
Appears in Proc. International Conference on Dependable Systems and Networks (DSN-2002), June 2002

Reducing Recovery Time in a Small
Recursively Restartable System

George Candea, James Cutler, Armando Fox, Rushabh Doshi, Priyank Garg, Rakesh Gowda
Stanford University�

candea,jwc,fox,radoshi,priyank,rgowda � @cs.stanford.edu

Abstract

We present ideas on how to structure software sys-
tems for high availability by considering MTTR/MTTF char-
acteristics of components in addition to the traditional
criteria, such as functionality or state sharing. Recur-
sive restartability (RR), a recently proposed technique for
achieving high availability, exploits partial restarts at var-
ious levels within complex software infrastructures to re-
cover from transient failures and rejuvenate software com-
ponents. Here we refine the original proposal and apply the
RR philosophy to Mercury, a COTS-based satellite ground
station that has been in operation for over 2 years. We de-
velop three techniques for transforming component group
boundaries such that time-to-recover is reduced, hence in-
creasing system availability. We also further RR by defining
the notions of an oracle, restart group and restart policy,
while showing how to reason about system properties in
terms of restart groups. From our experience with apply-
ing RR to Mercury, we draw design guidelines and lessons
for the systematic application of recursive restartability to
other software systems amenable to RR.

1. Introduction

The Software Infrastructures Group (SWIG) and Space
Systems Development Lab (SSDL) at Stanford are collabo-
rating on the design and deployment of space communica-
tions infrastructure to make collection of satellite-gathered
science data less expensive and more reliable. One nec-
essary element of satellite operations is a ground station,
a fixed installation that includes tracking antennas, radio
communication equipment, orbit prediction calculators, and
other control software. When a satellite appears in the patch
of sky whose angle is subtended by the antenna, the ground
station collects telemetry and data from the satellite. In
keeping with the strong movement in the aerospace research
community to design ground stations around COTS (com-
mercial off-the-shelf) technology [11], part of the collabo-

ration between SSDL and SWIG includes the design and
deployment of Mercury, a prototype ground station that in-
tegrates COTS components.

A current goal in the design and deployment of Mercury
is to improve ground station availability, as it was not origi-
nally designed with high availability in mind. Our first step
in improving the availability of Mercury was to apply recur-
sive restartability [4], an approach to system recovery that
advocates “curing” transient failures by restarting suitably
chosen subsystems, such that overall mean-time-to-recover
(MTTR) is minimized. Recursive restartability is a concrete
example of the recovery-oriented computing (ROC) philos-
ophy [12], as applied to COTS-based systems. To our
knowledge, this paper describes the first deployed system
to be systematically retrofitted to exploit recursive restarta-
bility (RR).

We had two main goals in applying RR to Mercury. The
first was to partially remove the human from the loop in
ground station control by automating recovery from com-
mon transient failures we had observed and knew to be cur-
able through full or partial restarts. In particular, although
all such failures are curable through a brute force restart of
the entire system, we sought a strategy with lower MTTR
than full system reboots. The second goal was to identify
design guidelines and lessons for the systematic future ap-
plication of RR to other systems. For example, we found
that, if one adopts a transient-recovery strategy based on
partial restarts, redrawing the boundaries of software com-
ponents based on their mean-times-to-failure (MTTFs) and
mean-times-to-recover (MTTRs) can minimize overall sys-
tem MTTR by enabling the tuning of which components are
restarted together. In contrast, most current system and soft-
ware engineering approaches establish software component
boundaries based solely on considerations such as amount
and overhead of communication between components or
amount and granularity of state sharing.

The paper is organized as follows: we provide neces-
sary background on the architecture of our ground station
and its failure detection mechanisms in section 2, followed
by an overview of recursive restartability concepts in sec-

1

tion 3. In section 4 we describe a set of transformations by
which we improve the mean-time-to-recover of the ground
station, hence improving its availability. In section 5 we ex-
tract lessons from our experience. We address related work
in section 6, propose future avenues of research in section 7,
and conclude in section 8.

2. Mercury Overview

In this section we describe Mercury, our ground station
prototype. Although the focus of this paper is the effective-
ness of recursive restartability as a recovery strategy, recov-
ery is only possible once failures are detected. As the orig-
inal Mercury design had little in the way of failure detec-
tion, we describe the simple failure detection mechanisms
we added to enable recursive restartability.

2.1. Ground Station Architecture

The Mercury ground station communicates with low
earth orbit satellites at data speeds up to 38.4 kbps. For the
past two years, the Mercury system has been used in 10-20
satellite passes per week as a primary communication sta-
tion for Stanford’s satellites Opal [6] and Sapphire [14].

The station, composed primarily of COTS hardware and
software written mostly in Java, is controlled both remotely
and locally via a high-level, XML-based command lan-
guage. Software components are independently operating
processes with autonomous loci of control and interoperate
through passing of messages composed in our XML com-
mand language. Messages are exchanged over a TCP/IP-
based software messaging bus.

The general software architecture is shown in Figure 1.�������
	���

is a bidirectional proxy between XML command

messages and low-level radio commands; � � � (satellite es-
timator) calculates satellite position, radio frequencies, and
antenna pointing angles; ��� � (satellite tracker) points anten-
nas to track a satellite during a pass;

� ��� (radio tuner) tunes
the radios during a satellite pass;

�� ��� passes XML-based
high-level command messages between software compo-
nents. ����� and ��� will be described in the next section.

 REC FD

 mbus

 fedrcom ses str

restarts

failure detection

communication (TCP/IP)
 rtu

Figure 1. Mercury software architecture

The ground station components are easily restartable,
since most are stateless; they use only the state explicitly

encapsulated by received messages from

�� ��� . Hard state

exists, but is read-only during a satellite pass and is modi-
fied off-line by ground station users. In addition, the set of
Mercury failures that can be successfully cured by restart
is large, and in fact this is how human operators recovered
from most Mercury failures before we implemented auto-
mated recovery.

