
PathScore-Relevance: A Metric for Improving Test Quality

Silviu Andrica and George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

Reliability of today’s software systems hinges on devel-
opers writing test cases that exercise as much of a program
as possible. Writing and running such tests is inevitably
subject to a time budget. This paper addresses the question
of how to maximize quality of testing, given such a fixed time
budget. We define a program-path scoring metric along
with a way to measure a software component’s relevance,
and then show how these can be combined to produce a test
quality metric that is superior to the test coverage metrics
in use today. The key features of our proposal are that (a)
it steers testing toward code that is most in need of test-
ing, such as frequently-used or recently-modified code, and
(b) it prioritizes testing shorter program paths over longer
ones. As a proof-of-concept, we augmented an automated
testing tool with our test prioritization criterion and found
that it explores up to 70 times more code paths in the same
amount of time, with no additional human effort.

1 Introduction

A program’s reliability is considered to be roughly pro-
portional to the volume and quality of testing done on that
program. Software vendors, therefore, use extensive test
suites to reduce the risk of shipping buggy software.

Unfortunately, testing is subject to constraints: it is
expensive, resource-intensive and under serious time-to-
market pressure, so there is rarely enough time to be thor-
ough. Such constraints call for difficult tradeoffs: devel-
opment managers aim to maximize software quality within
the available budgets of human and time resources. Making
these tradeoffs requires weighing the benefits of more tests
against the cost of writing them, and this is more of an art
than a science—the best managers are “artists” relying on
talent, experience, and intuition.

To reduce reliance on artists in delivering high quality
products, software engineers invented quantitative ways of
assessing the quality of a test suite. Metrics tend to lead
to better-informed tradeoffs. The most common technique
is to measure “code coverage,” i.e., how much of the code
is exercised by the tests. The higher the coverage, the bet-
ter the test suite and the higher the expected quality of the

tested product. It is therefore common for development or-
ganizations to choose a target coverage level between 75%-
90% [7] and, once this is met, to declare the software ready
to ship. The coverage target serves to prioritize testing of
those components that fall short of the goal.

Yet, despite testing taking up more than half a typical
development cycle [4], bugs still exist. Have the limits of
testing been reached? We argue that there is still plenty of
room for improving theefficiencyof testing, i.e., we can
achieve better testing in the same amount of time. In partic-
ular, widely-used code coverage metrics are poor approx-
imations of test quality, and they do not take into account
the fact that not all code requires the same depth of testing.
A poor coverage metric leads to suboptimal tradeoffs and
fails to steer the testing process toward efficiently improving
software quality within the budget of available resources.

Widely-used coverage metrics have two significant
drawbacks. First, code coverage often views a program as
a set of statements, missing the link between these state-
ments. A program execution is not a mere set of statements,
but a sequence with a strong partial order; bugs are often the
result of this partial order being wrong. Second, all code is
treated equal, missing the fact that some code is more im-
portant than other. Consider, for example, error recovery
paths: they typically represent small portions of the code,
so testing them has minimal impact on the level of cover-
age. However, recovery code is critical: it runs seldom, but
must run perfectly whenever it runs, because it is rescuing
the system from the abyss of failure. Yet testers avoid writ-
ing recovery tests: they are more difficult than functionality
tests, and, if one must improve code coverage by 5%, writ-
ing recovery tests is the least productive way to do so.

We introduce PathScore-RelevancePR, a metric that
addresses these shortcomings. It combines two measures:
(a) relevanceR of a code component to the overall func-
tioning of the system, as determined both explicitly by de-
velopers and implicitly by end users, and (b) apath score
P that weighs execution paths inversely to their length, en-
couraging testers to exercise shorter paths first. Since many
of the longer paths consist of partially overlapping shorter
paths,P discourages test redundancy, improving efficiency
in a way similar to dynamic programming. WhileR helps
prioritize components,P nudges the testing process toward
lower-priority components whenever testing the higher pri-
ority ones has reached a plateau of diminishing returns.

