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Data races are one of the main causes of concurrency problems in multithreaded programs. Whether all data
races are bad, or some are harmful and others are harmless, is still the subject of vigorous scientific debate
[Narayanasamy et al. 2007; Boehm 2012]. What is clear, however, is that today’s code has many data races
[Kasikei et al. 2012; Jin et al. 2012; Erickson et al. 2010], and fixing data races without introducing bugs is
time consuming [Godefroid and Nagappan 2008]. Therefore, it is important to efficiently identify data races
in code and understand their consequences to prioritize their resolution.

We present Portend™, a tool that not only detects races but also automatically classifies them based on
their potential consequences: Could they lead to crashes or hangs? Could their effects be visible outside
the program? Do they appear to be harmless? How do their effects change under weak memory models?
Our proposed technique achieves high accuracy by efficiently analyzing multiple paths and multiple thread
schedules in combination, and by performing symbolic comparison between program outputs.

We ran Portend™ on seven real-world applications: it detected 93 true data races and correctly classified
92 of them, with no human effort. Six of them were harmful races. Portend*’s classification accuracy is up to
89% higher than that of existing tools, and it produces easy-to-understand evidence of the consequences of
“harmful” races, thus both proving their harmfulness and making debugging easier. We envision Portend ™
being used for testing and debugging, as well as for automatically triaging bug reports.
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1. INTRODUCTION

Two memory accesses conflict if they access a shared memory location and at least one
of the two accesses is a write. A data race occurs when two threads perform a conflicting
access and the two accesses are not ordered using non—-ad hoc synchronization—
that is, custom synchronization devised by a developer that relies on loops to
synchronize with shared variables. By ad hoc synchronization, we do not refer to a
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developer-provided correct implementation of a synchronization construct, but rather
to incorrect synchronization operation implementations that frequently appear in
real-world code [Xiong et al. 2010]. Even though ad hoc synchronization may be
able to order the two accesses, recent research has demonstrated that it can break
unexpectedly [Xiong et al. 2010]; therefore, we consider ad hoc synchronization as not
eliminating data races in the general case.

Data races are some of the worst concurrency bugs, even leading to the loss of human
lives [Leveson and Turner 1993] and causing massive material losses [Associated Press
2004]. As programs become increasingly parallel, we expect the number of data races
that they contain to increase; as hardware becomes increasingly parallel, we expect
the probability that both orderings of any given data race get exercised during normal
executions to increase as well.

Moreover, recent C [[SO9899 2011] and C++ [[SO14882 2011] standards do not
provide meaningful semantics for programs involving data races. As a consequence,
the compiler is allowed to perform optimizations on code with data races that may
transform seemingly benign data races into harmful ones [Boehm 2011].

Finally, if a program with data races was written with the assumption of a particular
memory model in place, the program may no longer operate correctly under the actual
memory model [Flanagan and Freund 2010].

Ideally, programs would have no data races at all. In this way, programs would avoid
possible catastrophic effects due to data races. This either requires programs to be data
race free by design, or it requires finding and fixing all data races in a program. How-
ever, modern software still has data races either because it was written carelessly, the
complexity of the software made it very difficult to properly synchronize threads, or the
benefits of fixing all data races using expensive synchronization did not justify its costs.

To construct programs that are free of data races by design, novel languages and lan-
guage extensions that provide a deterministic programming model have been proposed
[Thies et al. 2002; Bocchino et al. 2009]. Deterministic programs are race free, and
therefore their behavior is not timing dependent. Even though these models may be an
appropriate solution for the long term, the majority of modern concurrent software is
written in mainstream languages such as C, C++, and Java, which do not provide any
data race freedom guarantees.

To eliminate all data races in current mainstream software, developers first need to
find them. This can be achieved by using data race detectors, which come in two main
flavors: static detectors and dynamic detectors.

Static data race detectors [Engler and Ashcraft 2003; Voung et al. 2007] analyze the
program source without actually running it. Therefore, they scale to large code bases,
and they deliver results in a short amount of time. For example, RELAY [Voung et al.
2007] can analyze the Linux kernel (4.5 MLOC) and report data races in less than 5
hours. Static detectors tend to have fewer false negatives (i.e., fewer missed real data
races) than dynamic data race detectors [O’Callahan and Choi 2003]. However, static
data race detectors tend to have more false positives (i.e., reports that do not correspond
to real data races). For example, 84% of the data races reported by RELAY are false
positives.

Dynamic data race detectors have fewer false positives.! However, most dynamic race
detectors can only detect races in program executions that they can monitor?; therefore,

IDynamic detectors that use happens-before relationships do not have false positives as long as they are
aware of the synchronization mechanisms employed by the developer. Dynamic detectors that use the lockset
algorithm can have false positives [Savage et al. 1997].

2An exception to this is data race detection using causal precedence [Smaragdakis et al. 2012], which can
accurately predict data races that do not occur during actual program executions.
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they have many false negatives. They also tend to incur high runtime overhead (e.g.,
up to 200x in the case of Intel ThreadChecker [Intel Corp. 2012] and up to 8.5x in
the case of FastTrack [Flanagan and Freund 2009]), because they need to monitor all
memory accesses and synchronization primitives.

Even if all real races in a program are found using race detectors, eliminating all of
them still appears impractical. First, synchronizing all racing memory accesses would
introduce performance overheads that may be considered unacceptable. For example,
developers have not fixed a race that can lead to lost updates in memcached for a year—
ultimately finding an alternate solution—because it leads to a 7% drop in throughput
[Memcached 2009].Performance implications led to 23 data races in Internet Explorer
and Windows Vista being purposely left unfixed [Narayanasamy et al. 2007]. Similarly,
several races have been left unfixed in the Windows 7 kernel, because fixing those races
does not justify the associated costs [Erickson and Olynyk 2010].

Another reason data races go unfixed is that 76% to 90% of data races are actually
considered to be harmless [Erickson and Olynyk 2010; Narayanasamy et al. 2007; En-
gler and Ashcraft 2003; Voung et al. 2007]—harmless races are assumed to not affect
program correctness, either fortuitously or by design, whereas harmful races lead to
crashes, hangs, resource leaks, and even memory corruption or silent data loss. Decid-
ing whether a race is harmful or not involves a lot of human labor (with industrial prac-
titioners reporting that it can take days, even weeks [Godefroid and Nagappan 2008]),
so time-pressed developers may not even attempt this high-investment/low-return
activity.

Given the large number of data race reports (e.g., Google’s Thread Sanitizer
[Serebryany and Iskhodzhanov 2009] reports more than 1,000 unique data races in
Firefox when the browser starts up and loads http://bbc.co.uk), we argue that data race
detectors should also triage reported data races based on the consequences they could
have in future executions. This way, developers are better informed and can fix the crit-
ical bugs first. A race detector should be capable of inferring the possible consequences
of a reported race: is it a false positive, a harmful race, or a race that has no observable
harmful effects and left in the code perhaps for performance reasons?

Alas, automated classifiers [Jannesari and Tichy 2010; Erickson and Olynyk 2010;
Narayanasamy et al. 2007; Tian et al. 2008] are often inaccurate (e.g., Narayanasamy
et al. [2007] reports a 74% false-positive rate in classifying harmful races). To our
knowledge, no data race detector/classifier can do this without false positives.

We propose Portend™, a technique and tool that detects data races and, based on
an analysis of the code, infers each race’s potential consequences and automatically
classifies the races into four categories: “specification violated,” “output differs,” “k-
witness harmless,” and “single ordering.” In Portend™, harmlessness is circumstantial
rather than absolute; it implies that Portend™ did not witness a harmful effect of the
data race in question for % different executions.

For the first two categories, Portend™ produces a replayable trace that demonstrates
the effect, making it easy on the developer to fix the race.

Portend™ operates on binaries, not on source code (more specifically on LLVM
[Lattner and Adve 2004] bitcode obtained from a compiler or from a machine-code-
to-LLVM translator like RevGen [Chipounov and Candea 2011]). Therefore, it can
effectively classify both source code—level races and assembly-level races that are not
forbidden by any language-specific memory model (e.g., C [ISO9899 2011] and C++
[ISO14882 2011]).

We applied Portend™ to 93 data race reports from seven real-world applications—
it classified 99% of the detected data races accurately in less than 5 minutes per
race on average. Compared to state-of-the-art race classifiers, Portend™ is up to 89%
more accurate in predicting the consequences of data races (see Section 6.6). This
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improvement comes from Portend™’s ability to perform multipath and multithread
schedule analysis, as well as Portend*’s fine-grained classification scheme. We found
not only that multipath multischedule analysis is critical for high accuracy but also
that the “post-race state comparison” approach used in state-of-the-art classifiers does
not work well on our real-world programs, despite being perfect on simple microbench-
marks (see Section 6.2).

Portend™ extends our earlier data race classification tool—Portend—with the support
for classifying data races under different memory models using a technique called
symbolic memory consistency modeling (SMCM). To evaluate this technique, we added
specific support for a variant of the weak memory model [Dubois et al. 1986]. We
then performed data race classification for microbenchmarks for which the underlying
memory model makes a difference with regard to data race classification. We show
how SMCM enables more accurate classification under different memory models and
evaluate its runtime and memory overheads. In a nutshell, SMCM allows Portend™
to achieve 100% classification accuracy for classifying races under different memory
models while incurring low overhead.

This article makes four contributions:

—A four-category taxonomy of data races that is finer grain, more precise, and, we
believe, more useful than what has been employed by the state of the art

—A technique for predicting the consequences of data races that combines multipath and
multischedule analysis with symbolic program-output comparison to achieve high
accuracy in consequence prediction, and thus classification of data races according
to their severity

—A detailed analysis of what synergies arise from the combination of multipath and
multischedule analysis with symbolic output comparison

—Symbolic memory consistency modeling SMCM, a technique that can be used to
model various architectural memory models in a principled way to perform data race
classification under those memory models.

Portend™, a practical dynamic data race detector and classifier that implements this
technique and taxonomy, presents two main benefits. First, it can triage data race
reports automatically and prioritize them based on their likely severity, allowing de-
velopers to focus on the most important races first. Second, Portend™’s automated
consequence prediction can be used to double check developers’ manual assessment of
data races. For example, Portend™ may prove that a race that was deemed harmless
and left in the code for performance reasons is actually harmful. Portend™ does not
encourage sloppy or fragile code by encouraging developers to ignore seemingly harm-
less races, but rather it improves programmers’ productivity so they can correctly fix
as many important data race bugs as possible. We name our tool Portend™ because it
portends the consequences of data races and improves upon its predecessor, Portend

The rest of the article is structured as follows. We describe our proposed classification
scheme in Section 3, then present Portend*’s design and implementation in Sections 4
and 5, respectively. We conduct an evaluation on real-world applications and bench-
marks in Section 6. Then, we discuss limitations in Section 7 and related work in
Section 8. We conclude the article in Section 9.

2. DATA RACE DEFINITION

In the previous section, we defined a data race to occur when a program performs
conflicting memory accesses to the same memory location while these accesses are
not ordered by non—ad hoc synchronization. This definition is central to Portend™’s
classification scheme that we introduce in Section 3, and therefore we elaborate on our
definition in this section.
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Thread T, Thread T, ;

void * workO (void *arg) { void * workl (void *arg) {
globalx = ...; while (!globalDone)
globalDone = true; .. = X5

} }

Fig. 1. A simple example of ad hoc synchronization.

Thread T, Thread T, ;

void * workO (void *arg) { void * workO (void *arg) {
bool temp = globalDone;
globalx = ...; while (!temp)
globalDone = true; e, = X5

} }

Fig. 2. Compiler-optimized version of the code in Figure 1.

Ad hoc synchronization is defined as custom synchronization devised by a developer
that relies on using ad hoc loops that synchronize with shared variables in an effort
to synchronize threads. This synchronization scheme is commonly employed in widely
used programs such as Apache, MySQL, and Mozilla [Xiong et al. 2010].

Although common, ad hoc synchronization is in fact not a correct means to syn-
chronize variables, because to synchronize threads it relies on using racing accesses
to shared variables. However, programs with racing accesses do not have well-defined
semantics in C/C++ [ISO9899 2011; 1ISO14882 2011]. Consequently, the compiler can
generate code that violates the developers’ assumptions and not fulfill their initial
intention to synchronize threads.

To clarify why ad hoc synchronization can fail to properly synchronize threads, con-
sider the example in Figure 1, which is adapted from an in-depth treatment of the
problem [Boehm and Adve 2012]. In the example, thread T4 initializes a variable glob-
alx to some value and sets a flag called globalDone to true. Any other thread in the
program that reads x first checks whether globalDone is true.

The problem with this kind of “synchronization” is that a compiler can easily
break this code and violate the developer’s assumptions. Typically, the compiler will
observe that the flag globalDone is not modified within the loop. Based on this observa-
tion, the compiler can generate code such as shown in Figure 2. In this case, whenever
any thread Ty ---T; starts, if globalDone is not set to true, the thread will enter an
infinite loop and the developer’s intention to synchronize threads will not be fulfilled.

Because of its potentially erroneous semantics, our definition of data races does not
consider ad hoc synchronization as a proper means of synchronization. It is worth
reiterating that by ad hoc synchronization, we solely refer to the construct that we
define in this section. If a programmer properly implements a reader-writer lock by
leveraging a mutex lock, we do not consider it as ad hoc.

Finally, for Portend™ to recognize a developer-provided correct synchronization, it
needs to be provided with the semantics of such synchronization (as is the case with
many other race detection/classification tools). Portend™t currently recognizes POSIX
thread primitives as legitimate synchronization.
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3. DATA RACE CLASSIFICATION

We now describe the key existing approaches to race classification (Section 3.1), the
challenges they face and the idea behind Portend™ (Section 3.2), and our proposed
classification scheme (Section 3.3).

3.1. Background and Challenges

We are aware of three main approaches for classifying data races into harmful versus
harmless: heuristic classification, replay and compare, and ad hoc synchronization
identification.