2.2. Adding Failure Detection to Mercury

Adding failure detection to this architecture was moti-
vated by the need to automate detection of several common
failure modes; we understood these modes from extensive
past experience with Mercury. All the failures we focused
on were fail-silent: when components failed, they simply
stopped responding to messages (e.g., when the JVM con-
taining a component crashed). Moreover, all failures were
curable through restart of either a single software compo-
nent or a group of such components.

Given the fail-silent property, we chose application-level
liveness pings (i.e., “are you alive?” messages) sent to a
component via the software message bus,

�� ��� . The pings
are encoded in and replied to in a high-level XML command
language, so a successful response indicates the compo-
nent’s liveness with higher confidence than a network-level
ICMP ping. Application-level liveness pings are simple and
low-cost, and effectively detect all fail-silent failures that
humans were detecting before in the ground station, thus
satisfying the immediate goal of automated failure detec-
tion.

Figure 1 illustrates Mercury’s simple failure detection
architecture, based on the addition of two new indepen-
dent processes: the failure detector (���) and the recovery
module (�����). ��� continuously performs liveness pings
on Mercury components, with a period of 1 second, deter-
mined from operational experience to minimize detection
time without overloading

�� ��� . When � � detects a failure,
it tells ����� which component(s) appear to have failed, and
continues its failure detection. For improved isolation, � �
and ����� communicate over a separate dedicated TCP con-
nection, not over

�� ��� ;
�� ��� itself is monitored as well.����� uses a restart tree data structure and a simple policy to
choose which module(s) to restart upon being notified of a
failure. The policy also keeps track of past restarts to pre-
vent infinite restarts of “hard” failures. Once ����� restarts
the chosen modules, future application-level pings issued
from � � should indicate the failed components are alive
and functioning again. However, if the restart does not cure
the failure, ��� will redetect it and notify ����� , which may
choose to restart a different module this time, and so on.

Given the above strategy, two situations can arise, which
we handle with special case code. First, � � may fail, so we
wrote ����� to issue liveness pings to � � and detect its fail-

2

ure, after which it can initiate ��� recovery. Second, �!���
may go down, in which case ��� detects the failure and ini-
tiates ����� ’s recovery, although the generalized procedural
knowledge for how to choose the modules to restart and ini-
tiate recovery is only in ����� .

Splitting � � and ����� requires the above two cases to be
handled separately, but it results in a separation of concerns
between the modules and eliminates a potential single point
of failure. Our enhanced ground station can tolerate any sin-
gle and most multiple software failures, with the exception
of � � and ����� failing together.

It is important to note that, in our system, restarts are a
recovery mechanism based on detecting failures, not faults.
Response to a failure is independent of the fault that caused
the failure. Restarting can be used in addition to other re-
covery strategies, not necessarily in place of them, so we
do not believe that anything we have done precludes the use
of more sophisticated failure detection or high availability
mechanisms (such as redundancy) in the future.

3. Recursive Restartability

It is very common for bugs to make software systems
crash, deadlock, spin, livelock, or develop such severe soft
state corruption—memory leaks, dangling pointers, dam-
aged heaps—that the only high-confidence way of con-
tinuing is to restart the application(s) or reboot the sys-
tem [3, 7, 13, 1]. Recursive restartability is predicated
on our belief that this state of affairs will remain a fact
of life, both due to the increasing complexity of software
and the increasing cost of chasing and resolving elusive
bugs. While definitely not an encouragement to develop
poor quality software, recursive restartability (RR) provides
a way to deal with some of the drawbacks of using inexpen-
sive COTS software, particularly after deployment.

Restarts provide an effective and immediate workaround
for transient failures, as they (a) unequivocally return soft-
ware to its start state, which is usually the best understood
and tested state of the system, (b) provide a high confidence
way to reclaim resources that are stale or leaked, and (c) are
easy to understand and employ. Unfortunately, most sys-
tems do not tolerate restarts well: restarting is often very
expensive in terms of time-to-recover, may cause loss of
hard state, and bounded restarting of only those subsystems
that are faulty is usually not supported.

A recursively restartable system gracefully tolerates
successive restarts at multiple levels. Due to its fine
restart granularity, an RR system enables bounded, par-
tial restarts that recover a failed system faster than a full
reboot. Availability is generally thought of as the ra-
tio MTTF/(MTTF +MTTR); recursive restartability improves
this ratio by reducing MTTR with reactive restarts of failed
subsystems, and by increasing MTTF with a bounded form

of software rejuvenation [9]. The focus in this paper is
on reducing MTTR, both because that is the emphasis of
recovery-oriented computing and because it is easier in in-
dustrial and research practice to measure MTTR than MTTF.

3.1. Restart Trees

A recursively restartable system can be described by
a restart tree—a hierarchy of restartable components, in
which nodes are highly fault-isolated and a restart at a node
will restart the entire corresponding subtree. A restart tree
does not directly capture functional or state dependencies
among components, but rather the “restart dependencies,”
expressing how each component is affected by the restart
of other components around it. It must be recognized, how-
ever, that the very definition of components is tightly related
to functional and state dependencies among the parts of the
system, so the restart tree does embody such considerations,
albeit indirectly. In Figure 2 we show a simple restart tree
with 5 nodes, called restart cells. A restart cell is the unit of
recovery in a recursively restartable system. Each cell "�# ,"%$, "'& , "%$!& , "'#($!& conceptually has a “button” that can
be “pushed” to cause the restart of the entire subtree rooted
at that node.

