
2

The S2E Platform: Design, Implementation, and Applications

VITALY CHIPOUNOV, VOLODYMYR KUZNETSOV, and GEORGE CANDEA,
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

This article presents S2E, a platform for analyzing the properties and behavior of software systems, along
with its use in developing tools for comprehensive performance profiling, reverse engineering of proprietary
software, and automated testing of kernel-mode and user-mode binaries. Conceptually, S2E is an automated
path explorer with modular path analyzers: the explorer uses a symbolic execution engine to drive the target
system down all execution paths of interest, while analyzers measure and/or check properties of each such
path. S2E users can either combine existing analyzers to build custom analysis tools, or they can directly
use S2E’s APIs.

S2E’s strength is the ability to scale to large systems, such as a full Windows stack, using two new
ideas: selective symbolic execution, a way to automatically minimize the amount of code that has to be ex-
ecuted symbolically given a target analysis, and execution consistency models, a way to make principled
performance/accuracy trade-offs during analysis. These techniques give S2E three key abilities: to simul-
taneously analyze entire families of execution paths instead of just one execution at a time; to perform the
analyses in-vivo within a real software stack—user programs, libraries, kernel, drivers, etc.—instead of us-
ing abstract models of these layers; and to operate directly on binaries, thus being able to analyze even
proprietary software.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Reliability, Verification, Performance, Security

Additional Key Words and Phrases: Symbolic execution, testing, analysis, profiling

ACM Reference Format:
Chipounov, V., Kuznetsov, V., and Candea G. 2012. The S2E platform: Design, implementation, and appli-
cations. ACM Trans. Comput. Syst. 30, 1, Article 2 (February 2012), 49 pages.
DOI = 10.1145/2110356.2110358 http://doi.acm.org/10.1145/2110356.2110358

1. INTRODUCTION

System developers routinely need to analyze the behavior of what they build. One
basic analysis is to understand observed behavior, such as why a given Web server
is slow on a SPECWeb benchmark. More sophisticated analyses aim to characterize
future behavior in previously unseen circumstances, such as what will a Web server’s
maximum latency and minimum throughput be, once deployed at a customer site.
Ideally, system designers would also like to do quick what-if analyses, such as
determining whether aligning a certain data structure on a page boundary will avoid
all cache misses and thus increase performance and energy efficiency. For small

The authors are grateful to Google and Microsoft for generously supporting their work through a Google
Faculty Award, a Google Focused Research Grant, and a Microsoft Research Ph.D. fellowship.
Authors’ address: V. Chipounov, V. Kuznetsov, and G. Candea, School of Computer and Communication
Sciences, École Polytechnique Fédérale de Lausanne, Switzerland; email: George.candea@epfl.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0734-2071/2012/02-ART2 $10.00

DOI 10.1145/2110356.2110358 http://doi.acm.org/10.1145/2110356.2110358

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:2 V. Chipounov et al.

programs, experienced developers can often reason through some of these questions
based on code alone; the goal of our work is to make it feasible to answer such
questions also for large, complex, real systems.

We introduce in this article a platform that enables easy construction of analysis
tools (such as performance profilers, bug finders, or reverse engineering tools) that
simultaneously offer the following three properties: (1) They efficiently analyze entire
families of execution paths; (2) They maximize realism by running the analyses within
a real software stack; and (3) They are able to directly analyze binaries. We now
explain these properties.

First, predictive analyses often must reason about entire families of paths through
the target system, not just one path. A family of paths is a set of paths that have
a specific property. For example, security analyses must check that there exist no
corner cases that could violate a desired security policy; recent work has employed
model checking [Musuvathi et al. 2008] and symbolic execution [Cadar et al. 2008] to
find bugs in real systems—these are all multipath analyses. One of our case stud-
ies demonstrates multipath analysis of performance properties: instead of profiling
solely one execution path, we derive performance envelopes that characterize the per-
formance of entire families of paths. Such analyses can check real-time requirements
(e.g., that an interrupt handler will never exceed a given bound on execution time), or
can help with capacity planning (e.g., determine how many Web servers to provision
for a Web farm). In the end, properties shown to hold for all paths in a set constitute
proofs over the corresponding set of executions; the guarantee provided by a proof is
in essence the ultimate prediction of a system’s behavior.

Second, an accurate estimate of program behavior often requires taking into ac-
count the whole environment surrounding the analyzed program: libraries, kernel,
drivers, etc., in other words, it requires in-vivo1 analysis. Even small programs inter-
act with their environment (e.g., to read/write files or send/receive network packets),
so understanding program behavior requires understanding the nature of these in-
teractions. Some tools execute the real environment, but allow calls from different
execution paths to interfere inconsistently with each other [Cadar et al. 2006]. Most
approaches abstract away the environment behind a model [Ball et al. 2006; Cadar
et al. 2008], but writing abstract models is labor-intensive (taking in some cases mul-
tiple person-years [Ball et al. 2006]), models are rarely 100% accurate, and they tend
to lose accuracy as the modeled system evolves. It is therefore preferable that target
programs interact directly with their real environment during analysis in a way that
keeps multipath analysis consistent.

Third, real systems are made up of many components from various vendors; access
to all corresponding source code is rarely feasible and, even when source code is avail-
able, building the code exactly as in the shipped software product is difficult [Bessey
et al. 2010]. Thus, in order to be practical, analyses ought to operate directly on
binaries.

Scalability is the key challenge of performing analyses that are in-vivo, multipath,
and operate on binaries. Going from single-path analysis to multipath analysis turns
a linear problem into an exponential one, because the number of paths through a
program generally increases at least exponentially in the number of branches—the
“path explosion” problem [Boonstoppel et al. 2008]. It is therefore not feasible today

1In vivo is Latin for “within the living” and refers to experimenting using a whole live system; in vitro uses
a synthetic or partial system. In life sciences, in-vivo testing—animal testing or clinical trials—is often
preferred because, when organisms or tissues are disrupted (as in the case of in-vitro experiments), results
can be substantially less representative. Analogously, in-vivo program analysis captures all interactions of
the analyzed code with its surrounding system, not just with a simplified abstraction of that system.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:3

to execute fully symbolically an entire software stack (programs, libraries, OS kernel,
drivers, etc.) as would be necessary if we wanted consistent in-vivo multipath analysis.

We describe in this article S2E, a general platform for developing multipath in-vivo
analysis tools that are practical even for large, complex systems, such as an entire
Microsoft Windows software stack. First, S2E simultaneously exercises entire fami-
lies of execution paths in a scalable manner by using selective symbolic execution and
flexible execution consistency models. Second, S2E employs virtualization to perform
the desired analyses in vivo; this removes the need for the stubs or abstract models
required by most state-of-the-art symbolic execution engines and model checkers [Ball
et al. 2010; Cadar et al. 2008; Godefroid et al. 2005; Musuvathi et al. 2008; Sen et al.
2005]. Third, S2E uses dynamic binary translation to directly interpret x86 machine
code, so it can analyze a wide range of software, including proprietary systems, even if
self-modifying or JITed, as well as obfuscated and packed/encrypted binaries.

The abstraction offered by S2E is that of an automated path exploration mechanism
with modular path analyzers. The explorer drives in parallel the target system down
all execution paths of interest, while analyzers check properties of each such path (e.g.,
to look for bugs) or simply collect information (e.g., count page faults). An analysis tool
built on top of S2E glues together path selectors with path analyzers. Selectors guide
S2E’s path explorer by specifying the paths of interest: all paths that touch a specific
memory object, paths influenced by a specific parameter, paths inside a target code
module, etc. Analyzers can be pieced together from S2E-provided default analyzers, or
can be written from scratch using the S2E API.

S2E comes with ready-made selectors and analyzers that provide a wide range of
analyses out of the box. The typical S2E user only needs to define in a configu-
ration file the desired selector(s) and analyzer(s) along with the corresponding pa-
rameters, start up the desired software stack inside the S2E virtual machine, and
run the S2E launcher in the guest OS, which starts the desired application and
communicates with the S2E VM underneath. For example, one may want to verify
the code that handles license keys in a proprietary program, such as Adobe Photo-
shop. The user installs the program in the S2E Windows VM and launches the pro-
gram using s2e.exe C:\Program Files\Adobe\Photoshop. From inside the guest OS,
the s2e.exe launcher communicates with S2E via custom opcodes (described in Sec-
tion 5). In the S2E configuration file, the tester may choose a memory-checker analyzer
along with a path selector that returns a symbolic string whenever Photoshop reads
HKEY LOCAL MACHINE\Software\Photoshop\LicenseKey from the Windows registry.
S2E then automatically explores the code paths in Photoshop that are influenced by
the value of the license key and looks for memory safety errors along those paths.

