Performance Interfaces for Network Functions

Rishabh Iyer, Katerina Argyraki, George Candea
EPFL, Switzerland

Abstract

Modern programmers routinely use third-party code, and infrastructure operators deploy software they did not write. This would not be possible without semantic interfaces—documentation, header files, specifications—that succinctly describe what that third-party code does.

We propose performance interfaces as a way to describe a system’s performance, akin to how a semantic interface describes its functionality. We concretize this idea in the domain of network functions (NFs) and present a tool (PIX) that automatically extracts performance interfaces from NF implementations. We evaluate PIX on 12 NFs, including several used in production. The resulting performance interfaces are accurate yet orders of magnitude simpler than the code itself and take minutes to extract. We show how developers and operators can use performance interfaces to identify performance regressions, diagnose and fix performance bugs and identify the latency impact of NIC offloads.

PIX is available at https://github.com/dslab-epfl/pix.

1 Introduction

Semantic interfaces (e.g., abstract classes, specifications, header files, documentation) succinctly describe a program’s externally visible functional behavior, enabling engineers to use the system productively. This makes it possible for programmers to use a lot of third-party code and makes infrastructure operators comfortable with deploying software they did not write.

We do not know of an equivalent construct for describing performance behavior in a way that is simultaneously succinct, precise, complete, and human-readable. Engineers reason about performance in terms of envelopes (e.g., “runs in $O(n)$ time”) and benchmarks, which implies that they deploy their system without understanding the entire spectrum of performance it can exhibit. As a result, untested inputs can exercise mysterious code paths that lead to unexpected performance behavior [4, 36, 39] and a perpetual need to fix performance bugs [35, 43].

In this paper, we explore the idea of a performance interface: a description of a system’s performance behavior that is simultaneously succinct, precise, and human-readable. What should such an interface look like? Like a good semantic interface, it should be “much smaller and simpler than the code” [48], so it must abstract away certain details—but which ones? Performance problems often lie in low-level implementation details as well as the code’s interaction with the environment (e.g., specifics of the underlying hardware’s cache hierarchy). Is it possible to capture all the relevant performance behaviors of a system while being “much smaller and simpler” than the system itself?

We propose that the performance interface of a system be a program that accepts the same inputs as the system and outputs how long the system would take to process the given input. A performance interface has a resolution, which quantifies the smallest change in performance that it specifies (e.g., 50 ns, 1 mem-op) —the coarser the resolution, the simpler the interface. We distinguish a deployment-specific interface from a general-case one: The former is much simpler and of greater interest to an operator, who wants to understand the system’s performance behavior in her specific environment, while the latter is most useful to developers. This distinction, along with resolution, makes it possible to have performance interfaces that capture only those behaviors that are relevant to the case at hand. In other words, the two concepts enable abstraction of performance behavior.

We concretize our proposal in the context of network functions (NFs), i.e., load balancers, firewalls, NATs, etc. NFs are typically on the critical path of serving a user request and often face unpredictable traffic coming from the outside world. For instance, any packet that enters a service provider’s data center traverses at least one load balancer/reverse proxy and typically also a firewall—the latency that each NF adds to the packet directly impacts the user-perceived latency. A recent survey [54] of network operators found NF performance degradation to be a frequent pain point, and such performance bugs to be among the hardest to diagnose.

To make NF performance interfaces useful today, we developed PIX (Performance Interface eXtractor). PIX takes as input NF code written in C and outputs general-case performance interfaces in the form of small Python programs that it can then specialize into deployment-specific interfaces for individual deployments. PIX currently supports three latency-related metrics: number of instructions, number of memory operations, and number of CPU cycles. For each metric, PIX outputs one set of Python programs; each set contains one Python program per relevant range of resolutions. All PIX-extracted performance interfaces are specific to the CPU’s ISA. Further, the interfaces for CPU cycles are specific to

1 In this paper we focus on system latency, not throughput.
the micro-architecture of the underlying hardware and assume that the NF does not contend for hardware resources with other processes (i.e., assume either smart process co-location [12, 31, 52] or process isolation, using techniques such as cache partitioning [77]). Under the covers, PIX employs symbolic program analysis techniques to reason about the NF’s performance behaviors.

We evaluate PIX on 12 open-source NFs, including the Katran load balancer [71] used at Facebook, the Natasha NAT [58] used at Scaleway and the XDP packet filter from the Cilium project [14]. All 12 NFs were written using either the Linux kernel’s eBPF XDP [82] framework or the DPDK [21] kernel-bypass framework, two of the most popular ways to develop high-performance NFs. Our evaluation shows that the extracted performance interfaces are accurate yet orders of magnitude simpler than the code, and take minutes to obtain. We show how performance interfaces extracted by PIX can be used to identify performance regressions, diagnose and fix performance bugs, and identify the latency impact of NIC offloads.

In summary, we make two contributions in this paper:

• We propose the concept of performance interfaces, which leverages the notions of performance resolution and deployment-specific interfaces to enable abstraction of performance behavior.

• We demonstrate that it is feasible to build a tool that automatically extracts performance interfaces from NF code, and that these interfaces can be accurate-yet-simple enough to help understand and debug performance.

In the rest of the paper, we describe how we think a performance interface should look like (§2). Then, we describe PIX (§3) and use it to evaluate the feasibility and utility of performance interfaces for NFs (§4). Finally, we discuss how PIX can generalize to systems beyond NFs (§5), related work (§6), and conclude (§7).

2 Performance Interfaces

In this section, we present our proposal for performance interfaces, and describe how we envision them being used.

Target audience: We target two categories of audience for any system: The developers write the code for the system and are familiar with its low-level implementation details, but not necessarily with all possible performance behaviors it can exhibit. The operators did not write the code but instead seek to use/deploy/build on top of the system in their respective environments. They are unfamiliar with and do not necessarily want to understand its low-level details. Further, unlike the developers who care about the system’s performance in all settings, they care primarily about its performance in their specific use-case/deployment. These categories can vary from system to system—the developer of an application A might themselves be building upon a network stack B, making them an operator for that stack.

Design goals: We envision that a “performance interface” must describe the system’s externally visible performance behaviors, just as a semantic interface describes a system’s externally visible functionality [48].

The primary challenge in summarizing performance is that systems typically expose a greater variety of performance behaviors than semantic ones. Hence, a performance interface that perfectly predicts every possible performance behavior would likely be so complex that it wouldn’t deserve to be called an interface.

We look for a compromise, i.e., a way to summarize performance that achieves a good balance between the following properties: (1) **Accuracy**, i.e., the ability to summarize performance completely (for every possible input) and precisely (with a small error). (2) **Simplicity**, i.e., being smaller than the code and as abstract as possible—summarize performance in terms of primitives appropriate for a semantic interface of the system, and reveal implementation details only when necessary.

We also aim for (3) **Portability**. A system’s performance may depend significantly on its environment (e.g., workload, hardware). For instance, adversarial traffic causing L3 cache misses can degrade NF latency by 3× [64]. The interface should make it easy to quantify the impact of a particular environment on performance, enabling porting of the interface across deployments.

State of the art: Today, performance is typically summarized through upper bounds—Big-Oh notation or worst-case execution time [79]—and statistics (e.g., x-th percentile latency). These descriptions maximize simplicity at the cost of accuracy—there are many inputs for which they do not provide accurate predictions.