B

A

R

R

R

A

B

ABC

RC

R BC

C

Figure 2. A restart tree

We attach to the leaves of the restart tree annotations
as to which actual software components (round nodes) are
restarted. In this example, nodes) , * , and + are software
components; when we push the button on " $!& , both * and+ are restarted; when we push the button on " $, only * is
restarted.

3.2. Restart Groups, MTTF, and MTTR

Subtrees in the restart tree are called restart groups, in
close analogy with process groups in UNIX. The fact that a
number of nodes are together in a restart group captures the
fact that there is commonality among them with respect to
restarting. The tree in Figure 2 contains 5 restart groups:

3

three trivial ones ("'# , "'$, "%&) and two non-trivial ones
("'$, "'& , "'$,& form a group rooted at "-$,& , and "'# ," $!& , " $, " & , " #($!& form another restart group rooted
at " #($!&). When we say that we restart a group, that means
that all components attached to leaves of the respective sub-
trees will be restarted; in the case of the group rooted at" $!& , these components would be * and + . The system
as a whole is always a restart group. As will be shown in
section 4, we can recursively reason about the availability
properties of the system in terms of restart groups.

For consistency with industrial practice, we will refer
to the MTTF and MTTR of individual components, restart
groups, and the system as a whole. The time-to-recover
a component includes the time it takes to detect that it
failed—downtime starts when the failure occurs, not when
it is detected.

We must note that MTTF and MTTR constitute an impov-
erished representation of the failure behavior of a system or
subsystem. Without knowing more about the distribution
of failure or recovery times, one cannot predict the prob-
ability that a subsystem will fail during a particular time
interval, which may be important since not all downtime is
equally expensive. The techniques we will describe in this
paper for constructing and evolving restartability trees are
based on the assumption that MTTF and MTTR represent the
means of distributions with small coefficients of variation.
We have confirmed through experiment that this is the case
with our system, and for compactness we will henceforth
use the notations MTTF . and MTTR . to refer to the MTTF
and MTTR, respectively, of subsystem / . In particular, we
assert that the MTTF for a restart group 0 containing com-
ponents 1325461�7�4�8�8�8�4913: is MTTF ;=<?>A@CB,D MTTF EGF�H , and that
the corresponding MTTR is MTTR ;JIK>MLONPD MTTR EGFQH .
3.3. The Recoverer and the Oracle

The restart tree plays a central role in keeping a recur-
sively restartable system alive, in conjunction with a recov-
erer, which performs the actual restarts. A recoverer does
not make any decisions as to which component needs to
be restarted—that is captured in the oracle, which repre-
sents the restart policy. Based on information about which
component has failed, the oracle tells the recoverer which
node in the tree to restart. If a restart at that point fixes
the problem, then the system continues operation normally.
However, if the failure still manifests (or another failure ap-
pears) even after the restart completes, the oracle moves up
the tree and requests the restart of the node’s parent. This
process can be repeated up to the very top, when the entire
system is restarted. In our ground station, we have collo-
cated the recoverer and the oracle in the �!��� component,
shown in Figure 1.

We say a failure is R -curable if it is cured by a restart at

node R or any of its ancestors in the restart tree. A minimallyR -curable failure is a failure that is R -curable and R is the
lowest node in the tree for which a restart will cure the fail-
ure. Admitting that mean-time-to-repair is non-decreasing
as we move up the tree, a minimal cure implies the failure
is resolved with minimal downtime. For a given failure, it is
possible for R to not be unique (e.g., if restarting the parent
of R is no more expensive than restarting R itself). A per-
fect oracle is expected to embody the minimal restart policy,
i.e., for every minimally R -curable failure, it recommends a
restart of node R . In section 4.4 we illustrate what happens
when the oracle is imperfect.

4. Evolving the Restart Tree

Having introduced the concept of a restart tree, we show
on the left side of Figure 3 a simple restart tree for Mercury
(tree S), consisting of a single restart group. The only pos-
sible policy with this tree is to reboot all of Mercury when
something goes wrong. The system MTTF is at least as bad
as the lowest MTTF of any component, and its MTTR at least
as bad as the highest MTTR of any component. Table 1
shows rough estimates of component failure rates, made by
the administrators who have operated the ground station for
the past two years. The components that interact with hard-
ware are particularly prone to failure, because they do not
fully handle the wide variety of corner cases.

Component TVUOW3X Y[Z]_^C`6a5T XbZ6X Xdc6^ ^ec6W
MTTF 1 month 10 min 5 hr 5 hr 5 hr

Table 1. Observed per-component MTTFs

In Mercury, each software component is failure-isolated
in its own Java virtual machine (JVM) process, a failure
in any component does not necessarily result in failures in
others, and a restart of one component does not necessarily
entail the restart of others. This suggests the opportunity to
exploit partial restarts, as discussed in section 3, to lower
MTTR. Set against this opportunity is the reality that some
failures do propagate across JVM boundaries. Moreover,
restarting some components can cause other components to
need a restart as well. Both result in observed correlated
failures. In the former case, a state dependency leads to a
restart dependency; in the latter case, a functional depen-
dency leads to a restart dependency. In the rest of this sec-
tion we describe how to modify the trivial restart tree to re-
duce the MTTR of the overall system, illustrating which tree
modifications are most effective under specific conditions
of correlated failures.

We describe three techniques: depth augmentation, that
results in the addition of new nodes to the tree, and group
consolidation and node promotion, that result in the removal

4

of nodes from the tree. Since the focus of the present work
is investigation of a recovery strategy designed for transient
failures, we make the following simplifying assumption,
that does hold for our system:fhgbi�j�k

: All failures that occur are detectable by ���
and curable through restart.

This assumption is consistent with the fail-silent and restart
properties of our system’s components. It remains to future
work to detect non-fail-silent failures, and to diagnose fail-
ures as restart-curable or not, either proactively, or as the
result of being unable to resolve through restart.