Developing a new analysis tool with S2E took us on the order of 20–40 person-
hours and a few hundred LOC. To illustrate S2E’s generality, we present here three
very different tools built using S2E: a multipath in-vivo performance profiler, a reverse
engineering tool, and a tool for automatically testing proprietary software.
To our knowledge, this article makes the following four contributions:

— Selective symbolic execution, a new technique for automatic bidirectional symbolic–
concrete state conversion that enables execution to seamlessly and correctly weave
back and forth between symbolic and concrete mode;

— Execution consistency models, a framework for advantageously balancing over- and
under-approximation of paths in an analysis-specific way;

— A general platform for performing diverse in-vivo multipath analyses in a way that
scales to large real systems;

— The first use of symbolic execution in performance analysis.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:4 V. Chipounov et al.

In the rest of the article, we describe selective symbolic execution (Section 2), ex-
ecution consistency models (Section 3), the S2E prototype (Section 4), S2E’s APIs for
developing analysis tools (Section 5), we evaluate the S2E prototype (Section 6), survey
related work (Section 7), and conclude (Section 8).

2. SELECTIVE SYMBOLIC EXECUTION

In designing S2E, we were inspired by the successful use of symbolic execution [King
1975] in automated software testing [Cadar et al. 2008; Godefroid et al. 2005]. The
idea is to treat a program as a superposition of possible execution paths. For exam-
ple, a program that is all linear code except for one conditional statement if (x > 0)
then ... else ... can be viewed as a superposition of two possible paths: one for x > 0
and another one for x ≤ 0. To exercise all paths, it is not necessary to try all possible
values of x, but rather just one value greater than 0 and one value less than 0.

This superposition of paths is unfurled by a symbolic execution engine [Cadar et al.
2008] into a symbolic execution tree, in which each possible execution corresponds to a
path from the root of the tree to a leaf corresponding to a terminal state. The mechanics
of doing so consist of marking variables as symbolic at the beginning of the program,
that is, instead of setting a variable x to a concrete value (say, x = 5), it is viewed as a
superposition λ of all possible values x could take. Then, any time a branch instruction
is conditioned on a predicate p that depends (directly or indirectly) on x, execution is
split into two executions Ei and E j, two copies of the program’s state are created, and
Ei’s path remembers that the variables involved in p must be constrained to make p
true, while E j’s path remembers that p must be false.

The process repeats recursively: Ei may further split into Eii and Eij, and so on.
Every execution of a branch statement creates a new set of children, and thus what
would normally be a linear execution (if concrete values were used) now turns into a
tree of executions (since symbolic values are used). A node s in the tree represents a
program state (a set of variables with formulae constraining the variables’ values), and
an edge si → sj indicates that sj is si’s successor on any execution path satisfying the
constraints in sj. Paths in the tree can be pursued simultaneously, as the tree unfurls;
since program state is copied, the paths can be explored independently. Copy-on-write
is typically used to make this process efficient.

S2E is based on the key observation that often only some families of paths are of
interest. For example, one may want to exhaustively explore all paths through a small
program, but not care about all paths through the libraries it uses or the OS kernel.
This means that, when entering that program, S2E should split executions to explore
the various paths, but whenever the program calls into some other part of the system,
such as a library, multipath execution can cease and execution can revert to single-
path. Then, when execution returns to the program, multipath execution must be
resumed.

Multipath execution corresponds to expanding a family of paths by exploring the
various side branches as they appear, while switching to single-path mode corresponds
to corseting the family of paths. In multipath mode, the tree grows in width and depth;
in single-path mode, the tree only grows in depth. We therefore say S2E’s exploration
of program paths is elastic. S2E turns multipath mode off (i.e., do not further expand
existing paths) whenever possible, to minimize the size of the execution tree and in-
clude only paths that are of interest to the target analysis.

S2E’s elasticity of multipath exploration is key in being able to perform in-vivo mul-
tipath exploration of programs inside complex systems, like Microsoft Windows. By
combining elasticity with virtualization, S2E offers the illusion of symbolically execut-
ing a full software stack, while actually executing symbolically only select components.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:5

Fig. 1. Multipath/single-path execution: three different modules (left) and the resulting execution tree
(right). Shaded areas represent the multipath (symbolic) execution domain, while the white areas are
single-path.

For example, by concretely (i.e., nonsymbolically) executing libraries and the OS ker-
nel, S2E allows a program’s paths to be explored efficiently without having to model
its surrounding environment. We refer to this as selective symbolic execution.

Interleaving of symbolic execution phases with concrete phases must be done care-
fully, to preserve the meaningfulness of each explored execution. For example, say
we wish to analyze a program P in multipath (symbolic) mode, but none of its li-
braries Li are to be explored symbolically. If P has a symbolic variable n and calls
strncpy(dst,src,n) in Lk, S2E must convert n to some concrete value and invoke strncpy

with that value. This is straightforward: solve the current path constraints with a
constraint solver and get some legal value for n (say n = 5) and call strncpy. But what
happens to n after strncpy returns? Variable dst will contain n = 5 bytes, whereas n
prior to the call was symbolic, can n still be treated symbolically? The answer is yes, if
done carefully.

In S2E, when a symbolic value is converted to concrete (n : λ → 5), the family of
executions is corseted. When a concrete value is converted to symbolic (n : 5 → λ),
the execution family is allowed to expand. The process of doing this back and forth
is governed by the rules of an execution consistency model (Section 3). For the above
example, one might require that n be constrained to value 5 in all executions following
the return from strncpy. However, doing so may exclude a large number of paths from
the analysis. In Section 3 we describe systematic and safe relaxations of execution
consistency.

We now describe the mechanics of switching back and forth between multipath
(symbolic) and single-path (concrete) execution in a way that executions stay consis-
tent. We know of no prior symbolic execution engine that has the machinery to effi-
ciently and flexibly cross the symbolic/concrete boundary both back and forth, while
still preserving consistency of execution.

Figure 1 provides a simplified example of using S2E: an application app uses a li-
brary lib on top of an OS kernel. The target analysis requires to symbolically execute
lib, but not app or kernel. Function appFn in the application calls a library function
libFn, which eventually invokes a system call sysFn. Once sysFn returns, libFn does
some further processing and returns to appFn. After the execution crosses into the
symbolic domain (shaded) from the concrete domain (white), the execution tree (right
side of Figure 1) expands. After the execution returns again to the concrete domain,
the execution tree is corseted and does not add any new paths, until execution returns
to the symbolic domain again. Some paths may terminate earlier than others, e.g., due
to hitting a crash bug in the program.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:6 V. Chipounov et al.

Fig. 2. The top level in libFn’s execution tree.

We now describe the two directions in which execution can cross the con-
crete/symbolic boundary.

2.1. Concrete → Symbolic Transition

When appFn calls libFn, it does so by using concrete arguments; the simplest concrete
→ symbolic conversion is to use an S2E selector to change the concrete arguments into
symbolic ones, for instance, instead of libFn(10) call libFn(λ). One can additionally opt
to constrain λ, for instance, libFn( λ ≤ 15 ).

Once this transition occurs, S2E executes libFn symbolically using the (potentially
constrained) argument(s) and simultaneously executes libFn with the original con-
crete argument(s) as well. Once exploration of libFn completes, S2E returns to appFn
the concrete return value resulting from the concrete execution, but libFn has been
explored symbolically as well. In this way, the execution of app is consistent, while at
the same time S2E exposes to the analyzer plugins those paths in lib that are rooted
at libFn’s entry point. The concrete domain is unaware of libFn being executed in
multipath mode. All paths execute independently, and it is up to the S2E analyzer
plugins to decide whether, besides observing the concrete path, they also wish to look
at the other paths.

2.2. Symbolic → Concrete Transition

Dealing with the libFn→sysFn call is more complicated. Say libFn has the code shown
in Figure 2 and was called with an unconstrained symbolic value x ∈ (−∞, +∞). At the
first if branch instruction, execution forks into one path along which x ∈ (−∞, 5) and
another path where x ∈ [5, +∞). These expressions are referred to as path constraints,
as they constrain the values that x can take on a path. Along the then-branch, a call to
sysFn(x) must be made. This requires x to be concretized, since sysFn is in the concrete
domain. Thus, we choose a value, say x = 4, that is consistent with the x ∈ (−∞, 5)
constraint and perform the sysFn(4) call. The path constraints in the symbolic domain
are updated to reflect that x = 4.

Note that S2E actually employs lazy concretization: It converts the value of x from
symbolic to concrete on-demand, only when concretely running code is about to branch
on a condition that depends on the value of x. This is an important optimization when
doing in-vivo symbolic execution, because a lot of data can be carried through the
layers of the software stack without conversion. For example, when a program writes
a buffer of symbolic data to the filesystem, there are usually no branches in the kernel
or the disk device driver that depend on this data, so the buffer can pass through
unconcretized and be written in symbolic form to the virtual disk, from where it will
eventually be read back in its symbolic form. For the sake of clarity, in this section we
assume eager (nonlazy) concretization.

Once sysFn completes, execution returns to libFn in the symbolic domain. When x
was concretized prior to calling sysFn, the x = 4 constraint was automatically added to
the path constraints; sysFn’s return value is correct only under this constraint, because
all computation in sysFn was done assuming x = 4. Furthermore, sysFn may also have

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:7

had side effects that are intimately tied to the x = 4 constraint. With this constraint,
execution of libFn can continue, and correctness is preserved.