Appears in Proceedings of the 5th Workshop on Hot Topics in System Dependability (HotDep), Lisbon, Portugal, June 2009

2 Background

Before describingPR, we illustrate four commonly
used ways of measuring code coverage. We refer to the
example code below and discuss the coverage reported on a
test case that invokesexample(0):

int example(int a)
{

1: int res=0;
2: if (a==0) {
3: res=1;
4: libraryCallA();
5: libraryCallB();

} else {
6: crash();

}
7: if (a==1) {
8: crash();

} else {
9: --res;

10: libraryCallB();
11: libraryCallA();

}
12: return res;

}

The most popular metric isline coverage, which mea-
sures the fraction of program lines (or statements) executed
during a test run. Callingexample(0) would exercise all
lines except 6 and 8 (10 out of 12 lines), yielding a coverage
of 83%. An organization that uses 80% coverage as a crite-
rion for shipping would consider this code to be sufficiently
well tested, despite the two undiscovered crash scenarios.A
fundamental problem with line coverage is that a sequence
of linear code contributes to the overall coverage propor-
tionally to its length, so a few very long linear sequences
can drown out a complex maze of short branches.

A different metric isbasic block coverage, which reports
the fraction of basic blocks (not statements) exercised dur-
ing the test. In our case, 5 out of the 7 basic blocks would
be exercised: line sets{1,2}, {3,4,5}, {7}, {9,10,11}, and
{12}. Basic block coverage is thus 71%. This metric is in
some sense better than line coverage, because statements in
a linear piece of code are collapsed into a single entity (the
enclosing basic block). However, the behavior of a program
is determined not only by its statements or basic blocks,
but also by the sequence in which these are executed; basic
block coverage fails to capture this behavioral component.

Branch coverage, also known as decision coverage, is
often considered a more informative metric. It reports the
fraction of branches that were taken during the test, i.e., to
what extent the branch conditions evaluated to both their
true and false values. In our example, there are 4 condition
branches and theexample(0) test takes 2 of them (2→3
and 7→9), resulting in 50% branch coverage. Similar to the
earlier metrics, this one views the branch points as being
independent, with the sequence in which branches are taken
not affecting the coverage metric at all.

A better test quality metric ispath coverage, which re-
ports what fraction of all execution paths was explored dur-
ing a test. In our example, there are 4 potential execution
paths (of which 3 are feasible); the test exercises only one
of them (sequence<1,2→3,4,5,7→9,10,11,12>), resulting
in 25% path coverage. Path coverage, however, is virtually
never used in practice: the number of paths through a pro-
gram’s control flow graph increases exponentially with the
number of branches, and input-dependent loops make the
number of such paths infinite.

As can be seen, the difference between test quality re-
ported by the most popular metric (83%) and the “true”
value of that quality (≤25%) can be significant.

3 Guiding the Test Process with PR

A good metric for assessing the quality of a test suite
complements efforts aimed at improving software reliabil-
ity, such as better testing tools and programming practices.
The test metric acts as a guide for developers, pointing them
toward the parts of the code that are in most need of addi-
tional tests. This need can be due to the corresponding code
being highly critical and/or due to existing tests not exercis-
ing enough of the possible paths through that code. Time-
to-market pressures require fast, smart choices in allocating
quality assurance resources, so a metric that is closer to “the
truth” than basic coverage is imperative.

We propose measuring test quality with a combination
of two sub-metrics:component relevanceR, which cap-
tures the importance of a component from both the devel-
opers’ and from the end users’ perspective, andpath score
P , which prioritizes the testing of shorter execution paths
over longer ones. As will be discussed later,R indicates
which components deserve most attention, whileP helps
the testing process move on, when a point of diminishing
returns is reached. In the context of this paper, we generi-
cally refer to an arbitrary unit of code as “component”; this
could be a module, class, method, block of code, etc.

3.1 Component Relevance R

Not all code is created equal. An off-by-one bug in the
query engine of a DBMS can have a substantially worse
effect on quality than, say, a bug in the DBMS’s output for-
matting code. This argues for being able to differentiate the
relative importance of testing depending on the target code.

As suggested in our earlier example concerning recovery
paths, even a well-intentioned developer will, when under
time pressure, aim to “check off” as many program issues
as possible, regardless of how important they are; this is
confirmed both by intuition and systematic studies [8]. By
directly weighing the test quality result by the importance
of the tested component, we can motivate solving problems
in critical code instead of merely reaping low-hanging fruit
in less critical code.

2

The goal ofR is to rank components according to their
importance, to an arbitrarily fine granularity. Since software
testing is a perpetual compromise, greedily focusing on the
most important components can improve the chances of be-
ing left with good software when testing resources run out.

There exist two primary stake-holders involved in deter-
mining the relevance of a component: developers and end
users. In the absence of a widely accepted method for clas-
sifying components, we aim for a low-overhead way of tak-
ing the opinion of both of these classes of stake-holders into
account, while minimizing subjectivity as much as possible.