Another assumption,
f kbl]mon j�k

, arises when there is no
functional redundancy in the system; it would not neces-
sarily apply, for example, to a cluster-based Internet server
with hot standby nodes or similar functional redundancy:f kbl]mdn jok

: A failure in any component will result in
temporary unavailability of the entire system.

4.1. Simple Depth Augmentation

A failure in any component of tree S will result in a
maximum-duration recovery. For example,

� ��� takes less
than 6 seconds to restart, whereas

�������[3��

takes over 21

seconds. Whenever
� ��� fails, we would need to restart

the entire system and wait for all components, including�������
	���

, to come back up, hence incurring four times

longer downtime than necessary. In this argument we im-
plicitly assume that components can restart concurrently,
without significantly affecting each other’s time-to-restart.

mbus fedrcom ses str rtu

mbus fedrcom ses str rtu

Tree I Tree II

Figure 3. Simple depth augmentation gives tree S_S .

The “total reboot” shortcoming can be fixed by modifying
the tree to allow for partial restarts, which can cure subsys-
tems containing one or more components without bringing
the entire system down. Figure 3 illustrates this transforma-
tion.

To measure the effect this transformation has on system
recovery time, we cause the failure of each component (us-
ing a SIGKILL signal) and measure how long the system
takes to recover. We log the time when the signal is sent;
once the component determines it is functionally ready, it
logs a timestamped message. The difference between these
two times is what we consider to be the recovery time. Ta-
ble 2 shows the results of 100 experiments for each failed
component.

In the new restart tree SpS , each restart group (except the
root) contains exactly one component. Because of

fqkbl]mon j�k
,

the system’s MTTF has not changed under the new tree, but
its MTTR is lower, because a failure in a component can po-
tentially be cured by restarting a subset of the components,
possibly only the failed component.

Specifically, for a restart group 0 ,

MTTR r
rsutwv x3y F MTTR y F
where 13z is 0 ’s { -th child, and | E F represents the probability
that a manifested failure in 0 is minimally 1�z -curable. As
mentioned earlier, all observed failures in our ground station
prototype were restart-curable, so the sum of | E F in any 0 is
1. As long as our system contains some component 1�} such
that |~Eb�M��� and MTTR Eb���� >ML~N�D MTTR EGF�H , the result will
be that MTTR ����� MTTR � , since MTTR � � >MLONPD MTTR EGFQH .
Note in Table 2 that >MLON(D MTTR EGF�H is different in the two
trees. A whole system restart causes contention for re-
sources that is not present when restarting just one com-
ponent; this contention slows all components down.

Failed node TVUOW3X XbZ6X Xdc6^ ^ec6W Y[Z]_^C`6a5T
MTTR � 24.75 24.75 24.75 24.75 24.75
MTTR ��� 5.73 9.50 9.76 5.59 20.93

Table 2. Tree II recovery: time to detect failed com-
ponent plus time to recover system (in seconds).

Given that restart tree SpS now has more than one restart
group, we must assume that the oracle is perfect, as de-
scribed in section 3 (in section 4.4 we will relax

f�� j��6gb� k
):f�� j��6gb� k

: The system’s oracle always recommends the
minimal restart policy.

Another assumption we have made in this transformation is
that the restart groups are independently restartable:f�n l���kb��kbl���kbl]m

: Restarting a group will not induce fail-
ure(s) in any component of another restart group.

This assumption is important for recursive restartability, as
it captures the requirement of strong fault-isolation bound-
aries around groups. In section 4.3 we describe how to
transform the restart tree so that it preserves this property
even when the design of our components impose the relax-
ation of

fhn l���kb��kbl���kbl]m
.

4.2. Augmenting Depth of Tight Subtrees

An interesting observation is that components may be
decomposable into sub-components that have highly dis-
parate MTTR and MTTF. In our system, the

�������[3��

com-

ponent connects to the serial port at startup and negotiates
communication parameters with the radio device; there-
after, it translates commands received from the other com-

5

ponents to radio commands. Due to the hardware negotia-
tion, it takes a long time to restart

�������[3��

; due to instability

in the command translator, it crashes often. Hence
�������[3��

has high MTTR and low MTTF—a bad combination.
We therefore split

�������[3��

into the � �5	3��
 component,

which maps a serial port to a TCP socket, and
�������

, the front
end driver-radio that connects to � �5	���
 over TCP. � �5	���

is simple and very stable, but takes a long time to recover
(over 21 seconds);

�������
is buggy and unstable, but recov-

ers very quickly (under 6 seconds). After restructuring the
code and augmenting the restart tree (Figure 4), it becomes
possible to restart the two components independently. We
show the intermediate tree SpS ’, which is identical to tree SpS ,
except the

�������
	���

component is split.

mbus fedr ses str rtupbcom mbus

fedr

ses str rtu

pbcom

Tree IIITree II’

Figure 4. Subtree depth augmentation: tree SpS_S .
The new tree SpSpS has no effect on the system’s MTTF,

as the split did not affect the failure characteristics of what
used to be

�������[3��

.

All failures that were previously minimally curable by a
restart of

�������[3��

are now minimally curable by a restart

of � �5	3��
 , a restart of
�������

, or a restart of both. Since
MTTR���o����� MTTR �9���d�6� and MTTF���o���w� MTTF �Q�Q�o�]� ,
most of the failures will be cured by quick

�������
restarts

and a few of the failures will result in slow � �5	���
 restarts,
whereas previously they would have all required slow�������
	���

restarts. Therefore, the overall MTTR is improved.
Our measurements confirm this expected improvement:

while before it took the system 20.93 seconds to recover
from a

�������[3��

failure, it now takes 5.76 seconds to recover

from a
�������

failure and 21.24 seconds to recover from the
seldom occurring � �5	3��
 failure. The increased value of� �5	���
 ’s recovery time is due to communication overhead.