The problem, however, is that this constraint corsets the family of future paths that
can be explored from this point on: x can no longer take on all values in (−∞, 5) so,
when we subsequently get to the branch if (x < 0) ..., the then-branch will no longer
be feasible due to the added x = 4 constraint. This is referred to as “overconstraining”:
the constraint is not introduced by features of libFn’s code, but rather as a result of
concretizing x to call into the concrete domain. We think of x = 4 as a soft constraint
imposed by the symbolic/concrete boundary, while x ∈ (−∞, 5) is a hard constraint im-
posed by libFn’s code. Whenever a branch in the symbolic domain is disabled because
of a soft constraint, it is possible to go back in the execution tree and pick an additional
value for concretization, fork another subtree, and repeat the sysFn call in a way that
would enable that branch. As explained later, S2E can track branch conditions in the
concrete domain, which helps redo the call in a way that re-enables subsequent
branches.

The “overconstraining” problem has two components: (a) the exclusion of paths
(from the set of to-be-explored paths) that results directly from the concretization of x,
and (b) the exclusion of paths that results indirectly via the constrained return value
and side effects. Since S2E implements VM state in a way that is shared between the
concrete and symbolic domain (more details in Section 4), return values and side ef-
fects can be treated using identical mechanisms. We now discuss how the constraints
are handled under different consistency models.

3. EXECUTION CONSISTENCY MODELS

The traditional assumption about system execution is that the state at any point in
time is consistent, that is, there exists a feasible concrete-execution path from the sys-
tem’s start state to the system’s current state. However, there are many analyses for
which this assumption is unnecessarily strong, and the cost of providing such strong
consistency during multipath exploration is often prohibitively high. For example,
when doing unit testing, one typically exercises the unit in ways that are consistent
with the unit’s interface, without regard to whether all exercised paths are indeed
feasible in the integrated system. This is both because testing the entire system in a
way that exercises all paths through the unit is too expensive, and because exercising
the unit as described above offers higher confidence in its correctness in the face of
future use.

S2E aims to be a general platform for system analyses, so it provides the ability to
choose the level of execution consistency that offers the best trade-offs. In this section,
we take a first step toward systematically defining alternate execution consistency
models (Section 3.1), after which we explain how these different models dictate the
symbolic/concrete conversions applied during the back-and-forth transition between
the analyzed code and its environment (Section 3.2). In Section 3.3 we survey some of
the ways in which consistency models appear in existing analysis tools.

3.1. Model Definitions

The key distinction between the various execution consistency models is which execu-
tion paths each model admits. Choosing an appropriate consistency model is a trade-off
between how “realistic” the admitted paths are vs. the cost of enforcing the model dur-
ing analysis. The appropriateness of the trade-off is determined by the nature of the
analysis, that is, by the way in which feasibility of different paths affects completeness
and soundness of the analysis.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:8 V. Chipounov et al.

Diagram A. Venn diagram representing the relationship between globally, locally, and statistically feasible
execution paths.

In the rest of the article, we use the term system to denote the complete software sys-
tem under analysis, including the application programs, libraries, and the operating
system. We use the term unit to denote the part of the system that is to be analyzed. A
unit could encompass different parts of multiple programs, libraries, or even parts of
the operating system itself. We use the term environment to denote everything in the
system except the unit. Thus, the system is the sum of the environment and the unit
to be analyzed.

When defining a model, we think in terms of which paths it includes vs. excludes.
Following Diagram A, an execution path can be statically feasible, in that there exists
a path in the system’s inter-procedural control flow graph (CFG) corresponding to the
execution in question. A subset of the statically feasible paths are locally feasible in
the unit, in the sense that the execution is consistent with both the system’s CFG and
with the restrictions on control flow imposed by the data-related constraints within
the unit. Finally, a subset of locally feasible paths is globally feasible, in the sense
that their execution is additionally consistent with control flow restrictions imposed
by data-related constraints in the environment. Observing only the code executing in
the unit, with no knowledge of code in the environment, it is impossible (by definition)
to tell apart locally feasible from globally feasible paths.

We say that a model is complete if exploration done under that model discovers
eventually every path through the unit that corresponds to some globally feasible path
through the system. A model is consistent if, for every path through the unit admitted
by the model, there exists a corresponding globally feasible path through the system
(i.e., the system can run concretely in that way).

We now define six points that we consider of particular interest in the space of
possible consistency models, progressing from strongest to weakest consistency. They
are summarized in Figure 3 using a representation corresponding to the Venn diagram
(Diagram A). Their completeness and consistency are summarized in Table I. We invite
the reader to follow Figure 3 while reading this section.

3.1.1. Strict Consistency (SC). The strongest form of consistency is one that admits
only the globally consistent paths. For example, the concrete execution of a program
always obeys the strict consistency (SC) model. Moreover, every path admitted under
the SC model can be mapped to a certain concrete execution of the system starting
with certain concrete inputs. Sound analyses produce no false positives under the SC
model. We define three subcategories of SC based on what information is taken into
account when exploring new paths.

Strictly Consistent Concrete Execution (SC-CE). Under the SC-CE model, the entire sys-
tem is treated as a black box: no knowledge of its internals is used to explore new
paths. The only explored paths are the paths that the system follows when executed
with the sample input provided by the analysis. New paths can only be explored by

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:9

Fig. 3. Different execution consistency models cover different sets of feasible paths. The SC-CE model
corresponds to concrete execution. The SC-UE and SC-SE models are obtained from the previous ones by
using increasingly more information about the system, to explore increasingly bigger sets of concrete paths.
The RC-LC, RC-OC and RC-CC models are obtained through progressive relaxation of constraints.

Table I.

S2E consistency models: completeness, consistency, and use cases. Each use case is assigned to the
weakest model it can be accomplished with.
Model Consistency Completeness Use Case
SC-CE consistent incomplete Single-path profiling/testing of units that have a limited

system-wide number of paths
SC-UE consistent incomplete Analysis of units that generate hard-to-solve constraints

system-wide (e.g., cryptographic code)
SC-SE consistent complete Sound and complete verification without false positives

system-wide or negatives; testing of tightly coupled systems with
fuzzy unit boundaries.

RC-LC locally incomplete Testing/profiling while avoiding false positives from the
consistent unit’s perspective

RC-OC inconsistent complete Reverse engineering: extract consistent path segments
RC-CC inconsistent complete Dynamic disassembly of a potentially obfuscated binary

blindly guessing new inputs. Classic fuzzing (random input testing) [Miller et al. 1990]
falls under this model.

Strictly Consistent Unit-Level Execution (SC-UE). Under the SC-UE model, an exploration
engine is allowed to gather and use information internal to the unit (e.g., by collecting
path constraints while executing the unit). The environment is still treated as a black
box, that is, path constraints generated by environment code are not tracked. Not
every globally feasible path can be found with such partial information (e.g., paths that

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:10 V. Chipounov et al.

are enabled by branches in the environment can be missed). However, the exploration
engine saves time by not having to analyze the environment, which is typically orders
of magnitude larger than the unit.

This model is widely used by symbolic and concolic execution tools [Cadar et al.
2006, 2008; Godefroid et al. 2005]. Such tools usually instrument only the program
but not the operating system code (sometimes such tools replace parts of the OS by
models, effectively adding a simplified version of parts of the environment to the pro-
gram). Whenever such tools see a call to the OS, they execute the call uninstrumented,
selecting some concrete arguments for the call. Such “blind” selection of concrete ar-
guments might cause some paths through the unit to be missed, if they depend on
unexplored environment behaviors.

Strictly Consistent System-Level Execution (SC-SE). Under the SC-SE model, an explo-
ration engine gathers and uses information about all parts of the system, to explore
new paths through the unit. Such exploration is not only sound but also complete,
provided that the engine can solve all constraints it encounters. In other words, every
path through the unit that is possible under a concrete execution of the system will
be found eventually by SC-SE exploration, making SC-SE the only model that is both
strict and complete.

However, the implementation of SC-SE is limited by the path explosion problem:
the number of globally feasible paths is roughly exponential in the size of the whole
system. As the environment is typically orders of magnitude larger than the unit,
including its code in the analysis (as would be required under SC-SE) offers an unfa-
vorable trade-off, given today’s technology.

3.1.2. Relaxed Consistency (RC). Under relaxed consistency (RC), all paths through the
unit are admitted, even those that are not allowed by the SC models. The RC model is
therefore inconsistent in the general case.

The main advantage of RC is performance: by admitting these additional infea-
sible paths, one can avoid having to analyze large parts of the system that are not
really targets of the analysis, thus allowing path exploration to reach the true target
code sooner. However, admitting locally infeasible paths (i.e., allowing the internal
state of the unit to become inconsistent) makes most analyses prone to false positives,
because some of the paths these analyses are exposed to cannot be produced by any
concrete run.

This might be acceptable if the analysis is itself unsound anyway, or if the analysis
only relies on a subset of the state that can be easily kept consistent (in some sense,
this is like RC-LC, except that the subset of the state to be kept consistent may not be
the unit’s state). Also note that, even though RC admits more paths, thus producing
more analysis work, analyses under RC can abort early those paths that turn out to
be infeasible, or the accuracy of the analysis can be decreased, thus preserving the
performance advantage.