Developer Perspective: The first way to determine rele-
vance of a component is throughannotations: next to the
name of each function, class, or subsystem, developers can
include an annotation that informs the testing tool suite
about the criticality of that code. Simple scales, such as
high / medium / low, seem to work best in practice, and are
routinely used in the case of log messages, to indicate their
criticality. Annotation-based relevance information canbe
augmented with simplestatic analysisto identify, for ex-
ample, exception handlers; depending on programming lan-
guage, more general error recovery code can also be identi-
fied statically.

A second source for determining relevance iscode and
bug history. First, recently added or modified code ought to
be emphasized in tests, because it is more likely to contain
new bugs; studies have shown a direct correlation between
the age of code and the number of bugs it contains [11].
Second, after the system has been delivered to the customer,
bug reports filed by end users can be used as indicators of
fragile components that require more attention. A recent
survey found that there exists a strong correlation between
bugs found by users and bugs detected using a static anal-
ysis tool [8], which suggests that the number of problems
found through static analysis can also be used as a low-cost
indicator for relevance, if collecting such statistics from bug
databases is not possible. The bottom line is to test (i.e.,
look for bugs) where bugs are most likely to be found.

Each of the methods above can provide a relevance mea-
sure for each component or block of code. If more than one
measure is used, such as age of code together with whether
it is or not recovery code, we must unify the measures into a
single metric. The easiest approach is to normalize the indi-
vidual metrics and ensure their semantics are uniform (i.e.,
value 1 should mean the same thing for all metrics).

In this paper, we do not prescribe a specific way to com-
bine the metrics, as each development team can decide on
its own relevance metrics and aggregation method. Never-
theless, we do provide an illustrative example. Say for each
line of code we represent code age as a flagnewCodeindi-
cating 0 for “old” (code has not been modified since the last
release) or 1 for “new” (code is fresh or has been modified
since last release); this can easily be computed based on a
diff in the source code base. Similarly, a recovery flag

recoveryindicates 1 for “yes” (code is meant to do recov-
ery) or 0 for “no” (otherwise); this can be inferred based on
annotations or static analysis.

For each componentc in programP , we can compute a
sum of the flagsFlagSum(c) =

∑
l∈code lines

(newCode l +
recovery l) and express relevance as:

R(c) =
FlagSum(c)

maxci∈P FlagSum(ci)

R captures the fact that a component with lots of new
code or lots of recovery code should be tested more than
components with less code of this kind. Code that is both
new and performs recovery must be tested even more.

End User Perspective: The second way to determine rel-
evance is based on which parts of the software are most used
by end users. Regardless of how the system is constructed,
whatever code the user most depends on should be viewed
as the most important and thus relevant to testing.

We rely on usage profiles to determine which compo-
nents are most frequently used in the field. One might ar-
gue that a widely-used component is implicitly tested exten-
sively by the users themselves, but that is true only of the
particular exercised paths, not true of the component as a
whole. For example, users may make frequent use of a net-
work discovery component, but not exercise the recovery
paths within that component. Usage profiles would indicate
that component as being highly relevant, making it a high
priority test target, including its recovery paths.

Usage profiles can be obtained during validation test-
ing (e.g., from alpha and beta release users) or even from
systems running in production. These profiles indicate, for
each componentc, how many times it has been exercised.
Standard low-overhead profiling, like OProfile [9], is suffi-
cient in most cases. For widely-used software, a statistical
cooperative runtime profiler could leverage the many copies
of the software running around the world to make profiling
overhead negligible through sampling, like in Holmes [6].
Sketching [2] is also a good candidate technique. Profiling
can be turned off once the usage profile converges.

If we think of a target programP as a collection of com-
ponents, then we can use the information from the profile to
define the relevance of each componentc :

R(c) =
NumTimesExecuted(c)

maxci∈P NumTimesExecuted(ci)

R captures the frequency with whichc was executed by
end users, relative to that component which was executed
the most.

Regardless of whether we employ the developers’ or
the end users’ perspective, relevance always varies from 0
(completely irrelevant) to 1.0 (most relevant=100%). It is

3

therefore trivial to combine the two perspectives either ina
multiplicative or a weighted additive fashion, depending on
what the development organization feels is most accurate
for their needs.

Having expressed relevance quantitatively, we now turn
our attention to associating a path score with tests.