Some failures that manifest in either of the two new com-
ponents may only be curable by restarting both, i.e., we
have not succeeded in separating

�������
	���

into completely

independent pieces. We observed that multiple
�������

failures
eventually lead to a � �5	3��
 failure. We suspect this is due
to the fact that, when

�������
fails, its connection to � �5	3��
 is

severed; due to bugs, � �5	3��
 ages every time it loses the
connection and, at some point, the aging leads to its total
failure. The presence of such correlated failures after split-
ting a component into pieces is in accord with software en-
gineering reality.

The depth augmentation resulting from insertion of a

joint node [
������� 4�� �5	���
], as opposed to having

�������
and� �5	���
 be top-level nodes under the root, is called for be-

cause correlated failures between
�������

and � �5	3��
 exist, i.e.,| ���o����� �Q�Q�d�6� ��� . Subtree depth augmentation enables us to
cure such correlated failures by restarting both components
in parallel without restarting the entire tree. If the two com-
ponents could be made completely independent, then in the-
ory we would have no correlated failures between

�������
and� �5	���
 (|����o����� �9���d�6� � �), and there would be no benefit to

the joint node.
We should note that the lower MTTR is achieved only if

the oracle makes no mistakes when indicating which node
to restart, i.e.,

f � j��6gb� k
holds. Section 4.4 will show why this

assumption is necessary to realize the lower MTTR, and will
examine the effect of relaxing

f � j��6gb� k
.

From this example we may conclude the following: sup-
pose we have a subsystem containing modules) and * ,
that any failure in the subsystem is guaranteed to be cur-
able through a partial or complete restart of the subsystem,
and that | # 46| $ 4]| #!� $ correspond to the probabilities that a
failure in the subsystem can be minimally cured by a restart
of) only, * only, or [) , *] only, respectively. Then, if|O#!� $ �¡� , in the engineering sense of being statistically
significant, depth augmentation should be used to enable all
three kinds of restarts. The same argument holds for the
case when |~#�¢£|O$?�?� .

4.3. Consolidating Dependent Nodes

In the above example, the newly-created
�������

and � �5	���

components, which started out as one, exhibited occasional
correlated failures due to bugs in both components. In
other cases, components such as � � � and �Q� � exhibit cor-
related failures due to functional dependencies. Although� � � and ��� � were built independently, they synchronize with
each other at startup and, when either is restarted, the other
will inevitably have to be restarted as well. When restarted,
both � � � and ��� � block waiting for the peer component to
resynchronize. Such artifacts are not uncommon, especially
when using COTS software. In fact, our experience with
these components indicated that |~¤��d¤-¥¦|�¤�§[�¨¥¦� , whereas|�¤
�o¤d� ¤�§[��¥ª© . That is, we observed that a failure/restart in one
of these components substantially always leads to a subse-
quent failure/restart in the other.

However, the oracle does not know this ahead of time:
under tree S_SpS , the oracle will restart � � � / ��� � when the com-
ponent fails, then be told there is another failure, that was in-
duced by the curing action, because of failure to resynchro-
nize with �Q� � / � � � . It will then restart the peer component.
Note that this does not violate

f�� j��9gb� k
: if the oracle made a

mistake in its restart choice, the original failure would per-
sist. Here, the curing of the failure generates a new, related
failure. This violates

f�n l���kb��kbl���kbl]m
.

6

To fix this, we encode the correlated-failure knowledge
into the structure of a new restart tree, as shown in the
transformation of Figure 5. It is also possible for the or-
acle to learn these dependencies over time, but we have
not yet implemented this idea. With the new restart tree,
whenever a failure occurs in either � � � or �Q� � , it will force
a restart of both, yielding a recovery time proportional to>AL~N�D MTTR ¤
�d¤94 MTTR ¤�§[�[H , instead of MTTR ¤��d¤¨¢ MTTR ¤�§[� .
This intuition is confirmed by experiment: with tree SpSpS
it took on average 9.50 and 9.76 seconds to recover from
a � � � and ��� � failure, respectively; with tree S�« the system
recovers in 6.25 and 6.11 seconds, respectively.

mbus

fedr

ses str rtu

pbcom

mbus

fedr

ses str rtu

pbcom

Tree III Tree IV

Figure 5. Group consolidation leads to tree S�« .

Group consolidation and depth augmentation are duals
of each other. We have seen that in a subsystem contain-
ing modules) and * , with the probabilities | # , | $, | #!� $,
if the ability to restart each component is useful, then the
group’s depth should be augmented. Similarly, this section
has shown that, if the ability to restart each component is
not useful (i.e., |~#�¢¬|O$­�®|O#!� $), then the restart group
should be consolidated.

4.4. Promoting High-MTTR Nodes

There are only two kinds of mistakes an imperfect oracle
can make, which we call “guess-too-low” and “guess-too-
high”. In guess-too-low, the oracle suggests a restart at nodeR , when in fact a restart at one of R ’s ancestors is the mini-
mum needed to fix the problem. In this case, the time spent
restarting only R will be wasted, because R ’s ancestor, and
hence R as well, will eventually also need to be restarted. In
guess-too-high, the oracle suggests a restart at a level higher
than minimally necessary to cure the failure. The recovery
time is therefore potentially greater than it had to be, since
the failure could have been cured by restarting a smaller
subsystem, with lower MTTR.