We distinguish three subcategories of the RC model, both of which are useful in
practice.

Local Consistency (RC-LC). The local consistency (RC-LC) model aims to combine the
performance advantages of SC-UE with the completeness advantages of SC-SE. The
idea is to avoid exploring all paths through the environment, yet still explore the corre-
sponding path segments in the unit by replacing the results of (some) calls to the envi-
ronment with symbolic values that represent any possible valid result of the execution.

For example, when a unit (such as a user-mode program) invokes the write(fd,

buf, count) system call of a POSIX operating system, the return value can be any

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:11

integer between −1 and count, depending on the state of the system. The exploration
engine can discard the actual concrete value returned by the OS and replace it with a
symbolic integer between −1 and count. This allows exploring all paths in the unit that
are enabled by different return values of write, without analyzing the write function
and without having to find concrete inputs to the overall system that would enable
those paths. This, however, introduces global inconsistency; for instance, according to
the specification of the write system call, there exists no concrete execution in which
(non-zero) count bytes are written to the file and write returns 0. However, unless the
unit explicitly checks the file (e.g., by reading its content) this does not matter: the
inconsistency cannot yield locally infeasible paths.

In other words, the RC-LC model allows for inconsistencies in the environment,
while keeping the state of the unit internally consistent. To preserve RC-LC, an ex-
ploration engine must track the propagation of inconsistencies inside the environment
and abort an execution path as soon as these inconsistencies influence the internal
state of the unit on that path.

This keeps the state of the unit internally consistent on all explored paths: for each
explored path, there exists some concrete execution of the system that would lead to
exactly the same internal state of the unit along that path, except the engine does not
incur the cost of actually finding that path. Consequently, any sound analysis that
takes into account only the internal state of the unit produces no false positives under
the RC-LC model. For this reason, we call the RC-LC model “locally consistent.”

The set of paths explored under this model corresponds to the set of locally feasible
paths, as defined earlier. However, some paths could be aborted before completion, or
even be missed completely, due to the propagation of inconsistencies outside the unit.
This means that the RC-LC model is not complete. In practice, the less a unit interacts
with its environment, the fewer such paths are aborted or missed.

Using the RC-LC model in practice requires writing annotations for API functions
called by the unit under analysis. An anotation specifies how to turn concrete values
into symbolic ones, like in the case of the write system call described earlier. Writing
such annotations is fairly straightforward, in contrast to writing environment models,
where one must specify the complete behavior of the API function (and this makes
both the writing of environment models and the ensuring of their correctness and
completeness in the face of code evoluation hard [Ball et al. 2006]).

Overapproximate Consistency (RC-OC). In the RC-OC model, path exploration can fol-
low paths through the unit while completely ignoring the constraints that the environ-
ment/unit API contracts impose on return values and side effects. For example, the
unit may invoke write(fd, buf, count), and the RC-OC model would permit the return
result to be larger than count, which violates the specification of the write system call.
Under the previous model (local consistency), such paths would be disallowed. Even
though it is not consistent, RC-OC is complete: every environment behavior is admit-
ted under RC-OC, so every path in the unit corresponding to some real environment
behavior is admitted too.

The RC-OC model is useful, for example, for reverse engineering. It enables efficient
exploration of all behaviors of the unit that are possible in a valid environment, plus
some additional behaviors that are possible only when the environment behaves out-
side its specification. For instance, when reverse engineering a device driver, the RC-
OC model allows symbolic hardware [Kuznetsov et al. 2010] to return unconstrained
values; in this way, the resulting reverse engineered paths include some of those that
correspond to allegedly impossible hardware behaviors. Such overapproximation im-
proves the quality of the reverse engineering, as explained in Chipounov and Candea
[2010].

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:12 V. Chipounov et al.

Fig. 4. Example of a “unit” (device driver) interacting with its “environment” (kernel-mode library and OS
kernel itself). The unit is shaded.

CFG Consistency (RC-CC). The RC-CC model admits any execution paths, as long
as they correspond to paths in the unit’s inter-procedural control flow graph. This
roughly corresponds to the consistency provided by static program analyzers that
are dataflow-insensitive and analyze paths that are completely unconstrained. Being
strictly weaker than the SC-SE model, though using the same information to explore
new paths, the RC-CC model is complete.

The RC-CC model is useful in disassembling obfuscated and/or encrypted code: af-
ter letting the unit code decrypt itself under an RC-LC model (thus ensuring the cor-
rectness of decryption), a disassembler can switch to the RC-CC model to reach high
coverage of the decrypted code and quickly disassemble as much of it as possible.

To summarize, we presented six different consistency models that offer flexible
trade-offs between false positives, false negatives, and performance (Table I). The SC-
CE model has zero false positives but yields many false negatives because it explores
a tiny fraction of the paths in the system. The SC-UE model reduces the number of
false negatives and SC-SE eliminates them at the expense of high exploration cost.
Relaxed consistency models alleviate this high cost by allowing inconsistencies. This
allows the RC-LC model to explore paths through the unit that would be followed by
some concrete execution without actually incurring the cost of finding such paths. The
RC-OC model introduces further inconsistencies to guarantee zero false negatives at
the expense of introducing false positives. Finally, RC-CC completely unconstrains
execution to speed up path exploration.

3.2. Implementing Consistency Models

We now explain how the consistency models can be implemented by a selective sym-
bolic execution engine (SSE), by describing the specifics of symbolic ↔ concrete con-
version as execution goes from the unit to the environment and then back again.

We illustrate the implementation details with an example of a kernel-mode device
driver (Figure 4). The driver reads/writes from/to hardware I/O ports and calls the
write usb function, which is implemented in a kernel-mode USB library, as well as
alloc, implemented by the kernel itself.

3.2.1. Implementing Strict Consistency (SC).

Strictly Consistent Concrete Execution (SC-CE). For this model, an SSE allows only con-
crete input to enter the system. This leads to executing a single path through the unit
and the environment. The SSE can execute the whole system natively without having
to track or solve any constraints, because there is no symbolic data.

Strictly Consistent Unit-Level Execution (SC-UE). To implement this model, the SSE con-
verts all symbolic data to concrete values when the unit calls the environment. The

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:13

conversion is consistent with the current set of path constraints in the unit. No other
conversion is performed. The environment is treated as a black box, and no symbolic
data can flow into it.

In the example of Figure 4, the SSE concretizes the content of packet pkt consis-
tently with the path constraints when calling write usb and, from there on, this soft
constraint (see Section 2.2) is treated as a hard constraint on the content of pkt. The
resulting paths through the driver are globally feasible paths, but exploration is not
complete, because treating the constraint as hard can curtail globally feasible paths
during the exploration of the driver (e.g., paths that depend on the packet type).

Strictly-Consistent System-Level Execution (SC-SE). Under SC-SE, the SSE lets symbolic
data cross the unit/environment boundary, and the entire system is executed symboli-
cally. This preserves global execution consistency.

Consider the write usb function. This function gets its external input from the USB
host controller via the usb ready function. Under strict consistency, the USB host con-
troller (being “outside the system”) can return a symbolic value, which in turn propa-
gates through the USB library, eventually causing usb ready to return a symbolic value
as well.

Path explosion due to a large environment can make SC-SE hard to use in prac-
tice. The paths that go through the environment can substantially outnumber those
that go through the unit, possibly delaying the exploration of interest. An SSE can
heuristically prioritize the paths to explore, or employ incremental symbolic execution
to execute parts of the environment as much as needed to discover interesting paths
in the unit quicker. We describe this next:

The execution of write usb proceeds as if it was executed symbolically, but only one
globally feasible path is pursued in a depth-first manner, while all other forked paths
are stored in a wait list. This simulates a concrete, single-path execution through a
symbolically executing environment. After returning to send packet, the path being
executed carries the constraints that were accumulated in the environment, and
symbolic execution continues in send packet as if write usb had executed symbolically.
The return value x of write usb is constrained according to the depth-first path pursued
in the USB library, and so are the side effects. If, while executing send packet, a branch
that depends on x becomes infeasible due to the constraints imposed by the call to
write usb, the SSE returns to the wait list and resumes execution of a wait-listed path
that, for instance, is deemed to eventually execute line 9.

3.2.2. Implementing Relaxed Consistency (RC).

Local Consistency (RC-LC). For RC-LC, an SSE converts, at the unit/environment
boundary, the concrete values generated by the environment into symbolic values that
satisfy the constraints of the environment’s API. This enables multipath exploration
of the unit. Referring to Figure 4, the SSE would turn alloc’s return value v into
a symbolic value λret∈{v, FAIL} and pkt into a symbolic pointer, while ensuring that
λret=FAIL ⇒ pkt=null, so that the alloc API contract is satisfied.

If symbolic data is written by the unit to the environment, the SSE must track
its propagation. If a branch in the environment ever depends on this data, the SSE
must abort that execution path, because the unit may have derived that data based
on symbolic input from the environment that subsumed values the environment could
not have produced in its state at the time.