We draw inspiration from two recent proposals that describe a system’s performance behavior as performance annotations [69] and performance contracts [41] respectively. Freud [69] describes a method’s performance as a performance annotation: a set of (input/global-variable constraints, performance formula) tuples, and each formula is a mathematical function of the method’s input and/or global variables. Bolt [41] describes an NF’s latency as a “performance contract”: a set of (input constraints, performance formula) tuples, where each formula is a function of the system input and “Performance-Critical Variables” (PCVs).

Since we reuse the idea of PCVs from performance contracts [41], we elaborate upon them here. A PCV is a
parameter that captures the influence on performance of all factors other than the input packet (e.g., NF configuration, state built up by prior packets, hardware characteristics, etc). A PCV is not always an explicit variable in the NF implementation, rather it can be an implicit “ghost” variable [29, 32]. For instance, if an NF employs hash tables, a PCV could be the “number of collisions” encountered by the current packet—this ghost variable allows latency to be expressed as a function of, among other things, the number of collisions. Independent prior work [37, 38] on symbolic bounds has also argued for resolution, state built up by prior packets, hardware characteristics, etc. The fast MAC table, implemented in hardware, and a slow

```
void bridge(pkt* p, time_t now) {
    expire_stale_ports(now);
    if (invalid_hdr(p)) {
        DROP(p);
        return;
    }
    /* Learning source MAC addr */
    if (!slow_MACtable_get(p->src_mac, &p->port))
        slow_MACtable_put(p->src_mac, &p->port);
    else
        slow_MACtable_update(p->src_mac, now);
    /* Forwarding based on dest MAC addr */
    if (fast_MACtable_get(p->dst_mac, &out_port))
        FORWARD(p, out_port);
    else if (slow_MACtable_get(p->dst_mac, &out_port))
        slow_MACtable_put(p->dst_mac, &p->port);
    else
        BROADCAST(p, p->port);
}
```

Example: We illustrate with an example implementation of a MAC learning bridge (Fig. 1) that uses a fast MAC table, implemented in hardware, and a slow

definition: The performance interface of a program P with procedures p_1, p_2, \ldots is a program $S_P = \{p'_1, p'_2, \ldots\}$. A procedure $p'_i \in S_P$ takes the same inputs as the corresponding $p_i \in P$ and returns the performance of executing p_i. This return value corresponds to a performance metric (e.g., # of x86 instructions, # of CPU cycles). The resolution r of S_P is the smallest difference in performance that S_P can specify: if $\mathcal{P}(p_i(l))$ is p_i’s performance given input l, then $|\mathcal{P}(p_i(l)) - \mathcal{P}(p'_i(l))| < r, \forall p_i, l$.

A performance interface can be for the “general case” or specific to a deployment.

In a general-case performance interface, the procedures p'_i compute performance as a function of PCVs [41]. PCVs ensure that the interface can describe the performance of each p'_i in full generality, i.e., for arbitrary workloads and hardware configurations.

A deployment-specific performance interface is simpler than the general-case one and does not contain PCVs. Instead, procedure p'_i returns performance as a statistic (e.g., median, max, 99th percentile), computed for a given joint probability distribution of the PCVs that describes P’s environment for a particular deployment. In this work, an NF’s deployment environment is defined by its configuration read at startup, a representative workload, and the specific hardware it runs on.

Fig. 2 shows two performance interfaces of this implementation. Since it exposes a single procedure, the performance interface also has a single procedure. The resolution of the performance interfaces is $r = 50$ LOP.

The general-case interface gives performance as a function of 4 PCVs: number of stale flows (n_{stale}), hash-table occupancy (occ), number of hash-table evictions triggered by this input ($n_{evictions}$), and whether rehashing is needed (rehashing=1 if yes, 0 otherwise). Since the performance metric LOP is independent of the underlying hardware, all 4 PCVs are specific to the bridge’s implementation. If the bridge stored the MAC
We believe that an interface that presents performance while those building (invalid header check, fast table lookup, and slow table care about minute-scale applications may not cause they are masked by the environment. For example, developers and operators do not care about certain performance differences, either because they do not affect their performance targets, or because they are masked by the environment. Often, developers and operators do not care about μs-scale variability in the networking stack, while those building μs-scale ones typically do.

Why represent the interface as a Python program? We believe that an interface that presents performance like the system itself—through code that branches on the input—is more intuitive than a list of input constraints for developers and operators. We chose Python due to its ubiquitous use [33].

Resolution: Often, developers and operators do not care about certain performance differences, either because they do not affect their performance targets, or because they are masked by the environment. For example, developers building minute-scale applications may not care about μs-scale variability in the networking stack, while those building μs-scale ones typically do.

The notion of resolution enables the developer/operator reading the interface to choose between multiple levels of abstraction (trading off accuracy for simplicity) in a controlled manner. A performance interface at a specified resolution only differentiates between input classes whose performance differs by more than the resolution—implementation details that cause variability relevant to the specific developer/operator are abstracted away. In our bridge example, a performance interface with a resolution of 1 LOP must report the performance of each forwarding behavior separately; an interface with resolution >= 45 LOP can abstract away the difference between a fast and slow lookup, and an interface with resolution >= 115 LOP can abstract away the difference between a successful and unsuccessful lookup.

Picking the right resolution: We envision developers/operators picking their respective resolutions based on the performance variability they are willing to tolerate in their deployment scenarios. In §3, we show how PIX goes a step further for those unsure of the “right” resolution, by identifying a minimal set of resolution thresholds that yield all the possible different performance interfaces. This is possible since the performance interface can only elide each implementation detail at a distinct resolution threshold, which results in it not changing between two such thresholds. In our bridge example, \{1, 20, 45, 115, 210\} is such a minimal set of resolution thresholds, i.e., other resolutions don’t yield different interfaces (e.g., the interface at \(r = 50\) is identical to that at \(r = 46\)). By identifying these resolution thresholds, PIX enables developers and operators to easily pick the resolution (and corresponding interface) that achieves the desired trade-off between accuracy and simplicity.

Deployment-specific interfaces: We chose to have separate general-case and deployment-specific interfaces to provide a different balance between accuracy and simplicity for operators and developers respectively.

```python
def perf_bridge_gc(p, now):
    # Metric: LOP, Resolution: 50
    # NF state: slow_MACtable, fast_MACtable
    if invalid_hdr(p):
        return 46 + 60* n_stale
    if fast_MACtable_get(p->dst_mac) or slow_MACtable_get(p->dst_mac):
        return 280 + 60* n_stale + 80* n_evictions + (120* occ) * rehashing
    else:
        return 445 + 60* n_stale + 80* n_evictions + (120* occ) * rehashing
```