Heuristic classification relies on recognizing specific patterns that correspond to races
that are considered harmless. For instance, DataCollider [Erickson and Olynyk 2010]
prunes data race reports that appear to correspond to updates of statistics counters
and to read-write conflicts involving different bits of the same memory word, or that
involve variables known to developers to have intentional races (e.g., a “current time”
variable is read by many threads while being updated by the timer interrupt).

Like any heuristic approach, such pruning can lead to both false positives and false
negatives, depending on how well suited the heuristics are for the target system’s code
base. For instance, updates on a statistics counter might be considered harmless for the
cases investigated by DataCollider, but if a counter gathers critical statistics related
to resource consumption in a language runtime, classifying a race on such a counter
as harmless may be incorrect. More importantly, even data races that developers con-
sider harmless may become harmful (e.g., cause a crash) for a different compiler and
hardware combination [Boehm 2011].

Replay-based classification [Narayanasamy et al. 2007] starts from an execution
that experienced one ordering of the racing accesses (“primary”) and reruns it while
enforcing the other ordering (“alternate”). This approach compares the state of registers
and memory immediately after the race in the primary and alternate interleavings. If
differences are found, the race is deemed likely to be harmful or otherwise likely to be
harmless. Prior to Portend [Kasikeci et al. 2012], this approach was the only automated
classification technique for all kinds of data races.

This approach faces several challenges: differences in the memory and/or register
state of the primary versus alternate executions may not necessarily lead to a violation
of the program specification (e.g., otherwise-identical objects may be merely residing
at different addresses in the heap). Conversely, the absence of a state difference may
be merely an artifact of the inputs provided to the program, and for some other inputs
the states might actually differ. Finally, it may be impossible to pursue the alternate
interleaving, for example, because developer-provided legitimate synchronization en-
forces a specific ordering. In this case, replay-based classification [Narayanasamy et al.
2007] conservatively classifies the race as likely to be harmful. Such races may indeed
be harmful, but this is not why replay-based classification classifies them as harmful,
but because its classification technique cannot handle such races. These three chal-
lenges cause replay-based classification to have a 74% false positive rate in classifying
harmful races [Narayanasamy et al. 2007].

Identification of ad hoc synchronization performs data race classification by finding
custom synchronization operations in a program [Jannesari and Tichy 2010; Tian et al.
2008]. In such approaches, if a shared memory access is found to be protected via ad
hoc synchronization, then it is considered as harmless because its accesses can occur
in only one order.

The main limitation of these approaches is that they perform automated classification
based on the presence or absence of only a single criterion: ad hoc synchronization. This
makes the classification too coarse grained and less helpful than it seems (see Section 6).
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Furthermore, existing approaches use heuristics or dynamic instrumentation to detect
such cases with misclassification rates as high as 50% [Jannesari and Tichy 2010].
But when these approaches accurately identify ad hoc synchronization, it is unclear
whether this synchronization is correctly implemented and the data race that the ad
hoc synchronization “eliminates” is harmless in an absolute sense or not. Recent work
has shown that ad hoc synchronization is tricky to get right [Xiong et al. 2010] and
may often fail to provide proper synchronization.

Another shortcoming stems from the assumptions made by prior classification frame-
works regarding the underlying memory model. Prior data race classification ap-
proaches [Kasikci et al. 2012] and multithreaded bug-finding tools [Babic and Hu 2008;
Bucur et al. 2011; Godefroid et al. 2005] assume that the analyzed programs are run on
a uniprocessor under sequential consistency. Thus, they make the following assump-
tions: (1) the threads are scheduled using a uniprocessor scheduler, (2) the updates to
the shared memory are instantaneous,? and (3) the instructions in the program text
are not reordered.

Based on the first assumption, prior analysis and classification tools typically con-
trol how threads are scheduled during the analysis, and they allow one thread to be
scheduled at a time as if they were using a uniprocessor scheduler [Bucur et al. 2011].
In a modern multiprocessor, multiple threads may be scheduled to run concurrently
on different CPU cores. This concurrent execution can cause the updates to the shared
memory locations by a thread on a given core to not be immediately visible to a different
thread on a different core.

The view of the memory structure of prior analysis and classification tools is flat (i.e.,
they do not model store buffers or the cache), and the updates to the global memory are
propagated to all threads instantaneously. This is in stark contrast to how most modern
computer architectures behave: an update to a memory location initially goes into a
per-core store buffer. The contents of the store buffer may not immediately propagate to
the main memory or even the cache; therefore, threads may not observe the updates in
the same order. This delayed propagation effect is further amplified by multiprocessor
schedulers that schedule multiple threads to run concurrently on different CPU cores.

Finally, prior analysis and classification tools do not consider instruction reordering.
Instruction reordering can occur as a side effect of the buffering in hardware store
buffers [Adve and Hill 1990] or as a result of compiler optimizations [Boehm 2007].
Due to the store buffer, unbuffered instructions may be executed earlier than buffered
instructions despite occurring after the latter in the program text. Compilers can also
reorder instructions by typically allowing loads to be executed earlier. This gives the
programs more time to wait for the results of the loads that are crucial for the forward
progress of programs.

The assumptions made by prior analysis and classification tools are compounded
by the assumptions made by developers when writing programs. Typically, developers
write their code with the assumption that it gets executed under sequential consistency,
although they should not do so, as this is the more natural model for them. Program-
mers tend to expect that programs get executed with statements being run in the order
specified in the program text by them, without considering potential reorderings [Ceze
et al. 2007].

There seems to be a vicious circle. Programmers assume sequential consistency when
writing their programs, and this could cause bugs. On the other hand, many program

3We do not refer to this property as atomicity. Atomic write instructions cannot be interrupted. Our current
prototype does not handle nonatomic write instructions that can be interrupted (i.e., those that consist of
multiple machine instructions). We discuss how such interruptible write instructions can be handled in
Section 9.
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testing and analysis tools on which the developers should rely to fix the bugs in their
programs also assume sequential consistency. End results are undesirable: subtle bugs
show up under rare circumstances, software ends up being less reliable, and so forth.
This subtleness, when combined with even subtler bugs such as data races, presents
real challenges to the developers [Flanagan and Freund 2010].

3.2. Our Approach to Detection and Classification

Note that in the rest of this article, we use the name Portend™ to refer to both the
techniques that we introduce and the prototype we built, depending on the context.

Portend™ addresses three challenges left unsolved by prior work: (1) how to accu-
rately distinguish harmful state differences from ones that do not have any observable
harmful effect, (2) how to identify harmful races even when the state of the primary
and alternate executions do not immediately differ, and (3) how to factor in the effect
of the underlying memory model when classifying races.

We observe that it is not enough to reason about one primary and one alternate
interleaving, but we must also reason about the different paths that could be followed
before/after the race in the program in each interleaving, as well as about the different
schedules the threads may experience before/after the race in the different interleav-
ings. This is because a seemingly harmless race along one path might end up being
harmful along another. To extrapolate program state comparisons to other possible
inputs, it is not enough to look at the explicit state—what we must compare are the
constraints placed on that state by the primary and alternate executions and reason
symbolically about the resulting state. These observations motivate Portendt’s com-
bination of multipath and multischedule analysis with symbolic output comparison
(see Section 4). Thus, instead of employing heuristic-based classification as in previous
work [Erickson and Olynyk 2010; Jannesari and Tichy 2010; Tian et al. 2008], Portend ™
symbolically executes the program to reason precisely about the possible consequences
of races.

We also introduce SMCM, a technique that allows augmenting existing program
analysis frameworks with the capability to reason about relaxed consistency models.
SMCM is not specific to Portend™ and can be employed in any program analysis tool.
To implement SMCM, a tool needs to perform its analysis along all of the paths that
can be followed by the program as a result of reading a shared memory location. The
values that can be read from a shared memory location are in turn constrained by the
memory model in place that the tool supports.

3.3. A New Classification Scheme

A simple harmless versus harmful classification scheme is undecidable in general (as
will be explained later), so prior work typically resorts to “likely harmless” and/or
“likely harmful.” Alas, in practice, this is less helpful than it seems (see Section 6). We
therefore propose a new scheme that is more precise.

Note that there is a distinction between false positives and harmless races: when a
purported race is not a true race, we say that it is a false positive. When a true race’s
consequences are deemed to be harmless for all the witnessed executions, we refer to
it as a harmless race.*

A false positive is harmless in an absolute sense (since it is not a race to begin with),
but not the other way around—harmless races are still true races. Static [Engler and
Ashcraft 2003], lockset [Savage et al. 1997], and hybrid [O’Callahan and Choi 2003]
data race detectors typically report false positives.

4In the rest of the article, whenever we mention harmless data races, we refer to this definition. If we refer
to another definition adopted by prior work, we make the distinction clear.
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true positives false positives

harmful harmless

specViol | [outDiff] [k-witness| [singleOrd]

Fig. 3. Portend™ taxonomy of data races.

If a data race does not have any observable effect (crash, hang, data corruption) for
all the witnessed executions, we say that the data race is harmless with respect to those
executions. Harmless races are still true races. Note that our definition of harmlessness
is circumstantial; it is not absolute. It is entirely possible that a harmless race for some
given executions can become harmful in another execution.

Our proposed scheme classifies the true races into four categories: “spec violated,”
“output differs,” “k-witness harmless,” and “single ordering. We illustrate this taxonomy
in Figure 3.

Spec violated corresponds to races for which at least one ordering of the racing
accesses leads to a violation of the program’s specification. These are, by definition,
harmful. For example, races that lead to crashes or deadlocks are generally accepted
to violate the specification of any program; we refer to these as “basic” specification
violations. Higher-level program semantics could also be violated, such as the number
of objects in a heap exceeding some bound or a checksum being inconsistent with the
checksummed data. Such semantic properties must be provided as explicit predicates
to Portend™ or be embedded as assert statements in the code.

Output differs is the set of races for which the two orderings of the racing accesses
can lead to the program generating different outputs, thus making the output depend
on scheduling that is beyond the application’s control. Such races are often considered
harmful: one of those outputs is likely the “incorrect” one. However, “output differs”
races can also be considered as harmless, whether intentional or not. For example,
a debug statement that prints the ordering of the racing memory accesses is inten-
tionally order dependent, thus an intentional and harmless race. An example of an
unintentional harmless race is one in which one ordering of the accesses may result
in a duplicated syslog entry—while technically a violation of any reasonable logging
specification, a developer may decide that such a benign consequence makes the race
not worth fixing, especially if she faces the risk of introducing new bugs or degrading
performance when fixing the bug.

As with all high-level program semantics, automated tools cannot decide on their own
whether an output difference violates some nonexplicit specification or not. Moreover,
whether the specification has been violated or not might even be subjective, depending
on which developer is asked. It is for this reason that we created the “output differs”
class of races: we provide developers a clear characterization of the output difference
and let them decide using the provided evidence whether that difference matters.

K-witness harmless are races for which the harmless classification is performed with
some quantitative level of confidence: the higher the %, the higher the confidence. Such
races are guaranteed to be harmless for at least £ combinations of paths and schedules;
this guarantee can be as strong as covering a virtually infinite input space (e.g., a
developer may be interested in whether the race is harmless for all positive inputs,
not caring about what happens for zero or negative inputs). Portendt achieves this
using a symbolic execution engine [Cadar et al. 2008; Bucur et al. 2011] to analyze
entire equivalence classes of inputs. Depending on the time and resources available,
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developers can choose %k according to their needs—in our experiments, we found £ = 5
to be sufficient to achieve 99% accuracy (manually verified) for all tested programs. The
value of this category will become obvious after reading Section 4. We also evaluate the
individual contributions of exploring paths versus schedules later in Section 6.2.

Single ordering are races for which only a single ordering of the accesses is possible,
typically enforced via ad hoc synchronization [Xiong et al. 2010]. In such cases, although
no explicit synchronization primitives are used, the shared memory could be protected
using busy-wait loops that synchronize on a flag. Considering these to be nonraces is
inconsistent with our definition (see Section 1) because the ordering of the accesses
is not enforced using non—ad hoc synchronization primitives, even though it may not
actually be possible to exercise both interleavings of the memory accesses (hence the
name of the category). Such ad hoc synchronization, even if bad practice, is frequent in
real-world software [Xiong et al. 2010]. Previous data race detectors generally cannot
tell that only a single order is possible for the memory accesses and thus report this as
an ordinary data race. Such data races can turn out to be both harmful [Xiong et al.
2010], or they can be a major source of harmless data races [Jannesari and Tichy 2010;
Tian et al. 2008]. That is why we have a dedicated class for such data races.

4. DESIGN

Portend™ feeds the target program through its own race detector (or even a third-party
one, if preferred), analyzes the program and the report automatically, and determines
the potential consequences of the reported data race. The report is then classified,
based on these predicted consequences, into one of the four categories in Figure 3. To
achieve the classification, Portend* performs targeted analysis of multiple schedules of
interest while at the same time using symbolic execution [Cadar et al. 2008] to simulta-
neously explore multiple paths through the program; we call this technique multipath
multischedule data race analysis. Portendt can thus reason about the consequences of
the two orderings of racing memory accesses in a richer execution context than prior
work. When comparing program states or program outputs, Portend™ employs symbolic
output comparison, meaning that it compares constraints on program output as well as
path constraints when these outputs are made, in addition to comparing the concrete
values of the output, to generalize the comparison to more possible inputs that would
bring the program to the specific data race and to determine if the data race affects the
constraints on program output. Unlike prior work, Portendt can accurately classify
even races that, given a fixed ordering of the original racing accesses, are harmless
along some execution paths yet harmful along others. In Section 4.1, we go over one
such race (see Figure 6) and explain how Portend' handles it.

Figure 4 illustrates Portend™’s architecture. Portend™ is based on Cloud9 [Bucur
et al. 2011], a parallel symbolic execution engine that supports running multithreaded
C/C++ programs. Cloud9 is in turn based on Klee [Cadar et al. 2008], which is a single-
threaded symbolic execution engine. Cloud9 has a number of built-in checkers for
memory errors, overflows, and division-by-0 errors, on top of which Portend™ adds an
additional deadlock detector. Portend™ has a built-in race detector that implements a
dynamic happens-before algorithm [Lamport 1978]. This detector relies on a component
that tracks Lamport clocks [Lamport 1978] at runtime (details are in Section 4.5).
Portend™’s analysis and classification engine performs multipath multischedule data
race analysis and symbolic output comparison. This engine also works together with
the Lamport clock tracker and the SMCM plugin to perform classification. The SMCM
plugin defines the rules according to which a memory read operation from a shared
memory location can return previously written values to that location. The SMCM
plugin is crucial for classifying races under different memory consistency models.
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Fig. 4. High-level architecture of Portend™. The six shaded boxes indicate new code written for Portend™,
whereas clear boxes represent reused code from KLEE [Cadar et al. 2008] and Cloud9 [Bucur et al. 2011].