From the driver’s perspective, the global state may seem inconsistent, since the
driver is exploring a failure path when no failure actually occurred. However, this
inconsistency has no effect on the execution, as long as the OS does not make

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:14 V. Chipounov et al.

assumptions about whether or not buffers are still allocated after the driver’s failure.
RC-LC would have been violated had the OS read the symbolic value of pkt (e.g., if the
driver stored it in an OS data structure).

Overapproximate Consistency (RC-OC). In this model, the SSE converts concrete values
at the unit/environment interface boundaries into unconstrained symbolic values that
disregard interface contracts. For example, when returning from alloc, both pkt and
status become completely unconstrained symbolic values.

This model brings completeness at the expense of substantial overapproximation.
No feasible paths are ever excluded from the symbolic execution of send packet, but
since pkt and status are completely unconstrained, there could be locally infeasible
paths when exploring send packet after the call to alloc.

As an example, note that alloc promises to set pkt to null whenever it returns FAIL,
so the assert on line 4 should normally never fail. Nevertheless, under RC-OC, both
status on line 3 and pkt on line 4 are unconstrained, so both outcomes of the assert

statement are explored, including the infeasible one. Under stronger models, like RC-
LC, pkt must be null if status==FAIL.

CFG Consistency (RC-CC). An SSE can implement RC-CC by pursuing all outcomes
of every branch, regardless of path constraints, thus following all edges in the unit’s
inter-procedural CFG. Under RC-CC, exploration is fast, because branch feasibility
need not be checked with a constraint solver. As mentioned earlier, one use case is
a dynamic disassembler, where running with stronger consistency models may leave
uncovered (i.e., non-disassembled) code. Implementing RC-CC may require program-
specific knowledge, to avoid exploring nonexisting edges, as in the case of an indirect
jump pointing to an unconstrained memory location.

3.3. Consistency Models in Existing Tools

Some of these consistency models already appear in existing tools; we survey them
here as a way to further explain S2E’s consistency models.

Most dynamic analysis tools use the SC-CE model. Examples include Valgrind
[Valgrind 2011] and Eraser [Savage et al. 1997]. These tools execute and analyze
programs along a single path, generated by user-specified concrete input values. Being
significantly faster than multipath exploration, analyses performed by such tools are,
for instance, useful to characterize or explain program behavior on a small set of
developer-specified paths (i.e., test cases). However, such tools cannot provide any
confidence that results of the analyses extend beyond the concretely explored paths.

Dynamic test case generation tools usually employ either the SC-UE or the SC-SE
models. For example, DART [Godefroid et al. 2005] uses SC-UE: it executes the
program concretely, starting with random inputs, while collecting path constraints
on each execution. DART uses these constraints to produce new concrete inputs that
would drive the program along a different path on the next run. However, DART
does not instrument the environment and hence cannot use information from it when
generating new concrete inputs, thus missing feasible paths, which is characteristic of
SC-UE.

As another example, KLEE [Cadar et al. 2008] uses either the SC-SE or a form of
the SC-UE model, depending on whether the environment is modeled or not. In the
former case, both the unit and the model of the environment are executed symbolically.
In the latter case, whenever the unit calls the environment, KLEE executes the envi-
ronment with concrete arguments. However, KLEE does not track the side effects of
executing the environment, allowing them to propagate across otherwise independent

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:15

execution paths, thus making the corresponding program states inconsistent. Due to
this limitation, we cannot say KLEE implements precisely SC-UE as defined here.

Static analysis tools usually implement some form of the RC model. For example,
SDV [Ball et al. 2006] converts a program into a Boolean form, which is an over-
approximation of the original program. Consequently, every path that is feasible in
the original program would be found by SDV, but the tool also finds additional
infeasible paths.

4. S2E PROTOTYPE

We implemented selective symbolic execution in the S2E prototype. This system is
meant to be a platform for rapid prototyping of custom system/program analyses
that employ various execution consistency models. S2E offers two key interfaces,
one for path selection and one for analysis; we describe these interfaces further
in Section 5. S2E explores paths by running the target system in a virtual ma-
chine and selectively executing selected parts of it symbolically. Depending on which
parts are desired, some of the machine instructions of the system being analyzed
are dynamically translated within the VM into an intermediate representation suit-
able for symbolic execution, while the rest are translated to the host instruction
set. Underneath the covers, S2E transparently converts data back and forth as ex-
ecution weaves between the symbolic and concrete domains, so as to offer the illu-
sion that the full system (OS, libraries, applications, etc.) is executing in multipath
mode.

Figure 5 shows the S2E architecture. We reused parts of the QEMU virtual ma-
chine [Bellard 2005], the KLEE symbolic execution engine [Cadar et al. 2008], and the
LLVM tool chain [Lattner and Adve 2004]. To these, we added 30 KLOC of C++ code
written from scratch, not including third party libraries.2 We added 1 KLOC of new
code to KLEE and modified 1.5 KLOC; in QEMU, we added 1.5 KLOC of new code and
modified 3.5 KLOC of existing code. S2E currently runs on Mac OS X, Microsoft Win-
dows, and Linux, it can execute any guest OS that runs on x86 or ARM (e.g., Android
OS), and can be easily extended to other CPU architectures, like MIPS or PowerPC.
S2E can be downloaded from http://s2e.epfl.ch.

In the rest of this section, we explain how S2E uses dynamic binary translation
(Section 4.1), how the execution engine handles concretely and symbolically running
code (Section 4.2), and the details of the plugin infrastructure (Section 4.3). Finally, we
conclude the section with some of the optimizations that are key to making the illusion
of whole-system symbolic execution feasible (Section 4.4).

4.1. Dynamic Binary Translation

In this part of the section, we first discuss the general idea behind dynamic binary
translation used in QEMU. Then, we explain how S2E extends QEMU to interface
dynamic translation with KLEE.

The dynamic binary translator (DBT) converts at run-time the executable code of
one platform to executable code of another. For example, QEMU can run x86 Windows
on a MIPS machine by translating the x86 code to the MIPS instruction set. QEMU
works in a loop: it continuously fetches blocks of guest code, translates them to the
host’s instruction set, and passes the resulting translation to the execution engine.
The DBT determines which code to fetch and translate by reading the state of the

2All reported LOC measurements were obtained with SLOCCount [Wheeler 2010].

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:16 V. Chipounov et al.

Fig. 5. S2E architecture, centered around a custom VM. The VM dynamically dispatches guest machine
instructions to the host CPU for native execution, or to the symbolic execution engine for symbolic inter-
pretation, depending on whether the instruction accesses symbolic data or not. The system state is shared
between the code running natively and the code interpreted in the symbolic execution engine; this enables
S2E to achieve the level of execution consistency desired by the user.

virtual CPU and the guest memory (i.e., the current program counter in the CPU and
program code stored in memory). This state is updated as part of the execution of the
translated code.

First, the DBT translates guest instructions to microoperations, the QEMU interme-
diate representation (IR). Microoperations split complex guest instructions into sim-
pler operations that are easier to emulate. Consider the x86 instruction inc [eax],
which increments the value in the memory location whose address is stored in the eax

register. The DBT decomposes this instruction into a memory load to a temporary
register, an increment of that register, and a subsequent memory store to the original
location.

The DBT packages microoperations into translation blocks. A translation block con-
tains a sequence of microoperations up to and including the first microoperation that
modifies the control flow, such as a branch, a call, or a return. The translator cannot
add to the translation block the instructions past the control flow change, because the
translator cannot always determine statically at which code location to continue the
translation process.

The DBT transforms the microoperations forming the translation block into ma-
chine instructions of the host instruction set by turning each microoperation into an
equivalent sequence of host instructions, using a code dictionary that maps microop-
erations to host instructions. Most of the conversions consist of a one-to-one mapping

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:17

from a microoperation to the corresponding machine instruction. For more complex
instructions, like those that manipulate the processor’s control state or that access
memory, the DBT emits a microoperation that calls emulation helpers (which are C
functions that emulate the original guest machine instruction). Some helpers are big
and are used frequently (e.g., for memory accesses), therefore inlining them in the
translated code would be prohibitively expensive in terms of generated code size.

Microoperations simplify the translation process by abstracting away the guest’s in-
struction set. Without such an IR, translation would require a different translator for
every pair of guest and host instruction sets. For example, supporting 8 guest plat-
forms and 4 hosts would require 32 translators. In contrast, the use of an IR requires
only 8 frontends (to transform the guest code to the IR) and 4 backends (to convert the
IR to the host’s instruction set). QEMU comes with many frontends, including Alpha,
ARM, x86, Microblaze, Motorola 68K, MIPS, PowerPC, and SPARC. Backends include
ARM, x86, MIPS, SPARC, PowerPC, and PowerPC 64.

We extended the native QEMU backend and wrote a new x86-to-LLVM backend to
interface S2E with the KLEE symbolic execution engine that interprets LLVM instruc-
tions. The DBT invokes the LLVM backend when at least one microoperation in the
translation block references registers with symbolic content. If all register references
are concrete, the DBT uses the native backend. We now explain how we modified the
native back-end to accommodate symbolic execution, and how our new LLVM backend
works.