def perf_bridge_ds(p, now):
 # Metric: LOP, Resolution: 50
 # Statistic: 50th percentile
 # NF state: slow_MACtable, fast_MACtable
 if invalid_hdr(p):
 return 106 *(46+60)
 if fast_MACtable_get(p->dst_mac) or slow_MACtable_get(p->dst_mac):
 return 340 *(280+60)
 else:
 return 505 *(445+60)
```

Figure 2. General-case (left) and deployment-specific (right) performance interfaces for the bridge (Fig. 1). Each return value in the latter is the median LOP executed for the assumed PCV distribution.
General-case interfaces are meant for developers. Developers cannot always predict where/how their code will be deployed, and are hence often interested in the performance of their system when deployed in arbitrary environments. The general-case interface provides them with such a description by summarizing the impact of the environment on the system’s performance using PCVs. While PCVs do reveal implementation details (e.g., n_evicted, rehashing reveal the use of a cuckoo-hash table), these details are necessary to summarize performance for an arbitrary workload, so they must be represented in the general-case interface.

We designed the deployment-specific interface for operators. Since operators are unfamiliar with the system’s implementation and only care about the system’s performance behavior in their particular deployment environment, the deployment-specific interface does away with the hard-to-understand PCVs by instantiating them with a distribution specific to that deployment. This enables the deployment-specific interface to summarize performance in an NF-generic way—any NF would normally involve a header check and state lookups—and be understood by almost any NF operator. Of course, it does reveal one important aspect of the implementation, namely the distinct fast and slow tables. However, this aspect (which would have no place in a semantic interface) is crucial to any bridge operator interested in performance.

That said, we do not envision the separation between the general-case and the deployment-specific interfaces being set in stone—developers may refer to the deployment-specific interface to understand performance in the face of specific workloads, while operators may refer to the general-case interface to understand performance beyond their expected workload.

3 Extracting Performance Interfaces

We now describe PIX, which takes as input an NF implemented in C and automatically extracts performance interfaces in the form of Python programs.

We designed PIX to meet two goals: (1) minimal developer effort: developers/operators should not need to write performance test suites or proof lemmas, and (2) allow for proprietary NFs: NF vendors typically provide operators with only binaries [55]; it’s ok for them to provide a performance interface, but not source code.

Fig. 3 presents an overview of PIX. The NF developer gives the PIX back-end the NF source, augmented with a few single-line annotations akin to instantiating a type in a higher-level language. PIX combines this with a pre-analysis of the data structures used by the NF and extracts the general-case interfaces for all meaningful resolution ranges. The NF operator provides the PIX front-end with an NF binary and general-case interface (provided by the NF developer), along with a (set of) packet trace(s) that represent the expected workload in their deployment. From these, PIX extracts the deployment-specific interfaces for all meaningful resolution ranges. NF developers/operators can also query PIX with a specific resolution, to get the interface at that resolution.

Limitations and Assumptions: The PIX back-end uses exhaustive symbolic execution (ESE) [45] to automatically analyze the NF code. For this to work, the NF needs to be single-threaded, all its loops except the top-level event loop must have statically computable bounds, and it must keep all history-dependent state in data structures with clear interfaces. PIX cannot extract performance interfaces for NFs that do not meet these requirements.

Many (not all) data-plane NFs meet these requirements. For instance, many NFs are written using the eBPF [82] framework as stateless modules that keep their state in cleanly separated, kernel-maintained eBPF maps [24]. Other examples include recently proposed NF frameworks that build upon the DPDK kernel-bypass framework [21] like FastClick [5] and Vigor [83], which impose the use of a specific set of well-separated data structures to store NF state. Counterexamples include Intrusion Detection Systems (IDSe) and TCP-terminating NFs; in general PIX cannot extract interfaces for them and we describe this limitation in more detail in §5.

PIX-extracted interfaces only summarize the processing latency for each packet and do not reason about queuing latencies. Reasoning about these latencies would require PIX to reason about multiple inputs together, and for this, we need to employ techniques more sophisticated than ESE [83]. Reasoning only about processing latency allows PIX to avoid reasoning about load-based...
variability since processing latency (unlike queueing latency) does not vary with load.

To capture how hardware affects performance with reasonable accuracy, PIX assumes that the NF runs pinned to a core and does not significantly contend for hardware resources, e.g., due to smart process isolation [12, 31, 52, 77]. We believe network operators keen on predictable performance are likely to employ such techniques.

**Implementation:** PIX builds on the KLEE symbolic execution engine [9]. We extended KLEE with 4629 lines of C++ code to implement the first two steps of the backend. We synthesize the Python-based interfaces using 1825 lines of OCaml. We implemented resolution-based merging and the PIX front-end in 1221 lines of Python.

### 3.1 Extracting general-case interfaces

We now describe how the PIX back-end extracts general-case interfaces from NF source code.

**Step 0: Pre-processing:** This step outputs the performance of each execution path of the NF in terms of hardware-independent metrics as a function of PCVs specific to the NF’s implementation (we refer to these PCVs as hardware-independent PCVs henceforth). PIX currently supports two hardware-independent metrics—instruction count and memory-access count. We call this Step 0 because it is not part of our contribution, we largely reuse the approach and tool from Bolt [41].

Bolt relies on the observation that data-plane NFs tend to use the same, relatively few data structures, mainly hash tables/maps and buffers/rings. One can therefore collect these data structures in a library, have an expert “pre-analyze” them once, and then amortize this analysis cost across all NFs that use the library. Bolt’s pre-analysis consists of two manual tasks for each call in the library’s interface: (1) identify the PCVs relevant to that call, and (2) write a simple symbolic model of the call. Such manual effort is reasonable because it is a rare effort (e.g., once per update to the Linux kernel’s eBPF maps) and it is done by the maintainer of the data structure library instead of its users. To illustrate, there were 34 new commits in Linux’s eBPF maps last year [23] while the Cilium project [14] alone—just one among hundreds of projects that leverage eBPF maps—had an order of magnitude more commits during that same period [13]. Further, independent prior work [38] has observed that most data structures require only a “few” PCVs, and identifying them is “straightforward”. Our experience as the “experts” for this work corroborated this observation—identifying PCVs required only single-line loop annotations which took ≤1 person-hour for someone familiar with the data structure code.

The Bolt tool takes as input the NF source code, as well as the symbolic models and loop annotations for the state-accessing calls made by the NF; and outputs the performance of each execution path through the NF as a function of the hardware-independent PCVs.

In Step 0, PIX uses the Bolt tool as stated above, and also automatically instruments the NF code such that it can log the values of the hardware-independent PCVs for each input packet encountered.