When Portend™ determines that a race is of “spec violated” kind, it provides the
corresponding evidence in the form of program inputs (including system call return
values) and thread schedule that reproduce the harmful consequences deterministi-
cally. Developers can replay this “evidence” in a debugger to fix the race.

In the rest of this section, we give an overview of our approach and illustrate it with
an example (Section 4.1); describe the first step, single-path/single-schedule analysis
(Section 4.2); and follow with the second step, multipath analysis and symbolic output
comparison (Section 4.3) augmented with multischedule analysis (Section 4.4). We
introduce SMCM and describe how it can be used to model various memory models
while performing data race classification (Section 4.5). We describe Portend™’s race
classification (Section 4.6) and the generated report that helps developers debug the
race (Section 4.7).

4.1. Overview and Example

Portend™’s race analysis starts by executing the target program and dynamically de-
tecting data races (e.g., developers could run their existing test suites under Portend™).
Portend™t detects races using a dynamic happens-before algorithm [Lamport 1978].
Alternatively, if a third-party detector is used, Portend™ can start from an existing ex-
ecution trace; this trace must contain the thread schedule and an indication of where
in the trace the suspected race occurred. We developed a plugin for Thread Sanitizer
[Serebryany and Iskhodzhanov 2009] to create a Portend*-compatible trace; we believe
that such plugins can easily be developed for other dynamic race detectors [Helgrind
2012].

Portend™ has a record/replay infrastructure for orchestrating the execution of a mul-
tithreaded program; it can preempt and schedule threads before/after synchronization
operations and/or racing accesses. Portend™ uses Cloud9 to enumerate program paths
and to collect symbolic constraints.

A trace consists of a schedule trace and a log of system call inputs. The schedule trace
contains the thread ID and the program counter at each preemption point. Portend™
treats all POSIX threads synchronization primitives as possible preemption points and
uses a single-processor cooperative thread scheduler (see Section 7 for a discussion of
the resulting advantages and limitations). Portend® can also preempt threads before
and after any racing memory access. We use the following notation for the trace:
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race race
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Fig. 5. Increasing levels of completeness in terms of paths and schedules: single-pre/single-post (a) «
single-pre/multipost (b) « multipre/multipost (c).

(To : pco) — (T1 — RaceyAccessy, : pc1) — (T2 — RaceyAccessy, : pco) means that
thread Ty is preempted after it performs a synchronization call at program counter
pco; then thread T, is scheduled and performs a memory access at program counter
pe1, after which thread T is scheduled and performs a memory access at pcs that is
racing with the previous memory access of 7. The schedule trace also contains the
absolute count of instructions executed by the program up to each preemption point.
This is needed to perform precise replays when an instruction executes multiple times
(e.g., a loop) before being involved in a race; for brevity, this is not shown as part of the
schedule trace. The log of system call inputs contains the nondeterministic program
inputs (e.g., gettimeofday).

In a first analysis step (illustrated in Figure 5(a)), Portend* replays the schedule in
the trace up to the point where the race occurs. Then it explores two different execu-
tions: one in which the original schedule is followed (the primary) and one in which
the alternate ordering of the racing accesses is enforced (the alternate). As described in
Section 3.1, some classifiers compare the primary and alternate program state immedi-
ately after the race and, if different, flag the race as potentially harmful, and, if same,
flag the race as potentially harmless. Even if program outputs are compared rather
than states, “single-pre/single-post” analysis (Figure 5(a)) may not be accurate, as we
will show later. Portend* uses “single-pre/single-post” analysis mainly to determine
whether the alternate schedule is possible. In other words, this stage identifies any ad
hoc synchronization that might prevent the alternate schedule from occurring.

If there is a difference between the primary and alternate postrace states, we do not
consider the race as necessarily harmful. Instead, we allow the primary and alternate
executions to run, independently of each other, and we observe the consequences. If]
for instance, the alternate execution crashes, the race is harmful. Of course, even if
the primary and alternate executions behave identically, it is still not certain that
the race is harmless: there may be some unexplored pair of primary and alternate
paths with the same prerace prefix as the analyzed pair but which does not behave the
same. This is why single-pre/single-post analysis is insufficient, and we need to explore
maultiple postrace paths. This motivates “single-pre/multipost” analysis (Figure 5(b)), in
which multiple postrace execution possibilities are explored—if any primary/alternate
mismatch is found, the developer must be notified.

Even if all feasible postrace paths are explored exhaustively and no mismatch is
found, one still cannot conclude that the race is harmless: it is possible that the absence
of a mismatch is an artifact of the specific prerace execution prefix and that some
different prefix would lead to a mismatch. Therefore, to achieve higher confidence in
the classification, Portend* explores multiple feasible paths even in the prerace stage,
not just the one path witnessed by the race detector. This is illustrated as “multipre/
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Thread T,

int id = 0, MAX_SIZE = 32;
int stats_array[MAX SIZE];
bool useHashTable;

int main (int argc, char *argv[])) {
pthread t tl1, t2;
useHashTable = getOption(argc, argv);
pthread create (&tl, 0, regHandler, 0);
pthread:create (&t2, 0, updateStats, 0);

Thread T;

11: void * regHandler (void *arg) {

QWO Jo U NN

[

12: while (1) {
13: -
14: lock (1) ;
15: id++;
16: unlock (1) ;
17: .-
Thread T,
18: woid * updateStats (void* arg) {
19: if (useHashTable) {
20: updatel () ;
21: printf (..., hash table[id]);
22: } else {
23: update2 () ;
24:
25: void updatel () {
26: int tmp = id;
27: if (hash_table.contains(tmp))
28: hash_table[tmp] = getStats();
29: void update2 () {
30: if (id < MAX_SIZE)
31: stats_array[id] getStats () ;

Fig. 6. Simplified example of a harmful race from Ctrace [McPherson 2012] that would be classified as
harmless by classic race classifiers.

multipost” analysis in Figure 5(c). The advantage of doing this versus considering these
as different races is the ability to systematically explore these paths.

Finally, we combine multipath analysis with multischedule analysis, as the same
path through a program may generate different outputs depending on how its execution
segments from different threads are interleaved. The branches of the execution tree in
the postrace execution in Figure 5(c) correspond to different paths that stem from both
multiple inputs and schedules, as we detail in Section 4.4.

Of course, exploring all possible paths and schedules that experience the race is
impractical, because their number typically grows exponentially with the number of
threads, branches, and preemption points in the program. Instead, we provide devel-
opers a “dial” to control the number % of path/schedule alternatives explored during
analysis, allowing them to control the “volume” of paths and schedules in Figure 5. If
Portend™ classifies a race as “k-witness harmless, then a higher value of & offers higher
confidence that the race is harmless for all executions (i.e., including the unexplored
ones), but it entails longer analysis time. We found %2 = 5 to be sufficient for achieving
99% accuracy in our experiments in less than 5 minutes per race on average.

To illustrate the benefit of multipath multischedule analysis over “single-pre/single-
post” analysis, consider the code snippet in Figure 6, adapted from a real data
race bug. This code has racing accesses to the global variableid. Thread T, spawns
threads 7T and Tq; thread T; updates id (line 15) in a loop and acquires a lock each
time. However, thread Ts, which maintains statistics, reads id without acquiring the
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lock—this is because acquiring a lock at this location would hurt performance, and
statistics need not be precise. Depending on program input, 75 can update the statis-
tics using either the pdatel or update2 functions (lines 20 through 23).

Say the program runs in Portend™ with input-use-hash-table, which makes
useHashTable=true. Portend™ records the primary trace (Ty : pcg) — --- (T7 —
RaceyAccessy, : pc1s) — (Ts — RaceyAccessry, : pcag) — --- Tp. This trace is fed to
the first analysis step, which replays the trace with the same program input, except
it enforces the alternate schedule (Ty : pco) — ---(T2 — RaceyAccessy, : pcag) —
(T1 — RaceyAccessy, : pcis) — --- To. Since the printed value of hash_table[id] at line
21 would be the same for the primary and alternate schedules, a “single-pre/single-post”
classifier would deem the race harmless.

However, in the multipath multischedule step, Portend™ explores additional paths
through the code by marking program input as symbolic—that is, allowing it to take on
any permitted value. When the trace is replayed and Portend™ reaches line 19 in T in
the alternate schedule, useHashTable could be both true and false, so Portend™ splits
the execution into two executions: one in which useHashTable is set to true and one
in which it is false. Assume, for example, that id = 31 when checking the if condition
at line 30. Due to the data race, id is incremented by 74 to 32, which overflows the
statically allocated buffer (line 31). Note that in this alternate path, there are two
racing accesses on id, and we are referring to the access at line 31.

Portend™ detects the overflow (via Cloud9), which leads to a crashed execution,
flags the race as “spec violated,” and provides the developer the execution trace
in which the input is -no-hash-table, and the schedule is (Ty : pcg) — ---(Ty —
RaceyAccessy, : pcso) — (T1 — RaceyAccessy, : pcis) — (Te : pcs1). The developer can
replay this trace in a debugger and fix the race.

Note that this data race is harmful only if the program input is —no-hash-table, the
given thread schedule occurs, and the value of id is 31; therefore, the crash is likely to
be missed by a traditional single-path/single-schedule data race detector.

We now describe Portend*’s race analysis in detail: Sections 4.2 through 4.4 focus on
the exploration part of the analysis, in which Portend™ looks for paths and schedules
that reveal the nature of the race, and Section 4.6 focuses on the classification part.

4.2. Single-Pre/Single-Post Analysis

The goal of this first analysis step is to identify cases in which the alternate schedule
of a race cannot be pursued and to make a first classification attempt based on a single
alternate execution. Algorithm 1 describes the approach.

Portend™ starts from a trace of an execution of the target program, containing one
or more races, along with the program inputs that generated the trace. For example,
in the case of the Pbzip2 file compressor used in our evaluation, Portend* needs a file
to compress and a trace of the thread schedule.

As mentioned earlier, such traces are obtained from running, for instance, the de-
velopers’ test suites (as done in CHESS [Musuvathi et al. 2008]) with a dynamic data
race detector enabled.

Portend™ takes the primary trace and plays it back (line 1). Note that current rep-
resents the system state of the current execution. Just before the first racing access,
Portend™ takes a checkpoint of system state; we call this the prerace checkpoint (line 2).
The replay is then allowed to continue until immediately after the second racing access
of the race in which we are interested (line 3), and the primary execution is suspended
in this postrace state (line 4).

Portend™ then primes a new execution with the prerace checkpoint (line 5) and
attempts to enforce the alternate ordering of the racing accesses. To enforce this
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ALGORITHM 1: Single-Pre/Single-Post Analysis (singleClassify)

Input: Primary execution trace primary

Output: Classification result € {specViol, outDiff, outSame, singleOrd}
current < execUntilFirstThreadRacyAccess(primary)
preRaceCkpt < checkpoint(current)
execUntilSecondThreadRacyAccess(current)
postRaceCkpt < checkpoint(current)
current < preRaceCkpt
preemptCurrentThread(current)
alternate < execWithTimeout(current)
if alternate.timedOut then
if detectInfiniteLoop(alternate) then

| return specViol

W T U AW =

ot
S ©

else
| return singleOrd

-
[

13 else

14 if detectDeadlock(alternate) then
15 | return specViol

16 primary < exec(postRaceCkpt)
17 if detectSpecViol(primary) v detectSpecViol(alternate) then
18 | return specViol

19 if primary.output # alternate.output then
20 | return outDiff

21 else
22 | return outSame

alternate order, Portend* preempts the thread that did the first racing access (7T})
in the primary execution and allows the other thread (7)) involved in the race
to be scheduled (line 6). In other words, an execution with the trace --- (T} —
RaceyAccessy, : pc1) — (T; — RaceyAccessTj : pcg) - -+ is steered toward the execution
(T — RaceyAccessTf : pcz) — (T; — RaceyAccessy, : pc1) - - -

This attempt could fail for one of three reasons: (a) T'; gets scheduled but T; cannot be
scheduled again; or (b) T'; gets scheduled but RaceyAccessTj cannot be reached because
of a complex locking scheme that requires a more sophisticated algorithm [Kahlon et al.
2005] than Algorithm 1 to perform careful scheduling of threads; or (c) T; cannot be
scheduled because it is blocked by T;. Case (a) is detected by Portend™ via a timeout
(line 8) and is classified either as “spec violated,” corresponding to an infinite loop (i.e.,
a loop with a loop-invariant exit condition) in line 10 or as ad hoc synchronization
in line 12. Portend* does not implement the more complex algorithm mentioned in
(b), and this may cause it to have false positives in data race classification. However,
we have not seen this limitation impact the accuracy of data race classification for
the programs in our evaluation. Case (c) can correspond to a deadlock (line 15) and
is detected by Portend™ by keeping track of the lock graph. Both the infinite loop
and the deadlock case cause the race to be classified as “spec violated,” whereas the
ad hoc synchronization case classifies the race as “single ordering” (more details in
Section 4.6). Although it may make sense to not stop if the alternate execution cannot
be enforced, under the expectation that other paths with other inputs might permit
the alternate ordering, our evaluation suggests that continuing adds little value.
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Fig. 7. Portend™ prunes paths during symbolic execution.

