background indicates which instructions belong to Ic.

The instructions in Ic are used for computing check costs as de-
scribed in Section 4.2.3.1.

A number of different profiling mechanisms can be used to mea-
sure instruction cost. Our choice fell on GCOV-style profiling coun-
ters, where the profiler uses one counter per basic block in the pro-
gram and adds a counter increment before every branch instruction.
Profiling thus determines the number of times each instruction was
executed; we obtain an estimate of the actual cost by applying the
static cost model for instructions that is built into LLVM’s code gen-
erator. The advantage of this approach is that it is robust and yields
cost estimates at instruction granularity that are unaffected by the
profiling instrumentation itself.

ASAP removes checks that are too costly from the program by al-
tering their branch condition. In our example in Figure 12, it replaces
the branch condition %15, circled in red, by the constant true, so that
the check can never fail. The rest of the work is done by LLVM’s dead
code elimination pass. It recognizes that all shaded instructions are
now unused or unreachable and removes them.

All steps ASAP performs are generic and do not depend on any
particular instrumentation. In fact, the ASAP prototype works for Ad-
dressSanitizer, SoftBound, UndefinedBehaviorSanitizer, ThreadSani-
tizer, and programmer-written assertions. It contains exactly five
lines of tool-specific code, namely the expressions to recognize han-
dler functions such as __asan_report_*. This makes it straightfor-
ward to add support for other software protection mechanisms. Also,
we did not need to alter the instrumentation tools themselves in any
way.

We mention one extra feature of ASAP that helped us significantly
during development: ASAP can emit a list of checks it removes in a
format recognized by popular IDEs. This makes it easy to highlight
all source code locations where ASAP optimized a check. Develop-
ers can use this to gain confidence that no security-critical check is
affected.

ASAP is freely available for download at http://dslab.epfl.ch/
proj/asap.
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4.3 use case : optimizing fuzzing efficiency

4.3.1 Desired property: efficient fuzzing

Fuzz testing, or testing a program with quasi-random inputs, is an
effective way to find crashes and security vulnerabilities in software.
Some of the most notorious security vulnerabilities were found in
this way [141], and fuzzing has become a standard fixture in most
commercial software testing strategies [98, 2].

Key to the effectiveness of fuzzing is test quantity, i.e., the ability to
generate and try out new inputs at high rate. Large-scale fuzzing ef-
forts (such as ClusterFuzz [7] that tests the Chromium web browser)
test software round the clock, using as many machines as are avail-
able. The number of bugs found is limited by the number of CPU
resources given to the fuzzer—intuition suggests that the more tests
the fuzzer gets to run, the more likely it is to find bugs.

The other key ingredient is test quality. First, testing many ran-
dom inputs in a blackbox fashion can at best discover shallow bugs,
whereas picking inputs smartly can penetrate deeper into the pro-
gram code and reduce the number of executions needed to find a
bug. To improve the quality of generated inputs, modern fuzzers
use feedback from prior executions to steer input generation toward
those inputs that are more likely to uncover bugs. Second, detecting
anomalous behaviors automatically during the test runs increases the
chances of detecting the manifestation of a bug. Therefore, fuzzers
check for a wide range of “illegal behaviors,” with memory safety
violations being the most popular. The premise is that higher-quality
test are more likely to find bugs.

Figure 13 illustrates the workflow typical of such a “smart” fuzzer,
like AFL [141] or LibFuzzer [88]. The objective is to quickly exe-
cute as much different code as possible, in order to reveal bugs that
lurk within. The fuzzer repeatedly generates new inputs and subjects
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Figure 13: The workflow of a coverage-driven fuzzer
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them to the program under test. If feedback from the program deter-
mines that the input is of particularly high quality, the fuzzer adds it
to its corpus, where it becomes a starting point for future inputs.

Ideally, a fuzzer should simultaneously have high test throughput
and high test quality, but unfortunately these two requirements con-
flict: obtaining good feedback comes at the cost of throughput. Both
detecting program misbehavior and collecting code coverage infor-
mation is done using program instrumentation: Fuzzers like AFL
and LibFuzzer insert code into the target program to track cover-
age of each basic block or control-flow edge of the program, and
they instrument the program with sanitizers that check for misbehav-
ior (e.g., AddressSanitizer [118] detects illegal memory accesses like
buffer overflows, and ThreadSanitizer [119] detects data races and
deadlocks). This instrumentation code uses precious CPU cycles: in
our measurements, we see on average 54% of all CPU cycles spent
in instrumentation code, which means that the fuzzer can perform
2.2× fewer iterations of the fuzzing loop than without instrumenta-
tion. Said differently, fuzzers invest less than half of their resources
into executing code of the target program, and spend the rest on im-
proving test quality.

In this part of the thesis, our goal is to obtain high fuzzing effec-
tiveness, i.e., to have both high test quality and quantity. An effective
fuzzer is one that quickly and fully explores a program under test. We
measure this by analyzing how much of the program is executed with
fuzzer-generated inputs, and at what rate the fuzzer increases test
coverage. Ultimately, faster program exploration enables the fuzzer
to find bugs more quickly. To measure these end-to-end gains, we
apply the fuzzer to test programs with known bugs, and measure the
time it takes to reveal these bugs.

Our technique achieves higher fuzzing effectiveness using the Elas-
ticity Principle. We observed that most of the benefit that the fuzzer
obtains from instrumentation can be obtained by few CPU cycles
invested into the most productive instrumentation atoms. We start
by understanding how a fuzzer uses instrumentation (Section 4.3.2).
This allows us to identify those instrumentation atoms that do pro-
vide useful information to the fuzzer, taking its current progress into
account. We then re-instrument the program, keeping only the use-
ful instrumentation. We describe our technique to classify and select
instrumentation atoms in Section 4.3.3.

We call our technique FUSS, or “Fuzzing on a Shoestring”, because
it invests only few carefully selected resources into test quality.

Our evaluation in Section 4.5.2 shows that this approach obtains
high test quality using only 12% of the CPU cycles needed for full
instrumentation. This improves test quantity by 1.5× on average. For
some benchmarks, this translates into a reduced time to find bugs.
FUSS is up to 3.2× faster than the state of the art in these cases.
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4.3.2 Semantics of program transformations that affect fuzzers

Fuzzers rely on instrumentation to detect program features triggered
by tests, e.g., the execution of a basic block or a memory write past
the end of a buffer. Whenever a feature is seen for the first time, the
fuzzer reacts: it adds the test to its corpus of interesting test cases, or
reports a bug. This is a type of genetic algorithm, where test cases
that trigger previously unseen features survive and have offspring.

Each of the features that the fuzzer is interested in corresponds to a
single instrumentation atom. Conversely, each atom detects a single
or a small number of features.

Instrumentation atoms have a lifetime: once the fuzzer has ex-
plored all features that an instrumentation atom can detect, that atom
can never again influence the fuzzer’s behavior. A tool like FUSS
could remove that atom without reducing the amount of feedback
that the fuzzer obtains.

Different types of instrumentation can detect many features of in-
terest.

Coverage bits detect when a particular edge in the control-flow graph
of the program is executed. When a coverage bit fires, the fuzzer
knows that it has found new code. A Coverage counter similarly de-
tects how often an edge has been executed, and can signal to the
fuzzer that it made progress when exploring a loop.

Coverage instrumentation atoms are the sensors through which the
fuzzer detects interesting test cases, and their sensitivity influences
how the fuzzer spends its time. The fuzzer will explore each inter-
esting test case and invest time to mutate it. The ideal coverage in-
strumentation is just sensitive enough so that the fuzzer can detect
each test case that triggers new behavior. However, it must not be
too sensitive, otherwise the fuzzer spends excessive time exploring
almost identical behaviors.

To illustrate the sensitivity trade-off, consider how AFL and Lib-
Fuzzer handle loops. They consider a test case that causes a loop to
exit after a single iteration to be different from a test case that triggers
two loop iterations. On the other hand, two test cases that trigger 100
and 101 iterations, respectively, are considered to be similar, and the
fuzzers keep only one of them. AFL and LibFuzzer keep up to eight
test cases to explore a loop, one each for iteration counts of 1, 2, 3,
4-7, 8-15, 16-31, 32-128, and >128. Note that they are more sensitive
for small iteration counts than for large ones.

This sensitivity is useful, for example, to find inputs that contain
keywords. A program that compares its input against a constant
keyword, e.g., using strcmp(input, "key"), contains an internal loop
that examines the input character by character. The fuzzer will find
that the test cases "k.." and "ke." trigger a different number of loop
iterations. It will thus further explore "ke.", and eventually find a
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Figure 14: A feedback-driven fuzzer boosted with FUSS. During fuzzing,
FUSS gathers profiling data to determine the cost of each instru-
mentation atom. From this, FUSS identifies those atoms that gen-
erate useful feedback cheaply, and re-instruments the program
accordingly.

random mutation that transforms it into "key". Without feedback
from instrumentation, the fuzzer would not have found the prefixes
"k" and "ke", and would have been unlikely to generate the entire
keyword through a single random mutation.

Safety checks detect abnormal conditions, alerting the fuzzer that
a bug has been found. Such checks can be added by developers
in the form of assertions, or automatically by tools. Both AFL and
LibFuzzer recommend to use instrumentation tools for a variety of
error conditions: Examples are UndefinedBehaviorSanitizer, Thread-
Sanitizer, AddressSanitizer, FORTIFY_SOURCE, AFL’s libdislocator, and
stack-protector [36, 119, 118, 70, 46].

Using safety checks increases the quality of tests, and thus the num-
ber of bugs that fuzzers can detect. Without them, developers need
to hope that illegal behavior leads to a segmentation fault or other
exception. This does not always happen, particularly for tricky cases
such as use-after-free or buffer over-read bugs.

4.3.3 Design and implementation of FUSS

Figure 14 shows an overview of our design for FUSS. In this section,
we explain the following points (numbered in the Figure). (1) Sec-
tion 4.3.3.1 explains how FUSS classifies instrumentation atoms as
useful or not. (2) FUSS obtains cost data for this classification using a
statistical profiler, which we describe in Section 4.3.3.2. (3) We explain
how FUSS re-instruments the program under test in Section 4.3.3.3.

4.3.3.1 How FUSS identifies useful atoms

When analyzing the types of instrumentation used by fuzzers, we
find a pattern: an atom’s usefulness decreases with the number of
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executions. This is most obvious for coverage bits, the lifetime of
which ends immediately after it is executed for the first time. Sim-
ilarly, the more powerful coverage counters count their number of
executions and expire when that number lies within a certain range.
Safety checks also tend to detect bugs during the first few executions,
rather than when they are already well exercised.

This relationship between execution count and usefulness exists
because the execution count summarizes three aspects of an atom:
location, lifetime, and cost.

Location: Atoms in unexplored area are more useful than those in
well-explored core locations of the program under test. Program ar-
eas that the fuzzer has explored often, in many different contexts, be-
come less likely to reveal new behavior or bugs that instrumentation
can detect. This is precisely why successful fuzzers guide their explo-
ration to newly discovered areas, and why instrumentation there is
more valuable.

Lifetime: Atoms at the beginning of their lifetime are more useful
than others. In our analysis of different instrumentation types in Sec-
tion 4.3.2, we saw that each atom “fires” a small number of times, and
then expires. Each atom provides only a limited amount of informa-
tion to the fuzzer. Once the fuzzer made use of all the information,
the atom no longer adds value.

Cost: Cheap atoms are more useful than those with high cost. The
argument is simply that, if we are on a budget, it is better to enable
ten cheap atoms than one expensive atom. Because effective fuzzers
need both high test quantity and test quality, it can be beneficial to im-
pose a budget, and reduce instrumentation in exchange for a higher
throughput. In this case, removing the most expensive atoms yields
the biggest throughput increase.

An atom’s execution count embodies all these characteristics. It is
a simple metric that can be conveniently measured via profiling, and
works well in practice. For these reasons, FUSS identifies atoms as
useful or not based on their execution count. It derives this count
from the number of CPU cycles spent on a particular atom, as de-
scribed in the next section.

4.3.3.2 How FUSS estimates cost

The goal of FUSS’s profiler is to obtain precise data about the cost of
each instrumentation atom. The quality of this data determines how
accurately FUSS classifies atoms.

Our design uses a statistical sampling profiler, Linux Perf [94]. The
profiler examines the CPU state frequently (e.g., 4,000 times per sec-
ond) while the fuzzer is running, and records the current program
counter and recently executed program locations found in the CPU’s
last branch record (LBR). This gives FUSS a statistical distribution
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Figure 15: Steps to compute atom costs from data generated by a sampling
profiler.

of CPU time over assembly instructions in the executable, including
those corresponding to the atoms.

FUSS’s optimizations work not on assembly code but on the LLVM
Intermediate Representation (IR). To map profiling data to instruc-
tions in LLVM IR, FUSS uses a sequence of transformations shown in
Figure 15. In a first step, FUSS uses the AutoFDO tool [32] to map
profiling samples to source code lines, using debugging information
embedded in the profiled program. This results in a distribution of
execution time over the lines in the program, which the compiler can
load along with the source code.

Once loaded, the LLVM compiler uses profiling data first to com-
pute block weights, and then derives branch probabilities from block
weights: each branch target receives a probability that indicates how
frequently it is taken relative to other targets of the same branch.
Branch probabilities are LLVM’s preferred form of profiling metadata,
because they can be kept consistent across program transformations.
For example, inlining a function changes the weights of the function’s
blocks, but usually preserves the probabilities of branches.