3.2 Assigning Path Scores to Tests

In contrast to path coverage, which treats all paths
equally,P aims to reward tests that exercise shorter paths
over those that exercise longer ones. The rationale is that
longer paths are often composed of shorter paths that over-
lap, so testing done on the shorter paths can be leveraged in
testing the longer paths. As mentioned before, this reason-
ing is similar to dynamic programming.

We define the length of a path to be the number of basic
blocks contained in that path. It is possible to use the num-
ber of statements as well, but the overhead of computing
the metric in practice would be higher, in exchange for no
increase in precision.

We denote byNumPathsExercisedL(c) the number of
paths inc of lengthL that were exercised by the test suite
(derived dynamically), and byTotalNumPathsL(c) the
number of possible execution paths of fixed lengthL in
the tested code (derived statically). We define a test suite’s
path score for a given componentc as the length-weighted
amount of path exploration done inc by that test suite:

P(c) =

max∑

L=1

1

2L
×

NumPathsExercisedL(c)

TotalNumPathsL(c)

wheremax is the upper bound on the path length of interest.
This formula computes the fraction of fixed-sized paths in
c covered by the test suite. The value ofP(c) ranges from
0 to 1.0 (0% to 100%), with 1.0 indicating the best. The
1/2L ratio serves to weigh longer paths exponentially less,
according to their length;2L is the number of leaves one
would expect in a typical execution tree of depthL.

In theory, the sum starts with paths of length 1 (as if mea-
suring line coverage) and ends with paths of lengthmax (as
in bounded-length path coverage). However, the1/2L ra-
tio limits the impact that long paths have on the score, so
we expect that in practiceL will be limited to a small num-
ber. E.g.,1/27 < 1%, so it is unlikely for paths of length
L > 7 to improveP in any significant way. In that sense,
path scoreP represents a practical compromise between
line coverage and path coverage.

3.3 Aggregate PathScore-Relevance PR

The PathScore-Relevance metricPR combines rele-
vanceR and path scoreP such that, the higher the rele-
vance of a componentc, the higher the path score must be,

in order to achieve the same value ofPR as less relevant
components:

PR(c) =
P(c)

R(c)

Aiming to maximize overallPR =
∑

ci∈P
PR(ci) in a

greedy fashion will guide the testing efforts to first improve
P for components with highR, as this is the quickest way
to increase overall PathScore-RelevancePR.

Advantages: The PathScore-Relevance metric ensures
that both the way customers use the system and the way de-
velopers understand the system helps decide what level of
test quality is sufficient. Our approach does not require end
users to write test suites or specifications, rather they im-
plicitly define what is important by using the system.PR
prioritizes testing critical code (e.g., error recovery) or po-
tentially unstable code (e.g., a recent patch). As will be seen
in §4, this prioritization can be done even for automated test
generators.

At the same time,PR combines the tractability of com-
puting line or basic block coverage with the accuracy of
path coverage.PR treats components as sets of sequences
of statements and is thus deeper semantically than basic
block coverage, which only considers paths of length 1, but
shallower than full path coverage.

Drawbacks: Like anything resulting from an engineer-
ing tradeoff,PR also has shortcomings. First,P empha-
sizes short paths, but some bugs may lie on long paths
within a component. Whether it is better to spend resources
searching for that bug or finding other more shallow ones
in other components depends entirely on how relevant that
component is. If it is critical,R will keep the testing
within that component, encouraging deeper testing, other-
wiseP will nudge testing toward less critical components,
where the return on time invested may be higher. If, how-
ever, the overall value ofPR plateaus before QA resources
run out—indicating that a point of diminishing returns was
reached while resources were still available—one can re-
place the aggressive exponential decay1/2L with a more
slowly (but still monotonically) decreasing functionf , as
long as

∑
∞

1
f(l) = 1. This way, the relative influence of

path length decreases in favor ofR.
Second,P treats a branch condition as a single true-or-

false predicate. However, most predicates have multiple
boolean sub-expressions, each of which may influence the
subsequent path structure. The metric could be enhanced to
support modified condition/decision coverage [7], which re-
quires a test suite to set every sub-expression that can affect
the result of the decision to both true and false.

Third, even aP value of 100%, meaning that all paths
have been exercised, does not mean the component has been

4

sufficiently tested. Consider, for instance, the following
definition of the mathematical absolute function:

#define abs(x) (x<0) ? (-x) : (x)

There are two paths, one forx < 0 and another forx ≥
0, so test casesabs(-5) andabs(5) will achieve com-
plete coverage. However,abs(INT32 MIN) will wrongly
return a negative number on most platforms. Factoring se-
mantics of the input values into a coverage metric would be
an interesting extension, to be pursued in conjunction with
results from symbolic executions. An easier-to-automate
approach is to makePR aware of equivalence classes, i.e.
sets of values that cause the same branch to be taken, and
their boundary values.