4.1.1. Translating to Native Code. We extended QEMU’s native x86-64 backend to run
S2E on 64-bit Windows hosts. First, since Windows uses a different calling convention
from Linux, supporting Windows required us to change how the DBT allocates host
CPU registers in order to pass parameters to QEMU helper functions. Second, we also
turned pointers to longs into uintptr ts, because longs are always 32-bit on Windows,
even in 64-bit mode. Third, since native code cannot manipulate symbolic data, we
inserted a check that switches to symbolic execution mode when a symbolic value is
detected (Section 4.2).

4.1.2. Translating to LLVM. We added the LLVM backend to QEMU, in order to inter-
face S2E with the KLEE symbolic execution engine. This backend translates micro-
operations to the LLVM intermediate representation, which is directly interpretable
by KLEE (see Section 4.2). Neither the guest OS nor KLEE are aware of the x86-to-
LLVM translation: The guest OS sees that its instructions are being executed, and
KLEE only sees LLVM instructions, just as if they were coming from a program en-
tirely compiled to LLVM. In this way, the guest thinks the “entire world” is concrete,
while KLEE thinks the “entire world” is symbolic.

The DBT must translate code in a way that allows precise CPU exception handling,
given that execution could be interrupted at any time by hardware interrupts, page
faults, etc. S2E extends the DBT to enable precise exception handling from LLVM code.
When an exception occurs, QEMU converts the address of the translated instruction
that raised the exception to the program counter of the guest code. Such a conversion
is possible because each guest instruction corresponds to a clearly delimited sequence
of host machine instructions. However, there is no such clear correspondence in LLVM
code, because LLVM applies more aggressive optimizations within each translation
block. To solve this, we modified the DBT to insert microoperations that explicitly
update the program counter before each guest instruction is executed. As a result,
both the LLVM code and the native code see a consistent program counter at every
point during execution, allowing precise exception handling.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:18 V. Chipounov et al.

4.2. Execution Engine

We now present the extensions to QEMU’s execution engine that enable transparent
switching between concrete and symbolic execution, while preserving the consistency
of the execution state.

The execution engine consists of a loop that calls the DBT to translate guest code,
then runs the translated code in native mode or interprets it in the symbolic execu-
tion engine. The execution engine does not know a priori whether to ask the DBT to
generate LLVM or native code. It first instructs the DBT to generate native code and,
if the code reads memory locations that contain symbolic data, it invokes the DBT to
retranslate the code to LLVM. The DBT stores the translations in a cache to avoid
needless retranslations, such as when executing a loop or repeatedly calling the same
function).

S2E mediates access to most of the VM state via emulation helpers. While simple
instructions can access the CPU state directly, memory accesses, device I/O, as well
as complex manipulations of the CPU state go through specific helpers, in order to re-
duce the size of the translated code. For example, the translated code for the software
interrupt instruction triggers the do interrupt helper during execution. This helper
emulates the behavior of the software interrupt instruction by checking the current
execution mode and privilege level, saving registers, taking care of potential excep-
tions, etc.

S2E provides emulation helpers both for concrete (native) execution and symbolic
(LLVM) execution. Native-mode helpers mediate access to the shared state when S2E
executes concrete code on the host CPU, while LLVM helpers are used in symbolic ex-
ecution mode. The execution engine runs native-mode helpers on the host CPU and
interprets LLVM helpers in the symbolic execution engine; LLVM helpers must some-
times call native-mode QEMU code, for example to simulate a virtual device.

LLVM emulation helpers avoid forceful unnecessary concretizations that would
arise from calling native emulation helpers from within KLEE. The emulation helpers,
called by the translated code, are compiled twice: to x86 and to LLVM. When running
in symbolic mode, KLEE executes the LLVM version of the helper in order to let the
helper manipulate symbolic data. If that version was missing, KLEE would be forced
to call the native x86 version of the helper, which would then forcefully concretize the
symbolic data. For example, QEMU implements bit-shift operations in helpers; if the
bit-shift helper was available in x86 form only, the data it manipulates would have to
be concretized when called from KLEE.

4.2.1. S2E’s Shared State Representation. S2E combines concrete with symbolic execu-
tion in a controlled fashion along the same path by using a representation of machine
state that is shared between the VM and the embedded symbolic execution engine.
S2E redirects reads and writes from QEMU and KLEE to the common machine state,
which consists of VM physical memory, virtual CPU state, and virtual device state
(see Figure 6). In this way, S2E can transparently convert data between concrete and
symbolic, according to the desired consistency model, and provide distinct copies of the
entire machine state to distinct paths. S2E reduces the memory footprint of all these
system states by several orders of magnitude through copy-on-write (Section 4.4).

S2E implements transparent state sharing by using KLEE’s ObjectState data struc-
ture for the CPU and the physical memory. This structure encapsulates an array of
concrete bytes and symbolic expressions. It provides accessors to get and set concrete
or symbolic bytes. To execute native code more efficiently, S2E extends ObjectState to
expose a direct pointer to the concrete array of bytes, bypassing getters and setters. It
also exposes a pointer to a bitmap that indicates which bytes are symbolic and which
are concrete.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:19

Fig. 6. Data paths to shared memory and device state.

Sharing the CPU State. S2E splits the CPU state into symbolic and concrete regions,
each in a different ObjectState structure. The symbolic region contains the general
purpose registers and the flags registers. These registers can store symbolic values.
The concrete region stores the control state of the system, including segment registers,
program counter, control and debug registers, etc. S2E does not allow this state to
become symbolic, because doing so would cause execution to fork inside the S2E em-
ulation code, thus exercising the emulator and not the target software. For example,
a symbolic PE (protection mode) bit in the CR0 register would fork the translator exces-
sively often, since many instructions behave differently in protected mode vs. in real
mode.

S2E concretizes all symbolic data written to the concrete region. For example, S2E
concretizes symbolic addresses when they are written to the (always concrete) program
counter. To avoid reducing the completeness of exploration too much, S2E actually
allows execution to fork up to some predefined number of times, and then concretizes
the program counter in each of the states. This behavior can be customized by the user,
via the S2E API. Finally, S2E assigns floating point registers to the concrete region,
because KLEE and the underlying constraint solver3 do not yet support floating point
operations on symbolic data.

The translated code accesses the CPU state directly by dereferencing the pointer to
the CPU state or, in the case of native helpers, indirectly: read accesses to the symbolic
CPU state are prepended with checks for symbolic data.

Sharing the Memory State. QEMU emulates a memory management unit (MMU) to
handle all guest memory accesses. The MMU translates virtual memory addresses
into physical addresses. The MMU caches the result of the translation in a TLB to
speed up the translation on repeated accesses to the same memory pages. In QEMU,
the TLB is a direct-mapped cache where each entry holds an offset that, when added to
the virtual address of a memory page, results in the physical address inside QEMU’s

3The constraint solver decides whether path constraints associated with each branch outcome are satisfiable
and, if so, allows the symbolic execution engine to continue execution along that outcome.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:20 V. Chipounov et al.

address space where the data for that page is stored. Each TLB entry also contains
information about access permissions and whether the memory page belongs to an
emulated device.

S2E extends the TLB with pointers to ObjectState structures in order to support
symbolic memory. The ObjectState structures store the actual concrete and/or symbolic
data of the memory pages.4 When native code is running, the MMU checks whether
memory reads would return symbolic data by looking at the ObjectState’s bitmap. If
yes, the MMU instructs the execution engine to abort the execution of the current
translation block and to re-execute the memory access in symbolic mode. In symbolic
mode, the execution engine retrieves the ObjectState that corresponds to the physical
address stored in the TLB entry and proceeds with the memory operation.

Sharing the Device State. A device is a piece of hardware that interacts with the CPU
via a bus. To the CPU, devices look like memory: the CPU writes/reads data to/from
them. Devices continuously observe the address bus. When the CPU issues a write
access, if a connected device recognizes the address, it reads the data sent on the bus
and processes it (e.g., displays a pixel on the screen). Likewise, when the CPU issues a
read access, the device that recognizes its address on the bus replies with the requested
value (e.g., a network packet). Unlike regular memory, which always returns the value
last stored in that location, a device may return different data on each access. For
example, it is common for devices to stream data packets over a single address, where
consecutive reads from that address return successive bytes of the packet.

A device performs operations on state and produces output visible to the machine
the device is attached to. In real hardware, the state consists of the contents of all
internal registers (stored in flip-flops) and memory (e.g., DRAM chips). Virtual devices
in QEMU emulate the behavior of the real devices: device state is kept in host memory,
and the device’s functionality is implemented by software running on the host CPU.
QEMU supports both memory-mapped (MMIO) and port I/O-based devices.