Toward the end of the compilation process, FUSS computes atom
costs from branch probabilities as follows. First, FUSS uses LLVM’s
built-in BlockFrequencyInfo pass to convert branch probabilities back
to block frequencies. These block frequencies are relative to the func-
tion that contains the block; to obtain a frequency relative to the en-
tire program, FUSS multiplies block frequency with the weight of the
block’s function. A function’s weight is the number of samples in its
entry block, and is proportional to how often the function was called
during profiling. Finally, FUSS computes the cost of each instruction
in an atom, by multiplying the instruction’s latency (in CPU cycles)
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with the frequency of the block containing the instruction. The cost
of an atom is the sum of the costs of its instructions.

The resulting atom cost is an approximation, both because the data
gathered by the profiler is imprecise and because each transforma-
tion step further reduces precision. We discuss the consequences of
these imprecisions when we analyze the limitations of FUSS in Sec-
tion 4.6.3.

The advantage of this design is that it can obtain profiling data
from an unmodified, running fuzzer, without restrictions on the type
of fuzzer or the type of instrumentation used. In contrast, alterna-
tive profilers such as GCov (as used by ASAP) require modifying the
program under test, and introduce an overhead of their own.

4.3.3.3 How FUSS winnows instrumentation

When FUSS has gathered information about the cost of instrumenta-
tion atoms, it generates an optimized version of the program.

We implement this re-instrumentation as a plugin for the LLVM
compiler [84]. It receives the instrumented program in the compiler’s
intermediate language, LLVM IR. Our plugin scans the program for
instrumentation atoms, obtains their cost, and elides those for which
this cost is above a threshold.

Our design builds on ASAP. FUSS re-uses ASAP’s concept of instru-
mentation atom and the ability to prioritize and select atoms. Beyond
that, FUSS extends ASAP in two main ways.

First, FUSS recognizes any type of instrumentation, including cov-
erage instrumentation used by fuzzers. ASAP itself recognizes sanity
checks only; it identifies them by scanning the program for conditions
that lead to aborts, as explained in Section 4.2.3.2.

FUSS more generally recognizes a “root” for every atom, which is
an instruction that unambiguously identifies it. This can be the oper-
ation that increments a coverage counter, for example, or a function
call into the instrumentation’s run-time library. Starting from the root,
FUSS finds the other instructions in the atom. These are the instruc-
tions that are used, directly or indirectly, by the root but not by any
other parts of the program.

This technique can in principle recognize any type of atoms. A
bit of care is needed for atoms that contain instructions with side
effects. FUSS would normally consider the side effect to be part of the
program’s functionality, and thus would not add such instructions to
an atom. However, it is possible to include side effects in atoms by
making them part of the atom’s root. This is how FUSS handles
coverage instrumentation, where the side effect is a write to an array
of coverage counters.

With this infrastructure in place, recognizing new types of instru-
mentation is as easy as adding a pattern to recognize a root instruc-
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tion. This makes FUSS easily applicable to any type of instrumenta-
tion.

Second, FUSS extends ASAP with the ability to compute costs
based on data from a sampling profiler. The choice of using a sam-
pling profiler simplifies the workflow compared to ASAP. In Sec-
tion 4.2.3.1, we discussed how ASAP creates three version of an exe-
cutable: an initial version to serve as basis for future steps, a version
for profiling, and a final optimized version. ASAP uses a compiler
wrapper script to modify the build process and ensure that the right
version is used as input and output of each stage of the workflow. In
contrast, FUSS can simply observe the fuzzer while it is running, and
does not need to perform any setup for profiling.

To perform the actual re-instrumentation, FUSS recompiles the pro-
gram with an extra compiler flag that triggers the FUSS compiler pass,
and another flag that points the compiler to the file containing profil-
ing data. The process is simpler than for ASAP, because there is no
need for compiler wrapper scripts or state from previous steps (other
than the profiling data file).

During re-instrumentation, FUSS removes from the program those
atoms for which the cost exceeds an empirically determined thresh-
old. The value of this threshold strikes a balance between test quan-
tity and quality: The threshold must be low enough to eliminate
most of the overhead due to instrumentation, and yet high enough
that the preserved instrumentation is sufficient to guide the fuzzer.
Unfortunately, we did not find a good automated way to determine
this threshold. We simply tested multiple values, and chose one that
worked well.

4.3.3.4 Prototype

We have implemented a prototype of FUSS that developers can use
to fuzz-test arbitrary software. Our prototype uses the LibFuzzer
fuzzing engine, and also includes preliminary support for AFL. Its
input is the source code of the software to test, along with commands
to compile it and to invoke the fuzzer. From this, our prototype pro-
duces an optimized executable that can be fuzzed with high through-
put. Our prototype performs five steps:

Compile: FUSS starts by compiling the application using the user-
provided command. Users can choose the compilation flags to enable
instrumentation, safety checks, assertions etc. The result of this step
is a valid, but slow, executable to be fuzzed.

Warm-up: FUSS then fuzzes the application under test. This step is
identical to how the fuzzer is normally used. The warm-up period
is short (60 seconds were sufficient in our experiments). It serves to
explore the core parts of the program, and results in an initial corpus
of testcases.
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Figure 16: Number of test executions when fuzzing the Harfbuzz bench-
mark. In this figure, the five steps performed by FUSS are high-
lighted with alternating shades of gray. Warm-up starts after
the benchmark is compiled, at 20 seconds. After a 60-second
warm-up time, FUSS performs 10 seconds of profiling, and then
recompiles the benchmark to optimize it. During recompilation,
no fuzzing progress is made because the CPU is dedicated to
the compilation. Afterwards, fuzzing continues with a higher
throughput than before.

Profile: At this point, FUSS attaches the Perf profiler to the running
fuzzer. It gathers data that serves to identify the well-explored core
parts of the program. The output of this step is a statistical distribu-
tion of execution time over program locations.

Optimize: FUSS obtains a cost estimate for each instrumentation
atom from the profiling data, and removes those atoms that cost the
most CPU cycles. FUSS performs this step inside the compiler. It
activates the necessary compiler passes by adding FUSS-specific flags
to the compilation command, and re-compiling the application un-
der test. During re-compilation, we stop the fuzzer to make the CPU
available for the compiler. The result is an executable with instrumen-
tation specifically tailored for fuzzing.

Fuzz: After optimization, fuzzing can continue on the optimized
binary. From the fuzzer’s perspective, nothing has changed, except
that the program under test now runs faster.

Figure 16 illustrates the four steps performed by FUSS. We plot the
evolution of executions over time, for FUSS and a traditional fuzzer.
We use the Harfbuzz benchmark as example; other benchmark from
our collection would show similar trends. FUSS initially invests time
to gather profiling data and optimize the program, so its progress
falls behind the baseline. However, the optimized fuzzer very quickly
amortizes the invested time by virtue of its superior speed. Note that
we cap Figure 16 at 200 seconds to highlight the steps performed by
our prototype. A typical fuzzing session would last much longer.

While fuzzing, the fuzzer saves all interesting testcases in its cor-
pus. This corpus contains all the fuzzer’s progress. When the fuzzer
is interrupted (e.g., after FUSS recompiles the program under test),
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it reloads the corpus from disk and, within few seconds, resumes
fuzzing at the point where it stopped.

The FUSS prototype will be made available as open-source soft-
ware, at http://dslab.epfl.ch/proj/fuss.
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4.4 use case : binary hardening

This section describes how elastic instrumentation principles apply
to the task of hardening software binaries. We compare two transfor-
mations that enforce a security property called control-flow integrity
(CFI): an implementation of classic ID-based CFI [1] and a novel im-
plementation using elastic checks. Our elastic implementation can be
applied selectively in situations where full protection has prohibitive
overhead.

We implemented the two CFI-transformations in a binary harden-
ing tool called BinKungfu tool, and evaluated it using benchmarks
from the Cyber Grand Challenge (CGC) [40]. We found that selec-
tive instrumentation was useful to protect programs in the presence
of tight overhead limits. For example, classic CFI fails to meet a 5%
overhead target for 17 benchmarks from the CGC set. In 10 of these
17 cases, BinKungfu can use elastic checks to obtain partial protection,
which is often good enough to thwart attacks.

4.4.1 Desired property: high protection and small, fast code

In this section, we explain what it means to protect a program against
attacks, and how we quantify the security and overhead of a protec-
tion mechanism. We discuss these terms and metrics in the frame-
work established by the DARPA Cyber Grand Challenge (CGC), be-
cause its formalization is useful and because we evaluated our proto-
type, BinKungfu, with benchmarks from CGC.

4.4.1.1 Quantifying protection

We desire to protect programs to prevent attackers from gaining con-
trol over our machines by exploiting the program’s vulnerabilities.
Vulnerabilities arise from bugs in the software: unintended program
behaviors that can be triggered by specific inputs. When a bug allows
attackers to gain control of the machine or read secret data, we call
the bug a security vulnerability. We call the particular input that an
attacker uses to trigger the vulnerability an exploit.

The organizers of CGC precisely defined what it means for an ex-
ploit to be successful. They distinguish two types of exploits: exploits
of type I hijack control-flow, and type-II-exploits leak data. A control-
flow hijack exploit is successful if the attacker can set the processor’s
program counter to an arbitrary value, and control the contents of at
least one processor register. In most real-world settings, this is suf-
ficient to execute arbitrary code on the machine where the program
runs. Alternatively, a data leak exploit is considered successful if the
attacker can obtain the contents of a designated memory area that
the program tries to keep secret. Again, this capability is usually
equivalent to reading arbitrary values from the program’s memory.
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These definitions are useful from an attacker’s point of view, but
difficult to use when defending programs against attacks. In princi-
ple, a program is defended when no successful exploit exists. Alas,
the presence of exploits or the number of vulnerabilities in a program
is in general unknown. Our inability to find an exploit is by no means
a proof that the program is safe.

Thus, defenders usually reason about security in terms of security
properties enforced by the program. These properties are satisfied
by all possible program executions and rule out specific classes of
vulnerabilities. A program is then considered “safe” if its security
properties prevent all known exploit methods.

For example, the control-flow integrity property (CFI) states that the
program will only ever execute code that is part of the program’s
static control-flow graph (CFG). The property means that all changes
to the processor’s program counter correspond to valid transitions in
the CFG. This prevents a large class of attacks from succeeding. In
particular, attackers can now no longer take control of the program
by setting the program counter to arbitrary values. On the other
hand, different types of attack (such as leaking secret values from the
program’s memory) might still be possible.

To enforce control-flow integrity, defenders need to ensure that
each program instruction that changes the program counter does so
according to the valid CFG transitions. For most instructions, the
effect on the program counter is fixed, and its validity can be stat-
ically checked. In the X86 architecture, the exceptions are indirect
jumps, indirect function calls, and function returns. For these instruc-
tions, the target address is computed at runtime and could depend
on attacker-controlled input. CFI defenses add a check between the
address computation and the jump to ensure the validity of the target
address.

CFI defenses guarantee that a program is secure (i.e., has the CFI
property) if and only if all dynamic control-flow transfer instructions
are preceded by a check. Even a single unprotected transfer could
allow a powerful attacker to gain control.

Yet this black-and-white approach to quantify security is limited. In
this thesis, we instead consider the fraction of protected control-flow
transfer instructions to be an indicator for the resilience of a program
against attacks. In situations where overhead constraints limit the
amount of extra checks that can be added to a program, we think it
is better to protect the program partially than to leave it completely
unprotected.

The justification for our metric comes from the observation that
bugs often have a localized effect. For example, a buffer overflow
might allow an attacker to only overwrite a single return address. In
this case, only one control-flow transfer instruction is affected, namely
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the return instruction that uses the attacker-controlled address. If this
instruction happens to be protected, the program is safe.

We do not attempt to formalize the amount of control that a bug
gives to an attacker, or make assumptions about the number or dis-
tribution of bugs in a program. As such, the fraction of protected
program instructions does not quantify safety or correspond to a
probability of being protected against a vulnerability. Our work on
ASAP did find correlations between the fraction of safety checks in
a program and the number of detected bugs (Section 4.5.1); but all
we claim here is that more safety checks are better than fewer safety
checks.

4.4.1.2 Quantifying overhead

In contrast to security, overhead is relatively easy to specify and mea-
sure. In the context of CGC where we evaluate our techniques, there
are three types of overhead:

• Time overhead, which is the increase in CPU time needed by
the protected program compared to the original program. This
overhead comes directly from executing safety checks, but also
indirectly from their effect on caches, program layout, branch
predictors, etc.

• Memory overhead, being the increase in memory consumption of
the protected program compared to the original. This overhead
can come from increased code size, but also be due to memory
used by the protection mechanisms.

• File size overhead, i.e., the increase in program size due to the
protection mechanisms.

CGC further defined rules for weighting different types of over-
head against each other. For the kind of instrumentation performed
by BinKungfu, the dominant factor was memory overhead, and the
rules meant that protection mechanisms may increase memory con-
sumption by at most 5%. The instrumentation that BinKungfu per-
forms increases memory consumption through its size. The instru-
mentation instructions occupy space in the program’s code segment,
which gets loaded in memory when the program executes. As a re-
sult, BinKungfu tries to limit the amount of instrumentation code that
it adds to a program.