Finally, unlike a simple line coverage metric, the connec-
tion between writing a test and the expected improvement in
PR is not immediately obvious to a developer. E.g., writing
a test that will additionally cover a path with 10 statements
will clearly increase the number of covered statements by
10, but it’s effect onPR is less clear. We expect, however,
that developers’ intuition can develop quickly, sincePR is
a relatively simple metric.

4 Preliminary Experimental Exploration

To evaluate whetherPR can improve the efficiency of
test development, it should be applied to a test development
process. Given that it would be difficult to discount the hu-
man factor, we opted instead to use PathScore-Relevance in
the context of an automated test generation tool. We chose
KLEE [5], which takes a program and, without modifying
it, can generate tests that exercise the program along differ-
ent paths. KLEE’s explicit goal is to maximize test cover-
age and, to our knowledge, represents the current state-of-
the-art. KLEE relies on a symbolic execution engine and
a model of the filesystem to discover ways in which the
target program can be exercised. During symbolic execu-
tion, KLEE relies on asearcherto decide which statement it
should explore next. The default searcher in KLEE employs
random search along with some heuristics. When reaching
an exit point, be it a normal exit or due to a bug, KLEE
generates a test case that drives the application through that
same execution path.

We implemented a new searcher for KLEE that, when
a new choice is to be made, selects a statement inside the
most relevant function, in accordance withR. However,
when the path scoreP for the respective function achieves a
target goal, another statement from a function with a lower
R is chosen, to increase that function’sPR. The process
repeats either until overallPR reaches a set target or time
runs out, thus emulating real-world testing.

We ran KLEE for 5 minutes on five COREUTILS [5]
programs (cat, sort, mkdir, tailand tr) in three scenarios:
one with KLEE’s random searcher, that randomly picks the

next statement to be symbolically executed, and two with
thePR-based searcher.

The twoPR scenarios differ in how relevance is deter-
mined. In the first one, we collect usage profiles by com-
piling the applications with profiling support and exercising
a sample workload for these tools. In the second one, we
annotate some of the error recovery paths in the five pro-
grams, setting therecoveryflag for the respective lines to 1.
To ensure that error recovery paths are executed, we config-
ured KLEE to generate a maximum of 50 system call errors
along each execution path.

In Figure 1, we report the average number of paths ex-
plored by KLEE with the two searchers in the three scenar-
ios. For each program, we normalized the numbers relative
to the default KLEE searcher; the absolute values are shown
above the bars.

 1

 5

 25

 125

cat sort mkdir tail tr

 F

a
c
to

r
o

f
im

p
ro

v
e

m
e

n
t

o
v
e

r
d

e
fa

u
lt
 K

L
E

E
 (

lo
g

a
ri
th

m
ic

)

Application

Default KLEE searcher

87 19 216 580 33

 Path-Relevance searcher (Usage profiles)

672

1280

2345

808 57

 Path-Relevance searcher (Error recovery)

672

1325

2372

808
59

Figure 1. Number of explored paths resulting from 5-
minute KLEE runs in 3 scenarios for 5 programs.

ThePR searcher makes KLEE explore 1.7x to 70x more
paths than the default KLEE searcher, in the same amount
of time. A key reason for the speed-up is that the test gener-
ation process is steered toward exploring shorter paths be-
fore exploring the longer ones, so KLEE can find exit con-
ditions more quickly.

Another reason is that theR component of the metric
guides KLEE to explore more relevant code. In the case
of usage profiles, KLEE was guided to exercise paths (and
variants thereof) that the benchmark exercised, thus keeping
KLEE from getting “trapped” in potentially infeasible parts
of the execution tree—this effect is particularly visible in
the case ofsort and tr, where the default KLEE searcher
explored only few paths. In the case of error recovery an-
notations, KLEE was steered toward paths that reached exit
points quickly (e.g., program exit due to error), so inter-
esting conditions that result in test cases were found more
quickly.

While these results are by no means predictive of effi-
ciency improvements in an actual development organiza-
tion, it is a data set that suggestsPR’s potential. A test
suite with more tests explores more paths, so it increases
the probability that it will find bugs in important parts of
the code, thus improving test quality at no increase in cost.