**Step 1: NF-domain hardware model:** This step characterizes the performance of each execution path of the NF in terms of hardware-dependent metrics (CPU cycles), by introducing hardware-dependent PCVs; i.e., PCVs that capture the interaction between NF and hardware.

PIX uses the notion of a CPI (Cycles Per Instruction) stack [27] to compute the number of CPU cycles of an execution path. A CPI stack breaks down the average CPI for a program executing on a given microprocessor into a base CPI plus various CPI components that reflect "lost" cycle opportunities due to miss events such as branch mispredictions and cache/TLB misses. In general, replicating a perfect CPI stack is infeasible—it is equivalent to analyzing each execution path to the depth provided by a cycle-accurate simulator.

We leverage NF-domain knowledge to eliminate CPI components and pick only the necessary set of hardware-dependent PCVs. When an NF runs pinned to a core and with limited contention for hardware resources, the dominant hardware factor that influences its performance is the last-level cache (LLC) [20, 52, 77]. Hence, PIX introduces only two hardware-dependent PCVs—base\_CPI and LLC\_miss\_latency—and expresses a path’s CPU cycle count as instructions \cdot base\_CPI + LLC\_miss\_latency. Note, while PIX uses the same two PCVs for all NFs, the values of these PCVs vary with each \langle NF, HW \rangle pair (§3.2). To track possible LLC misses, PIX leverages taint-analysis [70] to identify independent heap accesses specific to the current input; it then branches on each such access, with one outcome being an LLC miss and the other an LLC hit.

**Step 2: Python program:** The previous steps specify an NF execution path as a set of symbolic constraints on the input packet and symbols arising from calls to data structures; this step translates these constraints into human-readable python code and outputs a general-case performance interface of the NF with a resolution of 1.

PIX translates symbolic constraints on the input packet using knowledge of the header format of the popular networking protocols (e.g., IPv4, TCP, QUIC). For instance, the constraint pkt[23 : 24] == 6 on a non-tunnelled IPv4 packet is translated to pkt.isTCP.
PIX translates symbols arising from calls to data structures using call context and developer-provided annotations (one annotation per instantiated data structure). Fig. 4 illustrates such a translation: Line 2 shows a developer’s annotation for a data structure of type map; it indicates that this NF uses this map as a "macTable", which maps "ethaddr" keys to "port" values; these are human-friendly terms chosen by the developer to help the generation of simple performance interfaces. Line 5 shows a constraint derived from the NF code that concerns this map. Line 7 shows how PIX rewrites this constraint because it knows that this is a call to bpf_map_ lookup_elem() with an argument corresponding to bytes 7 – 11 of the input packet. Line 9 shows how PIX further rewrites the constraint because the developer’s annotation enables PIX to identify the given bytes as the input packet’s source MAC address.

The annotation on Line 2 is the only annotation that the NF developer needs to provide. We believe such one-line annotations are reasonable since they are similar to instantiating a type in a higher-level language.

**Step 3: Resolution-based merging:** This step uses the notion of resolution to simplify the performance interface: First, it calculates the maximum performance impact of each constraint, i.e., the maximum performance difference between two execution paths that only differ w.r.t this constraint. The set of distinct “maximum performance impacts” forms the minimal set of resolution thresholds. Second, it eliminates all constraints with an impact smaller than the target resolution.

### 3.2 Extracting deployment-specific interfaces

To extract a deployment-specific interface, the PIX frontend takes as input the NF binary and its general-case interface, provided by the NF developer/vendor; along with a (set of) deployment-specific packet trace(s), provided by the NF operator. It then runs the NF binary using the packet trace(s) as input, infers the deployment’s PCV distributions, and instantiates the deployment-specific interface. Running the NF allows PIX to extract accurate deployment-specific interfaces since it can precisely measure the performance impact of the NF’s environment as opposed to modeling it.

PIX infers three PCV distributions per NF, deployment:

**Hardware-independent PCVs:** PIX leverages the instrumentation introduced in Step 0 to measure the values of these PCVs encountered by each packet in the provided trace(s). It then computes a joint probability distribution of these PCVs, since they tend to be highly correlated (e.g., in Table 1, n_stale and n_evictions are both functions of occ).

**Base CPI:** PIX measures this using hardware performance counters [75] available on all major processors today. Since the packet trace(s) may not exercise all execution paths, PIX assumes the same base-CPI distribution across all paths, and it provides warnings if it detects significant differences (e.g., some paths use expensive x86 instructions, like integer divide, while others don’t). We think this is a reasonable assumption because the base CPI is only a function of the instruction mix (it does not include any miss events). In §4.1, we experimentally validate this.

**LLC miss latency:** Measuring the distribution of LLC miss latency ideally requires sophisticated NF-specific testing [64], to account for the NF’s particular instruction- and memory-level parallelism. PIX avoids this because it targets NFs that keep all their state in a relatively small set of pre-analyzed data structures. For each data structure, we craft a microbenchmark that triggers LLC misses.\(^2\) PIX estimates the LLC-miss-latency distribution of each data-structure call in a given deployment, by running the corresponding microbenchmark on the deployment’s hardware. In §4.1, we experimentally show that our approximation, performs well in practice (avg. error of < 10%). Note, our approximation concerns the latency introduced by LLC misses, **not the number** of LLC misses—the PIX back-end tracks LLC misses per path in Step 1.

Finally, PIX instantiates each formula in the general-case interface with these inferred distributions to compute the requested latency statistic (e.g., 50\(^{th}\) percentile in Fig. 2). We show examples of deployment-specific interfaces and their distributions in §4.

\(^2\)The operator cannot be certain that this general-case interface is accurate for the production binary, but we do not see this as a barrier to adoption: operators routinely deploy NF binaries while relying only on non-attested configuration interfaces and vendor manuals [55].
The Vigor and eBPF NFs are written in the commonly
variety of functionality and network protocols (Table 2).
newer, we quantitatively evaluate the complexity of PIX-extracted
interfaces, their accuracy, and the time it takes to obtain them (§4.1). We find that they are one to two orders of magnitude simpler and more accurate than prior work. To answer the latter question, we show how developers can use PIX-extracted interfaces to catch performance regressions and fix performance bugs (§4.2). We then show how operators can use interfaces to pick the NF variant best suited for their target hardware and to perform root-cause diagnosis of performance anomalies (§4.3).

Table 3 compares the complexity of the PIX-extracted interfaces and Bolt contracts vs NF implementation. “(x%)” means “x% of implementation”.

Our testbed consists of two directly connected servers: a device under test (DUT) and a traffic generator and sink (TG). The servers are identical, with an Intel Xeon E5-2667 v2 processor @ 3.30 GHz, 32 GB of DRAM, and Intel 82599ES 10-Gbps NICs. The DUT runs one of the NFs and measures the performance, while the TG uses MoonGen [26] to generate traffic.

4.1 Does PIX Work?

In this section, we show that extracted interfaces are 1–2 orders of magnitude simpler than both the NF implementations and the equivalent Bolt contracts (§4.1.1). Their accuracy is 100% for reasonable resolutions, while at the finest resolution they are still practical and considerably better than Bolt, the state of the art (§4.1.2). Extracting a performance interface typically takes minutes (§4.1.3).