Based on this trade-off between security and overhead, the goal
for BinKungfu is thus: maximize the fraction of program locations
protected with CFI checks, while keeping code size low to maintain
memory overhead below 5%.
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void foo() {

char buffer[3];

strcpy(buffer, "much data!");

}

int main() {

foo();

return 0;

}

(a) Source code in the C language

foo: ...
ret

main: call foo

...

(b) Control-flow graph

Figure 17: A minimal program and its CFG. The return from foo is an indi-
rect transfer, which fails due to a buffer overflow.

4.4.2 Semantics of program transformations for hardening

We now look in detail at the program transformations available for
program hardening. We limit ourselves to those transformations that
enforce control-flow integrity (CFI). CFI is a popular security prop-
erty; we contrasted it with other security properties and described
some implementations in Section 2.3.2, and will now explain its se-
mantics. Figure 17 shows an example program along with its control-
flow graph (CFG).

The CFG is derived from the rules of the programming language,
in this case C. The rules specify, e.g., how a function call transfers
control to the callee, and how control returns to the caller afterwards.

According to this specification, compilers transform the program
into machine code where these control-flow transfers take the form
of direct and indirect jumps. Compilers use direct jumps if the target
address is known and static, as is the case for the function call in
our example. They use indirect jump if the target address is variable
or computed. The return instruction in our example is an indirect
jump, because the function foo could be called in several places, and
so there are multiple potential target addresses.

Indirect jumps can go wrong due to bugs in the program. In our
example, the programmer mistakenly copies too much data into a
buffer. The extraneous data overrides other values on the program’s
stack, including the return address of the function foo, so that foo’s
return instruction will jump to an invalid location.

Control-flow integrity transforms all indirect jump instructions to
prevent this case from happening. The semantics of this transforma-
tion are as follows:

Completeness: instrument all indirect control flow transfers. The
transformation adds a check to each such instruction, at the point
just after the target address has been computed and just before the
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call foo

...

(a) Original call site

call foo

jmp after_id

.dword id

after_id: ...

(b) Call site with ID

ret

(c) Original return instruction

push edi

mov edi, [esp + 4]

cmp [edi + 2], id

je id_ok

call abort

id_ok: pop edi

ret

(d) Return with check

Figure 18: An ID-based CFI check to verify that a return instruction jumps
to a valid call site.

jump is performed. The check verifies whether the target address is
valid according to the CFG, and aborts the program otherwise.

Soundness: checks accept all valid targets. Failure to do so might
cause false positives, i.e., situations where a CFI check aborts the
program even though nothing went wrong.

The classic CFI check relies on IDs embedded in the program code.
These are byte sequences that identify target locations. Completeness
requires that these IDs appear only at valid target locations. Sound-
ness requires that all target locations are marked. Figure 18 gives an
example of an ID-based check as implemented in BinKungfu.

The top half of Figure 18 shows a call site instrumented with an
ID. The ID is a four-byte constant value. It is preceded by a two-byte
short jump instruction, which causes the processor to skip over the
ID when executing the program. Together, the ID and jump form a
six-byte sequence with no effect on the program behavior.

The bottom half of the figure shows a return instruction preceded
by a check. The check first loads the return address from the stack
into the edi register, and then compares the four bytes at [edi + 2] to
the ID. If the return address is valid, this location will indeed contain
the ID, and so the check succeeds.

Note that BinKungfu uses an approximation of the program’s CFG
for ID-based CFI. In particular, each return instruction is allowed to
target any call site. We chose this design because obtaining a precise
CFG is difficult when analyzing X86 executables. It simplifies return
checks a bit, because all checks can use a single shared ID.
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Instrumentation Bytes Avg. Count Avg. Overhead

ret check 20 49 980

id at call site 6 160 960

Table 6: Overhead introduced by CFI instrumentation for return instructions.
Numbers are averaged over all benchmarks from the CGC qualifi-
cation.

4.4.3 Design and implementation of elastic binary hardening

In our elastic instrumentation framework, we forgo the completeness
requirement of full CFI instrumentation, and instead maximize the
number of checks we can add to the program. In exchange, we want
to achieve lower overhead.

Alas, ID-based CFI checks are only partially elastic. Due to the
soundness requirement, we cannot add checks unless all valid target
locations are marked with an ID.

In the case of BinKungfu using ID-based return checks from Fig-
ure 18, overhead breaks down as in Table 6. The table measures
overhead as the increase in code size due to each type of instrumen-
tation. Our benchmarks have 49 return instructions (roughly one per
function) and 160 call sites on average. The large number of call sites
means that 49% of the overhead comes from marking call sites with
IDs.

We next describe how to avoid this up-front cost using a new elastic
CFI check.

4.4.3.1 An elastic CFI check

We designed a new CFI check for return instructions that avoids over-
head from instrumenting call sites. The insight is that we can often
recognize a valid return target by examining the code around the tar-
get address. If we find that this is the case for all call sites of a given
function, then we use a specialized check and do not modify the call
sites.

Our check is displayed in Figure 19. It verifies that the target ad-
dress is preceded by a direct call to the function to which the return
instruction belongs. In X86 assembly, direct call instructions are of
the form 0xe8 + offset, where 0xe8 is the instruction opcode and
offset is the offset between the current program counter (i.e., the lo-
cation right after the call instruction) and the start of the function to
be called.

On a function call, the processor performs the following actions: It
first increments the program counter, so that it points to the instruc-
tion following the call instruction. Then, the value of the program
counter is pushed on the stack, to serve as the return address for the
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ret

(a) Original return instruction

push ecx

mov ecx, [esp + 4]

add ecx, [ecx - 4]

cmp ecx, f.addr

je offset_ok

call abort

offset_ok: pop ecx

ret

(b) Return with check

Figure 19: Specialized check for directly-called functions. The check ensures
that the instruction just before the return site looks like a call to
the function at f.addr.

function call. Finally, the processor adds the offset to the program
counter, and starts executing the function.

The check reproduces these actions in order to compute the ex-
pected offset in the ecx register. It first saves ecx on the stack. This
places the old value of ecx at [esp], and the return address at [esp
+ 4]. The instruction mov ecx, [esp + 4] loads the return address
from the stack into the ecx register. add ecx, [ecx - 4] adds to this
the four bytes preceding the return location, which—assuming the
return location is valid—correspond to the offset part of the call in-
struction. Here, ecx is used both as destination and source operand
of the addition, in order to clobber as few registers as possible. If the
return address is legitimate, the result should be equal to the address
of the callee function. In this case, the check restores ecx and esp,
and allows the return to happen.

We name this check retdirect, because it verifies ret instructions
for directly-called functions.

For efficiency, the check does not actually verify the opcode. Enforc-
ing a correct offset is strong enough to eliminate most invalid target
locations.

A return check for directly-called functions is fully elastic. At 22
bytes, the check itself has 10% more memory overhead than an ID-
based check. Yet this is more than compensated by savings on IDs
and by selective instrumentation, as our evaluation in Section 4.5.3
will show.

An ID-less retdirect check requires more information about the
program’s control-flow graph than ID-based checks. For the latter,
it is enough to identify function call and return instructions. For
retdirect checks, BinKungfu needs to identify function addresses
and determine for each function whether it could ever be called in-
directly. Compiler optimizations such as tail-call optimizations can
make this difficult. In our evaluation, we found that BinKungfu’s dis-
assembler handled all benchmarks correctly, so that retdirect checks
did not introduce functionality problems.
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Finally, note that retdirect checks are more precise than the ID-
based checks used by BinKungfu. The ID-based checks share the
same ID across all call sites and returns. This approximation allows
return instructions to target any call site, including those from differ-
ent functions. In contrast, retdirect checks only allow returns to call
sites of the right function.

4.4.3.2 Selective instrumentation

Elastic CFI checks enable selective instrumentation, but selectively
instrumenting a program brings its own set of challenges. We will
look at two challenges in particular: First, how to select a subset of
checks with high expected protection? This task is difficult because
it is unknown where in a program a control-flow hijack could occur,
and thus which checks are needed. Second, how to make full use
of the available overhead budget, without exceeding it? The main
difficulty for this task is computing the overhead created by a given
subset of checks.

selecting checks We would like to prioritize checks to protect
the program where it most needs protection. Whether a check is
useful depends on whether it can catch the effects of a bug. Existing
tools often use heuristics to estimate this. For example, GCC’s stack
protector [123] gives users the choice to either protect all functions
or only those that use buffers (and thus are more prone to buffer
overflows that the stack protector detects).

BinKungfu uses a rather simple heuristic to prioritize checks, based
only on the check’s type. BinKungfu first adds retdirect checks to
return instructions in directly-called functions. If this does not use
all the overhead budget, it also adds classic ID-based checks to all
other functions. Finally, it adds CFI checks for other control transfer
instructions, namely indirect calls.

This heuristic is based on the average cost of the checks, and on the
observation that return address overwrites have historically been the
most exploited type of control-flow hijack vulnerability.

controlling overhead The second challenge in selective in-
strumentation is to fully use the available overhead budget. This
requires predicting the overhead due to a subset of changes, in order
to determine it fits in the overhead budget. Such a prediction is diffi-
cult because the overhead for a set of changes is not simply the sum
of overheads of its components. Non-linearity arises because each
change interacts with other changes and can influence the layout of
the entire program. We next explain how this phenomenon occurs in
BinKungfu’s approach to patching.

When BinKungfu patches a program, it leaves the binary mostly in-
tact, and only modifies parts (i.e., basic blocks in the CFG) that need
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Figure 20: Instrumenting a program with BinKungfu. On the left is the orig-
inal program. Grey blocks represent active code, with free spaces
in-between, e.g., due to unused functions. The middle panel
shows the program’s state after BinKungfu replaced some blocks
with jumps to instrumented code. The instrumented code is ini-
tially “floating”, until BinKungfu assigns an address to each block
(right panel). If not all blocks fit into unused space, BinKungfu
allocates a new code section.

protection. This approach increases compatibility, because the func-
tionality of unmodified program parts is preserved, even if BinKungfu
does not perfectly understand those parts or did not perfectly recon-
struct the CFG. However, this approach introduces constraints on the
type of modifications that can be performed; in particular, BinKungfu
does not move arbitrary program parts around. This preserves jumps,
code pointers, and other functionality which expects program code to
be in a fixed location.

When BinKungfu does decide to change a basic block, it generates
a copy with equivalent functionality and added protection. Then,
BinKungfu replaces the original block with a jump to the new code.
The left two panels of Figure 20 illustrate this patching process.

The changed parts of the CFG are initially “floating”, i.e., they don’t
have an assigned address. Further changes to these blocks do not
introduce more jumps, because floating blocks are not subjected to
the same constraints as regular blocks

Once BinKungfu has applied all changes to the CFG, it tries to
pack the floating changes into the available space, as shown in the
right panel of Figure 20. BinKungfu aims to minimize fragmentation,
i.e., use the available space efficiently by matching floating blocks
to available spaces of the appropriate size. It uses heuristics do so,
because computing an optimal assignment is computationally hard.
Only once this heuristic bin-packing completes does BinKungfu know
the amount of overhead induced by the changes.

BinKungfu thus performs instrumentation in two distinct phases.
During the first phase, the program consists only of original code and
floating changes. In this phase, BinKungfu can modify the program,
either by introducing a new floating change or modifying an existing
one. In the second phase, BinKungfu establishes the layout of the
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instrumented program and commits the set of changes to its final
form. At this point, modifications are no longer safe and efficient.
Figure 21a contains pseudocode for this two-phase instrumentation
process.

For selective instrumentation, BinKungfu needs to know the over-
head caused by a subset of the available changes, in order to generate
a program that satisfies the desired overhead limit. This means that
BinKungfu needs to interleave the change generation and address
assignment phases. We implemented this on top of BinKungfu’s ex-
isting functionality; Figure 21b shows our implementation in pseu-
docode, and Figure 21c illustrates the difference compared to the
original version.

We modified BinKungfu’s original algorithm in two ways. First, we
generate changes to the CFG in order of decreasing priority. Second,
we run the address assignment after each step. If this assignment
is successful, BinKungfu snapshots the resulting program executable,
and then undoes the address assignment so that the CFG can be fur-
ther modified.

Running and undoing the address assignment turned out to be sur-
prisingly tricky. This highlights the trade-offs faced by software engi-
neers between ease of implementation and extensibility, and between
imperative and functional styles.

Originally, BinKungfu exploited the strict separation of change gen-
eration and address assignment. The change generation phase made
assumptions about the structure of the program, and did not han-
dle code that normal compilers are unlikely to create. For example,
BinKungfu’s CFG data structure could not represent IDs (like those
introduced by the CFI protection mechanism) unless they were part
of a floating change. These assumptions no longer held after the sec-
ond phase, when the floating changes had been integrated into the
program.

We explored several solutions to interleave the change generation
and address assignment phases: (a) copying the CFG data structure
and running the address assignment phase on a copy, or (b) predict-
ing space usage without actually assigning addresses, or (c) imple-
menting an undo functionality for address assignment. Choice (a)
seemed simplest conceptually, but we had to rule it out because much
code in BinKungfu depended on having a single CFG. Choice (b) re-
quired us to solve a difficult algorithmic problem. This left us with
choice (c), which was conceptually rather ugly and inefficient. How-
ever, it worked, and working code is better than efficient or elegant
code.