S2E modifies the QEMU block layer to support consistent disk state. Virtual block
devices (e.g., hard disks and CD drives) provide storage to guests, which is backed by
files stored on the host. Virtual block devices access the host files via the QEMU block
layer. S2E modifies the block layer to redirect to a state-local buffer all writes to the
host files. When the guest OS issues a read request, S2E returns the latest write from
the buffer. If there were no writes, S2E forwards the request to the block layer. This
ensures that all execution states see a consistent disk state and do not clobber each
other’s writes by writing to a shared disk file. Failing to provide consistent disk state
quickly leads to file system corruption, resulting in guest OS crashes.

4.2.2. Symbolic Hardware. To support whole-system symbolic execution, S2E extends
the virtual hardware with symbolic devices (e.g., to enable analysis of low-level code
such as device drivers) and introduces a per-state virtual clock, to ensure that the
guest sees a coherent time.

Symbolic Devices. A symbolic device is a special device that discards all writes, re-
turns a symbolic value on every read, and triggers symbolic interrupts5; in other
words, it does not implement specific functionality. S2E instruments port I/O, MMIO,
and physical memory accesses (for DMA-d memory) in order to determine on which
read to return a symbolic value. To support symbolic reads for port I/O and MMIO,
S2E extends QEMU’s emulation helpers. If a given port belongs to a symbolic device,

4One memory page can be split in multiple ObjectState structures, in order to optimize access times, as
shown in Section 4.4.
5A symbolic interrupt is an interrupt with a symbolic arrival time.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:21

S2E returns a symbolic value on reads and discards writes. MMIO helpers are simi-
lar: each TLB entry contains a flag that specifies whether the memory page is mapped
to physical memory or to a device, and is directed to the device emulation helpers as
needed. These helpers return symbolic values on reads, exactly like for port I/O. To
handle DMA, when the TLB entry of a memory page involved in a DMA transfer is
loaded, S2E modifies the flag in order to invoke MMIO emulation helpers whenever
this memory page is accessed; in these helpers, if the access indeed falls inside the
DMA region, a symbolic value is returned.

Supporting symbolic interrupts does not require any modification to QEMU. Trig-
gering such interrupts consists of asserting the interrupt pin of the virtual device at
the desired moment. This can be readily done by QEMU, which has different mecha-
nisms to assert interrupts for each class of devices (e.g., for PCI, ISA, and USB devices).
At which point in an execution to trigger the interrupt is decided by the S2E plugins.

These mechanisms enable selection plugins to implement arbitrary symbolic de-
vices. S2E comes with a SymbolicHardware plugin that implements symbolic PCI and
ISA devices. For ISA devices, the plugin registers port I/O ranges, MMIO, and DMA
regions according to the user’s configuration. For PCI devices, the plugin lets the user
specify the device and vendor identifiers, as well as I/O and MMIO regions, interrupt
channels, and all other fields available in a PCI descriptor. The plugin uses this in-
formation to instantiate an “impostor” PCI device that will induce the guest OS to
load the appropriate device driver. Then, whenever the driver accesses the device, S2E
returns symbolic data.

Enabling DMA regions and symbolic interrupts is done with support from analy-
sis plugins: they monitor the OS kernel, catch invocations of DMA-related APIs (e.g.,
registration of DMA regions), and pass address ranges to selector plugins (e.g., Sym-
bolicHardware) that then register these regions through the S2E API. Likewise, an
analysis plugin can help determine when to trigger symbolic interrupts. For example,
DDT+, an automated testing tool for proprietary drivers, triggers such interrupts on
every call to the kernel API in order to maximize the chances of exposing concurrency
bugs. REV+, a reverse engineering tool, triggers symbolic interrupts after having ex-
ercised the send entry point of a network card, in order to maximize the coverage of
the interrupt handler.

Per-State Virtual Clock. QEMU maintains two types of clocks: a host clock and a virtual
clock. The host clock reflects the current time of the host machine. The host clock is
used by QEMU’s virtual real-time clock device in order to provide the guest OS with a
time source synchronized with the host machine. The virtual clock stores the number
of ticks elapsed from the start of the system (i.e., when the VM was turned on). Unlike
the host clock, the virtual clock is periodically incremented but not synchronized with
the host machine’s time.

Since S2E splits “reality” into multiple executions, it must correspondingly offer
multiple timelines. For this reason, S2E maintains a separate virtual clock for each
system state and does not rely on the host clock. S2E increments the virtual clock of
the state of the currently running path and keeps the respective clocks frozen in all
other states. This way, the guest OS is given (a sufficiently good) illusion that the
execution of those paths never stopped.

S2E slows down the per-state virtual clock when running in symbolic mode. Inter-
preting LLVM instructions in KLEE is slower than running native code, and frequent
timer interrupts make progress even slower. To avoid frequent interruptions when
interpreting blocks of LLVM code, S2E temporarily masks the timer interrupts and
restores them after it finishes interpreting the LLVM code.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:22 V. Chipounov et al.

4.2.3. State Switching. Conceptually, S2E executes only one path at a time and
switches between paths to allow executions to progress in parallel. Since each exe-
cution path is characterized by its state, S2E switches execution paths by switching
states. The challenge is to automatically save and restore QEMU-specific concrete
state (i.e., virtual devices and concrete CPU state) as well as to manage the transla-
tion block cache correspondingly.

S2E explicitly copies the concrete region of the CPU state to/from QEMU’s heap.
Before S2E is initialized, QEMU allocates a CPUState structure on the heap. Although
S2E stores the CPU state in an ObjectState structure, which LLVM helpers and sym-
bolically running code access transparently, parts of QEMU also directly access the
concrete region by dereferencing CPUState pointers (e.g., from the DBT). Finding and
instrumenting all accesses to redirect them to the ObjectState is error-prone and un-
maintainable (e.g., when upgrading QEMU versions). Therefore, S2E leaves all the
accesses unchanged (i.e., lets QEMU access the CPUState on the heap) and, during state
switch, S2E saves the concrete content on the heap in the ObjectState of the active ex-
ecution state, fetches the new state, and overwrites the structure on the heap with the
new CPUState data.

S2E relies on QEMU’s snapshot mechanism to automatically save and restore con-
crete virtual device data structures. QEMU uses snapshots to suspend and resume the
virtual machine: S2E redirects all writes and reads to/from the snapshot file to a per-
path buffer. When S2E is about to switch states, it calls QEMU to go through the list of
all virtual devices and save their internal data structures. Then, S2E selects the next
execution state and restores the state of the virtual devices by calling vmstate load.

Users can configure S2E to not preserve the per-path device state upon state switch-
ing and let devices share their state between all execution paths, as done in KLEE.
This causes inconsistencies, but reduces memory usage. For example, disabling state
saving for the framebuffer avoids recording a separate ObjectState (multiple MBs) for
each state and copying this data between the heap and the ObjectState. This makes for
intriguing visual effects on-screen: multiple erratic mouse cursors and BSODs blend
chaotically, providing free entertainment to the S2E user.

Since different states may execute different code at the same address, stale code
might end up being executed if the translation block cache is not flushed on state
switches. However, since many programs do not change their code at run-time, dis-
abling flushing makes sense, since it improves emulation speed. We plan to make the
translation block cache state-local, to avoid unnecessary flushes.

4.3. Plugin Infrastructure

The S2E plugin infrastructure connects selector and analyzer plugins via events, as
will be described in Section 5. An S2E plugin is a C++ class that subclasses the
Plugin base class, which in turn registers the plugin with S2E, automatically checks
that plugin dependencies are satisfied, and provides an API to retrieve the instance
of other plugins in order to communicate with them. During initialization, a plugin
must subscribe to at least one core event; it can also subscribe to events exported
by other plugins. A plugin can later modify its event subscriptions from its event
handlers.

We wrote an event library that defines signals (the S2E events) to which it is pos-
sible to connect callbacks (the event subscribers). We originally used the libsigc++

[Pulkkinen et al. 2011] library for the plugin infrastructure, but it incurs an unaccept-
able performance overhead, because it calls memory allocation routines during signal
invocation. S2E plugins can trigger signals at a high rate (up to thousands of signal
invocations per second). For example, it took 250 seconds to open the Windows control

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:23

panel while using the FunctionMonitor plugin (12 seconds without the plugin). The
new implementation reduced the overhead to 25% (15 seconds).

S2E instruments translated code to generate run-time events. For each guest in-
struction that the DBT translates, S2E invokes the onInstrTranslation event, de-
scribed in Section 5. One parameter of this event is a pointer to a list of callbacks.
Subscribers that want to be notified every time that a guest instruction is executed
append their callback to that list. After S2E processed all subscribers of onInstrTrans-
lation, S2E saves the list of onInstrExecution callbacks in the translation block and
inserts a microoperation that triggers the invocation of a specific emulation helper
every time that instruction is executed. This emulation helper goes through the list
stored in the translation block and invokes the callbacks.

S2E extends the x86 instruction set with custom instructions that trigger events.
S2E uses the opcode 0x0f 0x3f for custom instructions, which is unused according to
the Intel instruction set manual [Intel 2011]. In S2E, this opcode is followed by an
8-bytes operand that is freely definable by the plugins. The DBT translates this opcode
into a call to the S2E custom instruction emulation helper and passes the operand
as a parameter. At runtime, the helper invokes all the callbacks registered by the
subscribers of the onCustomInstruction event, the subscribers check the operand and
perform whatever action is appropriate. Note that executing on a normal machine
a program instrumented with S2E opcodes would trigger an invalid instruction
exception.