Guessing wrong is particularly bad when the MTTRs of
components differ greatly, as is the case for

�������
(5.76 sec)

and � �5	3��
 (21.24 sec). However, we can structure the
restart tree to minimize the potential cost incurred from or-
acle failures: keep low-MTTR components low in the tree,
and promote high-MTTR components toward the top, as il-
lustrated with � �5	���
 in Figure 6. As mentioned earlier,
there exist failures that manifest in � �5	���
 but can only be

cured by a joint restart of
�������

and � �5	3��
 . We ran an exper-
iment with a perfect oracle, that always correctly guessed
when to do a joint restart, as well as with a faulty oracle
that guessed wrong 30% of the time (we chose this percent-
age arbitrarily). The faulty oracle restarts � �5	3��
 , then real-
izes the failure is persisting, and moves up the tree to restart
both

�������
and � �5	���
 , which eventually cures the failure.

Our measurements confirm the impact of node promotion
on system recovery time: in tree S�« , Mercury took 29.19
seconds to recover from a � �5	3��
 failure in the presence of
the faulty oracle, in tree V it only takes on average 21.63
seconds to recover with the same faulty oracle.

Intuitively, the reason this structure reduces the cost
of oracle mistakes is because mistakenly guessing that a� �5	���
 -only restart was required ultimately leads to � �5	3��

being restarted twice: once on its own, and then together
with

�������
. Tree « forces the two components to be restarted

together on all � �5	���
 failures. Because tree S�« is strictly
more flexible than tree « , there is nothing that a perfect or-
acle could do in tree « but not in tree S�« . Therefore, tree «
can be better only when the oracle is faulty.

Node promotion can be viewed as a special case of one-
sided group consolidation, induced by asymmetrically cor-
related failure behavior. If the correlated behaviors were
reasonably symmetric, as was the case for � � � and ��� � , then
full consolidation would be recommended.

mbus

fedr

ses str rtu

pbcom

mbus

fedr

ses str rtupbcom

Tree IV Tree V

Figure 6. Node promotion yields tree « .

An interesting observation that we have not yet fully
explored is the fact that a “free”

�������
restart not only ac-

counts for the possibility that the oracle guessed wrong, but
also constitutes a prophylactic restart that rejuvenates [9]
the

�������
component, hence improving its MTTF. Remem-

ber that MTTF ¯ ; <°>A@CB±D MTTF E F�H . Rejuvenation of
�������

will likely increase MTTF � �d�]� , so in the cases in which the
next component destined to fail would be

�������
, with tree« this would happen later than with tree S�« . Therefore,

MTTF ¯£I MTTF � ¯ .
In this section we have seen how the restart tree was first

augmented: we added an entire new level of nodes across
the tree, then we added an extra level in one of the subtrees.
Then we started reducing the tree, by consolidating nodes
within a restart group and by promoting a high-MTTR com-
ponent up the restart tree. Table 3 on the next page summa-
rizes the tree transformations and reasoning behind them;

7

Original Tree Augmentations Reductions

mbus fedrcom ses str rtu

mbus fedrcom ses str rtu
mbus

fedr

ses str rtu

pbcom

mbus

fedr

ses str rtu

pbcom

mbus

fedr

ses str rtupbcom

Original restart tree. Any
component failure triggers a
restart of the entire system.

Allows components to be in-
dependently restarted, with-
out affecting others.

Saves the high cost of
restarting �Q�Q�o�6� whenever���o�]� fails (���o��� fails often).

Reduces the delay in restart-
ing component pairs with cor-
related failures (¤��d¤ and ¤�§[�).

Encodes information that
prevents oracle from making
guess-too-low mistakes.

Embodies ²!³[´�µ·¶ , ²±¶�¸G¹�º µ·¶ Embodies ² º ¸�»�¶�¼�¶�¸�»b¶�¸G¹ ,²±½ µ·¾¿³[À ¶ , ² ³[´�µ·¶ , ² ¶�¸G¹�º µe¶ Embodies ² º ¸�»�¶�¼�¶�¸�»b¶�¸G¹ ,²±½ µ·¾¿³[À ¶ , ² ³[´�µ·¶ , ² ¶�¸G¹�º µe¶ Embodies²,½ µC¾d³[À ¶ , ² ³[´Qµe¶ , ² ¶�¸G¹Cº µ·¶ Embodies² ³[´Qµe¶ , ² ¶�¸G¹Cº µ·¶
Useful only if all component
MTTRs are roughly equal.

Useful when ÁQÂ�Ã ÄÆÅ 2 orÁQÂ%Ç�ÁQÄÆÅ 2 Useful when ÁQÂ�Ã ÄMÅ 2 orÁQÂ%Ç�ÁQÄÆÅ 2 Useful whenÁ Â Ç�Á ÄqÈ Á ÂÉÃ Ä Useful when oracle is faulty
i.e., it can guess wrong.

Table 3. Summary of restart tree transformations

our measurements are centralized in Table 4.

Tree Oracle TVUOW3XÊXbZ6X X¿c9^ ^ec6WËY
Z]_^ÍÌOU�`6a5TÎY[Z]_^C`6a5TÏ
perfect 24.75 24.75 24.75 24.75 — — 24.75Ï�Ï
perfect 5.73 9.50 9.76 5.59 — — 20.93Ï�Ï�Ï
perfect 5.73 9.50 9.76 5.59 5.76 21.24 —Ï�Ð
perfect 5.73 6.25 6.11 5.59 5.76 21.24 —Ï�Ð
faulty 5.73 6.25 6.11 5.59 5.76 29.19 —Ð
faulty 5.73 6.25 6.11 5.59 5.76 21.63 —

Table 4. Overal MTTRs (seconds). Rows show tree
versions, columns represent component failures.