4.4.3.3 Summary of elastic binary hardening

In this section, we described how we used elastic instrumentation
techniques with the BinKungfu binary hardening engine. The first



80 elastic instrumentation

# Step 1: generate floating changes

while has_change(cfg):

c = next_change(cfg)

apply_change(cfg, c)

# Step 2: assign addresses and generate patched executable

assign_addresses(cfg)

result = finalize(cfg)

(a) BinKungfu’s original instrumentation loop.

result = original_program

# Generate floating changes, ordered by priority

while has_change(cfg):

c = next_change(cfg)

apply_change(cfg, c)

# Tentatively assign addresses and create snapshot

assign_addresses(cfg)

if fits_in_overhead_budget(cfg):

result = finalize(cfg)

# Make changes floating for further modifications

undo_assign_addresses(cfg)

(b) BinKungfu with support for selective instrumentation.

(c) Summary of the steps performed by BinKungfu. Extra steps for selective
instrumentation are drawn in bold red.

Figure 21: Selective instrumentation in BinKungfu.
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component of our technique is an elastic check that can verify the
integrity of returns from directly called functions. The novelty of this
check is that it does not require any modifications to the function’s
call sites. The second component is an algorithm to apply checks
selectively and determine, after each change to the program, whether
the result satisfies the desired overhead limits.

We will show in Section 4.5.3 how each of these components con-
tributes to instrumenting programs with tight overhead limits.

BinKungfu will be released as open-source software, available at
http://codejitsu.org/.
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4.5 evaluation of elastic instrumentation

In this section, we evaluate ASAP, FUSS, and BinKungfu, the three
techniques that use elastic instrumentation. There are common ques-
tions that we answer for each technique, although the exact method-
ology necessarily differs. In particular, we first look at how much
elasticity there is to exploit, and whether there are fixed costs that
limit elasticity. Next, we examine the impact of elastic instrumenta-
tion on raw performance, e.g., on instrumentation overhead for ASAP
or test throughput for FUSS. Finally, we report end-to-end benefits.
These are specific to each technique. We evaluate security subject to
overhead constraints for ASAP, the time to find bugs for FUSS, and
the number of programs that BinKungfu can instrument with limited
code size.

4.5.1 Results for ASAP

In our evaluation, we want to know both how fast and how secure
instrumented programs optimized by ASAP are. Any software pro-
tection mechanism needs to quantify its overhead and security. More
specifically in the case of ASAP, we ask:

• Effectiveness: Can ASAP achieve high security for a given, low
overhead budget? We show that ASAP, using existing instru-
mentation tools, can meet low overhead requirements, while
retaining most security offered by those tools.

• Performance: How much can ASAP reduce the overhead of in-
strumentation on any given program? Does it correctly recog-
nize and remove the expensive checks? What effect does the
profiling workload have on performance?

• Security: Does ASAP in practice preserve the protection gained
by instrumenting software? How many sanity checks can it
safely remove without compromising security? We also analyze
the distribution of both sanity checks and security vulnerabili-
ties in software systems, and draw conclusions on the resulting
security of instrumented programs.

4.5.1.1 Metrics

We quantify performance by measuring the runtime of both the in-
strumented program and an uninstrumented baseline and computing
the overhead. Overhead is the additional runtime added by instrumen-
tation, in percent of the baseline runtime.

To quantify the security of an instrumented program, we measure
the detection rate, i.e., the fraction of all bugs and vulnerabilities that
have been detected through instrumentation. The detection rate is
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relative to a known reference set of bugs and vulnerabilities (e.g.,
those detected by a fully instrumented program), because all bugs or
vulnerabilities present in a particular software cannot be known in
general.

In addition to these end-to-end metrics, we report the sanity level
and cost level of optimized programs. The sanity level is the fraction
of checks remaining in the program, i.e., the fraction of critical in-
structions that are protected. The cost level measures the fraction of
instrumentation cost that ASAP preserves.

4.5.1.2 Benchmarks and methodology

We evaluated ASAP’s performance and security on programs from
the Phoronix and SPEC CPU2006 benchmarks, the OpenSSL crypto-
graphic library, the Python 2.7 and 3.4 interpreters, and the FFMPEG
media decoder.

For instrumenting the target programs, we used AddressSanitizer
(ASan) and UndefinedBehaviorSanitizer (UBSan). Both are widely
applicable. We also evaluated ASAP with ThreadSanitizer and Soft-
Bound, but do not report these results because those instrumentation
tools are applicable to fewer benchmarks. SoftBound is a research
tool that unfortunately fails to compile many programs, and Thread-
Sanitizer is only meaningful for multithreaded applications.

We use a collection of real and synthetic bugs and vulnerabilities to
quantify ASAP’s effect on security. For Python and FFMPEG, we re-
introduced existing bugs from previous versions of the software. We
also measured ASAP’s effect on detecting bugs in the RIPE bench-
mark (a program containing 850 variants of buffer overflow exploits),
and we analyzed the entries in the CVE vulnerability database for the
year 2014.

The paragraphs below give more information about each bench-
mark. However, we omit details on our hardware, compilation op-
tions etc; the interested reader who would like to reproduce our ex-
periments can find all scripts in the ASAP source code, and detailed
information in the ASAP conference paper [132].

spec cpu2006 benchmarks The SPEC CPU2006 suite is a set
of 19 benchmark programs written in C/C++. Each program comes
with a training workload that we used for profiling, and a reference
workload, approximately 10× larger, used for measuring overhead.

We used ASAP to create optimized executables for cost level 0.01,
i.e., removing 99% of the estimated cost, to generate data in Fig-
ure 22a. We also generated executables for sanity levels between 80%
and 100%, i.e., preserving that amount of checks. These results are
shown in Figure 23.

Unfortunately, not all benchmarks are compatible with our instru-
mentation tools. We could run 14 out of 19 benchmarks for ASan
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and 12 out of 19 for UBSan. In most cases, this is because the bench-
marks rely on undefined or implementation-specific features of the
C/C++ language. Two cases, Xalancbmk and dealII, fail due to a bug
in LLVM’s cost model used by ASAP.

openssl We compiled OpenSSL with ASan to protect it from the
Heartbleed vulnerability. We use its test suite as profiling workload
for ASAP. We report its overhead by measuring the throughput of
OpenSSL’s built-in web server when serving a 3 kB static HTML file
over an encrypted connection.

python We compiled the Python 3.4 interpreter with ASan and
UBSan instrumentation. We obtained profiling data by by running
Python’s unit test suite. We evaluated performance using the default
benchmarks from the Grand Unified Python Benchmark Suite [55].

ffmpeg We test FFMPEG with ASan. We use the FATE test suite,
a collection of media files in hundreds of formats, as profiling work-
load. We use a benchmark from OpenBenchmarking.org [111] to mea-
sure the performance of instrumented FFMPEG binaries. It measures
the time taken to convert a video file (1:04 minutes, 290 MB, not part
of FATE) from the h264 format to dvvideo.

4.5.1.3 Performance results

We report the cost of security, with and without ASAP, in Figure 22.
For each benchmark, we display three values: The overhead of full
instrumentation (leftmost, dark bars), the overhead with ASAP at cost
level 0.01 (gray bar, center), and the residual overhead (light bars,
right). This data reveals a number of results:

Full instrumentation is expensive. On SPEC, both AddressSanitizer
and UndefinedBehaviorSanitizer typically cause above 50% overhead.

ASAP often reduces overhead to acceptable levels. For eight out of 14
SPEC benchmark, ASAP reduces ASan overhead to below 5%. This
result is also achieved for seven out of twelve benchmarks with UB-
San. For three UBSan benchmarks, the overhead at cost level 0.01 is
slightly larger than 5%.

For the remaining benchmarks, ASAP gives no security benefits
because they are not elastic: their residual overhead is larger than 5%.
In this case, ASAP can only satisfy the overhead budget by producing
an uninstrumented program.

We also report overheads for the benchmarks used in our security
evaluation, in Table 7. None of these benchmarks is sufficiently elastic
to have less than 5% residual overhead. From this, we have to con-
clude that there are many applications that are not sufficiently elastic
for ASAP to be effective.
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(a) ASAP performance results for SPEC benchmarks where omin < 5%.
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(b) ASAP performance results for Phoronix benchmarks where omin < 5%.

Figure 22: Summary of ASAP performance results. For each benchmark, we
show three values: The darkest bar represents overhead for full
instrumentation. The next bar shows overhead with ASAP at cost
level 0.01. The lightest bar show the residual overhead, i.e., over-
head that is due to other factors than sanity checks. Only elas-
tic benchmarks (with residual overhead <5%) are shown. ASAP
brings the overhead of instrumentation close to the minimum
overhead, while preserving a high level of security. For the bench-
marks shown here, ASAP removes 95% of the overhead due to
checks, and obtains an average sanity level of 87%.



86 elastic instrumentation

ASan

0

20

40

60

80

100

120

Jo
hn

 th
e 

R
ip

pe
r:

D
E

S
46

2.
lib

qu
an

tu
m

Jo
hn

 th
e 

R
ip

pe
r:

M
D

5
47

0.
lb

m
G

ra
ph

ic
sM

ag
ic

k
A

da
pt

iv
e 

Th
re

sh
.

G
ra

ph
ic

sM
ag

ic
k

B
lu

r
TS

C
P

42
9.

m
cf

Li
bJ

P
E

G

44
4.

na
m

d

47
3.

as
ta

r

40
1.

bz
ip

2

48
2.

sp
hi

nx
3

LA
M

E
 M

P
3 

E
nc

.

45
6.

hm
m

er

P
rim

es
ie

ve
Jo

hn
 th

e 
R

ip
pe

r:
B

lo
w

fis
h

C
ra

fty

O
ve

rh
ea

d 
in

 %

UBSan

Jo
hn

 th
e 

R
ip

pe
r:

D
E

S
Jo

hn
 th

e 
R

ip
pe

r:
B

lo
w

fis
h

42
9.

m
cf

47
0.

lb
m

40
1.

bz
ip

2

43
3.

m
ilc

44
5.

go
bm

k

45
8.

sj
en

g

C
ra

fty

48
2.

sp
hi

nx
3

45
0.

so
pl

ex

Sanity level

100%

99%

98%

95%

90%

80%

Overhead

Omax

Omin

5%

Figure 23: This graph shows the space of possible performance-security
trade-offs. The orange line shows overhead of existing instru-
mentation tools; it averages at 54% for ASan and 45% for UB-
San. ASAP can reduce this overhead down to the blue minimal
overhead line. The shade of the area corresponds to the sanity
level (darker = fewer checks). Reducing the sanity level by a
small value has a large impact on overhead; for example, reduc-
ing the sanity level to 99% reduces overhead by 47% on average.
There are a few cases where programs with more sanity checks
are slightly faster than programs with fewer checks (e.g., libquan-
tum with ASan or lbm with UBSan). This is due to the sometimes
unpredictable effects of checks on caches, compiler heuristics, op-
timizations etc.

ASAP eliminates most overhead due to checks. In all cases except for
soplex, the overhead at cost level 0.01 is very close to the residual
overhead. Although many checks remain in the programs (87% on
average for the benchmarks in Figure 22, generally more for larger
programs such as Python), they do not influence performance much,
because they are in cold code.

These results show that ASAP correctly identifies and removes the
hot checks. We conclude that ASAP’s profiling is sufficiently good to
eliminate overhead. However, ASAP does not achieve a particular
overhead budget very precisely. For the benchmarks in Figure 22, it
removes 95% of the overhead due to checks, whereas it was expected
to remove 99% with a cost level of 0.01. Users who need to precisely
achieve a target overhead need to run ASAP iteratively to fine-tune
the cost level.

Even small reductions in security lead to large performance gains. In
Figure 23, we show the speedups obtained when reducing the sanity
level step by step. The gray area corresponds to the entire security-
performance space that ASAP can navigate. The lightest gray area,
or 47% of the total overhead, can be eliminated by removing just 1%
of the sanity checks. This shows how additional cycles invested into
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cost level overhead [%]

csafe crec full at crec

OpenSSL 0.0080 0.01 16 7

Python 3.4 (ASan) 0.0050 0.01 172 81

Python 3.4 (UBSan) — 0.01 66 7

FFMPEG 0.0850 0.01 62 14

RIPE 0.0004 0.01 — —

Table 7: A summary of our security experiments. At cost level csafe, ASAP
prevents all known vulnerabilities. In addition, we report overheads
for full instrumentation and for our recommended cost level crec,
which provides a good trade-off between security and performance.

security give diminishing returns, and confirms that indeed only few
checks are hot.

4.5.1.4 Security evaluation

Developers and operators who use ASAP need to know how safe
the resulting programs are. In particular, we measure how ASAP
affects the detection rate of software instrumentation: what is the
chance that a bug or vulnerability that was previously prevented by
instrumentation is present in a ASAP-optimized program?

The detection rate depends primarily on the sanity level, i.e., the
fraction of critical instructions that are protected with sanity checks.
Since the sanity level is directly determined by the cost level, we
can find an overall minimum cost level at which all known vulner-
abilities would have been caught. The following paragraphs present
our results of case studies on the OpenSSL Heartbleed vulnerabil-
ity, Python bugs, FFMPEG vulnerabilities, and the RIPE benchmark.
They demonstrate that a cost level of 0.01 would have been sufficient
to prevent most, but not all, vulnerabilities studied.

We summarize all our security results in Table 7, and provide infor-
mation about individual experiments next.

openssl heartbleed The OpenSSL Heartbleed vulnerability is
caused by a bug in OpenSSL that manifests when processing heart-
beat messages. Such messages have a length field and a payload, the
size of which is expected to match the length field. Yet, attackers can
send a heartbeat message with a length field larger than the payload
size. When constructing the reply, the server would copy the request
payload to the response, plus whatever data followed it in memory, up
to the requested length. This allows the attacker to read the server’s
memory, including sensitive data like passwords.