4.1.1 Are performance interfaces user-friendly?

To evaluate the “human palatability” of the performance interfaces, we (1) measure their complexity in terms of both lines of code (LOC) and cyclomatic complexity (CC) [78], and (2) evaluate whether the primitives exposed by the performance interfaces are those that NF developers and operators are familiar with.

Table 3: Complexity of extracted interfaces and Bolt contracts vs NF implementation.

<table>
<thead>
<tr>
<th>Framework</th>
<th>NF</th>
<th>Functionality</th>
<th>LOC</th>
<th>CC</th>
<th>LOC</th>
<th>CC</th>
<th>LOC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBPF XDP</td>
<td>Katran LB</td>
<td>Per-flow state, per VIP state, consistent hashing, IPv6, ICMP, QUIC, tunneling</td>
<td>1780</td>
<td>35</td>
<td>0.6%</td>
<td>27%</td>
<td>0.9%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>Cilium filter</td>
<td>Longest prefix matching, IPv 6</td>
<td>2661</td>
<td>226</td>
<td>2.8%</td>
<td>16%</td>
<td>0.8%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>CRAB LB</td>
<td>Per-flow only state</td>
<td>2755</td>
<td>219</td>
<td>0.4%</td>
<td>17.6%</td>
<td>1.6%</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>eXDP firewall</td>
<td>Per-flow state</td>
<td>1200</td>
<td>17</td>
<td>0.4%</td>
<td>17.6%</td>
<td>1.6%</td>
<td>29.4%</td>
</tr>
<tr>
<td>DPKK</td>
<td>Natasha NAT</td>
<td>Per-flow state, handles fragmentation, UDP/IPv6, ICMP ARP</td>
<td>2932</td>
<td>192</td>
<td>1.8%</td>
<td>8.9%</td>
<td>2.8%</td>
<td>15.1%</td>
</tr>
<tr>
<td></td>
<td>Maglev LB</td>
<td>Per-flow state, consistent hashing</td>
<td>3168</td>
<td>29</td>
<td>0.9%</td>
<td>17.7%</td>
<td>1.6%</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>SigNat</td>
<td>Per-flow state, header rewriting</td>
<td>2355</td>
<td>219</td>
<td>0.4%</td>
<td>17.6%</td>
<td>1.6%</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>Bridge</td>
<td>Per-flow state, header rewriting, UDP/IPv6</td>
<td>446</td>
<td>31</td>
<td>0.4%</td>
<td>17.6%</td>
<td>1.6%</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>Policer</td>
<td>Per-flow state, fine-grained timing</td>
<td>2466</td>
<td>16</td>
<td>0.4%</td>
<td>17.6%</td>
<td>1.6%</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>DPDK FW</td>
<td>Per-flow state</td>
<td>3008</td>
<td>21</td>
<td>0.4%</td>
<td>17.6%</td>
<td>1.6%</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>DPDK NAT</td>
<td>Per-flow state, header rewriting, csum offload</td>
<td>312</td>
<td>31</td>
<td>0.3%</td>
<td>13.1%</td>
<td>1.4%</td>
<td>29.4%</td>
</tr>
<tr>
<td></td>
<td>DPDK firewall</td>
<td>Per-flow state</td>
<td>1780</td>
<td>35</td>
<td>0.6%</td>
<td>27%</td>
<td>0.9%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Table 2: Network functions used to evaluate PIX.
which argues for the real-world utility of performance interfaces.

Fig. 5 illustrates the impact of varying resolution on the complexity of Katran’s performance interface. At the finest granularity, Katran’s instruction-count interface, like the Bolt contract, is fairly complex (LOC=9675, CC=3226 independent paths). Since no two packets in Katran can incur an instruction count that differs by more than 854 instructions (number determined by PIX and verified by us), for resolutions above 854 the interface becomes a simple upper bound. In between these two extremes, we see how low-level details get abstracted away—for instance, at resolution=50 instructions, we see a 125\times drop in complexity (LOC=75, CC=26). The Bolt contract, however, lacks the notion of resolution and thus remains 3.6\times longer and just as cyclomatically complex as the implementation.

We conclude that PIX-extracted performance interfaces are significantly simpler than the NF implementations, which argues for them making it easier to understand performance behaviors by reading the interface than reading the code. The notion of resolution succeeds in abstracting a performance interface, giving the reader a knob with which to control the amount of detail contained in the interface.

Another aspect of palatability is how familiar the interface looks to a human reader. To illustrate this, we show an example of the general-case interface for VigNAT in Fig. 6, restricted to TCP/UDP packets for space considerations. The interface is a succinct, self-descriptive Python program. The conditions in if statements are expressed in terms of fields in the input packet header (e.g., pkt.port) or semantic operations on data structures (e.g., nat_flowtable.contains), which are primitives we expect both developers and operators to understand. Being a stateful NF, VigNAT’s performance is influenced by NF state, and the interface reflects this via PCVs, documented in the header. Bolt, on the other hand, does not translate low-level details and exposes primitives such as the starting condition on line 4 of Fig. 4. While such details are understandable to the NF’s developer, they make the contract hard to read for those unfamiliar with the code.

Finally, we illustrate the impact of deployment-specific instantiation of interfaces on their palatability. Fig. 7 shows the interfaces for VigNAT’s 50th and 95th percentile latencies and the distribution underlying them, for a particular <workload, HW> pair. The deployment-specific instantiation turns each formula (expressed in terms of PCVs in the general-case interface) into concrete values specific to the environment and workload, thus tailoring the interface to an operator’s needs. The latency CDF also enables interested operators to understand how VigNAT’s percentile latency varies.

4.1.2 Accuracy of performance interfaces

We now evaluate the prediction error of PIX-extracted interfaces, i.e., the difference between the latency predicted by the interfaces and the measured latency. To do so, we use PIX to extract interfaces for all 8 DPDK NFs for two hardware-independent metrics (x86 instructions and memops) and one hardware-dependent one (x86 cycles). For each NF, we instantiate two deployment-specific interfaces corresponding to two very different deployments—typical traffic representative of university networks [6] and adversarial traffic that seeks denial-of-service [64]. The above deployments represent opposite ends of the spectrum for absolute NF latencies [64]—e.g., adversarial traffic incurs 2.1\times greater latency than typical traffic in VigNAT. To instantiate each deployment-specific interface, we use PCAP traces of 100M packets each. These traces are similar to what an operator could obtain with tcpdump on their domain gateway and are not specific to any particular NF implementation.

\footnote{PIX does not support HW-dependent metrics for eBPF NFs}
def perf_vignat_ds(pkt):
    # Metric: CPU cycles, Resolution: 200
    # Percentile: 50 # NF state - flowtable
    if flowtable.contains(pkt.flow):
      return 101
      else:
        return 395
        if pkt.port != internal_network_port:
          if flowtable.contains(pkt.flow):
            return 58
            else:
              return 1037
    return 92

Figure 7. Deployment-specific interfaces for VigNAT (50th and 95th percentile) and the latency CDF (resolution=200 cycles).

For ground-truth measurements, we manually generate synthetic packet traces for each <nf, deployment> pair akin to Scaleway’s NAT test suite [57]. We playback these traces against the NF and measure the latency of each packet (the ground truth). Note, the synthetic traces are only used to measure the ground truth and not for predicting performance, thus avoiding any overfitting.

To compare to Bolt [41], the closest prior work, we use their published code [1]. We run each deployment trace through the Bolt distiller, which computes the PCVs and concretizes the performance contracts. For a comparison to Freud [69], please see Appendix A.

We present here the prediction error for the 50th percentile, 90th percentile and 99th percentile latencies (which is the point at which PIX’s limitations become evident). Appendix B provides the details for the entire spectrum. We compute all prediction errors by subtracting the relevant statistic of the measured latency distribution from that of the predicted latency distribution. The results reported are at resolution 1, where PIX does the worst.