If the alternate schedule succeeds, Portend™ executes it until it completes and then
records its outputs. Then, Portend™ allows the primary to continue (while replaying
the input trace) and also records its outputs. During this process, Portend* watches
for “basic” specification violations (crashes, deadlocks, memory errors, etc.) as well as
“high-level” properties given to Portend™ as predicates—if any of these properties are
violated, Portend* immediately classifies (line 18) the race as “spec violated.” If the
alternate execution completes with no specification violation, Portend™ compares the
outputs of the primary and the alternate; if they differ, the race is classified as “output
differs” (line 20), otherwise the analysis moves to the next step. This is in contrast to
replay-based classification [Narayanasamy et al. 2007], which compares the program
state immediately after the race in the primary and alternate interleavings.

4.3. Multipath Data Race Analysis

The goal of this step is to explore variations of the single paths found in the previous step
(i.e., the primary and the alternate) to expose Portend™ to a wider range of execution
alternatives.

First, Portend™ finds multiple primary paths that satisfy the input trace—in other
words, they (1) all experience the same thread schedule (up to the data race) as the
input trace and (2) all experience the target race condition. These paths correspond
to different inputs from the ones in the initial race report. Second, Portend™ uses
Cloud?9 to record the “symbolic” outputs of these paths—that is, the constraints on the
output rather than the concrete output values themselves—as well as path constraints
when these outputs are made, and compares them to the outputs and path constraints
of the corresponding alternate paths; we explain this later. Algorithm 2 describes
the functions invoked by Portend® during this analysis in the following order: (1) on
initialization, (2) when encountering a thread preemption, (3) on a branch that depends
on symbolic data, and (4) on finishing an execution.

Unlike in the single-pre/single-post step, Portend ™ now executes the primary symbol-
ically. This means that the target program is given symbolic inputs instead of regular
concrete inputs. Cloud9 relies in large part on KLEE [Cadar et al. 2008] to interpret
the program and propagate these symbolic values to other variables, corresponding to
how they are read and operated upon. When an expression with symbolic content is
involved in the condition of a branch, both options of the branch are explored, if they
are feasible. The resulting path(s) are annotated with a constraint indicating that the
branch condition holds true (respectively false). Thus, instead of a regular single-path
execution, we get a tree of execution paths, similar to the one in Figure 7. Conceptually,
at each such branch, program state is duplicated and constraints on the symbolic pa-
rameters are updated to reflect the decision taken at that branch (line 11). Describing
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the various techniques for performing symbolic execution efficiently [Cadar et al. 2008;
Bucur et al. 2011] is beyond the scope of this article.

An important concern in symbolic execution is “path explosion”—in other words, that
the number of possible paths is large. Portend™ offers two parameters to control this
growth: (a) an upper bound M, on the number of primary paths explored and (b) the
number and size of symbolic inputs. These two parameters allow developers to trade
performance versus classification confidence. For parameter (b), the fewer inputs are
symbolic, the fewer branches will depend on symbolic input, so less branching will
occur in the execution tree.

Determining the optimal values for these parameters may require knowledge of
the target system as well as a good sense of how much confidence is required by the
system’s users. Reasonable (i.e., good but not necessarily optimal) values can be found
through trial and error relatively easily—we expect development teams using Portend™*
to converge onto values that are a good fit for their code and user community, and then
make these values the defaults for their testing and triage processes. In Section 6,
we empirically study the impact of these parameters on classification accuracy on a
diverse set of programs and find that relatively small values achieve high accuracy for
a broad range of programs.

During symbolic execution, Portendt prunes (Figure 7) the paths that do not obey
the thread schedule in the trace (line 8), thus excluding the (many) paths that do not
enable the target race. Moreover, Portend* attempts to follow the original trace only
until the second racing access is encountered; afterward, it allows execution to diverge
from the original schedule trace. This enables Portend™ to find more executions that
partially match the original schedule trace (e.g., cases in which the second racing access
occurs at a different program counter, as in Figure 6). Tolerating these divergences
significantly increases Portend™’s accuracy over the state of the art [Narayanasamy
et al. 2007], as will be explained in Section 6.4.

Once the desired paths are obtained (at most M, line 14), the conjunction of branch
constraints accumulated along each path is solved by KLEE using an SMT solver
[Ganesh and Dill 2007] to find concrete inputs that drive the program down the corre-
sponding path. For example, in the case of Figure 7, two successful leaf states S; and
Sy are reached, and the solver provides the inputs corresponding to the path from the
root of the tree to Si, respectively Sy. Thus, we now have M, = 2 different primary
executions that experience the data race.

4.3.1. Symbolic Output Comparison. Portend™ now records the output of each of the M,
executions, as in the single-pre/single-post case, and it also records the path constraints
when these outputs are made. However, this time, in addition to simply recording
concrete outputs, Portend' propagates the constraints on symbolic state all the way to
the outputs—that is, the outputs of each primary execution contain a mix of concrete
values and symbolic constraints (i.e., symbolic formulae). Note that by output, we mean
all arguments passed to output system calls.

Next, for each of the M, executions, Portend* produces a corresponding alternate
(analogously to the single-pre/single-post case). The alternate executions are fully con-
crete, but Portendt records constraints on the alternate’s outputs (lines 19 through
21) as well as the path constraints when these outputs are made. The function
singleClassify in Algorithm 2 performs the analysis described in Algorithm 1. Portend™
then checks whether the constraints on outputs of each alternate and the path con-
straints when these outputs are made match the constraints of the corresponding
primary’s outputs and the path constraints when primary’s outputs are made. This is
what we refer to as symbolic output comparison (line 22). The purpose behind compar-
ing symbolic outputs is that Portend™ tries to figure out if the data race caused the
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ALGORITHM 2: Multipath Data Race Analysis (Simplified)

Input: Schedule trace trace, initial program state Sy, set of states S = ¢, upper bound M,
on the number of primary paths
Output: Classification result € {specViol, outDiff; singleOrd k-witness}
function init ()
S« SusS 0
current < S.head()
pathsExplored < 0
function onPreemption ()
t; < scheduleNextThread(current)
if t; # nextThreadInTrace(irace, current) then
S <« S.remove(current)
L current < S.head()

© WS AW

-
=]

function onSymbolicBranch ()
S <« S Ucurrent.fork()
function onFinish ()
classification < classification U classify(current)
if pathsExplored < M, then
L pathsExplored < pathsExplored + 1

else
| return classification

-
TR WD

-
L)

-
®

function classify (primary)
result < singleClassify(primary)
if result = outSame then
alternate < getAlternate(primary)
if symbolicMatch(primary.symState, alternate.symState) then
| return k-witness

NN NN
W= O ©®

else
| return outDiff

[
SIS

else
L return result

N N
S S

constraints on the output to be modified or not, and the purpose behind comparing path
constraints is to be able generalize the output comparison to more possible executions
with different inputs.

This symbolic comparison enables Portend™’s analysis to extend over more possible
primary executions. To see why this is the case, consider the example in Figure 8. In
this example, the Main thread reads input to the shared variable i and then spawns
two threads 77 and Ts, which perform racing writes to globalx. T; prints 10 if the
input is positive. Let us assume that during the symbolic execution of the primary,
the write to globalx in T, is performed before the write to globalx in Ts. Portend™
records that the output at line 6 is 10 if the path constraint is i > 0. Let us further
assume that Portend™ runs the program while enforcing the alternate schedule with
input 1. The output of the program will still be 10 (since ¢ > 0), and the path constraint
when the output will be made will still be i > 0. The output and the path constraint
when the output is made is therefore the same regardless of the order in which the
accesses to globalx are performed (i.e., the primary or the alternate order). Therefore,
Portend™ can assert that the program output fori > 0 will be 10 regardless of the way in
which the data race goes even though it only explored a single alternate ordering with
input 1.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 3, Article 8, Publication date: May 2015.



Automated Classification of Data Races Under Both Strong and Weak Memory Models 8:19

1: int globalx = 0;
int 1 = 0;

Thread T,

void * work0O (void *arg) {
globalx = 1;
if(i >= 0)
printf (”10\n”) ;
return 0;

Thread T,

9: void * workl (void *arg) {
10: globalx = 2;
11: return 0;

12: }
Main Thread

13: int main (int argc, char *argv[]) {

N

W J oUW

14: pthread t t0, tl1;

15: int rc;

16: i = getlInput (argc, argv)

17: rc = pthread create (&t0, 0, work0, 0);
18: rc = pthread create (&tl, 0, workl, 0);
19: pthread join(t0, 0);

20: pthread join(tl, 0);

21: return 0;

22: }

Fig. 8. A program to illustrate the benefits of symbolic output comparison.

This comes at the price of potential false negatives because path constraints can be
modified due to a different thread schedule; despite this theoretical shortcoming, we
have not encountered such a case in practice, but we plan to investigate further in
future work.

False negatives can also arise because determining semantic equivalence of output
is undecidable, and our comparison may still wrongly classify as “output differs” a
sequence of outputs that are equivalent at some level (e.g., <print ab; print ¢> vs.
<print abc>).

When executing the primaries and recording their outputs and the path constraints,
Portend™ relies on Cloud9 to track all symbolic constraints on variables. To determine
if the path constraints and constraints on outputs match for the primary and the
alternates, Portend™ directly employs an SMT solver [Ganesh and Dill 2007].

As will be seen in Section 6.2, using symbolic comparison in conjunction with multi-
path multischedule analysis leads to substantial improvements in classification accu-
racy.

We do not detail here the case when the program reads input after the race—it is a
natural extension of the preceding algorithm.

4.4. Multischedule Data Race Analysis

The goal of multischedule analysis is to further augment the set of analyzed executions
by diversifying the thread schedule.

We mentioned earlier that for each of the M, primary executions, Portend* obtains
an alternate execution. Once the alternate ordering of the racing accesses is enforced,
Portend™ randomizes the schedule of the postrace alternate execution: at every preemp-
tion point in the alternate, Portend™ randomly decides which of the runnable threads
to schedule next. This means that every alternate execution will most likely have a
different schedule from the original input trace (and thus from the primary).
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Consequently, for every primary execution P;, we obtain multiple alternate execu-
tions Al, A%, ... by running up to M, multiple instances of the alternate execution.
Since the scheduler is random, we expect practically every alternate execution to have
a schedule that differs from all others. Recently proposed techniques [Musuvathi et al.
2010] can be used to quantify the probability of these alternate schedules discovering
the harmful effects of a data race.

Portend™ then uses the same symbolic comparison technique as in Section 4.3.1
to establish equivalence between the constraint on outputs and path constraints of

Al A2, ... AY and the symbolic outputs and path constraints of P;.

In addition, schedule randomization can be employed in the prerace stage of the
alternate-execution generation as well as in the generation of the primary executions.
We did not implement these options, because the level of multiplicity that we obtain
with the current design appears to be sufficient in practice to achieve high accuracy.
However, note that, as we show in Section 6.2, multipath multischedule analysis is
indeed crucial to attaining high classification accuracy.

In summary, multipath multischedule analysis explores M, primary executions, and
for each such execution, M, alternate executions with different schedules, for a total
of M, x M, path-schedule combinations. For races that end up being classified as “k-
witness harmless,” we say that & = M, x M, is the lower bound on the number of
concrete path-schedule combinations under which this race is harmless.

Note that the % executions can be simultaneously explored in parallel: if a developer
has p machines with g cores each, she could explore p x ¢ parallel executions in the
same amount of time as a single execution. Given that Portend™ is “embarrassingly
parallel,” it is appealing for cluster-based automated bug triage systems.

4.5. Symbolic Memory Consistency Modeling

Modern processor architectures rarely assume sequential consistency, as this would
hurt program performance. Instead, they adopt relaxed memory consistency models
such as weak ordering [Dubois et al. 1986] and rely on the programmers to explicitly
specify orderings among program statements using synchronization primitives.

Previous work has shown that subtle bugs may arise in code with data races because
programmers make assumptions based on sequential consistency. Despite the fact
that none of the modern processors provide sequential consistency [Flanagan and
Freund 2010]. Such assumptions may be violated under relaxed consistency models,
and bugs that are deemed unlikely may appear when the program is running on
various CPUs, causing programs to crash, hang, or violate some given specification of a
program.

Therefore, a program analysis tool should ideally have the capability to reason about
different memory models and their effects on the performed analysis. The effect of the
memory model on the consequences of a data race are serious: code written with the
assumption of a particular memory model may end up computing wrong results—or
worse, it can crash or cause data loss [Flanagan and Freund 2010].

4.5.1. Why Does the Memory Model Matter? To better show why reasoning about relaxed
memory consistency models matters while performing program analysis and testing,
let us consider the example in Figure 9. There are two shared variables globalx and
globaly that both have an initial value of 0. There is a Main thread that spawns two
threads 77 and Ty. T; writes 2 to a global variable globalx and 1 to another global
variable globaly. T writes 2 to globalx. Then, the Main thread reads the value of the
global variables. If the read value of globalx and globaly are 0 and 1, respectively, the
program crashes on line 18.
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1: int volatile globalx =

0;
2: int volatile globaly 0;

Thread T,

3: wvoid * workO (void *arg) {
4: globalx = 2;
5: globaly = 1;
61 return 0;
7 }
Thread T,
8: wvoid * workl (void *arg) {
9: globalx = 2;
10: return 0;

11:} Main Thread

12: int main (int argc, char *argv[]) {

13: pthread t t0, tl1;

14: int rc;

15: rc = pthread create (&t0, 0, workO, 0);
16: rc = pthread create (&tl, 0, workl, 0);
17: if (globalx == 0 && globaly == 1)

18: ; //crash!

19: pthread join(t0, 0);

20: pthread join(tl, 0);

21: return 0;

22: }

Fig. 9. Simple multithreaded program.

Programmers naturally expect the program statements to be executed in the order
as they appear in the program text. A programmer making that assumption expects
that the value of globaly being 1 implies the value of globalx being 2. This assumption
is equivalent to assuming sequential consistency as the underlying memory model: if
sequential consistency is assumed as the underlying memory model for the execution
of this program, the value of globalx cannot be 0 when the value of globaly is 1. This
is simply because the order of the program text would require globalx to be 2.

Under a different memory model, such as weak ordering [Dubois et al. 1986], nothing
prevents the write to globalx on line 4 and the write to globaly on line 5 to swap
places. This stems from the fact that under weak consistency, if instructions are not
conflicting (see Section 1) and they are not ordered by synchronization operations, then
any reordering is allowed. In such a scenario, it is possible for T’ to write 1 to globaly
while the value of globalx is still 0. Furthermore, there is a race between the write
to globalx in 77 and the read from it in Main. This means that 7 can be preempted
right after setting globaly to 1 and globaly and globalx can be equal to 1 and 0,
respectively. This can cause the program to crash on line 18.