When compiling OpenSSL with ASan, ASan adds a bounds check
to prevent this buffer over-read. When we profiled OpenSSL using
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its test suite as profiling input, that critical check was never executed.
This is because heartbeat messages are an optional and rarely used
feature of OpenSSL, and the test suite does not cover them. This
means that ASAP estimates the cost of the critical check to be zero
and will never remove it, regardless of the target overhead specified.

We extended the test suite with a test case for heartbeat messages.
Now the cost of the critical check is non-zero, but there are 15,000
other more expensive checks accounting for 99.99% of the total cost.
We can further increase the check’s cost by using larger payloads for
the heartbeat messages we test. With a payload of 4KB, still 99.2% of
the cost is spent in more expensive checks. Thus, ASAP will preserve
this sanity check for all cost levels larger than 0.008.

python The interpreter of the widely used Python scripting lan-
guage consists of about 350kLOC of C code, 1,900 of them assertions.
When compiled with ASan instrumentation, the interpreter binary
contains 76,000 checks.

We analyzed three bugs, which we re-introduced into the Python
3.4 interpreter’s source code from earlier versions: #10829, a buffer
overflow in printf-style string formatting that ASan detects; #15229,
an assertion failure due to an uninitialized object; and #20500, an
assertion failure when an error occurs during shutdown. Reports
for these bugs are available on the Python bug tracker at http://

bugs.python.org/. The number of analyzed bugs is unfortunately
limited, because we only evaluated bugs that satisfied the following
criteria: (1) the bugs must be real-world problems recently reported
on the Python issue tracker, (2) they must be detectable using in-
strumentation or assertions, and (3) they must be deterministically
reproducible.

ASAP preserves the sanity checks that detect these bugs for all
cost levels larger than 0.005. Section 4.5.1.5 contains a more detailed
evaluation of sanity checks and bugs in Python.

ffmpeg We reproduced twelve security vulnerabilities in FFMPEG
from 2013 and 2014. In these two years, 18 vulnerabilities have been
reported to the CVE database and fixed by the developers. How-
ever, we could not reproduce six of them because they were in code
that handled obscure media formats, or did not lead to detectable
memory corruption. Out of twelve reproduced vulnerabilities, ASan
detects memory corruption in eleven cases. In the remaining case, the
memory corruption is limited to a single C struct, which can only be
detected using a stronger mechanism than ASan.

For FFMPEG, ASAP only preserves security for cost levels larger
than 0.085. In other words, the amount of overhead it can safely
remove is significantly less than for our other benchmarks. If users
choose a lower cost level like 0.01, ASAP does remove almost all the
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elastic parts of the overhead, but also removes the checks necessary
to detect two out of the eleven detectable bugs.

In Section 4.5.1.5 below, we discuss this risk more thoroughly, and
contrast sanity checks in FFMPEG with those in Python.

ripe benchmarks The RIPE benchmark suite [137] is a set of
exploits for synthetic buffer overflows. It consists of a vulnerable
program that attacks itself. In total, it features 850 unique attacks
that differ in five characteristics: (1) the location of the buffer, e.g., on
the stack or inside a structure; (2) the code pointer being overwritten,
e.g., a return address; (3) whether the target pointer is overwritten
directly or indirectly; (4) the type of shellcode; and (5) the function
where the overflow happens, e.g., memcpy or sprintf.

The RIPE benchmark is well-known in the security community and
contains a large number of exploits. However, its synthetic nature
makes it problematic for evaluating ASAP: First, the exploits are all
very similar; they differ only in few aspects of their construction,
so that the number of effectively different scenarios is much smaller
than 850. In particular, there are only ten distinct program locations
where a memory corruption happens, so that the security gained by
instrumentation is based on only ten sanity checks. Second, RIPE
is designed for the sole purpose of overflowing buffers. There is no
relevant workload that could be used for profiling. For the lack of
an alternative, we exercised all the different overflow mechanisms to
obtain profiling data. Third, RIPE makes strong assumptions about
the compiler and the operating systems. Many exploits depend on
the order of objects in memory, or on particular pointer values. Small
changes in compilation settings or even between different runs of a
program can cause such assumptions to fail; this makes it difficult to
compare benchmarks.

For these reasons, we do not evaluate individual exploits in detail,
and solely measure the minimal cost level needed to preserve the
protection against buffer overflows gained by ASan instrumentation.
ASAP preserves all critical sanity checks inserted by ASan for cost
levels larger than 0.0004. Furthermore, nine out of ten buffer over-
flows happen inside library functions such as memcpy, which ASan
redirects to its safe runtime library. Checks in ASan’s runtime library
are part of the residual overhead that ASAP does not yet address.
ASAP currently preserves these checks at all cost levels.

security evaluation summary In our case studies on OpenSSL,
Python, FFMPEG, and RIPE, we determined the minimum cost level
to protect against all known vulnerabilities to be 0.008, 0.005, 0.085,
and 0.0004, respectively.

Our default cost level is 0.01, which provides a good trade-off be-
tween security and performance. It corresponds to a sanity level of
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94% in OpenSSL, 92% in Python, and 93% in FFMPEG. This fraction
of checks prevents all vulnerabilities in OpenSSL, Python and RIPE,
but causes ASAP to miss two bugs in FFMPEG. This means that a cost
level that works well for one type of software does unfortunately not
generalize to other software. Users of ASAP should analyze the result,
e.g., by examining the elided checks as described in Section 4.2.3.2.

4.5.1.5 Discussion of sanity checks

To understand the security effect of ASAP, it is helpful to analyze the
properties of sanity checks that are removed and preserved, respec-
tively.

We first consider the 100 most expensive sanity checks in the Python
interpreter. These checks together account for 29% of the total cost.
They are in hot core locations of the interpreter: 49 of them belong to
core Python data structures such as maps or tuples; 23 are in the main
interpreter loop; 22 are in reference counting and garbage collection
code; and 6 in other parts of the interpreter. Any meaningful Python
program exercises the code where these checks reside. A bug in these
parts of the interpreter would likely affect many Python scripts and
thus be immediately detected. Hence we are confident that removing
these checks in production is safe. The Python developers seem to
partially agree with this: six out of these 100 checks are assertions in
code regions that are only compiled when Py_DEBUG is defined, i.e.,
only during development.

In contrast, the checks that guard real-world bugs are executed
rarely. The bugs in our case study are executed only (i) when a format
string contains the "%%" character sequence, (ii) when a Python script
circumvents the usual constructors and directly executes __new__, or
(iii) when an error is raised during interpreter shutdown. We did
not select the bugs to be particularly rare—it just happens to be that
many real-world bugs are tricky corner cases.

Figure 24 sheds further light on this issue. For this graph, we
looked at the checks in Python 2.7, and differentiate between checks
that are located in buggy code, and “normal” checks. We take as
buggy code those parts of the source code that have received bug
fixes between the time Python 2.7 was released, until the current ver-
sion 2.7.8.

We find that checks in buggy code are executed less frequently than
regular checks. This makes them less likely to be affected by ASAP.
For example, at cost level 0.01, ASAP removes 8% of all checks, but
only 5% of the checks in buggy code. If we assume that our notion
of buggy code is representative, we can conclude that the sanity level
as computed by ASAP (92% in this case, for a cost level of 0.01) is a
lower bound on the fraction of bugs that are protected by checks (95%
in this case). This follows from the fact that the dark line is always
below the bright line in Figure 24.
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Figure 24: Fraction of checks preserved by ASAP in the Python interpreter,
for various cost levels. The dark line corresponds to the sanity
level as computed by ASAP. The bright line corresponds to the
fraction of protected buggy code. Because checks in buggy code
have a lower cost on average than regular checks, they are more
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Figure 25: Fraction of preserved checks and bugs found in FFMPEG, for var-
ious cost levels. For FFMPEG, the actual effectiveness of instru-
mentation (bugs caught) drops below the expected effectiveness
(the sanity level). Our intuition that bugs are in cold code only
does not hold in this case.
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Contrast this with Figure 25, where we plot the effectiveness of
selective instrumentation and the sanity level for FFMPEG. In this
case, we find that the sanity level does not provide a lower bound on
the actual effectiveness. Indeed, two out of eleven vulnerabilities in
FFMPEG can only be detected by checks that are relatively hot, and
are only preserved when the cost level is >0.085.

We do not have a good solution for this, because bugs and vul-
nerabilities are by nature unpredictable. Our experiments show that
there are a few bugs in hot code, so using ASAP does reduce secu-
rity. The computed sanity level gives developers an estimate of this
reduction. Although some uncertainty remains, this estimate allows
them to make informed choices regarding the best trade-off between
security and performance.

4.5.1.6 CVE vulnerability survey

We complete our security evaluation by studying known security
vulnerabilities from the CVE database [105]. We focus on memory-
related vulnerabilities because sanity checks are particularly promis-
ing for protecting against this category.

The CVE data set contains 879 memory-related vulnerabilities for
the year 2014. For 180 of these, it was possible to obtain the source
code and patch that fixed the vulnerability. From the source code
and patch, we determined the location of the memory error itself.
The error is not always located in the patched program part. For
example, a common pattern is that developers add a missing check
to reject invalid input. In this case, we searched for the location where
the program accesses the illegal input and corrupts its memory. For
145 vulnerabilities, we could tell with sufficient certainty where the
memory error happens.

We then manually analyzed the bugs to determine whether they lie
in hot or cold parts of the program. We used four criteria to classify
a code region as cold: (1) the code does not lie inside loops or recur-
sively called functions, (2) the code is only run during initialization or
shutdown, (3) comments indicate that the code is rarely used, and (4)
the code is adjacent to much hotter regions which would dominate
the overall runtime. In absence of these criteria, we classified a code
region as hot.

Overall, we found 24 vulnerabilities that potentially lie in hot code
regions. The other 121 (83%) lie in cold code where ASAP would not
affect checks protecting against them. Because our criteria for cold
code are strict, we think this is a conservative estimate. It provides
further evidence that a large fraction of vulnerabilities could be pre-
vented by applying instrumentation and sanity checks only to cold
code areas.

The results of our CVE study are publicly available and can be
accessed at http://dslab.epfl.ch/proj/asap.
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4.5.2 Results for FUSS

In this section, we answer the following questions about FUSS:

• Does FUSS reduce the amount of instrumentation being exe-
cuted? We count the number of instrumentation atoms exe-
cuted per testcase, and show that FUSS reduces that count by
88% on average.

• How does FUSS affect test quantity? We compare number of
executions per second of fuzzers and their optimized versions,
and find that FUSS increases throughput by 1.5× on average.

• How does FUSS affect test quality? We find that tests generated
by FUSS-optimized fuzzers match or exceed the coverage ob-
tained by regular fuzzers. In addition, optimized fuzzers reach
a given coverage target faster because they generate tests at a
higher rate.

• Does FUSS help developers find bugs faster? We evaluate FUSS
using 12 real-world bugs that were found through fuzzing. FUSS
is up to 3.2× faster at finding them than the state of the art.

4.5.2.1 Experimental setup

We evaluate FUSS on 11 benchmarks taken from existing fuzzing
projects. Our first source is Google’s fuzzer-test-suite [54], a set of
programs that have been subjected to fuzzing by Google and oth-
ers. We take from this suite all benchmarks that have reproducible
crashes (as of December 2016); there are nine benchmarks with a to-
tal of ten bugs. Many of them are security-critical libraries embedded
into web browsers (e.g., the harfbuzz font rendering engine and the
c-ares DNS library), servers (e.g., the OpenSSL cryptographic suite)
and other software (e.g., the sqlite database engine).

We also add two benchmarks selected from the Fuzzing Project
website [25]: http-parser and file. In the latter, we found two new
bugs while testing FUSS. We include these bugs in our time-to-bug
experiments. We also reported them to the developers of file, who
promptly fixed the bugs.

We compile a our benchmarks using full optimization (-O3). We
also enable debug information generation (-g compiler flag) because
it is required for profiling and helps to identify bugs when a fuzzer
finds a crash. This does not affect the program’s performance, but
may increase compilation and linking time.

All our experiments use LibFuzzer [88] as fuzzing engine. We
slightly modified its output format to gather data for time and cover-
age plots, and added a benchmarking mode to measure test through-
put for a given corpus. We did not change any other part.

We run our experiments on two types of server machines. Type (a)
has a 40-core Intel Xeon processor @ 3.0 GHz and 256 GB RAM, and
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Baseline FUSS reduction

boringssl 1,697 87 94.9%

c-ares 85 14 83.0%

file 62,660 12,388 80.2%

harfbuzz 28,969 1,870 93.5%

http-parser 83 4 95.3%

libxml2 2,769 196 92.9%

openssl 162,003 38,898 76.0%

pcre 46,682 2,745 94.1%

re2 82,359 12,644 84.6%

sqlite 19,769 1,555 92.1%

woff2 35,623 4,243 88.1%

Table 8: Number of instrumentation atoms executed per testcase, with and
without FUSS. On average over all benchmarks, FUSS reduces in-
strumentation cost by 88%.

type (b) has a 56-core Intel Xeon processor @ 2.6 GHz and 256 GB
RAM. Fuzzing is a CPU-intensive process: our longest experiment
requires about 12× 40 CPU-days to complete. This means that using
powerful machines and parallelization is unavoidable. We take care
to run each individual experiment on the same machine type, and
usually report values that are normalized to the baseline, so that the
different machine speeds do not affect our results. In addition, we run
each experiment multiple times and report 95% confidence intervals
for all our metrics.