5. Discussion

The Mercury ground station is by design loosely cou-
pled, its components are mostly stateless, and failure de-
tection is based on application-level heartbeats. These are
important RR-enabling properties and Mercury provides a
good example of a simple RR system. The RR techniques
described here are applicable to a wider set of applications.
For example, we have found that many cluster-based Inter-
net services [3] as well as distributed systems in general are
particularly well suited to RR; in fact, many of the RR ideas
originated in the Internet world.

In this section, we extract from the Mercury experience
some general principles we believe are fundamentally use-
ful in thinking about applying RR to other systems.

5.1. Moving Boundaries

The most interesting principle we found was the bene-
fit of drawing component boundaries based on MTTR and
MTTF, rather than based solely on “traditional” modularity
considerations such as state sharing. In transforming tree

SpS_S to tree S�« , we placed two independent components, � � �
and �Q� � , into the same restart group. Presumably these two
components are independent, yet we are partially “collaps-
ing” the fault-isolation boundary between them by imposing
the new constraint that, when either is restarted, the other
one is restarted as well.

A dual of the above example is the splitting of
�������
	���

into the two separate components
�������

and � �5	3��
 . As de-
scribed in the text, these two components are intimately
coupled from a functionality perspective; it is not an ex-
aggeration to say that either is useless without the other.
That is why in the original implementation

�������
	���

was

a single process, i.e., communication between the com-
ponents that became

�������
and � �5	3��
 took place by shar-

ing variables in the same address space. Post-splitting, the
two components must explicitly communicate via IPC. This
clearly adds communication overhead and complexity, but
allows the two components to occupy different positions
in the restart tree, which in turn lowers MTTR. We con-
clude that if a component exhibits asymmetric MTTR Ñ MTTF
characteristics among its logical sub-components, rearchi-
tecting along the MTTR Ñ MTTF separation lines may often
turn out to be the optimal engineering choice. Balancing
MTTR Ñ MTTF characteristics in every component is a step
toward building a more robust and highly available system.

As explained in [4], RR attempts to exploit strong ex-
isting fault isolation boundaries, such as virtual memory,
physical node separation, or kernel process control, lead-
ing to higher confidence that a sequence of restarts will ef-
fectively cure transients. To preserve this property, restart-
group boundaries should not subvert the mechanisms that
create the existing boundaries in the first place.

8

5.2. Not All Downtime Is the Same

Unplanned downtime is generally more expensive than
planned downtime, and downtime under a heavy or critical
workload is more expensive than downtime under a light
or non-critical workload. In our system, downtime during
satellite passes (typically about 4 per day per satellite, last-
ing about 15 minutes each) is very expensive because we
may lose some science data and telemetry. Additionally, if
the failure involves the tracking subsystem and the recovery
time is too long, the communication link will break and the
entire session will be lost. A large MTTF does not guaran-
tee a failure-free pass, but a short MTTR can provide high
assurance that we will not lose the whole pass as a result of
a failure.

6. Related Work

The rebooting “technique” embodied in recursive
restartability has been around as long as computers them-
selves, and our work draws heavily upon decades of system
administration history. The RR model refines and system-
atizes a number of known techniques, in an attempt to turn
the “high availability folklore” into a well-understood tool.
Moreover, recursive restartability is a concrete example of
a newly emerging trend in system design, called ROC—
recovery-oriented computing [12].

The idea of gracefully terminating an application and
restarting it at a clean internal state is called software rejuve-
nation and was proposed by [9]. Although in this paper we
have focused on reactive rather than proactive restarts, re-
juvenation is an integral part of the RR strategy. Rejuvena-
tion has also found its way into Internet server installations
based on clusters of hundreds of workstation nodes; many
such sites use “rolling reboots” to clean out stale state and
return nodes to known “clean” states, Inktomi being one ex-
ample [3]. IBM’s xSeries servers also employ rejuvenation
for improved availability.

The ability to treat operating system services as separate
components, and the ensuing benefits and drawbacks, have
long been known to the builders of microkernels [2]. More
recent work seeks similar benefits by using lightweight vir-
tual machines [15] for hosting services in third-party In-
ternet infrastructures, thus turning these infrastructures into
RR-amenable systems.

The space systems community, and particulary the
small-satellite research community, has recently shown
tremendous interest in moving to COTS. In fact an entire
conference, the Symposium on Reducing the Cost of Space-
craft Ground Systems and Operations, is devoted largely to
such issues. This community is recognizing that the oppor-
tunities of COTS present challenges of dependability; we
believe that our application of recovery-oriented techniques

such as RR to space-based systems provides evidence for
the feasibility of this approach.

7. Future Work

Restarting cannot recover from a hard failure in a disk
drive or other hardware component such as the radio, which
is likely to happen eventually. We are in the process of im-
plementing component health summary beacons, which in-
clude a digest of internal metrics such as resource usage,
data structure consistency, connectivity checks, latency be-
tween key code points, warnings of suspect behavior that
has not yet caused a failure, and if applicable, information
about detectable hard failures. Comprehensive failure de-
tection and logging were not the goals of this effort, though
they are long-term goals for Mercury; health summaries
constitute one step in that direction.

We have described three types of restart tree transforma-
tions: depth augmentation, group consolidation, and node
promotion. In Mercury, the choice of transformations and
recovery policy was based to a great degree on estimated
values of | E F , i.e., the probability that a manifested failure
in the observed group is minimally 1�z -curable. These values
are generally more difficult to measure than actual failure
rates, but are easily determined from experience, after some
trial-and-error. In future work we intend to extend the ora-
cle with the ability to learn from its mistakes and this way
generate estimates for |ÒEGF values. We also plan to identify
specific algorithms for transforming restart trees.

We are applying RR to another test system: iROS,
the software infrastructure for the Stanford Interactive
Workspace. As described in [10], the functional compo-
nents of iROS were specifically written to be restartable,
and state management in the system as a whole is sensi-
tive to the possibility that components may be restarted at
nearly arbitrary times. This design decision was motivated
in part by the desire to leverage simple robustness solutions
based on mechanisms such as RR. We expect to report on
this work shortly.