50th percentile (median) latency: Table 4 describes the maximum and average error for median latencies across all NFs for each metric and deployment regime. Note, despite the absolute NF latency differing widely, PIX’s prediction accuracy is similar for both deployments, showing that the PIX front-end correctly instantiates each deployment-specific interface.

99th percentile latency: PIX cannot accurately predict the latency at the very end of the tail (nor can Bolt). PIX’s predictions have an error of ≤61% (average 22%), while Bolt’s predictions have an error of ≤45% (average 14%).

It is interesting to note that PIX underestimates the 99th percentile latency while Bolt overestimates it; this contrasting behavior is due to the different hardware models underlying the two tools. PIX underestimates the 99th percentile latency since its simple hardware model (instructions * CPI + LLC_misses * miss_latency) is invalid at this percentile where other hardware aspects also impact latency significantly. Bolt, on the other hand, overestimates the 99th percentile latency since its hardware model is designed to estimate the absolute worst-case latency. However, PIX’s simple hardware model enables it to accurately predict performance at all percentiles except the tail (details in Appendix B); a task that Bolt’s worst-case-only model is incapable of.

Table 4. Max (average) median latency prediction error for PIX and Bolt for typical (Typ) and adversarial (Adv) traffic.

<table>
<thead>
<tr>
<th>Instr’s error</th>
<th>Memops error</th>
<th>Cycles error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typ</td>
<td>Adv</td>
</tr>
<tr>
<td>PIX</td>
<td>1.8%</td>
<td>1.7%</td>
</tr>
<tr>
<td>(1.5%)</td>
<td>(1.2%)</td>
<td>(1.6%)</td>
</tr>
<tr>
<td>Bolt</td>
<td>7.5%</td>
<td>7.6%</td>
</tr>
<tr>
<td>(3.7%)</td>
<td>(4.0%)</td>
<td>(3.7%)</td>
</tr>
<tr>
<td>PIX improvement</td>
<td>4.1x</td>
<td>4.4x</td>
</tr>
<tr>
<td>(2.4x)</td>
<td>(3.3x)</td>
<td>(2.5x)</td>
</tr>
</tbody>
</table>

Table 5. Max (average) prediction error for 90th percentile latencies for typical (Typ) and adversarial (Adv) traffic.

<table>
<thead>
<tr>
<th>Instr’s error</th>
<th>Memops error</th>
<th>Cycles error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typ</td>
<td>Adv</td>
</tr>
<tr>
<td>PIX</td>
<td>1.4%</td>
<td>1.2%</td>
</tr>
<tr>
<td>(0.9%)</td>
<td>(0.9%)</td>
<td>(1.4%)</td>
</tr>
<tr>
<td>Bolt</td>
<td>5.9%</td>
<td>5.3%</td>
</tr>
<tr>
<td>(2.4%)</td>
<td>(3.1%)</td>
<td>(2.9%)</td>
</tr>
<tr>
<td>PIX improvement</td>
<td>4.2x</td>
<td>4.4x</td>
</tr>
<tr>
<td>(2.6x)</td>
<td>(3.4x)</td>
<td>(2.1x)</td>
</tr>
</tbody>
</table>

For the CPU cycles, PIX has a maximum error of 26%. This is due to the overhead of the instrumentation used to measure the CPI and LLC miss latencies. Nevertheless, PIX’s accuracy is an order of magnitude better than Bolt’s since PIX reasons about hardware performance as a distribution, while Bolt only models the worst case.

90th percentile latency: Table 5 describes the prediction error for 90th percentile latencies. The results are similar to those for median latency with PIX outperforming Bolt by up to an order of magnitude. This is once again due to PIX reasoning about each of the PCVs as a distribution, while Bolt only models the worst-case.
4.1.3 Time to extract performance interfaces

Table 6 shows the time it takes PIX to extracts the general-case interfaces for all the NFs in this evaluation. We believe that these numbers make it feasible to incorporate performance interfaces extraction part of the regular NF development cycle, e.g., as part of continuous integration.

<table>
<thead>
<tr>
<th>NF</th>
<th>Natasha</th>
<th>Maglev</th>
<th>VigNat</th>
<th>Bridge</th>
<th>Router</th>
<th>PoKelet</th>
<th>DPDK FW</th>
<th>DPDK NAT</th>
<th>Katran</th>
<th>Cilium Blue</th>
<th>GRAB</th>
<th>hXDP FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIX</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>32</td>
<td>0.43</td>
<td>0.15</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLT</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>0.35</td>
<td>1.7</td>
<td>28</td>
<td>0.26</td>
<td>0.1</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Time, in minutes, for PIX and Bolt to extract the general-case interfaces and contracts, respectively.

The time required to obtain the deployment-specific interface is largely a function of the time required to run the provided workload. In our experiments, we ran PCAP files with 100M packets, and it took PIX <= 5 mins to generate the deployment-specific interface for a given <workload, HW> pair from the general-purpose interface, regardless of NF. We conclude that PIX fulfills the portability requirement (§3) well: operators can download an NF with its general-case interface, provide a PCAP file specific to their deployment, and PIX quickly produces the deployment-specific interface.

4.2 Are interfaces useful to NF developers?

In this section, we present two workflows that NF developers can use to understand (§4.2.1) and debug (§4.2.2) the performance behavior of their code.

4.2.1 Flagging performance regressions

Programmers often introduce involuntarily performance regressions. Using performance test suites to catch such regressions is not easy, because they require environment setup, are fragile, and take long to run. We show here how a developer or a tool can instead compare the performance interface before and after a commit to identify performance regressions more quickly, conveniently, and precisely than with a performance test suite.

We wrote a script that retrieves each Katran commit and uses PIX to extract the corresponding instruction-count interface, at resolution=1. For each pair of commits $a$ and $b$, there is a corresponding pair of interfaces $S_a$ and $S_b$. The script finds the maximum latency (in terms of LLVM instruction count) predicted by each of the two interfaces and compares the two. We report LLVM (not eBPF bytecode) instructions since PIX builds on KLEE which interprets LLVM IR. Reporting eBPF instructions would require us to build on a tool that interprets eBPF bytecode (e.g., Serval [59])—this is an engineering task we leave to future work. We run PIX on all commits to the eBPF portion of Katran’s code.

Table 7 shows the commits where a performance regression occurs. Over the past three years, the maximum latency for new flows regressed by 14.6%.

<table>
<thead>
<tr>
<th>Commit ID</th>
<th>Perf before [LLVM instr’s]</th>
<th>Perf after [LLVM instr’s]</th>
<th>Performance regression [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig commit</td>
<td>-</td>
<td>1771</td>
<td>-</td>
</tr>
<tr>
<td>873d050d1695c</td>
<td>1765</td>
<td>1896</td>
<td>7.42%</td>
</tr>
<tr>
<td>39e5b530a85a</td>
<td>1896</td>
<td>1914</td>
<td>0.95%</td>
</tr>
<tr>
<td>458aa0907688</td>
<td>1913</td>
<td>1933</td>
<td>0.99%</td>
</tr>
<tr>
<td>15f81d0e7ec6</td>
<td>1930</td>
<td>1946</td>
<td>0.83%</td>
</tr>
<tr>
<td>7d3358c27fe</td>
<td>1952</td>
<td>1983</td>
<td>1.59%</td>
</tr>
<tr>
<td>d0790d3a3823</td>
<td>1983</td>
<td>2030</td>
<td>2.37%</td>
</tr>
</tbody>
</table>

Table 7. Perf regressions in Katran (handling new flows).

We imagine using this workflow as part of continuous integration (CI) to automatically identify unintended performance regressions. The CI system can present to the developer a before-and-after comparison of performance that directly highlights for which classes of inputs the regression occurs and what the magnitude of the regression is. Compared to performance tests, this workflow consumes less developer time and fewer resources and offers better completeness.

4.2.2 Fixing performance bugs

By helping developers understand the code’s performance more quickly and deeply, interfaces can help fix performance bugs. We illustrate this with two examples of performance bugs in the map used by Vigor NFs [50].

The top of Fig. 8 shows a snippet of the performance interface of the contains operation in libVig’s map.