4.5.2.2 FUSS reduces instrumentation cost

In this section, we analyze the effect of FUSS at the level of instru-
mentation atoms. We focus exclusively on coverage instrumentation,
because this allows us to measure the effect of FUSS in isolation and
exclude noise from other parts of the program under test.

We measure the effect of FUSS using a modified form of coverage
instrumentation which, in addition to doing its regular work, incre-
ments a global counter each time an atom is executed. We report the
average count per testcase, for each of our benchmarks, in Table 8.
FUSS reduces that number by 88% on average.

We are interested in these numbers because FUSS can only remove
instrumentation from the well-explored core of the program, and has
to preserve it in those program areas that have not yet been thor-
oughly explored. If the removed atoms account for a sufficiently high
fraction of the total executions, then FUSS can have an impact on the
speed of fuzzers.
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(a) Coverage and sanity checks. (b) Coverage instrumentation only.

Figure 26: Increase in fuzzing speed when using FUSS, normalized to the
baseline that does not use FUSS. Speedups are due to better code
layout (PGO) and removing expensive instrumentation atoms.
On average, FUSS increases speed by 1.44× for programs instru-
mented with both safety checks and coverage, and 1.55× when
using only coverage instrumentation. The difference arises be-
cause coverage instrumentation has fewer fixed overheads than
safety checks.

For three benchmarks, the optimized programs still execute more
than 10,000 instrumentation atoms per testcase. This is due to three
main reasons:

First, FUSS may underestimate an atom’s cost. Factors such as the
low resolution of profile data or code motion during compilation may
cause this. Second, the fuzzer may discover some expensive atoms
only after FUSS has optimized the program. Third, FUSS decides to
keep atoms based on a conservative cost threshold, which does not
take the specific nature of each benchmark into account.

4.5.2.3 FUSS improves fuzzing speed

In this section, we examine how FUSS affects the raw speed of fuzzers.
The metric we consider here is executions per second, i.e., how many
inputs the fuzzer can test per second. We first compile a baseline
version of the benchmarks, then use the warmup, profiling, and op-
timization steps to generate a FUSS-optimized version. We run both
versions in benchmarking mode for 60 seconds on a single core, on
a snapshot of the corpus generated during warmup and profiling.
In benchmarking mode, the fuzzers do not react to feedback from
the program, and thus keep the corpus fixed. This ensures both the
baseline and the optimized version execute inputs that are identically
distributed. Each experiment is repeated 20 times. Figures 26a and
26b show the results.

During 60 seconds, a fuzzer executes between 20,000 and 60 million
tests, depending on the benchmark. We normalize these numbers,
reporting the ratio of the number obtained by the optimized fuzzer
and the baseline.

We run two variants of this experiment with different type of instru-
mentation. The first uses coverage instrumentation and memory san-
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ity checks. This is a common configuration for fuzzing, and the one
we use in our bug-finding experiments. Its instrumentation causes
an average slowdown of 2.8×, but not all of it is elastic, i.e., due to
instrumentation atoms themselves. FUSS cannot remove non-elastic
overhead that is due to changes to the memory allocator, cache effects,
etc.

The second variant uses coverage instrumentation only. Compared
to the version with sanity checks, the slowdown is “only” 1.6×, but
FUSS can remove a bigger fraction of it because almost all of it is
elastic.

Overall, the geometric mean speedup achieved by FUSS is 1.44×
for instrumentation with sanity checks, and 1.55× for pure coverage
instrumentation.

When compiling optimized programs, the compiler also makes use
of the profiling data gathered by FUSS for other means, e.g., to lay
out basic blocks for optimal branch prediction. The PGO bars in Fig-
ure 26 isolate this effect: they plot the speed of a program compiled
with profile-guided optimizations but full instrumentation. The plot
shows that most of the speedup obtained using FUSS is in fact due to
optimized instrumentation, rather than other effects.

4.5.2.4 FUSS explores programs faster

In this section, we are interested in how FUSS affects the quality of
tests generated by the fuzzer. Given that FUSS reduces the amount
of information that is gathered while fuzzing, there is a legitimate
concern that this would make fuzzers unable to generate high-quality
tests.

We measure both the absolute coverage obtained by the fuzzer, as
well as the rate at which it discovers new coverage. This is a proxy for
test quality. The idea is that reduced test quality would prevent the
fuzzer from making progress, and appear in our results as reduced
total coverage or higher time to obtain a given coverage level.

Figure 27 plots the coverage obtained for all our benchmarks dur-
ing a 4-hour fuzzing session. We show averages over 50 experiments,
the area around the line being a 95% confidence interval. The data
varies by benchmark: the smallest benchmarks tend to reach a cover-
age plateau, whereas the fuzzer keeps finding new basic blocks for
larger benchmarks. The FUSS-optimized fuzzer discovers blocks at a
higher rate than its regular counterpart. For benchmarks where cov-
erage keeps growing, FUSS tends to keep ahead of the baseline over
the entire experiment.

Figure 28 supports these findings. The figure shows the rate at
which new basic blocks are being discovered, measured during the
first 60 seconds after generating the optimized program, and normal-
ized against a baseline fuzzer that starts from the same state. FUSS-
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Figure 27: Coverage vs. time for all our benchmarks, when fuzzing for four
hours.
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(a) Coverage and sanity checks. (b) Coverage instrumentation only.

Figure 28: The rate at which new basic blocks are discovered when using
FUSS, normalized relative to the baseline. The geometric mean
increases are 1.8× when using sanity checks and 2.0× when using
coverage instrumentation only.

optimized fuzzers are on average 2× faster than regular fuzzers, with
no signs that that they are blocked from making progress.

Two benchmarks run against this trend and deserve special analy-
sis. Http-parser is the one case where FUSS removes too much instru-
mentation, so that the fuzzer plateaus at 190 basic blocks, whereas the
baseline discovers 260 basic blocks. The cause of this problem is a bad
choice in threshold. In fact, this is the smallest of our benchmarks in
terms of total code size, containing only 848 instrumentation atoms.
During profiling, many of these atoms receive a large share of CPU
time, and thus exceed our fixed cost threshold.

The second benchmark is c-ares, which has few explored blocks
and suffers from a similar problem. In addition, the fuzzer reaches
its maximum coverage almost immediately, and does not discover
any new block during the measurement phase. This is why Figure 28
does not show a bar for c-ares.

FUSS can have a surprisingly large effect on the basic block discov-
ery rate. Notably, for boringssl, the effect shown in Figure 28 exceeds
the speedup shown in Figure 26. We investigated this, and found
that FUSS prevents the fuzzer from generating certain slow testcases.
These testcases increase coverage in program parts that are already
well explored, but they do not make a difference elsewhere in the
program. In fact, the coverage increase comes solely from executing
a different number of iterations in an already explored loop. Because
FUSS removes instrumentation from expensive loops, the fuzzer no
longer considers such testcases interesting, and instead explores other
program areas faster.

4.5.2.5 FUSS finds bugs faster

Bugs are the gold standard by which fuzzer performance is evalu-
ated. In this section, we examine whether FUSS provides an actual
end-to-end benefit for developers. Our metric is the time to repro-
duce known bugs. We measure this time for all ten crash bugs from
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Google’s fuzzer-test-suite and two bugs in file. Table 9 reports our
results.

We measure the time until the fuzzer finds the crash caused by
the target bug, for both a FUSS-optimized fuzzer and the baseline.
This time varies by benchmark, from few seconds to many CPU-days.
We compensate for this variation by selecting an appropriate timeout
and number of cores for each benchmarks. We run benchmarks that
terminate quickly on a single core, to maximize their duration and
thus minimize relative measurement error. For benchmarks that take
a long time, we choose an appropriate number of cores such that
most runs terminate within one hour, and increase the timeout once
we have used all cores on our machine. Table 9 reports the number
of cores for each benchmark.

We also report in Table 9 the time to recompile and optimize bench-
marks. This time is spent by FUSS unless the bug is found before the
warmup and profiling phase have completed. We take recompila-
tion time into account when computing speedups. However, it is not
shown in Figure 29, which plots FUSS’s effect on fuzzing time only.

Even for a single benchmark, the time to find a bug is highly vari-
able. This is because fuzzing is a random process. More precisely:
(1) Testcases are generated randomly, and thus vary in length and
execution time. (2) Because new testcases are generated by mutating
existing ones, the quality of the first testcases has a large and persist-
ing influence on fuzzing progress. (3) The fuzzer discovers new parts
of the program in random order, and so it might spend time exploring
bug-free program areas before reaching the buggy code. We carefully
handle this variation by repeating each experiment 50 times, show-
ing confidence intervals in our plots, and being conservative when
reporting speedups.

Figure 29 presents the time to discover the twelve bugs we study.
More precisely, this figure plots the survival function for each bug.
The survival function S is the probability that a bug will “survive”
(i.e., evade discovery) for a given time. Its value is 1.0 initially, and
descends to 0.0 as time increases. The median time to find the bug is
the time when the survival function intersects the horizontal line at
s = 0.5. The area below the curve is proportional to the mean time to
find the bug.

To understand our results, we find it helpful to group the twelve
bugs into four categories:

1. FUSS is clearly faster. This category includes boringssl, harfbuzz,
and woff2. (a-c in Figure 29). FUSS is also faster for sqlite, but
the speedup is not significant at a 95% confidence level.

2. FUSS is clearly slower. This happens for libxml2 and one of the
bugs in file (Figure 29, e and f). These results are important for
understanding the limitations of our technique, and we explain
them below.
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(a) boringssl (b) harfbuzz

(c) woff2 (d) sqlite

(e) libxml2 v2.9.2 (f) file (mcopy)

(g) file (der) (h) RE2

(i) c-ares (j) OpenSSL 1.0.1f

(k) PCRE2 (l) OpenSSL 1.0.2d

Figure 29: Bug survival times. Each curve S(t) shows the probability of a
bug to resist discovery until time t. For example, the median
time to find the bug in boringssl is 7 minutes for FUSS, vs. 24 for
the baseline.
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3. FUSS is about as fast as the baseline. RE2 and one of the bugs in
file fall in this category (Fig. 29, g-h).

4. We can’t tell. This category contains those benchmarks for which
the bug is too easy to find, namely c-ares, OpenSSL, and PCRE2
(Figure 29, i-l).

For the benchmarks in category (4), we obtain no information about
FUSS because the bugs are found too quickly. The fuzzers discover
them within seconds, often during the warm-up or profiling phase
before FUSS starts its optimization. We decided to nevertheless report
these results to avoid any bias due to benchmark selection. Also, we
use these benchmarks in other parts of our evaluation, to measure
other metrics like throughput and coverage.

For three out of twelve benchmarks, FUSS produces speedups be-
tween 1.7× and 3.2×, when comparing the median time to find bugs
as reported in Table 9.

In two cases, fuzzers produced by FUSS clearly take more time to
find a bug than the baseline. This shows the technical limitations of
FUSS, and according to our analysis is not due to a fundamental prob-
lem with the approach. We found that in these cases, FUSS makes
poor choices regarding which instrumentation atoms to remove. This
seems to be due to problems in mapping profiling data to instrumen-
tation atoms, which leads to wrong estimate of the atoms’ cost.

4.5.3 Results for elastic binary hardening

In this section, we answer the following questions about BinKungfu:

• How large is BinKungfu’s overhead and where does overhead
come from? We measure increase in a program’s code size due
to CFI instrumentation, and break that number down by instruc-
tion type.

• How many opportunities are there for elastic instrumentation?
We analyze how prevalent directly-called functions are, and
thus how many return checks could be made elastic.

• What are the overhead savings due to specialized return checks?
• What are the end-to-end benefits of selective instrumentation?

We count the number of programs for which we achieve our
goal: CFI protection with less than 5% memory overhead.

4.5.3.1 Experimental methodology

We developed and evaluated BinKungfu in the context of the DARPA
Cyber Grand Challenge (CGC) [40]. This competition in binary hard-
ening and exploitation influenced our definition of acceptable over-
head and is the source of our benchmark programs.
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Avg. count size [B] total

indirect calls 4 15 60

indirect call targets 3 9 27

returns 49 20 980

return targets 160 6 960

Table 10: Types of instrumentation atoms in BinKungfu with their count and
code size in bytes, averaged over all benchmarks.

We evaluated BinKungfu on 154 benchmark programs that were
provided as examples to CGC contestants, or used in the CGC quali-
fying event. These benchmarks are written in C or C++ and range in
size from about 200 to 8,000 lines of code.

To measure code size, we report both the size of instrumentation
code in isolation, and also the total size of BinKungfu-generated code.
The latter metric includes code size increases due to the patching
mechanism, e.g., jumps to divert control flow to instrumented parts
of the program. We exclude from these measurements twelve bench-
marks that could not be instrumented, e.g., because the disassembler
could not obtain a CFG. We also exclude one outlier, a benchmark
designed to stress-test the instrumenter using a large amount of au-
tomatically generated code.

To measure memory usage, we run a benchmark on the reference
workload provided by DARPA and measure the benchmark’s resi-
dent set size, i.e., the space usage of all virtual memory pages which
the program needs to load in memory to perform its work efficiently.