Interesting work in software rejuvenation focuses on an-
alytic modeling of system uptime to derive optimal reju-
venation policies that maximize availability under a mod-
elled workload [8]. Although we made many simplifying
assumptions (all consistent with the behavior of our system)
to allow meaningful use of MTTR and MTTF in our argu-
ment, we expect to explore a more detailed analytic model
in future work.

Applying RR requires that components either be state-
less or utilize soft state [4]. For cases where some of the
system’s components are using hard state, we are devel-
oping a general model of recursively recoverable systems.
With recursive recovery, we can accomodate a wider range
of recovery semantics, since each component is recovered

9

using a custom procedure; restart is just one example of
a recovery procedure. An example of where the general
model is needed would be complex e-business infrastruc-
tures, that combine storage services with databases, appli-
cation servers, and web servers.

In the process of recovering, the various subsystems ac-
tively trade off certain system properties against each other,
such as performance or consistency for availability. A new
project we have started [5] has identified five basic axes for
making these tradeoffs and is developing a utility-function-
based model for dynamically optimizing these tradeoffs to
maximize system dependability.

8. Conclusions

We applied recursive restartability to a system with
which we had extensive “manual” experience. To improve
the system’s availability, we reduced its time to recover
from various types of failures we had observed over nearly
2 years in production use. We achieved automated failure
detection and recovery that was better than manual opera-
tion, even though the system was not purposely designed to
accomodate these goals.

The most significant lesson was that constructing
the “optimal” (lowest-MTTR) restart tree required col-
lecting components into restart groups based on their
MTTFs/MTTRs and degree of failure correlation, and that
this requirement in turn may impose constraints on the
way components are architected. This suggests that when
module boundaries are drawn at design time, considera-
tion should be given to these properties in addition to the
ones traditionally considered functional orthogonality, de-
gree and granularity of state sharing, etc.

By employing recursive restartability we were able to
improve recovery time of our ground station by a factor of
four. Although we have not thoroughly measured the bene-
fits resulting from automating the failure detection, we have
observed them to be significant—in the past, relying on op-
erators to notice failures was adding minutes or hours to the
recovery time. There is an increasing trend toward complex,
hard-to-manage software systems that integrate large num-
bers of COTS modules; we believe that recovery-oriented
computing approaches hold a lot of promise as a depend-
ability technique in such systems.

9. Acknowledgements

We are indebted to the anonymous reviewers and our col-
leagues at Stanford University for their insights and helpful
comments on our paper. We thank the National Aeronau-
tics and Space Administration (NASA) for supporting our
work under award NAG3-2579, and the National Science
Foundation (NSF) under Career Award 133966.

References

[1] Patriot missile defense: Software problem led to system
failure at Dhahran, Saudi Arabia. Technical Report of
the U.S. General Accounting Office, GAO/IMTEC-92-26,
GAO, 1992.

[2] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B. Golub, R. F.
Rashid, A. Tevanian, and M. Young. Mach: A new kernel
foundation for UNIX development. In Proceedings of the
USENIX Summer Conference, pages 93–113, 1986.

[3] E. Brewer. Lessons from giant-scale services. IEEE Internet
Computing, 5(4):46–55, July 2001.

[4] G. Candea and A. Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. In Proceedings of the
8th Workshop on Hot Topics in Operating Systems, pages
110–115, Elmau, Germany, May 2001.

[5] G. Candea and A. Fox. A utility-centered approach to build-
ing dependable infrastructure services. In Proceedings of the
10th ACM SIGOPS European Workshop, pages 213–218,
Saint-Émilion, France, Sep 2002.

[6] J. W. Cutler and G. Hutchins. Opal: Smaller, simpler, luck-
ier. In Proceedings of the AIAA Small Satellite Conference,
Logan, Utah, September 2000.

[7] A. DiGiorgio. The smart ship is not enough. Naval Institute
Proceedings, 124(6), June 1998.

[8] S. Garg, A. Puliafito, M. Telek, and K. Trivedi. Analysis of
software rejuvenation using Markov regenerative stochastic
Petri nets. In Proceedings of the 6th International Sympo-
sium on Software Reliability Engineering, pages 180–187,
Toulouse, France, Oct 1995.

[9] Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D. Fulton.
Software rejuvenation: Analysis, module and applications.
In International Symposium on Fault-Tolerant Computing,
pages 381–390, Pasadena, CA, 1995.

[10] B. Johanson, A. Fox, P. Hanrahan, and T. Winograd.
The event heap: An enabling infrastructure for interactive
workspaces. Technical Report CS-2001-02, Stanford Com-
puter Science Department, Stanford, CA, 2001.

[11] J.-J. Miau and R. Holdaway, editors. Reducing the Cost
of Spacecraft Ground Systems and Operations, volume 3.
Kluwer Academic Publishers, 2000.

[12] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, and N. Treuhaft.
Recovery oriented computing (ROC): Motivation, defini-
tion, techniques, and case studies. Technical Report
UCB/CSD-02-1175, UC Berkeley, Berkeley, CA, March
2002.

[13] G. Reeves. What really happened on Mars? RISKS-19.49,
Jan. 1998.

[14] M. A. Swartwout and R. J. Twiggs. SAPPHIRE - Stanford’s
first amateur satellite. In Proceedings of the 1998 AMSAT-
NA Symposium, Vicksberg, MI, October 1998.

[15] A. Whitaker, M. Shaw, and S. D. Gribble. Denali:
Lightweight virtual machines for distributed and networked
applications. In Proceedings of the USENIX Annual Techni-
cal Conference, Monterey, CA, June 2002.

10