4.5.2. Limitations of Cloud9 as a Multithreaded Testing Platform. Portend™ is built on Cloud9,
which is a multithreaded parallel symbolic execution engine [Bucur et al. 2011]. Cloud9
is essentially an LLVM interpreter that can concretely interpret programs compiled
to LLVM, and during this interpretation, it can also keep track of the symbolic values
and constraints.

Cloud9 makes the following sequential consistency assumptions: (1) uniprocessor
scheduler: the Cloud9 scheduler picks threads in a round robin fashion and runs them
by interpreting their text until an opportunity for scheduling arises (e.g., a sleep or a
synchronization operation); (2) immediate updates to shared memory: shared memory
is modeled as a flat structure with no cache model; therefore, any update to a shared
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Thread 1 Thread 2
time T1:0

1:0

k:0

T lock (I)

I‘:1

k:0 | unlock (1)

m:1| lock (k)

k1 | unlock (k)

2:2
2
1| unlock (1)

-

lock (1)

Fig. 10. Lamport clocks and a happens-before graph.

memory location is immediately visible to all other thread; and (3) no instruction
reordering: the Cloud9 interpretation engine works by fetching instructions from the
LLVM binary and executing them sequentially without any instruction reordering.

Since shared memory updates are not reordered, and they are directly visible to all
threads, and threads are scheduled one after the other, one at a time, any analysis that
builds on Cloud9 is bound to perform the analysis within the confines of sequential
consistency. However, as was demonstrated previously, such an analysis may unable to
expose insidious bugs.

4.5.3. Symbolic Memory Consistency Modeling in Portend’. Previously, we showed how
Portend™ explores multiple paths and schedules to observe the consequences of a data
race. The goal of SMCM is to further augment multipath multischedule analysis to
factor in the effects of the underlying memory model. SMCM is in essence similar
to multipath analysis: multipath analysis explores multiple execution paths that the
execution could take due to different program input values; SMCM explores multiple
paths that the execution could take due to different values that could be read from the
shared memory.

SMCM has two main components: the Lamport clock tracker and the SMCM plugin.

The first component is the Lamport clock tracker. Lamport clocks are logical counters
that maintain a partial order among synchronization operations to determine the rela-
tive occurrence sequence of events in a concurrent program [Lamport 1978]. This order
is partial because an order is only present among related synchronization operations
(e.g., a lock and an unlock on the same lock).

Lamport clocks are maintained per synchronization operation. A thread’s Lamport
clock is equal to the greatest of the clocks of all events that occur in the thread. Lamport
clocks are incremented under the following conditions:

—Each thread increments the clock of an event before the occurrence of that event in
that thread.

—When threads communicate, they also communicate their clocks (upon fork/join or
wait/signal).

—The thread that receives a clock sets its own clock to be greater than the maximum
of its own clock or that of the received message.

The graph that captures the relative order of events in a concurrent program using
Lamport clocks is called a happens-before graph. Figure 10 shows an example happens-
before graph and the Lamport clocks associated with a given execution. Note that 1locks
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Thread 1 Thread 2 Thread 3
time globalx=0
l globalx =2
globaly =1
lock (1)
unlock (1)
globalx =3 " |
* lock (1)
...=globalx
...=globaly
unlock (1)

Fig. 11. Write buffering.

and unlocks on lock / induce a happens-before edge denoted by the arrow between
Thread 1 and Thread 2. On the other hand, the lock/unlock block on lock £ does not
have any partial order with any of the events in Thread 2; therefore, although the
current timeline shows it as occurring before the lock/unlock block in Thread 2, in
some other execution it can occur after that lock/unlock block.

The Lamport clock tracker needs to monitor the synchronization operations per-
formed by each thread to construct the happens-before graph. All synchronization
events are intercepted, and the happens-before graph is constructed behind the scenes
according to the rules that were stated previously while the program is being executed.

The Lamport clock tracker is a critical component of Portend™, as it actually forms a
well-defined ordering among events during program execution that stem from synchro-
nization operations. This is important because different memory models and reordering
constraints are defined using synchronization operations in programs.

The second component, namely the SMCM plugin, defines the memory model protocol
according to which a read returns previously written values.

The memory model protocol encodes the rules of the particular memory model that
Portend™ uses. In our case, we define two such protocols: one default protocol for se-
quential consistency and another one for weak consistency. We described the semantics
of sequential consistency in Section 3.1. Under Portend’s weak memory consistency, a
read R may see a previous write A, provided that there is no other write B such that
B happens before R and A happens before B, with the exception that within the same
thread, a sequence of reads from the same variable with no intervening writes to that
variable will read the same value as the first read. We call this exception in Portend’s
weak memory model write buffering. Write buffering is responsible for keeping a write
history for each shared memory location. Write buffering enables Portend™ to compute
a subset of the values written to a memory location when that location is read. That
subset is computed considering the happens-before graph that is generated during
program execution by the Lamport clock tracker.

Similar forms of weak memory consistency has been implemented in architectures
such as SPARC [Weaver and Germond 1994] and Alpha [Sites 1992].

To see how write buffering and the memory model protocol work, consider the exam-
ple given in Figure 11. Again, vertical order of events imply the order of events in time.
In this particular execution, Thread 2 writes 0 to globalx, then execution switches to
Thread 3, which writes 2 to globalx and 1 to globaly before the execution switches
to Thread 1. Then, Thread 1 writes 3 to globalx after a lock/unlock region on [ and
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finally execution switches back to Thread 2, which reads both globalx and globaly
while holding the same lock /.

So what values do Thread 2 read? Note that since both globalx and globaly are
shared variables, the CPU can buffer all of the values that were written to globalx
(0,2, 3) and globaly (1). For globaly, the only value that can be read is 1. Now, when
the value globalx is read, Portend' knows that, under its weak consistency model, the
values that can be read are 0, 2, and 3. This is because there is no ordering constraint
(a happens-before edge) that prevents from making those three write values readable
at the point of the read.

Then, Portend* will use these multiple possible reads to augment multipath anal-
ysis: Portend™ will split the execution to as many possible “read” values there are
by checkpointing the execution state prior to the read and binding each one of those
possible reads to one such checkpointed state’s thread. By binding a read value, we
mean copying the value in question into the state’s memory. Therefore, in this case,
there will be three such forked states: one with values (0, 1), one with (2, 1), and the
other with values (3, 1) corresponding to ( globalx, globaly ). Portend™ will continue
exploring the forked states, forking further if their threads read global variables that
can potentially return multiple values.

If an already-bound global value is read by the same thread in a state without being
altered after the last time it had been read, Portend™ makes sure to return the already-
bound value. This is a necessary mechanism to avoid false positives (a thread reading
two different values in a row with no intervening writes) due to write buffering. This
is achieved by maintaining a last reader thread ID field per write buffer.

Write buffering and the optimization that we use to bind a read value to a thread are
performed for a given thread schedule that Portend* explores at a time. For example,
in Figure 11, if Thread 2 were to read globalx twice, it would have been possible for
the first read to return 2 and the second read to return 3 (or vice versa) if there had
been an intervening write between the two reads. Portend™ relies on multischedule
data race analysis to handle this case rather than relying on SMCM to reason about
potential prior thread schedules that would lead to such a behavior.

This example demonstrates the power of SMCM in reasoning about weak ordering.
Note that if sequential consistency were assumed for the given sequence of events,
there would not have been a scenario where the value of globaly is 1 whereas the
value of globalx is 0. This is because the given sequence of events would imply that
writing 2 to globalx in Thread 3 occurs before writing 1 to globaly in the same thread.
However, this is not the case under weak consistency. Since there is no synchronization
enforcing the ordering of the write to globalx and globaly in Thread 3, these accesses
can be reordered. Therefore, it is perfectly possible for Thread 2 to see the value of
globaly as 1 and globalx as 0.

4.6. Data Race Classification

We showed how Portend™ explores paths and schedules to give the classifier an oppor-
tunity to observe the effects of a data race. We now provide details on how the classifier
makes its decisions.

Spec violated races cause a program’s explicit specification to be violated; they are
guaranteed to be harmful and thus should be of highest priority to developers. To detect
violations, Portend™ watches for them during exploration.

First, Portend™ watches for “basic” properties that can be safely assumed to violate
any program’s specification: crashes, deadlocks, infinite loops, and memory errors. Since
Portend™ already controls the program’s schedule, it also keeps track of all uses of
synchronization primitives (i.e., POSIX threads calls); based on this, it determines
when threads are deadlocked. Infinite loops are diagnosed as in Xiong et al. [2010] by
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detecting loops for which the exit condition cannot be modified. For memory errors,
Portend™ relies on the mechanism already provided by KLEE inside Cloud9. Even
when Portend™ runs the program concretely, it still interprets it in Cloud9.

Second, Portend™ watches for “semantic” properties, which are provided to Portend™
by developers in the form of assert-like predicates. Developers can also place these
assertions inside the code.

Whenever an alternate execution violates a basic or a semantic property (even though
the primary may not), Portend™ classifies the corresponding race as “spec violated.”

Output differs races cause a program’s output to depend on the ordering of the
racing accesses. As explained in Section 3.1, a difference between the postrace memory
or register states of the primary and the alternate is not necessarily indicative of
a harmful race (e.g., the difference may just be due to dynamic memory allocation).
Instead, Portend™ compares the outputs of the primary and the alternate, and it does
so symbolically, as described earlier. In case of a mismatch, Portend™ classifies the race
as “output differs” and gives the developer detailed information to decide whether the
difference is harmful or not.

In k-witness harmless races, if for every primary execution P, the constraints on

the outputs of alternate executions Ail, Al2 .. ~AZM“ and the path constraints when these
outputs are made match P;’s output and path constraints, then Portend™ classifies the
race as “k-witness harmless,” where £ = M, x M,, because there exist £ executions
witnessing the conjectured harmlessness. The value of % is often an underestimate of
the number of different executions for which the race is guaranteed to be harmless; as
suggested earlier in Section 3.3, symbolic execution can even reason about a virtually
infinite number of executions.

Theoretical insights into how % relates to the confidence a developer can have that a
“k-witness harmless” race will not cause harm in practice are beyond the scope of this
article. One can think of £ in ways similar to code coverage in testing: 80% coverage is
better than 60% but does not exactly predict the likelihood of bugs not being present.
For all of our experiments, £ = 5 was shown to be sufficient for achieving 99% accuracy.
We consider “k-witness harmless” analyses to be an intriguing topic for future work
in a line of research akin to Musuvathi et al. [2010]. Note that Portend"™ explores
many more executions before finding the required % path-schedule combinations that
match the trace, but the paths that do not match the trace are pruned early during the
analysis.

Single ordering races may be harmless races if the ad hoc synchronization is properly
implemented. In that case, one might even argue that they are not races at all. Yet,
dynamic data race detectors are not aware of the implicit happens-before relationship
and do report a race, and our definition of a data race (see Section 1) considers these
reports as races.

When Portend ™ cannot enforce an alternate interleaving in the single-pre/single-post
phase, this can be due to one of two things: (1) ad hoc synchronization that prevents the
alternate ordering or (2) the other thread in question cannot make progress due to a
deadlock or an infinite loop. If none of the previously described infinite-loop and dead-
lock detection mechanisms trigger, Portend* simply waits for a configurable amount of
time and, upon timeout, classifies the race as “single ordering.” Note that it is possible
to improve this design with a heuristic-based static analysis that can in some cases
identify ad hoc synchronization [Xiong et al. 2010; Tian et al. 2008].

4.7. Portend*’s Debugging Aid Output

To help developers decide what to do about an “output differs” race, Portend™ dumps
the output values and the program locations where the output differs. Portend™ also
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Data Race during access to: 0x2860b30

current thread id: 3: READ

racing thread id: 0: WRITE

Current thread at:
/home/eval/pbzip/pbzip2.cpp:702

Previous at:
/home/eval/pbzip/pbzip2.cpp:389

size of the accessed field: 4 offset: 0O

Fig. 12. Example debugging aid report for Portend ™.

aims to help in fixing harmful races by providing two items for each race: a textual
report and a pair of execution traces that evidence the effects of the race and can be
played back in a debugger using Portend™’s runtime replay environment. A simplified
report is shown in Figure 12.

In the case of an “output differs” race, Portend™ reports the stack traces of system
calls where the program produced different output as well as the differing outputs.
This simplifies the debugging effort (e.g., if the difference occurs while printing a
debug message, the race could be classified as benign with no further analysis).

5. IMPLEMENTATION

The current Portend™ prototype consists of approximately eight KLLOC of C++ code, in-
corporating the various analyses described earlier and modifications to the underlying
symbolic execution engine. The six shaded components in Figure 4 were developed from
scratch as part of Portend™: the dynamic data race detector, Lamport clock tracker,
SMCM plugin, analysis and classification engine, the record-replay engine, and the
deadlock detector.

Portend™ works on programs compiled to LLVM [Lattner and Adve 2004] bitcode
and can run C/C++ programs for which there exists a sufficiently complete symbolic
POSIX environment [Bucur et al. 2011]. We have tested it on C programs as well as
C++ programs that do not link to libstdc++; this latter limitation results from the fact
that an implementation of a standard C++ library for LLVM is in progress but not
yet available [Lattner 2012]. Portend™ uses Cloud9 [Bucur et al. 2011] to interpret
and symbolically execute LLVM bitcode; we suspect any path exploration tool will do
(e.g., CUTE [Sen et al. 2005], SAGE [Godefroid et al. 2008]), as long as it supports
multithreaded programs.

Portend™ intercepts various system calls, such as write, under the assumption that
they are the primary means by which a program communicates changes in its state
to the environment. A separate Portend™ module is responsible for keeping track of
symbolic outputs in the form of constraints as well as of concrete outputs. Portend™
hashes program outputs (when they are concrete) and can either maintain hashes of
all concrete outputs or compute a hash chain of all outputs to derive a single hash code
per execution. This way, Portend™ can deal with programs that have a large amount of
output.