4.5.3.2 Sources of overhead

BinKungfu’s CFI implementation protects programs from control-flow
hijack attacks by protecting indirect control flow transfers. Table 10 re-
ports the number of return instructions and indirect call instructions
that need protection, on average for our benchmarks. In addition, we
report the number of target locations for these instructions that need
to be marked with an ID when using ID-based CFI. We estimate the
space needed for this instrumentation based on the typical size of
each type of instrumentation atom.

On average, most of the instrumentation code size is due to return
checks and IDs. The reason for the low number of indirect calls and
targets is that these are only used by few benchmarks, most notably
those written in an object-oriented style.

163 out of 216 instrumentation atoms are IDs. These account for al-
most half of the size of instrumentation code. This shows that elastic
instrumentation techniques that can reduce the need for IDs have the
potential to significantly reduce overhead.
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direct indirect mixed total

Functions 47 2 4 53

Percent of total 88% 4% 8% 100%

Table 11: Number of functions in our benchmarks, broken down by how
they are called.

Our benchmarks also contain a third type of indirect control-flow
transfer, not shown in Table 10: indirect jmp instructions. The com-
piler generates these when translating a switch statement. We found
that the compiler-generated code was always safe, i.e., the compiler
enforced that the jmp could only target the switch cases. This is why
BinKungfu did not add additional checks to these instructions.

4.5.3.3 Opportunities for elastic instrumentation

BinKungfu can use specialized checks for functions that are guaran-
teed to be directly called. Table 11 shows how often this is the case.
We report the average number of functions in our benchmarks, classi-
fied by how they are called. Overall, 88% of all functions are always
called directly, and thus amenable to optimization using specialized
return checks.

Note: the total number of functions in our benchmarks is slightly
higher than the number of checked return instructions. This is be-
cause our benchmarks contain hand-optimized assembly code that
does not follow the “one return per function” rule. For example, sin,
sinl, and sinf are related functions that all compute the sine of a
floating point number and share a single return instruction.

4.5.3.4 Benefits of elastic return checks

Table 12 compares traditional ID-based CFI and our variant using
retdirect checks for returns in directly-called functions. We want to
highlight three points.

First, BinKungfu can use specialized ID-less retdirect checks for
87% of all return instructions. Second, this reduces the number of
return targets that need to be instrumented by 97%. Third, the overall
amount of code that BinKungfu generates goes down from 2.5kB to
704B. This number does not only include return checks, but also all
other CFI checks and all the hooking code needed to patch these
checks into the executable. In other words, using retdirect checks
reduces the amount of BinKungfu-generated code by 71%.

4.5.3.5 Benefits of selective instrumentation

Reducing code size is only part of the solution to achieve a given
overhead target. Perhaps more importantly than reducing code size,
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checks

ID-based retdirect target IDs code size [B]

baseline 49.1 0 159.9 2,489

elastic 6.5 42.7 4.6 704

Table 12: Comparison of ID-based CFI versus a variant that uses specialized,
elastic checks. The table shows the number of checks of each type
added, the number of call sites instrumented with target IDs, and
the total size of added code in bytes.

elastic checks enable selective instrumentation. This is important be-
cause memory overhead is determined by the number of 4kB pages
required to hold the program’s code and data. Thus, reducing code
size by 1,785 bytes may or may not matter depending on whether
this changes the amount of pages needed. Selective instrumentation
can adjust the amount of instrumentation code to ensure that the pro-
gram’s code fits into a desired multiple of 4kB pages.

Without selective instrumentation, BinKungfu uses too many mem-
ory pages, and thus causes more than 5% memory overhead, for 17
out of our 154 benchmarks. For the remaining 137, it either has low
enough overhead (124 cases) or causes the program to crash due to
other, unrelated, problems (13 cases).

With selective instrumentation, BinKungfu can partially protect 10
out of these 17 programs, and achieve the overhead target. The pro-
tection offered by BinKungfu varies. In 60% of the cases, it can only
add retdirect to some, but not all, directly-called functions. In the
remaining 40%, it can protect all returns in directly-called functions,
and also add some ID-based checks for other indirect control-flow
transfers.

To summarize, selective instrumentation reduces the number of
cases where BinKungfu is too expensive from 17 to 7.
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4.6 discussion, limitations and negative results

This section discusses topics and limitations that we have encoun-
tered when working with elastic instrumentation. First, we discuss
two points that have influenced the design of our techniques: our de-
sire for building practical tools (Section 4.6.1) and the observation that
heuristics are often more useful than proofs (Section 4.6.2). After that,
we discuss five limitations of our work: We show how limitations of
profiling techniques affect elastic instrumentation in Section 4.6.3. We
describe problems that arise when classifying instrumentation atoms
solely by their cost in Section 4.6.4. We discuss residual overhead in
Section 4.6.5, the complex effects of small program changes in Sec-
tion 4.6.6, and our reliance on compile-time decisions in Section 4.6.7.

4.6.1 The quest for practical tools

The work in this thesis is focused on practicality. This influenced
many of our design decisions:

We wanted our techniques to be applicable to real-world, unmodi-
fied systems software and a large number of off-the-shelf instrumen-
tation tools. This is made possible in part by integrating ASAP and
FUSS in the LLVM compiler infrastructure. LLVM is a robust frame-
work that compiles large code bases effortlessly, and many instru-
mentation tools use it as a basis. The one limitation arising from
this choice is that ASAP and FUSS require access to the source code
of the programs they work with. Because this is also the case for the
supported instrumentation tools and fuzzers, we consider this accept-
able.

We chose not to use some advanced and expensive compiler tech-
niques which would have reduced the practicality of our tools. For
example, we do not use link-time optimization (LTO). All our tools
process programs one compilation unit at a time and don’t require
whole-program analysis. This reduces our ability to reason about
instrumentation (e.g., we need to assume that code from different
compilation units could influence instrumentation atoms) but makes
it possible to use our tools with larger benchmarks.

Our tools became easier to use over time. When we designed FUSS,
we chose to use a different profiling mechanism than for ASAP be-
cause this simplified the FUSS workflow. We considered that the
increase in usability outweighed the lower quality of profiling data.

To prove the practicality of our tools and allow other researchers to
reproduce our results, we publish all our tools as open source.
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4.6.2 Heuristics, not proofs

Throughout our work with elastic instrumentation, we chose heuris-
tics over proofs, and we are willing to forgo formal guarantees. All
our tools use program instrumentation selectively, subject to perfor-
mance constraints, and make no guarantee that the selected instru-
mentation is sufficient for the user’s purpose. Instead, we rely on
empirical evaluations to show that selective instrumentation is effec-
tive in practice, for the benchmarks we test.

This approach makes sense when working with instrumentation.
Instrumentation is a run-time technique used precisely where static
analysis falls short. Consider memory safety: for many memory ac-
cesses, static analysis can neither prove that the access is safe nor
demonstrate the presence of a bug. The consequences of this uncer-
tainty are that developers use run-time checks, and that reasoning
about run-time checks is hard.

ASAP historically grew out of a project that used sound static
analysis in tandem with run-time checks to ensure memory safety.
The project used static analysis as a means for improving perfor-
mance, by eliminating checks that were provably safe. To estimate
the benefits of this project, we wanted to measure the performance
gains for a hypothetical perfect static analysis that allowed to remove
all checks. In other words, we measured the elasticity of the run-time
checks, although we did not call it so at the time.

During these experiments, we realized that performance gains were
concentrated around hot code regions, and that proofs for checks in
cold regions would not matter much. Moreover, there were only few
checks in hot regions. The risk incurred by removing them without
proof seemed small relative to the performance gains. Thus, the idea
for ASAP came to be.

The idea to forgo proofs turned out to drastically simplify the
project. Suddenly, we could work with real-world benchmarks that
had been out of scope for static analyzers. We could drop the need
for whole-program analysis. There was no more reliance on anno-
tations or constraints that burdened developers. We replaced SMT
solvers with a simple greedy strategy to select checks, which could
be explained in minutes and executed in milliseconds.

We believe that these benefits outweigh the lack of formal guaran-
tees.

4.6.3 Obtaining accurate instrumentation cost

Our tools primarily use cost as a metric to identify the most valuable
instrumentation atoms. ASAP and FUSS obtain this cost through
profiling, but use different mechanisms with different limitations.
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4.6.3.1 Limitations of profiling techniques

ASAP uses GCOV-style profiling: it modifies the program to be pro-
filed, adding a counter to each edge in the program’s control flow
graph. ASAP then executes the program with a special profiling
workload. From the data obtained by the counters, ASAP can com-
pute exactly how often each instruction in the program was executed
during profiling.

Profiling data obtained this way is precise, but comes at three costs:
First, instrumenting the program for profiling requires an extra com-
pilation step. This complicates and slows down the build process.
Moreover, the program used for profiling must have exactly the same
structure as the program that is later optimized (modulo the coun-
ters), otherwise one cannot tell which counter value corresponds to
which program point. ASAP’s compiler wrapper script is very careful
to ensure this.

Second, the program that is being profiled is not the same as the
program that is later optimized. Profiling instrumentation itself may
affect the performance of surrounding code, e.g., because it occu-
pies instruction caches. These effects are not visible in the execution
counts, and make ASAP’s cost estimate less accurate.

Third, ASAP needs a special profiling workload to exercise the pro-
gram, since it cannot use the profiling-instrumented program in pro-
duction. This workload must be chosen carefully, so that the instru-
mentation atoms that are executed frequently are those that are most
expensive in production, and contribute little to security.

FUSS avoids all these problems by using a statistical profiler. It
requires no extra compilation steps and can obtain profiling data “in
production”, i.e., while the fuzzer performs its work.

The downside is that profiling data obtained by FUSS is less precise,
due to two limitations of statistical sampling profilers. First, such pro-
filers have a limited sampling frequency. They identify costly parts
of the program by examining the CPU state about 4,000 times per
second. As a result, the profiler can only see instrumentation atoms
that occupy the CPU at least once when a sample is taken.

Second, the raw profiling data refers to addresses in the executable
binary file, which must be mapped to instrumentation atoms. FUSS
uses a complex set of transformations to load profiling data and con-
vert samples to atom costs, and each transformation potentially loses
precision. Furthermore, FUSS relies on debug information to obtain
the atom’s location in the source code and to count the number of pro-
filing samples that fall on this location. This makes it hard for FUSS to
distinguish atoms that lie on the same source line. This hurts particu-
larly in the presence of macros: in C/C++, the expansion of a macro
is done by the preprocessor and leads to many instructions that share
the same source location, namely the point where the macro was in-
voked.
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The limitations of profiling techniques have hurt both ASAP and
FUSS. For ASAP, we communicated with researchers who were inter-
ested in using the open-source tool, but found it difficult to use due
to the multiple compilation steps. For FUSS, our evaluation identi-
fied several cases where more precise atom costs would have led to
a faster program, and one case where FUSS removed an important
instrumentation atom because it overestimated its cost.

4.6.3.2 Potential solutions

For ASAP, an effective way to obtain good profiling data is to use
a program’s test suite as profiling workload. If the test suite exer-
cises all performance-sensitive program areas, it will usually be suffi-
cient to uncover the expensive instrumentation atoms. If the test suite
is thorough, covers corner-cases, and carefully audits the program’s
state, then it provides assurance that the program parts which are
stressed contain fewer bugs.

This introduces an interesting way for developers to guide ASAP:
Code that is well-tested becomes faster, because ASAP can remove
more instrumentation atoms in these areas. ASAP instead places in-
strumentation in less-tested program areas, where it is more likely to
prevent vulnerabilities.

For FUSS, we can overcome precision limitations of profiling data
through better debug information. One known solution is to use so-
called discriminators, i.e., identifiers that FUSS can assign to instruc-
tions to distinguish multiple statements that share the same source
line.

Finally, static cost estimation techniques like those proposed by Ball
and Larus [13] and the work of Tim Wagner et al. [133] might be able
to complement imprecise profiling data.

4.6.4 Optimizing multiple metrics simultaneously

All techniques proposed in this thesis are limited to using a single
metric to prioritize instrumentation atoms: ASAP and FUSS measure
cost in CPU cycles via profiling, and BinKungfu considers an instru-
mentation atom’s cost to be proportional to its code size.

4.6.4.1 Limitations of cost-based optimization

Cost is not the only metric for classifying atoms. In particular, we
think it would be beneficial to consider an atom’s benefit. The idea is
that particularly useful atoms are worth keeping even if their cost is
higher than the cost of other atoms. This situation arises in two cases.

First, our techniques might have prior information about atoms
that lets us estimate their usefulness. For example, they could con-
sider a memory safety check more useful in a function that processes
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user-controlled input than in a function that is invoked on trusted
data. There is a wide range of literature in software engineering that
predicts the location and density of defects in code [102, 108, 144],
and such models could estimate the benefit of checks according to its
location.

Second, our techniques can be used with multiple types of instru-
mentation atoms simultaneously. Assuming that these all have the
same benefit might be too strong a simplification. For example, FUSS
targets fuzzers that use both coverage instrumentation and sanity
checks. We might be able to assign a utility to each type, and optimize
the overall utility function, as suggested by Candea and Fox [28].

4.6.4.2 Potential solutions

In our work, we did not find a good way to incorporate other metrics
than cost. This is a negative result. However, we found two reasons
why this might not be that strong a limitation.