```python
if map.contains(key): # --- BEFORE ---
 if not(cached(key)):
 # Warning: 2*t integer divides
 return (4*t)*miss_latency + (21*t+27)*CPI

if map.contains(key): # --- AFTER ---
 if not(cached(key)):
 return (1*t)*miss_latency + (18*t+27)*CPI

```

Figure 8. Interface for map.contains() before and after the bug fix. t is the PCV for traversals in the hash ring.

The first red flag is the warning issued by PIX itself, based on tracking of expensive x86 instructions that adversely impact CPI. Looking for integer divides in the map code, we found that, on each traversal, it uses two costly modulo operations. To fix the issue, we replaced them with one bitwise and.

The second red flag is that each traversal requires 4 independent heap accesses (4*t). It turns out that key metadata is being stored in four distinct arrays of int...
elements. Our fix was to encapsulate key’s metadata in a single struct and use a single array with elements of this struct type. The rest remained unchanged.

Table 8 shows the impact of our fixes, based on Vigor’s benchmarks: the two fixes, together, improve NF latency by 22% on average, and throughput by 19%.

<table>
<thead>
<tr>
<th>NF</th>
<th>Throughput [Mpps]</th>
<th>Latency [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orig</td>
<td>Fix 1</td>
</tr>
<tr>
<td>VigNAT</td>
<td>3.88</td>
<td>4.36</td>
</tr>
<tr>
<td>Bridge</td>
<td>3.05</td>
<td>3.59</td>
</tr>
<tr>
<td>Maglev</td>
<td>2.58</td>
<td>2.86</td>
</tr>
</tbody>
</table>

Table 8. Throughput and latency of three NFs using map, shown before/after each performance bug fix.

4.3 Are interfaces useful to NF operators?

Operators typically care about how an NF performs in their specific deployment, not in general for everyone’s deployment. We show how operators can use performance interfaces to pick the NF variant best suited to their hardware (§4.3.1) and to do a root-cause diagnosis of deployment-specific performance anomalies (§4.3.2).

4.3.1 Which NF variant for my NIC?

Modern NICs provide the ability to offload specific tasks (like checksums and encryption) to specialized hardware. It is therefore useful to know which variant of an NF takes the advantage of the loads available on a NIC.

For each bug, we generated a workload that triggers a particular NF and then measures the distributions for each PCV and the NF latency. It then ranks the PCVs based on the correlation between the latency distribution and that of the PCV (using least-square fit linear regression).

To illustrate this workflow, we refer to three performance bugs that span both hardware and software root causes, shown in Table 9. The first bug occurs due to the uniform random workload causing hash collisions in a widely used hash function [42] used by Bridge; typical workloads with Zipfian distributions do not suffer from hash collisions. The second bug is caused by VigNAT’s hashes expiry of flows, which results in a latency spike that only becomes evident for traffic with high churn. The third bug happens when the active flowtable in Maglev overflows the last-level cache of the server; this makes the latency spike be highly dependent on LLC configuration.

<table>
<thead>
<tr>
<th>Bug Description</th>
<th>Root cause</th>
<th>Identified as most-likely cause?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spike in median latency of Bridge for uniform random workload</td>
<td>hash-collisions</td>
<td>Yes</td>
</tr>
<tr>
<td>Spike in tail latency of VigNAT due to high churn</td>
<td>expired-flows (batched)</td>
<td>Yes</td>
</tr>
<tr>
<td>Spike in median latency of Maglev on a particular x86 server</td>
<td>active-flowtable</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 9. Performance bugs used for root-cause diagnosis.

For each bug, we generated a workload that triggers it and provided the PCAP file to PIX, along with the general-case interface of the corresponding NF. For each bug, PIX correctly reported the culprit PCV as the most likely root cause. Of course, PIX can only track bugs that arise from PCVs it accounts for. It would be unable, for instance, to identify the root cause for a latency spike due to LLC evictions caused by a noisy neighboring process, since PIX does not account for contention.

This example illustrates how PIX can help focus the operators’ attention on likely explanations for the performance they observe, thereby reducing the amount of work needed to find the root cause.
In conclusion, our evaluation shows that PIX is practical: the complexity of extracted interfaces is significantly lower than the NF implementation, their accuracy is high, and the time taken to extract them is reasonable. Further, NF developers and operators can use these interfaces to identify performance regressions, diagnose and fix performance bugs, and pick the NFs that are best suited to their hardware.

5 Does PIX Generalize?

In this section, we explore how PIX can generalize in two directions: (1) programs other than NFs, that are nevertheless still amenable to ESE; and (2) NFs that are not amenable to ESE. Overall, we find that the design of PIX—split into a modular back-end and front-end that produce general-case and deployment-specific interfaces, respectively—enables generalization by adapting just the necessary modules in the PIX pipeline.

Beyond NFs: We have successfully applied PIX to the OpenSSL library, to uncover digital side-channels, and to eBPF extensions for user-space file systems.

Extracting interfaces for finding digital side-channels required modifying only PIX’s hardware model (i.e., step 1 in the back-end). Implementing a new model focused on sources of constant-time violations (using the exhaustive list in [3]) took us 2 person months. We ran PIX on 12 cryptographic primitives from OpenSSL 3.0 [61] and found a constant-time violation in the AES cipher unpadding function. This violation was acknowledged by the OpenSSL maintainers [62]. We have submitted a pull request [63] that has undergone multiple rounds of review and is in the final stages of getting merged.

Our experience with OpenSSL reinforced our belief (from §4.2.1) that a tool that automatically extracts performance interfaces would be of great use to developers. For example, we learned that the violation we uncovered had been latent since OpenSSL 1.1.1 because the developer “just reused the code” and had somehow been missed despite the extremely thorough code reviews that OpenSSL goes through. If performance interfaces of the OpenSSL code were extracted regularly, e.g., as part of functional correctness. While WCET looks at one aspect of the performance profile—the absolute worst-case—performance interfaces characterize performance in the face of any arbitrary input, whether typical, ideal, or adversarial. Further, to enable stringent upper bounds, real-time systems tend to avoid dynamic data structures and input-dependent memory accesses—aspects that are commonplace in NFs.

Considerable prior work focuses on generating and analyzing adversarial workloads that attack software performance [2, 18, 49, 60, 64, 65, 67, 72, 76]. As with WCET, all of this work focuses only on worst-case inputs, while interfaces reflect the entire performance profile.

Performance profilers: Traditional profilers [51] measure the execution cost (e.g., running time, executed instructions, cache misses) of a piece of code. Trend Profiling [34], Algorithmic Profiling [85] and Input-Sensitive Profiling [16, 17] take this one step further: by extracting a cost function defining the relationship between input...
size and execution cost. However, like Freud, these tools treat the code as a black-box and require developers to provide comprehensive performance test suites to guide the exploration of performance behavior.

Performance analysis for SmartNIC-based NFs: Krude et al. [47] use SMT solvers to analyze NF code written for processor-based SmartNICs and provide lower bounds on throughput. Focussing solely on throughput lower bounds results in their approach being limited to analyzing worst-case latency, much like WCET. Clara [68] uses machine learning to analyze NF code written in C to identify “effective porting strategies” that result in low latency when the NF is ported to a SmartNIC. Unlike PIX that focusses on accurately predicting the NF latency, Clara focusses on identifying how the NF implementation can make best use of the SmartNIC hardware (e.g., accelerator usage, NF state placement strategies, etc).

Program analysis for NF code running on commodity hardware: Several instances of prior work have proposed using program analysis to help understand, debug, and verify the semantic behavior of software NFs [10, 11, 19, 44, 66, 74, 84, 86]. PIX builds upon the experience of all of this prior work, but analyzes NF performance.

NF performance monitoring and diagnosis: Several instances of prior work [28, 35, 56, 80] diagnose performance issues such as packet drops or low throughput in NF deployments. Such work is complementary to PIX since it helps diagnose performance issues once they occur in production, while PIX provides a summary of NF performance before the NF is deployed.