Portend™ uses a dynamic race detector that is based on the happens-before relation-
ship [Lamport 1978]. The happens-before relationships are tracked using the Lamport
clock tracker component. This component, together with the SMCM plugin, is used
by the analysis and classification engine to perform classification under a particular
memory model.

Portend™ keeps track of Lamport clocks per execution state on the fly. Note that it
is essential to maintain the happens-before graph per execution state because threads
may get scheduled differently depending on the flow of execution in each state, and
therefore synchronization operations may end up being performed in a different order.
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The state space exploration in Portend™ is exponential in the number of values
that reads can return in a program. Therefore, the implementation needs to handle
bookkeeping as efficiently as possible. There are several optimizations that are in place
to enable a more scalable exploration. The most important ones are (1) copy-on-write
for keeping the happens-before graph and (2) write buffer compression.

Portend™ employs copy-on-write for tracking the happens-before graphs in various
states. Initially, there is a single happens-before graph that gets constructed during
program execution before any state is forked due to a read with multiple possible return
values. Then, when a state is forked, the happens-before graph is not duplicated.
The forking state rather maintains a reference to the old graph. Then, when a new
synchronization operation is recorded in either one of the forked states, this event is
recorded as an incremental update to a previously saved happens-before graph. In
this way, maximum sharing of the happens-before graph is achieved among forked
states.

The copy-on-write scheme for states can further be improved if one checks whether
two different states perform the same updates to the happens-before graph. If that is
the case, these updates can be merged and saved as part of the common happens-before
graph. This feature is not implemented in the current prototype, but it is a potential
future optimization.

The second optimization is write buffer compression. This is performed whenever the
same value is written to the same shared variable’s buffer and the constraints imposed
by the happens-before relationship allow these same values to be returned upon a
read. Then, in such a case, these two writes are compressed into one, as returning two
of them would be redundant from the point of view of state exploration. For example,
if a thread writes 1 to a shared variable globalx twice before this value is read by
another thread, the write buffer will be compressed to behave as if the initial thread
has written 1 once.

Portend™ clusters the data races that it detects to filter out similar races; the clus-
tering criterion is whether the racing accesses are made to the same shared memory
location by the same threads and the stack traces of the accesses are the same. Portend™
provides developers with a single representative data race from each cluster.

The timeout used in discovering ad hoc synchronization is conservatively defined
as five times what it took Portend™ to replay the primary execution, assuming that
reversing the access sequence of the racing accesses should not cause the program to
run for longer than that.

To run multithreaded programs in Portend ™, we extended the POSIX threads support
found in Cloud9 to cover almost the entire POSIX threads API, including barriers,
mutexes, and condition variables, as well as thread-local storage. Portend™ intercepts
calls into the POSIX threads library to maintain the necessary internal data structures
(e.g., to detect data races and deadlocks) and to control thread scheduling.

6. EVALUATION

In this section, we answer the following questions: Is Portend™ effective in telling de-
velopers which races are true bugs and in helping them fix buggy races (Section 6.1)?
How accurately does it classify race reports into the four categories of races (Sec-
tion 6.2)? How long does classification take, and how does it scale (Section 6.3)? How
does Portend' compare to the state of the art in race classification (Section 6.4)? How
effectively and efficiently does Portend™ implement SMCM, and what is its memory
overhead (Sections 6.5 and 6.6)? Throughout this section, we highlight the synergy of
the techniques used in Portend™: in particular, Section 6.1 shows how symbolic out-
put comparison allows more accurate race classification compared to postrace state
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Table I. Programs Analyzed with Portend™

‘ Program ‘ Size (LOC) ‘ Language | Forked Threads (#) ‘
SQLite 3.3.0 113,326 C 2
ocean 2.0 11,665 C 2
fmm 2.0 11,545 C 3
memcached 1.4.5 8,300 C 8
pbzip2 2.1.1 6,686 C++ 4
ctrace 1.2 886 C 3
bbuf 1.0 261 C 8
AVV 49 C++ 3
DCL 45 C++ 5
DBM 45 C++ 3
RW 42 C++ 3
no-sync 45 C++ 3
no-sync-bug 46 C++ 3
sync 47 C++ 3
sync-bug 48 C++ 3

Note: Source lines of code are measured with the cloc utility.

comparison, and Section 6.2 shows how the combination of multipath multischedule
analysis improves upon traditional single-path analysis.

To answer these questions, we apply Portend' to seven applications: SQLite, an
embedded database engine (e.g., used by Firefox, iOS, Chrome, and Android) that is
considered highly reliable, with 100% branch coverage [SQLite 2013]; Pbzip2, a parallel
implementation of the widely used bzip2 file compressor [Gilchrist 2013]; Memcached
[Fitzpatrick 2013], a distributed memory object cache system (e.g., used by services such
as Flickr, Twitter, and Craigslist); Ctrace [McPherson 2012], a multithreaded debug
library; Bbuf [Yang et al. 2007], a shared buffer implementation with a configurable
number of producers and consumers; Fmm, an n-body simulator from the popular
SPLASH2 benchmark suite [Woo et al. 1995]; and Ocean, a simulator of eddy currents
in oceans, from SPLASH2.

Portend™ classifies with 99% accuracy the 93 known data races that we found in these
programs, with no human intervention, in less than 5 minutes per race on average.
It took us one person-month to manually confirm that the races deemed harmless by
Portend™ were indeed harmless by examining the program as well as the generated
assembly. This is typical of how long it takes to classify races in the absence of an
automated tool [Godefroid and Nagappan 2008] and illustrates the benefits of Portend " -
style automation. For the deemed-harmful races, we confirmed classification accuracy
in a few minutes by using the replayable debug information provided by Portend™.

We additionally evaluate Portendt on homegrown microbenchmarks that capture
most classes of races considered as harmless in the literature [Serebryany and
Iskhodzhanov 2009; Narayanasamy et al. 2007]: “redundant writes” (RW), where rac-
ing threads write the same value to a shared variable, “disjoint bit manipulation”
(DBM), where disjoint bits of a bit field are modified by racing threads, “all values
valid” (AVV), where the racing threads write different values that are nevertheless
all valid, and “double checked locking” (DCL), a method used to reduce the locking
overhead by first testing the locking criterion without actually acquiring a lock. Addi-
tionally, we have four other microbenchmarks that we used to evaluate the SMCM.We
detail those microbenchmarks in Section 6.5. Table I summarizes the properties of our
15 experimental targets.

We ran Portend™ on several other systems (e.g., HawkNL, pfscan, swarm, fft), but
no races were found in those programs with the test cases we ran, so we do not include
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Table II. “Spec Violated” Races and Their Consequences

“Spec Violated” Races (#)
Program Total Races (#) | Deadlock ‘ Crash ‘ Semantic
SQLite 1 1 0 0
pbzip2 31 0 3 0
ctrace 15 0 1 0
Manually Inserted Errors

fmm 13 0 0 1
memcached 18 0 1

them here. For all experiments, the Portend* parameters were set to M, = 5, and
M, = 2, and the number of symbolic inputs was set to 2. We found these numbers
to be sufficient to achieve high accuracy in a reasonable amount of time. To validate
Portend™’s results, we used manual investigation, analyzed developer change logs, and
consulted with the applications’ developers when possible. All experiments were run on
a 2.4GHz Intel Core 2 Duo E6600 CPU with 4GB of RAM running Ubuntu Linux 10.04
with kernel version 2.6.33. The reported numbers are averages over 10 experiments.

6.1. Effectiveness

Of the 93 distinct races detected in seven real-world applications, Portend™ classified
five of them as definitely harmful by watching for “basic” properties (Table II): one
hangs the program and four crash it.

To illustrate the checking for “high-level” semantic properties, we instructed
Portend™ to verify that all timestamps used in fmm are positive. This caused it to
identify the sixth “harmful” race in Table II; without this semantic check, this race
turns out to be harmless, as the negative timestamp is eventually overwritten.

To illustrate a “what-if analysis” scenario, we turned an arbitrary synchronization
operation in the memcached binary into a no-op and then used Portend™ to explore the
question of whether it is safe to remove that particular synchronization point (e.g., we
may be interested in reducing lock contention). Removing this synchronization induces
a race in memecached; Portend" determined that the race could lead to a crash of the
server for a particular interleaving, so it classified it as “spec violated.”

Portend™’s main contribution is the classification of races. If one wanted to eliminate
all harmful races from their code, they could use a static race detector (one that is
complete and, by necessity, prone to false positives) and then use Portend™ to classify
these reports.

For every harmful race, Portend*’s comprehensive report and replayable traces (i.e.,
inputs and thread schedule) allowed us to confirm the harmfulness of the races within
minutes. Portend™’s report includes the stack traces of the racing threads along with
the address and size of the accessed memory field; in the case of a segmentation fault,
the stack trace of the faulting instruction is provided as well—this information can help
in automated bug clustering. According to developers’ change logs and our own manual
analysis, the races in Table II are the only known harmful races in these applications.

6.2. Accuracy and Precision

To evaluate Portend™’s accuracy and precision, we had it classify all 93 races in our
target applications and microbenchmarks. Table IIT summarizes the results. The first
two columns show the number of distinct races and the number of respective instances
(i.e., the number of times those races manifested during race detection). The “spec
violated” column includes all races from Table II minus the semantic race in fmm and
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Table Ill. Summary of Portend™’s Classification Results

Number of Data Races
Distinct Race Spec Output K-Witness Harmless Single
Program Races Instances | Violated Differs | States Same ‘ States Differ | Ordering
SQLite 1 1 1 0 0 0 0
ocean 5 14 0 0 0 1 4
fmm 13 517 0 0 0 1 12
memcached 18 104 0 2 0 0 16
pbzip2 31 97 3 3 0 0 25
ctrace 15 19 1 10 0 4 0
bbuf 6 6 0 6 0 0 0
AVV 1 1 0 0 1 0 0
DCL 1 1 0 0 1 0 0
DBM 1 1 0 0 1 0 0
RW 1 1 0 0 1 0 0

Note: We consider two races to be distinct if they involve different accesses to shared variables; the same
race may be encountered multiple times during an execution. These two different aspects are captured
by the Distinct Races and Race Instances Columns, respectively. Portend® uses the stack traces and
the program counters of the threads making the racing accesses to identify distinct races. The last five
columns classify the distinct races. The States Same/States Differ columns show for how many races the
primary and alternate states were different after the race, as computed by the Record/Replay Analyzer
[Narayanasamy et al. 2007].

the race we introduced in memcached. In the “k-witness harmless” column, we show
for which races the postrace states differed versus not.

By accuracy, we refer to the correctness of classification: the higher the accuracy,
the higher the ratio of correct classification. Precision, on the other hand, refers to the
reproducibility of experimental results: the higher the precision, the higher the ratio
with which experiments are repeated with the same results.

To determine accuracy, we manually classified each race and found that Portend*
had correctly classified 92 of the 93 races (99%) in our target applications: all except
one of the races classified “k-witness harmless” by Portend' are indeed harmless in an
absolute sense, and all “single ordering” races indeed involve ad hoc synchronization.

To measure precision, we ran the classification for each race 10 times. Portend™
consistently reported the same dataset shown in Table III, which indicates that for
these races and applications, it achieves full precision.

As can be seen in the K-Witness Harmless column, for each and every one of the seven
real-world applications, a state difference (as used in Narayanasamy et al. [2007]) does
not correctly predict harmfulness, whereas our “k-witness harmless” analysis correctly
predicts that the races are harmless with one exception.

This suggests that the differencing of concrete state is a poor classification criterion
for races in real-world applications with large memory states but may be acceptable for
simple benchmarks. This also supports our choice of using symbolic output comparison.

Multipath multischedule exploration proved to be crucial for Portend™’s accuracy.
Figure 13 shows the breakdown of the contribution of each technique used in Portend™:
ad hoc synchronization detection, multipath analysis, and multischedule analysis. In
particular, for 16 out of 21 “output differs” races (6 in bbuf, 9 in ctrace, 1 in pbzip2)
and for 1 “spec violated” race (in ctrace), single-path analysis revealed no difference
in output; it was only multipath multischedule exploration that revealed an output
difference (9 races required multipath analysis for classification, and 8 races required
multischedule analysis as well). Without multipath multischedule analysis, it would
have been impossible for Portend™ to accurately classify those races by just using the
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Single path ——

Ad hoc synch detection ===
Multipath —

Multipath + Multischedule m—

ddn

Ctrace Pbzip2 Memcached Bbuf

Accuracy [%]

Fig. 13. Breakdown of the contribution of each technique toward Portend™’s accuracy. We start from single
path analysis and enable the other techniques one by one: ad hoc synchronization detection, multipath
analysis, and finally multischedule analysis.

Thread Tyand T, Thread Tyand T,

if(_initialized){ €— if(_trc) «

for(i=0; i<tNum; ++i) trc_on =1

free(threadsfi])

_initialized = 0; €—

} (a) (b)
~ Thread T, \ Thread T,
current_time = OutputBuffer[blockNum].buf = DecompressedData;
(rel_time_t) (timer.tv_sec - process_started); | . . .

allDone = 1;
Thread T; Thread T,

settings.oldest_live = current_time - 1; while ( allDone == 0)

~ usleep(50000);

APPEND_STAT(..., settings.oldest_live, ...); | - - -

ret = write(..., OutputBuffer[currBlock],...);
PRINT_STAT(... (© )

Fig. 14. Simplified examples for each race class from real systems. (a) and (b) are from ctrace, (c) is from
memcached and (d) is from pbzip2. The arrows indicate the pair of racing accesses.

available test cases. Moreover, there is a high variance in the contribution of each
technique for different programs, which means that none of these techniques alone
would have achieved high accuracy for a broad range of programs.

We also wanted to evaluate Portend™’s ability to deal with false positives (i.e., false
race reports). Race detectors, especially static ones, may report false positives for a
variety of reasons, depending on which technique they employ. To simulate an im-
perfect detector for our applications, we deliberately removed from Portend™’s race
detector its awareness of mutex synchronizations. We then eliminated the races in our
microbenchmarks by introducing mutex synchronizations. When we reran Portend*
with the erroneous data race detector on the microbenchmarks, all four were falsely re-
ported as races by the detector, but Portend™ ultimately classified all of them as “single
ordering.” This suggests that Portend™ is capable of properly handling false positives.