The first reason is that large variations in cost dominate small differ-
ences in benefit. Atom cost has a high dynamic range: in our bench-
marks, the most expensive atoms consume billions of CPU cycles,
many orders of magnitude more than cheap atoms (Section 4.5.1.3).
Thus, for benefit to make a difference, a benefit metric would need
to be strong and identify atoms that are orders of magnitude more
useful than others. We do not know of such a strong metric.

The second reason is that an atom’s benefit often negatively cor-
relates with its cost. This makes cost a stronger metric, because it
identifies not only cheap atoms, but also those that have a higher
probability of being useful. We found this relationship both in ASAP
and FUSS.

For ASAP, we found evidence that bugs and vulnerabilities tend
to be in cold (i.e., rarely executed) code. Concretely, we found in
Section 4.5.1 that:

• 83% of the public, open-source memory errors from 2014 in the
CVE database are in cold code.

• Locations of bug fixes between CPython versions 2.7.0 and 2.7.8
tend to be cold.

• All four bugs in our Heartbleed and CPython case studies are
in cold code.

Third-party studies also found many bugs in cold code, e.g., [140].
However, not all bugs follow this pattern. In our study of twelve

security vulnerabilities in FFMPEG, we found two vulnerabilities that
could not be detected by partially instrumented programs with checks
in cold code only.

For FUSS, we found that the cost of atoms predicted the amount
of information that a fuzzer can gain from the atom, and the value
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of further exploring that atom (Section 4.5.2). Low-cost atoms have a
long remaining lifetime during which they influence fuzzer behavior.
In addition, they lie in program regions that are not yet well explored,
where a fuzzer can still make progress quickly.

To summarize, cost is a metric that has a dominating influence
for elastic instrumentation. There is additional but weak support for
the hypothesis that low-cost atoms have high benefit. Ultimately, we
need to accept that we can hardly predict benefit, and that the safest
way to maximize it is to pay the price of complete instrumentation.

4.6.5 Metadata and dependencies make instrumentation less elastic

Fixed costs limit the elasticity of program instrumentation. For an in-
strumentation technique to be elastic, it needs to be fine-grained and
cost-proportional. Instrumentation techniques that have both fixed
and variable costs do not satisfy the cost-proportionality requirement.
This limits the effectiveness of our elastic instrumentation techniques,
because they can only eliminate the variable parts of the overhead.

We explained the reasons for fixed overheads in sections 4.2.2 and
4.4.2. Here is a summary of those overheads for the instrumentation
tools we support:

• Memory safety tools require book-keeping whenever objects are
allocated or freed in memory. The amount of work varies by
tool. For example, SoftBound creates four words of metadata
per malloc/free. AddressSanitizer performs a fixed amount of
work per malloc, but a call to free requires work proportional
to the size of the freed object.

• AddressSanitizer places freed objects in a “quarantine” to de-
tect use-after-free bugs. This prevents freed space from being
immediately reused, which reduces data locality and the effec-
tiveness of caches.

• ThreadSanitizer incurs costs to track synchronization operations.
These costs are necessary for data race checks to work correctly,
and have to be paid irrespective of the number of checks.

• Techniques like control-flow integrity change the program’s lay-
out, usually in ways that increase code size and memory usage.

These fixed costs limit the maximum speed-up of selective instru-
mentation. In addition, the fixed overheads alone might be higher
than users are willing to accept. For ASAP, this happened for bench-
marks that perform many memory allocations (like the GCC and
Povray SPEC benchmarks, which have over 50% fixed overhead).
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4.6.5.1 Potential solutions

It is often possible to redesign instrumentation tools to be more elas-
tic. This needs a change of mindset: with techniques like ASAP, it
is no longer the overall overhead of instrumentation tools that mat-
ters, but the residual overhead that remains when all instrumentation
atoms have been removed. This is the topic of Section 4.4, where we
redesigned control-flow integrity instrumentation with elasticity in
mind.

4.6.6 Small program changes can have complex effects

In the course of this work, we learned that small changes to a pro-
gram can have surprisingly complex effects. Although individual
instrumentation atoms are small, there are complex interactions dur-
ing compilation and execution of the program that make it hard to
predict exactly the effect of adding/removing an atom.

For example, compilers use heuristics to decide when to inline a
function. Removing an atom from a function may bring the function
size below the compiler’s threshold for inlining. Inlining the func-
tion in turn affects the structure of other parts of the program, with
unpredictable results.

This phenomenon limited our ability to predict the overhead of se-
lectively instrumented programs. As a result, when evaluating ASAP
we did not consider how precisely ASAP achieved a target overhead,
only whether the overhead was within the user’s budget.

A potential solution is to make our techniques easier to use in an
iterative manner. For example, ASAP could accept feedback on the
effective overheads observed in production, and then automatically
choose a better performance/reliability trade-off.

4.6.7 Elastic instrumentation requires static decisions

The techniques presented in this thesis are limited to static selection
of instrumentation atoms, done at compile-time or when the program
is instrumented. It could be advantageous to defer these decisions to
the time when the program is executed, because at that time more
information is available about the workload. This might even make
it possible for programs to adjust the amount of instrumentation dy-
namically, and reduce the need for profiling.

4.6.7.1 Potential solutions

Self-modifying code: We experimented with an approach inspired by
the Linux ftrace function tracer [117]. It replaces instrumentation
atoms with a nop instruction, i.e., an instruction that has no effect
on the program. At run-time, our technique converted these instruc-
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tions into jumps to the actual instrumentation atom. This approach
failed because the large number of nop instructions reduced program
performance, and because the instrumentation atoms themselves had
to do extra work to save/restore CPU registers and resume program
execution.

Dynamic binary translation: Frameworks such as PIN [90] and Dy-
namoRIO [22] can modify programs at run-time and insert extra in-
strumentation code. Alas, these tools also have an overhead of their
own, so that we were not satisfied with the resulting speedups.

Run-time activation: Banabic [16] developed in collaboration with
us an approach to activate instrumentation at run-time. Key to its
efficiency is to activate instrumentation atoms in batches, so that the
CPU cycles spent in the activation logic are amortized over multiple
instrumentation atoms.

To achieve this, the technique generates two versions of every func-
tion in the program, one instrumented and the other without instru-
mentation. It adds a dispatcher to each function that can choose ei-
ther variant depending on a variable that tracks the current need for
instrumentation. The program updates this variable at opportune
times depending on the workload and the current overhead.

Banabic’s technique has limitations of its own (e.g., generating two
versions of every function roughly doubles the size of executables).
However, we think that it could make the elastic instrumentation ap-
proach even more general.

4.6.8 Summary of limitations

Systems software is big, out of reach of many formal reasoning tech-
niques, and highly performance-sensitive. The first set of limitations
presented in this section can be traced back to our focus on systems
software: It mandates that we use modular and scalable transforma-
tion techniques in order to handle big systems, and that we restrict
our techniques to the level of program analysis that is typically used
in compilers. As a result, our techniques come with no formal guar-
antees, but explicitly show where trade-offs are made and what com-
binations of reliability/performance are feasible.

The second set of limitations relates to the difficulty of quantifying
reliability and performance. We find that our techniques can not in
general estimate the benefit, in terms of reliability gain, of a program
transformation. We can however quantify a transformation’s cost,
subject to limitations that arise from imprecise profiling data. We
discussed to what extent this is sufficient, and how better approaches
to profiling could improve our techniques. We closed this section by
discussing a design for our techniques that does not need profiling
at all, and instead adjusts the amount of program transformations at
run-time.
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4.7 summary

This chapter presented and evaluated elastic instrumentation tech-
niques, i.e., techniques that control the amount of instrumentation
code in a program in order to reach a favorable trade-off between re-
liability and performance. We developed three techniques for work-
ing with three types of instrumentation: ASAP works with safety
checks that protect programs against illegal behavior, FUSS works
with profiling instrumentation that makes fuzz testing more effective,
and BinKungfu works with checks that verify control-flow integrity
for binary code.

With ASAP, developers can prioritize safety checks according to
their cost, and generate a program that as safe as possible given
the developer’s overhead budget. FUSS maximizes the effectiveness
of coverage-guided fuzzers, by choosing a subset of instrumentation
that allows for both high throughput and high test quality. BinKungfu
aims to pack the highest number of control-flow integrity checks into
a program with limited code size.

Each technique benefits from elasticity in its own way. ASAP, ex-
ploiting the Pareto Principle, can fit 87% of the available instrumenta-
tion into a 5% overhead budget. FUSS, for most benchmarks, obtains
all instrumentation benefits at 12% of the cost of full instrumenta-
tion. BinKungfu’s elastic checks can provide partial protection in
cases where full instrumentation is too expensive.

Our results show that elasticity is beneficial in a large number of
use cases. We hope that the scalability of instrumentation will in time
become known as the Elasticity Principle, and serve future developers
working with instrumentation.



Part III

W R A P P I N G U P

Where we look toward future work, and yet conclude this
thesis.





5
O N G O I N G A N D F U T U R E W O R K

One day ladies will take their computers for walks
in the park and tell each other "My little computer
said such a funny thing this morning!"

Alan Turing, 19511

This thesis presented four ways to use elastic program transfor-
mations to obtain a better performance/reliability trade-off for exist-
ing systems software. To see the full impact of these techniques, we
would like to keep working in the following areas: getting our tech-
niques beyond prototype stage, increasing interoperability between
tools that transform programs, and increasing automation.

As a first step, we would like to get our tools beyond prototype
stage. A tool’s impact is to a large extent driven by how usable and
well-known it is. For example, we believe that AFL found so many
bugs not only due to technical excellence, but also because AFL is
very easy to apply. What could happen if a technique like FUSS were
fully integrated into AFL, and could be used simply by enabling a
--fuss command-line argument?

We also believe that there is a large opportunity in improving in-
teroperability between tools that use program transformations. The
LLVM project made compiler transformations available to a wide au-
dience in academia and industry. Its intermediate representation (IR)
is a language through which different tools can cooperatively work
with programs. We would welcome similar common languages and
standards in a wider ecosystem: standardized build systems; for-
mats to represent profiling data, program specifications, and program
analysis results; as well as common benchmarks to evaluate tools.

One area where there is particular need for a common represen-
tation is the analysis and transformation of program binaries. Tech-
niques that work without access to source code face a difficult task,
but are also more generally applicable. The DARPA Cyber Grand
Challenge, an automated hacking competition, has renewed interest
in testing, analyzing and transforming binaries. A range of tech-
niques, e.g., symbolic execution and fuzzing, were popular among
all the seven finalist teams. Yet each team relied on custom-built
frameworks, particularly to defend programs against attacks. The
tools available for that purpose (e.g., BinKungfu) are new, and the
transformations they offer are primitive compared to program trans-

1 According to a TIME article [56]; I have not been able to find the original source.
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formations that are possible inside a compiler. Despite that, these
tools show the potential of binary transformations.

Finally, we see a lot of potential in increased automation. Here
again, the Cyber Grand Challenge offers a glimpse of what is pos-
sible. It shows systems that automatically, within seconds, discover
and fix problems in software. In contrast, program transformations
today are used rather statically, and require extra work from devel-
opers. In the future, opportunities for program transformations will
likely grow, as techniques like containers, continuous integration, and
testing as a service create new environments where software is being
run. We envision that, in this future, developers can just write soft-
ware and let tools automatically make it as reliable as possible, for
each environment where the software is used.



6
C O N C L U S I O N S

Program transformations are powerful techniques that can signifi-
cantly improve the speed and reliability of software systems, and our
ability to test and verify them. They are particularly useful because
the same program operates in many different environments, such as
running on a production server or being tested during a nightly build.
Program transformations can specialize a program to fit the require-
ments of these environments as closely as possible.

In this thesis, we use program transformations in an elastic way:
We apply them at fine granularity to carefully selected parts of the
software. This balances conflicting requirements of fast execution,
small software size, ease of testing and verification, protection against
attacks, and reliability. Moreover, because of Pareto’s Principle of
diminishing returns, elastic transformations can often obtain a large
amount of the desirable properties at low cost.

This thesis presents four applications where we use program trans-
formations in a fine-grained way to achieve better trade-offs between
reliability and speed:

• We present -Overify, the first technique to compile programs
for faster verification rather than fast execution. -Overify iden-
tifies transformations that are beneficial for verification. It modi-
fies the compiler to use such transformations whenever possible
and avoid others that are harmful for verification. This speeds
up verification by up to 95×, and 58% on average.

• We present ASAP, a technique that enables the use of off-the-
shelf program transformation tools under tight performance
constraints. ASAP elastically adjusts the amount of safety checks
that these tools add to a program. By carefully selecting cheap
checks, it can often achieve a protection level of >80% with only
5% overhead.

• We developed FUSS, a technique that boosts the performance
of common coverage-guided fuzzers. It selectively instruments
a program under test, adding just enough instrumentation to
catch bugs and direct the fuzzer to interesting program parts.
Selective instrumentation requires only 12% of the CPU time
of full instrumentation, and its use can reduce the time to find
bugs by up to 3.2×.

• We introduce a novel safety check that prevents return-oriented
programming attacks in binaries. It has no up-front overhead,
and its cost scales linearly with the number of protected pro-
gram locations. Using this check in the BinKungfu project re-
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120 conclusions

duced the amount of code needed for full protection by 71%,
and its elasticity means that programs with tight limits on code
size can at least be partially protected.

We hope that the work in this thesis would increase the joy of cre-
ating software systems, as machines help developers to get the most
out of their software automatically, for each use case. We also hope
that affordable hardening, better testing, and verification would make
software systems more worthy of our trust.
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