5

5 Related Work

Software engineers and researchers have made several
proposals for better ways to measure test quality and/or
to guide testing. We survey here some of the work more
closely related to our proposal.

Specified path coverage [1] is the only coverage metric
similar toR. It quantifies the percentage of explored paths
relative to a set of paths specified a priori. These paths can
be given explicitly or can be derived based on a use case
specified by end users. OurR metric differs from specified
path coverage in two ways: it does not draw a hard line
between program paths that should and should not be tested,
and it provides guidance on the order in which paths are
to be tested, based on their importance. Thus,R is more
flexible and realistic.

In practice, full path coverage is not used to assess the
quality of tests, because of the potentially infinite numberof
paths contained in a decently sized program’s control flow
graph. To mitigate this problem, researchers have proposed
various path coverage variants, which offer ways to reduce
the number of paths that need to be tested and, thus, make
it feasible to compute that variant of path coverage.

Basis path coverage [10] identifies a “basis” for a given
method’s paths, i.e., the smallest set of paths that can be
combined to create every other possible path through a
method. It then measures how many of the paths in this ba-
sis were covered by the tests. The basis set is constructed by
picking an arbitrary path as a baseline and then flipping de-
cision branches one at a time, to construct the other paths in
the basis. The goal of testing the basis set is to test every de-
cision outcome independently of one another. In contrast to
basis path coverage,P takes a dynamic programming-like
approach that takes into account all the paths, but aims to
cover the shorter ones first, thus encouraging tests to cover
many paths quickly.

Decision-to-decision path coverage [3] measures how
many of the paths between two decision statements have
been tested. This metric is subsumed byP , because a
decision-to-decision path merely corresponds to a path of
length 3 basic blocks.

There are numerous other proposals for measuring test
quality, surveyed in substantial reference books [1, 3]. We
believe that, for a test quality metric to be successfully
adopted, it must be simple enough and have proper tool
support. We have implemented the necessaryPR support
and expect to evaluate its use in real development and test
projects.

6 Conclusions

In the absence of accurate and practical ways to measure
test quality, we run the risk of testing blindly and, as code
size and complexity increase, this type of testing can miss a

large number of bugs. In this paper, we identified opportu-
nities for being smarter about testing, i.e., doing better test-
ing with no increase in effort. We introduced a new metric
to guide testing; this metric prioritizes testing of more rel-
evant code and emphasizes testing shorter paths first. Our
proposal is an advance over conventional coverage metrics,
which consider all components equally important and do
not take into account that longer paths may just be overlap-
ping combinations of independently-testable shorter paths.

Our proposed metric can be used as a test selection cri-
terion. There is plenty of room for improvement, and we
think that discussion of how to better measure test quality is
imperative. Decisions on when a software system is ready
for wide use are routinely made based on antiquated met-
rics. We expect that better selection criteria will lead to im-
provements in testing efficiency, will result in more relevant
tests, and ultimately lead to software that better answers the
end user’s reliability requirements.

Acknowledgments

We thank the anonymous reviewers and Tim Brecht for
their help in substantially improving our paper.

References

[1] P. Ammann and J. Offutt.Introduction to software testing.
Cambridge University Press, 2008.

[2] S. Bhatia, A. Kumar, M. Fiuczynski, and L. Peterson.
Lightweight, high-resolution monitoring for troubleshooting
production systems. In8th Symp. on Operating Systems De-
sign and Implementation, 2008.

[3] R. V. Binder. Testing Object-oriented Systems Models, Pat-
terns, and Tools. Addison-Wesley, 2005.

[4] F. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison–Wesley, 1975 (revised 1995).

[5] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In8th Symp. on Operating Systems De-
sign and Implementation, 2008.

[6] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. HOLMES: Effective statistical debugging via
efficient path profiling. InIntl. Conf. on Software Engineer-
ing, 2009.

[7] S. Cornett. Code coverage analysis.
http://www.bullseye.com/coverage.html, Dec 2008.

[8] P. J. Guo and D. Engler. Linux kernel developer responses
to static analysis bug reports. InUSENIX Annual Technical
Conference, 2009.

[9] Oprofile. http://oprofile.sourceforge.net.
[10] A. H. Watson and T. J. McCabe.Structured Testing: A Test-

ing Methodology Using the Cyclomatic Complexity Metric.
Computer Systems Laboratory, National Institute of Stan-
dards and Technology, 1996.

[11] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Using developer
information as a factor for fault prediction. InIntl. Conf. on
Software Engineering, 2007.

6