Figure 14 shows examples of real races for each category: (a) a “spec violated” race
in which resources are freed twice, (b) a “k-witness harmless” race due to redundant
writes, (c) an “output differs” race in which the schedule-sensitive value of the shared
variable influences the output, and (d) a “single ordering” race showing ad hoc syn-
chronization implemented via busy wait.
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Table IV. Portend*’s Classification Time for the 93 Races in Table IlI

Cloud9 Portend™ Classification Time
Running Time (sec)

Program (sec) Avg ‘ Min ‘ Max
SQLite 3.10 4.20 4.09 4.25
ocean 19.64 60.02 19.90 207.14
fmm 24.87 64.45 65.29 72.83
memcached 73.87 645.99 619.32 730.37
pbzip2 15.30 360.72 61.36 763.43
ctrace 3.67 24.29 5.54 41.08
bbuf 1.81 4.47 4.77 5.82
AVV 0.72 0.83 0.78 1.02
DCL 0.74 0.85 0.83 0.89
DBM 0.72 0.81 0.79 0.83
RW 0.74 0.81 0.81 0.82

memcached,

memcached,
800 ocean,

memcached,
fmm,

ctrace,

bbuf,
B sqlite,

Classification time [sec] (log scale)

20 50 100
# preemption points (log scale)

Fig. 15. Change in classification time with respect to number of preemptions and number of dependent
branches for some of the races in Table III. Each sample point is labeled with a race ID.

6.3. Performance (Time to Classify)

We evaluate the performance of Portendt in terms of efficiency and scalability.
Portend™’s performance is mostly relevant if it is to be used interactively, as a de-
veloper tool, and also if used for a large-scale bug triage tool, such as in Microsoft’s
Windows Error Reporting system [Glerum et al. 2009].

We measure the time it takes Portend™ to classify the 93 races; Table IV summarizes
the results. We find that Portend™ classifies all detected data races in a reasonable
amount of time, with the longest taking less than 11 minutes. For bbuf, ctrace, ocean,
and fmm, the slowest classification time is due to a race from the “k-witness harmless”
category, as classification into this category requires multipath multischedule analysis.

The second column reports the time it took Cloud9 to interpret the programs with
concrete inputs. This provides a sense of the overhead incurred by Portend™ compared
to regular LLVM interpretation in Cloud9. Both data race detection and classification
are disabled when measuring baseline interpretation time. In summary, the overhead
introduced by classification ranges from 1.1x to 49.9x over Cloud9.

To get a sense of how classification time scales with program characteristics, we
measured it as a function of program size, number of preemption points, number of
branches that depend (directly or indirectly) on symbolic inputs, and number of threads.
We found that program size plays almost no role in classification time. Instead, the other
three characteristics play an important role. In Figure 15, we show how classification
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Fig. 16. Portend™’s accuracy with increasing values of .

Table V. Accuracy for Each Approach and Each Classification Category,
Applied to the 93 Races in Table IlI

‘ ‘ specViol | k-witness ‘ outDiff ‘ singleOrd ‘

Ground Truth 100% 100% 100% ‘ 100%
Record/Replay —
10% 95%

Analyzer : v (not classified)
Ad-Hoc-Detector, —

’ 100%
Helgrind* (not classified) 7
Portend 100% | 99% | 99% 100%

Note: “Not classified” means that an approach cannot perform classi-
fication for a particular class.

time varies with the number of dependent branches and the number of preemptions
in the schedule (which is roughly proportional to the number of preemption points and
the number of threads). Each vertical bar corresponds to the classification time for the
indicated data race. We see that as the number of preemptions and branches increase,
so does classification time.

We analyzed Portend™’s accuracy with increasing values of k£ and found that 2 = 5 is
sufficient to achieve overall 99% accuracy for all programs in our evaluation. Figure 16
shows the results for Ctrace, Pbzip2, Memcached, and Bbuf. We therefore conclude that
it is possible to achieve high classification accuracy with relatively small values of &.

6.4. Comparison to State of the Art

We compare Portend™ to the Record/Replay Analyzer technique [Narayanasamy et al.
2007], Helgrind*’s technique [Jannesari and Tichy 2010], and Ad-Hoc-Detector [Tian
et al. 2008] in terms of the accuracy with which races are classified. We implemented
the Record/Replay Analyzer technique in Portend™ and compared accuracy empirically.
For the ad hoc synchronization detection techniques, since we do not have access to
the implementations, we analytically derive the expected classification based on the
published algorithms. We do not compare to RaceEFuzzer [Sen 2008], because it pri-
marily is a bug-finding tool looking for harmful races that occur due to exceptions and
memory errors; it therefore does not provide a fine-grain classification of races. Sim-
ilarly, no comparison is provided to DataCollider [Erickson and Olynyk 2010], since
race classification in this tool is based on heuristics that pertain to races that we rarely
encountered in our evaluation.

In Table V, we show the accuracy, relying on manual inspection as “ground truth.”
Record/Replay Analyzer does not tolerate replay failures and classifies races that ex-
hibit a postrace state mismatch as harmful (shown as specViol), causing it to have low
accuracy (10%) for that class. When comparing to Helgrind™ and Ad-Hoc-Detector, we
conservatively assume that these tools incur no false positives when ad hoc synchro-
nization is present, even though this is unlikely, given that both tools rely on heuris-
tics. This notwithstanding, both tools are focused on weeding out races due to ad hoc
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synchronization, so they cannot properly classify the other races (36 out of 93). In
contrast, Portend™ classifies a wider range of races with high accuracy.

The main advantage of Portend™ over Record/Replay Analyzer is that it is immune
to replay failures. In particular, for all races classified by Portend' as “single order-
ing,” there was a replay divergence (that caused replay failures in Record/Replay Ana-
lyzer), which would cause Record/Replay Analyzer to classify the corresponding races
as harmful despite them exhibiting no apparent harmfulness; this accounts for 57 of
the 84 misclassifications. Note that even if Record/Replay Analyzer were augmented
with a phase that pruned “single ordering” races (57/93), it would still diverge on 32
of the remaining 36 races and classify them as “spec violated,” whereas only 5 are
actually “spec violated.” Portend™, on the other hand, correctly classifies 35/36 of those
remaining races. Another advantage is that Portend™ classifies based on symbolic out-
put comparison, not concrete state comparison, and therefore its classification results
can apply to a range of inputs rather than a single input.

We manually verified and, when possible, checked with developers that the races
in the “k-witness harmless” category are indeed harmless. Except for one race, we
concluded that developers intentionally left these races in their programs because they
considered them harmless. These races match known patterns [Narayanasamy et al.
2007; Erickson and Olynyk 2010], such as redundant writes to shared variables (e.g.,
we found such patterns in Ctrace). However, for one race in Ocean, we confirmed that
Portend™ did not figure out that the race belongs in the “output differs” category (the
race can produce different output if a certain path in the code is followed, which depends
indirectly on program input). Portend™ was not able to find this path even with & = 10
after 1 hour. Manual investigation revealed that this path is hard to find because it
requires a very specific and complex combination of inputs.

6.5. Efficiency and Effectiveness of Symbolic Memory Consistency Modeling

The previous evaluation results were using the SMCM plugin in the sequential con-
sistency mode. The sequential memory consistency mode is the default in Cloud9 as
well as in Portend™. In this section, we answer the following questions while operating
the SMCM plugin in Portend*’s weak consistency mode: Is Portend™ effective in dis-
covering bugs that may surface under its weak consistency model? What is Portend™’s
efficiency and memory usage while operating the SMCM plugin in Portend™’s weak
consistency mode?

We use simple microbenchmarks that we have constructed to test the basic function-
ality of SMCM. The simplified source code for these microbenchmarks can be seen in
Figure 17. These benchmarks are as follows:

—no-sync: The source code for this microbenchmark can be seen in Figure 17(a): a pro-
gram with opportunities for write reordering. Reorderings cause the printf state-
ment on line 17 to produce different program outputs.

—no-sync-bug: The source code for this benchmark can be seen in Figure 17(b): a pro-
gram with opportunities for write reordering. A particular write reordering causes
the program to crash; however, the program does not crash under sequential consis-
tency.

—sync: The source code for this microbenchmark can be seen in Figure 17(c): a program
with no opportunities for write reordering. There is a race on both globalx and
globaly. Since both threads 1 and 2 write the same value 2 to globalx, the output
of the program is the same for any execution, assuming that writes are atomic.?

5If writes are nonatomic, even a seemingly benign race, where two threads write the same value to a shared
variable, may end up producing unexpected results. Details can be found in Boehm [2011]
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1: int volatile globalx = 0; 1: int volatile globalx = 0;
2: int volatile globaly = 0; 2: int volatile globaly = 0;
3: wvoid * work0 (void *arg) { 3: void * work0 (void *arg) ({
4: globalx = 2; 4: globalx = 2;
S: globaly = 1; 5: globaly = 1;
6: return 07 6: return 0;
Te} 7: )
8: wvoid * workl (void *arg) { 8: void * workl (void *arg) ({
9: globalx = 2; 9: globalx = 2;
10 return 0; 10: return 0;
12: int main (int argc, char *argv[]) { 12: int main (int argc, char *argv[]) {
13: pthread t t0, tl; 13- pthread t t0, tl;
14: int rc; 14: int rc;7
15: rc = pthread create (&t0, 0, work0O, 0); 15: rc = pthread create (&t0, 0, work0, 0);
16: rc = pthread create (&tl, 0, workl, 0); 16: re = pthreadicreate (stl, 0, workl, 0);
17: printf (”%d, $d”, globalx, globaly); 17: if (globalx = 0 s& globaly == 2)
18: pthread join(t0, 0); 18: ; //crash!
19: pthread join(tl, 0); 19: pthread join(t0, 0);
20: return 0; 20: pthread:join(tl, 0);
21} 21: return 0;
22: }
(@) (b)
1: int volatile globalx = 0; 1: int volatile globalx = 0;
2: int volatile globaly = 0; 2: int volatile globaly = 0;
3: void * work0 (void *arg) { 3: wvoid * work0 (void *arg) {
4: globalx = 2; 4: globalx = 2;
5: pthread barrier wait (&barr); 5: globaly = 1;
6: globaly = 1; 6: pthread barrier wait (&barr);
7: return 0; 7: return 0;
8: } 8: }
: void * workl (void *arg) { : void * workl (void *arg) {
10 globalx = 2; 10: globalx = 2;
pthread barrier wait (&barr); pthread_barrier_wait (&barr);
11 return 0; 11: return 0;
12: } N 12: } ”
13: int main (int argc, char *argv[]) { 13: int main (int argc, char *argv([]) {
14: pthread t t0, tl; 14: pthread t t0, tl;
15: int rc; 15: int rc;
16: pthread_barrier_init (&¢barr, NULL, 2); l6: pthread barrier init(&barr, NULL, 2);
17: rc = pthread_create (&t0, 0, workO, 0); 17: rc = pthread create (&t0, 0, workO, 0);
18: rc = pthread create (&tl, 0, workl, 0); 18: rc = pthread_create (&tl, 0, workl, 0);
19: printf (”%d,%$d”, globalx, globaly); 19: if(globalx == 0 && globaly ==
20 pthread join(t0, 0); 20: ; //crash!
21: pthread_join(tl, 0); 21: pthread join(t0, 0);
22: return 0; 22: pthread_join(tl, 0);
23: } 23: return 0;
24: }
© (@

Fig. 17. Microbenchmarks used for evaluating SMCM.
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Table VI. Portend™’s Effectiveness in Bug Finding and State Coverage for Two Memory
Model Configurations: Sequential Memory Consistency Mode and Portend™’s
Weak Memory Consistency Mode

Number of Bugs State Coverage (%)
System Portendt-seq | Portend™-weak | Portend-seq | Portend*-weak
no-sync 0/0 0/0 50 100
no-sync-bug 0/1 1/0 50 100
sync 0/0 0/0 100 100
sync-bug 0/1 1/1 50 100
18 |- I I IPortend-selq |

Portend-weak m—

Execution Time [Sec]

no-sync  no-sync sync  sync-bug
-bug
Fig. 18. Running time of Portend"-weak and Portend™-seq.

—sync-bug: The source code for this microbenchmark can be seen in Figure 17(d): a
program with opportunities for write reordering. The barrier synchronization does
not prevent the write to globalx and globaly from reordering. A particular write
reordering causes the program to crash; however, the program does not crash under
sequential consistency.

To evaluate Portend™’s effectiveness in in finding bugs that may only arise under
Portend™’s weak ordering, we ran the microbenchmarks with Portend™’s SMCM plugin
configured in two modes: sequential consistency (Portend*-seq) and Portend™’s weak
consistency (Portend*-weak). We provide the number of bugs found by each config-
uration of Portend™ and also the percentage of possible execution states that each
configuration covers if Portend*’s weak consistency were assumed. Note that ground
truth (i.e., the total number of states that can be covered under Portend*’s weak con-
sistency) in this case is manually identified, as the number of possible states is small.
Effectively identifying this percentage for arbitrarily large programs is undecidable.

We present the results in Table VI. As can be seen, Portend™-weak discovers the bugs
that can only be discovered under Portend™’s weak consistency, whereas Portend™-
seq cannot find those bugs because of sequential consistency assumptions. Similar
reasoning applies to state exploration. Portend™ covers all possible states that may
arise from returning multiple values at reads, whereas Cloud9 simply returns the last
value that was written to a memory location and hence has lower coverage.

We also evaluate the performance of Portendt-weak for our microbenchmarks and
compare its running time to that of Portend"-seq. The results of this comparison can be
seen in Figure 18. The running times of the benchmarks under Portend*-seq essentially
represent the “native” LLVM interpretation time. For the no-sync benchmark, we can
see that the running time of Portend™ is about 2 seconds more than that of Portend™-
seq. This is expected, as Portend*-weak covers more states compared to Portend*-seq.