7 Conclusion

We proposed the notion of a performance interface—a program that accepts the same inputs as the system and outputs the latency incurred by the given input. For the interface to be simultaneously simple, accurate and human-readable we proposed (a) the notion of a performance resolution to eliminating unnecessary details, and (b) separate deployment-specific interfaces to tailor the interface to particular <workload, environment> pairs.

We described a tool (PIX) that automatically extracts performance interfaces from NF implementations and evaluated it on 12 NFs, including several used in production. Our results show that PIX is practical—the complexity of extracted interfaces is significantly lower than the NF implementation, their accuracy is high, and the time to extract them is reasonable. Finally, we show how NF developers and operators can use these interfaces today, to identify performance regressions, diagnose and fix performance bugs, and pick the NFs that are best suited to their hardware.

8 Acknowledgements

We thank our shepherd Theo Benson and the anonymous OSDI, SOSP and NSDI reviewers for their detailed feedback that significantly improved the paper. We are also grateful to the many people who provided helpful feedback on drafts of the paper at various stages—Solal Pirelli, Arseniy Zaostrovnykh, Marios Kogias, Adrien Ghosn, Can Cebeci, Yugeth Kohtari, Ayoub Chouk, Johannes Kinder, Jonas Wagner, Ed Bugnion and James Larus.

References


[22] Ethtool Driver Identifier. https://docs.huihoo.com/doxygen/linux/kernel/3.7/include_2uapi_2linux_2ethtool_8h_source.html#00085.


 Appendix A Using Freud on NFs
In this section, we describe our experience experimenting with Freud. We used the publicly available Freud code [30] at commit ID e6e7a91006.
Freud takes as input a binary and a test suite, and outputs an expression of performance (runtime) as a function of input and global variables. So, by design, it strikes a different generality/accuracy balance than PIX: It is more general, in the sense that it can run on any program—not just NFs that are amenable to ESE—and requires no code and no data-structure pre-analysis. It is less accurate, in two ways: (a) It cannot reason about the performance of execution paths that are not triggered by the test suite (since it does not symbol the program, and it does not analyze the source code). (b) It cannot reason about how past inputs affect performance in stateful code (since it does not know anything about the data structures where the state is stored).

To assess Freud’s generality/accuracy balance, especially in the context of NFs, we used it on three classes of programs: (a) A stateless program that spins for a period of time proportional to the input length. (b) Data structures commonly used by NFs: a longest prefix match (LPM) trie and a hash map. (c) NFs: VigNAT (academic prototype), Natasha (production NAT used at ScaleWay), and Maglev (DPDK implementation of Google’s load balancer). Natasha comes with an open-source performance test suite [57], making it an ideal fit for Freud. For the remaining programs, we used as test suites the packet traces on which we evaluated PIX.
Table 10 summarizes our results, discussed below.

Freud-vanilla: First, we ran Freud on unmodified programs, and it behaved as expected: It successfully characterized the spinning program’s runtime as a function of the input length, but it could not produce meaningful performance annotations for the data structures or NFs.
Table 10. Summary of our experiments with Freud.

<table>
<thead>
<tr>
<th>Freud mode</th>
<th>Program</th>
<th>Accurate annotation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freud-vanilla</td>
<td>Synthetic stateless NF</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LPM trie</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Hashmap</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Real NFs</td>
<td>No</td>
</tr>
<tr>
<td>Freud-nf</td>
<td>Synthetic stateless NF</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>LPM trie</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Hashmap</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Real NFs</td>
<td>No</td>
</tr>
</tbody>
</table>

This is normal, since, in the latter programs, runtime is a function of implicit variables that capture the interaction between current and past inputs (e.g., number of iterations of `while(bucket[i].is_full == 1)`).

**Freud-nf:** Next, to compare with PIX more fairly, we explicitly modified our programs to work with Freud: we identified conditions that we knew impacted performance (essentially PCVs) and manually added them as global variables (which Freud tracks). For instance, in the hashmap, we added a global variable to explicitly track the number of collisions; in the LPM trie, we added a global variable to explicitly track the depth traversed.

The results for the data structures were mixed: For the LPM trie, Freud produced an accurate performance annotation. For the hashmap, Freud mistook a correlation for a causation: when a test caused every packet to experience a collision, Freud concluded that runtime was determined by occupancy, as opposed to the number of collisions. We expect that this issue can be resolved at the cost of extra developer effort (to produce a smarter test suite).

For the real NFs, Freud could not produce meaningful performance annotations (despite our modifications to the NF source code). This is not surprising, given that Freud does not analyze the source code, hence is unable to track how a sequence of state-accessing calls affects runtime. For instance, in Maglev, known client packets that are destined to a now-stale backend-server undergo consistent hashing once again, to pick a new backend. Since Freud does not analyze the source code, it cannot track how this call sequence affects runtime, looking instead to express runtime as a function of individual variables—which does not work. We observed similar scenarios in the other NFs.

**Conclusion:** In its current form, Freud cannot produce accurate performance annotations for stateful NFs. To do so, it would need to track how a sequence of state-accessing calls affects performance. We think that this would necessarily require (a) some assumption about the structure of the code (akin to our clean state assumption), (b) a nuanced test suite for the NF’s data structures to reveal which aspects of state affect performance (which is done, in our approach, with the manual extraction of PCVs during pre-analysis), and (c) leveraging call context. We think that adding these elements to Freud would bring it very close to PIX; we expect it would achieve similar accuracy, but at the cost of its current generality.

### Appendix B Accuracy of performance interfaces

This section provides more detailed answers to the following questions: (1) What is the prediction error for both PIX and Bolt for each individual NF? (2) What is the prediction error for both PIX and Bolt as a function of the percentile latency?

**Prediction error for individual NFs:** Table 11 provides detailed per-NF results for PIX’s prediction accuracy for hardware-independent metrics, i.e., x86 instruction count and x86 memory accesses. We see that the results are similar across all the NFs, with PIX consistently outperforming Bolt.

![Figure 10. PIX’s average prediction error for CPU cycles across two deployments as a function of the percentile latency](image)

**Figure 10.** PIX’s average prediction error for CPU cycles across two deployments as a function of the percentile latency

**Prediction error as a function of the percentile latency:** Fig. 10 illustrates PIX’s average prediction error across all 8 NFs for each deployment. First, we see that the average error shows similar trends across deployments, proving that PIX characterises the deployment-specific workload correctly. Second, we see that for both deployments the average error is more or less stable at
these percentiles, PIX characterises the interaction of the NF with the hardware correctly. Lastly, we see that at the tail, the prediction errors become negative. This is due to the fact that the simple HW model that PIX employs (\(\text{instructions} \times CPI + \text{LLC\_misses} \times \text{miss\_latency}\)) is invalid at the tail, where other hardware aspects kick in.

Fig. 11 illustrates Bolt’s average prediction error across all 8 NFs for each deployment. Bolt estimates only worst-case latency and this is evident in the results—note the change in scale on the y-axis from Fig. 10. For all percentiles except the tail, Bolt is widely inaccurate with errors up to 900%. On the other hand, Bolt does not underestimate latency at the tail since it accounts for myriad worst-case scenarios in the underlying hardware worst-cases that PIX ignores to ensure accuracy across the remainder of the spectrum.