However, it should be noted that in the case of the no-sync-bug benchmark, the
running times are almost the same for Portend™-weak and Portend™-seq (although not
visible on the graph, the running time of Portend"-weak is slightly larger than that
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Fig. 19. Memory usage of Portend™-weak and Portend™-seq.

of Portend*-seq, on the order of a few milliseconds). This is simply because the bug in
no-sync-bug is immediately discovered after the exploration state has been forked in
Portend™. The bug is printed at the program output, and the exploration ends for that
particular state. Similar reasoning applies to the other benchmark pair, namely sync
and sync-bug.

6.6. Memory Consumption of Symbolic Memory Consistency Modeling

In this final section of the evaluation, we measure the peak memory consumption of
Portend "-weak and Portend " -seq for the microbenchmarks we have tested. The results
can be seen in Figure 19. The memory consumption increases for all benchmarks. This
is because for all of the benchmarks, Portend™-weak always forks off more states and/or
performs more bookkeeping than Portend*-seq, even though it does not always explore
those states.

Although the memory consumption consistently increases for Portend*-weak, it does
not increase proportionally with the state forking. This is possible due to the copy-on-
write mechanism employed for exploring states and keeping track of the happens-before
graph. However, when we ran Portend™-weak on real-world programs, the memory
consumption quickly exceeded the memory capacity of the workstation that we used for
our experiments. We plan on incorporating techniques such as partial order reduction
from model checking to reduce the number of states that SMCM needs to explore and
improve its scalability as part of future work.

In summary, Portend™ is able to classify with 99% accuracy and full precision all
93 races into four data race classes defined in Section 3.3 in less than 5 minutes per
race on average. Furthermore, Portend™ correctly identifies 6 serious harmful races.
Compared to previously published race classification methods, Portend™ performs more
accurate classification (92 out of 93, 99%) and is able to correctly classify up to 89%
more data races than existing replay-based tools (9 out of 93, 10%). Portend™ also
correctly handles false-positive race reports. Furthermore, SMCM allows Portend™ to
accurately perform race classification under relaxed memory consistency models with
low overhead.

7. DISCUSSION
In this section,we discuss Portend™’s usage model and limitations.

Data race detection. Portend™ currently only handles data races with respect to
the POSIX threads synchronization primitives, thus not detecting data races that may
occur inside synchronization primitives (as in Erickson and Olynyk [2010]). Detection
is done on the LLVM bitcode, not x86 assembly; analyzing the program at this level
shields Portend™ from the peculiarities of a specific CPU’s ISA and memory consistency
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model while at the same time being ignorant of features that may make code be correctly
synchronized on a specific platform despite not using POSIX primitives.

Multiprocessors and write atomicity. Portend™ works for multiprocessors; how-
ever, it can simulate only atomic write operations. To model the relaxation of the
write atomicity requirement, it is possible to break nonatomic instructions into mul-
tiple LLVM instructions. Then, Portend™ would be able to generate currently missing
schedules that stem from nonatomic operations.

Language memory models. Several language specifications, such as Ada 83
[Ledgard 1983] and the new C [IS0O9899 2011] and C++ [ISO14882 2011] specifica-
tions, do not guarantee any semantics for programs that contain data races at the
source level, essentially considering all such races to be harmful. In other words, the
corresponding compilers are allowed to perform optimizations that break racy pro-
grams in arbitrary ways [Boehm 2011]. Nonetheless, races at assembly level are not
disallowed by any specification (typically, synchronization primitives are implemented
with racy assembly code), and, more importantly, there is a plethora of software written
with races at the source level. Since Portend™ operates on LLVM bitcode, it can classify
both source code—level races and LLVM bitcode—level races. Moreover, Portend™ can
also correctly classify not-buggy-in-source races that the compiler (legitimately) turned
into LLVM-level buggy ones [Boehm 2011].

Single-processor scheduler. Most data race detectors use a single-processor
thread scheduler, and Portend™ does as well. Such a scheduler has the advantage
that it simplifies the record/replay component and improves its performance: for ex-
ample, Portend™ does not have to record the ordering of memory reads and writes
in different threads, as they are naturally ordered by scheduling (a single thread
at a time). The scheduler does not impact Portend™’s ability to detect races, but it
may decrease the probability of exploring some atomicity violations [Lu et al. 2006]
or thread interleavings that would occur on a multiprocessor (and are specific to its
memory model). This loss of coverage is compensated by the fact that if during the
analysis Portend® detects a racing access, it will consider it as a possible preemp-
tion point. Moreover, Portend’s multischedule analysis is more likely to uncover more
interleavings than “single-pre/single-post” analysis, thus increasing the thread sched-
ule coverage. A single-processor scheduler in Portend™ could potentially impact data
race classification under relaxed memory consistency models because simultaneous
scheduling of threads in multiprocessors may not be taken into account. This could in
turn cause simultaneous accesses to shared memory locations to be ignored. However,
Portend™ overcomes this limitation with the use of SMCM.

Scalability of symbolic execution. Advances in improving the scalability of sym-
bolic execution would help Portend™ explore more executions in the same amount of
time, improving triaging accuracy. Since Portend™ is “embarrassingly parallel,” perfor-
mance could also be improved by running Portend™ in a cluster.

K-witness harmless races. It is theoretically undecidable to say if a race classified
as “k-witness harmless” by Portend™ is indeed harmless unless all thread interleavings
and all possible inputs were analyzed. However, as we found in our evaluation, in most
cases Portend' produces highly accurate (but not perfect) verdicts in a reasonable
amount of time.

We envision integrating Portend™ with an IDE to perform race classification in the
background while the developer is modifying the code, in the spirit of automated soft-
ware reliability services [Candea et al. 2010]. Portend* would perform race classifica-
tion and warn the developer that a race on the variable in question can have harmful
effects and should be protected. Test cases that are generated by Portend™ in the back-
ground can be integrated into a test suite for developers to validate their applications
as part of regression tests.
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Portend™ could also use reports from static race detectors [Engler and Ashcraft 2003]
by feeding them to an execution synthesis tool such as ESD [Zamfir and Candea 2010],
which can try to obtain the desired trace and then classify it with Portend™. If ESD
finds such an execution, it effectively confirms that the race is not a false positive and
Portend™ can automatically predict its consequences.

While analyzing a specific data race, Portend™ may also detect other unrelated races.
This is a side effect of exploring various different thread schedules during classification.
Portend' automatically detects these new races, records their execution trace, and
analyzes them subsequently, one after the other.

8. RELATED WORK

Data race detection techniques can be broadly classified into two major categories:
static data race detection [Voung et al. 2007; Engler and Ashcraft 2003] and dy-
namic data race detection [Savage et al. 1997; Schonberg 2004; Yu et al. 2005]. Static
data race detection attempts to detect races by reasoning about source code, and dy-
namic race detection discovers races by monitoring particular execution of a program.
Dynamic data race detection can further be classified into three categories: (1) detec-
tion using the happens-before relationship [Lamport 1978; Bond et al. 2010; Schon-
berg 2004; Mellor-Crummey 1991; Prvulovic and Torrellas 2003; Min and Choi 1991,
Nistor et al. 2009], (2) detection based on the lockset algorithm [Savage et al. 1997; Yu
et al. 2005], and (3) hybrid algorithms that combine these two techniques [Serebryany
and Iskhodzhanov 2009; O’Callahan and Choi 2003; Yu et al. 2005]. Portend™ uses a
happens-before algorithm.

Portend™’s race detector can benefit from various optimizations, such as hardware
support [Prvulovic and Torrellas 2003; Min and Choi 1991] that speeds up race detec-
tion, or sampling methods [Marino et al. 2009; Bond et al. 2010] that reduce detection
overhead.

Prior work on data race classification employs record/replay analysis [Narayanasamy
et al. 2007], heuristics [Erickson and Olynyk 2010], detection of ad hoc synchronization
patterns [Jannesari and Tichy 2010; Tian et al. 2008], or simulation of the memory
model [Flanagan and Freund 2010].

Record/replay analysis [Narayanasamy et al. 2007] records a program execution and
tries to enforce a thread schedule in which the racing threads access a memory location
in the reverse order of the original race. Then, it compares the contents of memory and
registers, and uses a difference as an indication of potential harmfulness. Portend™
does not attempt an exact comparison, rather it symbolically compares outputs and
explores multiple paths and schedules, all of which increase classification accuracy
over replay-based analysis.

DataCollider [Erickson and Olynyk 2010] uses heuristics to prune predefined classes
of likely-to-be harmless data races, thus reporting fewer harmless races overall.
Portend® does not employ heuristics to classify races but instead employs precise
analysis of the possible consequences of the data race.

Helgrind ™ [Jannesari and Tichy 2010] and Ad-Hoc-Detector [Tian et al. 2008] elim-
inate race reports due to ad hoc synchronization; Portend™ classifies such races as
“single ordering.” Detecting ad hoc synchronizations or happens-before relationships
that are generally not recognized by race detectors can help further prune harmless
race reports, as demonstrated recently by ATDetector [Zhang et al. 2011].

Adversarial memory [Flanagan and Freund 2010] finds races that occur in systems
with memory consistency models that are more relaxed than sequential consistency,
such as the Java memory model [Manson et al. 2005]. This approach uses a model of
memory that returns stale yet valid values for memory reads (using various heuris-
tics) in an attempt to crash target programs. If a data race causes the program to
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crash as a result of using the adversarial memory approach, that data race will be
classified as harmful. Portend™ follows a similar approach to adversarial memory in
that it uses a special model of the memory—SMCM—which buffers all prior writes to
memory. However, unlike prior work, SMCM allows Portend™ to systematically explore
all possible memory model behaviors. Furthermore, SMCM is a technique to augment
any program analysis tool with the capability of systematically reasoning about vari-
ous memory consistency models. Finally, Portend ' provides finer-grained classification
than the adversarial memory approach.

Prior work employed bounded model checking to formally verify concurrent algo-
rithms for simple data types under weak memory models [Burckhardt et al. 2006].
Formal verification of programs under relaxed memory models (using bounded model
checking or any other technique) is a difficult problem and is undecidable in the general
case [Atig et al. 2010]. Portend™ does not intend to formally verify a program under
weak memory consistency. Instead, Portend™ focuses on determining the combined
effects of data races and weak memory models.

RaceFuzzer [Sen 2008] generates random schedules from a pair of racing accesses to
determine whether the race is harmful. Therefore, RaAcEFuzzeR performs multischedule
analysis, but not multipath, and does so only with the goal of finding bugs, not classi-
fying races. Portend™ uses multipath analysis in addition to multischedule analysis to
improve triage accuracy.

Output comparison was used by Pike to find concurrency bugs by fuzzing thread
schedules [Fonseca et al. 2011]. Pike users can also write state summaries to expose
latent semantic bugs that may not always manifest in the program output. If available,
such state summaries could also be used in Portend™.

Frost [Veeraraghavan et al. 2011] follows a similar approach to Record/Replay An-
alyzer and Pike in that it explores complementary schedules (similar to primary and
alternate schedules in Portend™') and detects and avoids potentially harmful races com-
paring the program states after following these schedules. This detection is based on
state comparison and therefore is prone to false positives as shown in Section 6.4. If
used in conjunction with Portend™, Frost could avoid provably harmful races.

We envision that Portend™ can be used in conjunction with race avoidance tools
such as LOOM [Wu et al. 2010]. LOOM requires developers to write execution filters
that allow programs to filter out racy interleavings. Thread schedules that correspond
to racy interleavings can be classified by Portend*, and consequently, developers can
prioritize writing execution filters.

Deterministic execution systems have recently gained popularity in academia [Liu
et al. 2011; Cui et al. 2010; Bergan et al. 2010; Devietti et al. 2009; Aviram et al.
2010; Thies et al. 2002; Bocchino et al. 2009]. Deterministic execution requires making
the program merely a function of its inputs [Bergan et al. 2011].These systems allow
executing arbitrary concurrent software deterministically using hardware, runtime, or
operating system support. Alternatively, they allow developers to build deterministic
software from scratch using languages that provide determinism guarantees.

Deterministic execution systems do not inherently simplify parallel programming
[Hand 2012], and they may incur high overheads. Therefore, they are not yet adopted
in production software. DMP proposes hardware extensions that allows arbitrary soft-
ware to be executed deterministically. CoreDet [Bergan et al. 2010] extends DMP’s
deterministic execution algorithms and is a software-only system that provides a com-
piler and a runtime to deterministically execute multithreaded software.

Determinator [Aviram et al. 2010] is a novel operating system kernel that aims
to deterministically execute arbitrary programs. Determinator allocates each thread
of execution a private working space that is a copy of the global state. Threads rec-
oncile their view of the global state at well-defined points in a program’s execution.
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The use of private workspaces eliminates all read/write conflicts in Determinator, and
write/write conflicts are transformed into runtime exceptions. Determinator allows
running a number coarse-grain parallel benchmarks with comparable performance to
a nondeterministic kernel. Current operating system kernels are not built with Deter-
minator’s determinism guarantees, and it is unclear if they will be in the future.

StreamlIt [Thies et al. 2002] is a stream-based programming language that allow
threads to communicate only via explicitly defined streams and therefore provides de-
terminism for stream-based programs. DPJ [Bocchino et al. 2009] is a type and effect
system for Java that is deterministic by default and only allows explicit nondetermin-
ism. These systems allow the developer to build deterministic systems by construction;
however, they are not yet widely adopted.

To achieve deterministic execution in the general case, races must be eliminated from
programs in some way, which leads to high overhead. We believe that this overhead
has been an important obstacle for the widespread adoption of deterministic execution
systems in production software. Combined with Portend™, it may be possible to relax
determinism guarantees and eliminate races that really matter from the point of view
of a developer or user and make deterministic execution more practical.

9. CONCLUSION

This article presents the first technique for triaging data races based on their poten-
tial consequences through an analysis that is multipath, multischedule, and sensitive
to memory consistency models. Triaging is done based on a new four-category data
race classification scheme. Portend®, an embodiment of our proposed technique, de-
tected and classified 93 different data races in seven real-world applications with 99%
accuracy and full precision, with no human effort.
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