S2E triggers all other events without requiring the translated code to be instru-
mented. For example, S2E triggers the onTimer event from QEMU’s timer handler in
order to allow plugins to process periodic events. Likewise, S2E triggers onException,
onExecutionFork, and onTlbMiss from the exception emulation helpers, KLEE, and
the MMU, respectively.

4.4. Key Optimizations

In this section, we describe four optimizations that have brought the greatest improve-
ment in S2E’s performance: pervasive use of copy-on-write, aggressive simplification
of symbolic expressions, optimized handling of symbolic pointers, and multicore
parallelization.

Copy-on-Write. Copy-on-write (COW) minimizes memory usage by sharing as much
data as possible between execution states. When a state is copied (upon path split-
ting), the child states share the data stored in the parent. When a write occurs, S2E
copies the data from the parent to the child that initiated the write. S2E splits the
physical memory into multiple ObjectState structures and then reuses KLEE’s COW
mechanisms. S2E uses a similar technique for device state as well, but does not use
fine-grained COW, because device state is small (a few kilobytes per state).

Expression Simplification. Conversion from x86 to LLVM gives rise to complex symbolic
expressions. S2E “sees” a lower level representation of the programs than what would
be obtained by compiling source code to LLVM (as done in KLEE): it actually sees the
code that simulates the execution of the original program on the target CPU archi-
tecture. Such code typically contains many bitfield operations (such as and/or, shift,
masking to extract or to set bits in the eflags register).

We built a bitfield-theory expression simplifier to optimize these expressions that,
if parts of a symbolic variable are masked away by bit operations, removes those
bits from the corresponding expressions. First, the simplifier starts from the bottom
of the expression’s tree representation and propagates information about individual
bits whose value is known. If all bits in an expression are known, S2E replaces

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:24 V. Chipounov et al.

the expression with the corresponding constant. Second, the simplifier propagates
top-down information about bits that are ignored by the upper parts of the expression;
when an operator only modifies bits that upper parts ignore, the simplifier removes
that entire operation.

We say a bit in an expression is known to be one (respectively, zero), when that bit
is not symbolic and has the value one (respectively, zero). For example, if x is a 4-bit
symbolic value, the expression x | 1000 has its most significant bit (MSb) known to
be one, because the result of an or of a concrete bit set to one and of a symbolic bit is
always one. Moreover, this expression has no bits known to be zero, because the MSb
is always one and symbolic bits or-ed with a zero remain symbolic. Finally, the ignore
mask specifies which bits are ignored by the upper part of an expression. For example,
in 1000 & (x | 1010), the ignore mask at the top-level expression is 0111 because the
and operator cancels the three lower bits of the entire expression.

To illustrate, consider the 4-bit wide expression 0001 & (x | 0010). The simplifier
starts from the bottom (i.e., x | 0010) and propagates up the expression tree the value
k11 = 0010 for the known-one bits as well as k10 = 0000 for the known-zero bits. This
means that the simplifier knows that bit 1 is set but none of the bits are zero for sure
(because x is symbolic). At the top level, the and operation produces k21 = 0000 for the
known-one bits (k11 & 0001) and k20 = 1110 for the known-zero bits (k10 | 1110). The
simplifier now knows that only the least significant bit matters and propagates the
ignore mask m = 1110 top down. There, the simplifier notices that 0010 is redundant
and removes it, because 1101 | m yields 1111, meaning that all bits are ignored. The
final result is thus 1 & x.

We implemented this simplification in the early stage of expression creation rather
than in the constraint solver. This way, we do not have to resimplify the same expres-
sions again when they are sent to the constraint solver several times (for example,
as part of path constraints). This is an example of applying domain-specific logic to
reduce constraint solving time; we expect our simplifier to be directly useful for KLEE
as well, when testing programs that use bitfields heavily.

Symbolic Pointers. A symbolic pointer is a pointer whose value depends on symbolic
inputs, therefore referring to a range of memory locations (as opposed to a concrete
pointer, which refers to only one particular address). Symbolic pointers commonly
occur when indexing arrays, for instance, in jump tables generated by compilers for
switch statements. When a symbolic pointer is dereferenced, S2E determines the pages
referenced by the pointer and passes their contents to the constraint solver. Alas, large
page sizes can bottleneck the solver, so S2E splits the default 4KB-sized memory pages
into smaller pages of configurable size (e.g., 128 bytes), so that the constraint solver
need not reason about large areas of symbolic memory. In Section 6.2, we show how
much this helps in practice.

S2E can also concretize symbolic pointers to further reduce overhead. This is most
useful in the case of switch statements and symbolic writes to the program counter
register (which is always concrete in S2E). S2E uses binary search to determine to
which interval the symbolic pointer belongs, and forks n states, each state having one
concrete address that satisfies the path constraints. n is usually bounded, since the
path constraints often limit the interval (e.g., switch statements have a limited num-
ber of cases). n can be user-configurable to avoid path explosion in case the symbolic
pointer references a large memory range.

Multicore S2E. S2E explores different paths concurrently by running multiple S2E
instances in parallel. Whenever an execution path splits due to a branch depending on
a symbolic condition, S2E assigns the exploration of the newly created path to a new

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:25

S2E instance that runs on a different core. If all cores are already busy exploring paths,
then the S2E instance behaves like in single-instance mode: each split path is added
to the local queue of the instance that split it. When an S2E instance has explored all
the paths in its queue, it terminates, leaving the core available for new instances.

The simple parallelization algorithm used by S2E does not address the issues of
redundant exploration (i.e., two cores exploring identical states) and load balancing
(i.e., moving a subset of states from one instance to another). This can be solved by
combining S2E with the Cloud9 [Bucur et al. 2011] parallel symbolic execution engine.
Section 6.1 analyzes the impact of this multicore design on S2E’s performance.

S2E uses the fork system call to run instances on multiple processors/cores. This
system call maps naturally to the concept of execution path splitting in symbolic ex-
ecution. Consider an execution path p that is explored by an S2E process q. When p
splits on a branch that depends on a symbolic value, S2E creates a path p′ and forks
a child process q′, which is an identical copy of the S2E process q. The child process
q′ receives the execution path p′, and the parent process q continues the execution of
p. After the fork system call completes, each instance starts exploring an independent
subtree. A similar approach is used by EXE [Cadar et al. 2006] to implement symbolic
execution.

S2E plugins can be kept aware of the various running instances: S2E triggers onIn-
stanceFork whenever it creates a new instance. For example, the Logger plugin listens
to this event to create a fresh execution trace file each time a new instance is created;
this avoids expensive synchronization, yet writing traces to separate files does not bur-
den offline processing tools: each file contains an independent subtree, and recreating
the full tree through trace concatenation is straightforward.

4.5. Summary

In this section, we showed how S2E combines virtualization, dynamic binary transla-
tion, native execution, and symbolic interpretation to give the illusion of whole-system
symbolic execution. We explained how S2E shares CPU, memory, and device state
between native and symbolic execution, described how to efficiently implement the
plugin infrastructure, and presented some of the key optimizations that make the S2E
approach feasible. We describe next how S2E can be used to write new analysis tools.

5. SYSTEM ANALYSIS WITH S2E

As mentioned before, S2E is in effect a platform for rapid prototyping of custom system
analyses. It offers two key interfaces: the selection interface, used to guide the explo-
ration of execution paths (and thus implement arbitrary consistency models), and the
analysis interface, used to collect events or check properties of execution paths. Both
interfaces accept modular selection and analysis plugins. Underneath the covers, S2E
consists of a customized virtual machine, a dynamic binary translator (DBT), and an
embedded symbolic execution engine, as was described in the previous section. The
DBT decides which guest machine instructions to execute concretely vs. which ones to
interpret symbolically using the embedded symbolic execution engine.

S2E provides many plugins out of the box for building custom analysis tools; we
describe these plugins in Section 5.1. One can also extend S2E with new plugins,
using S2E’s developer API (Section 5.2). Figure 7 shows a snapshot of the S2E plugins
that are part of S2E today.

5.1. User Interface

In this section, we show how an S2E user can combine the various S2E plugins in
order to construct custom analysis tools, without writing any additional plugins.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:26 V. Chipounov et al.

Fig. 7. S2E stock plugins. The arrows represent plugin dependencies (e.g., the CodeSelector plugin uses the
functionality provided by ModuleExecutionDetector). To distinguish selectors from analyzers, we show the
former on a shaded background.

For instance, an S2E user could be a device driver tester performing quality checks
during driver development. Such a user would combine various path selectors to
limit multipath exploration to the driver under test (Section 5.1.1) with path analysis
plugins to check the driver for the presence of bugs (Section 5.1.2).

5.1.1. Path Selection. The first step in using S2E is deciding on a policy for which part
of a program to execute in multipath (symbolic) mode vs. single-path (concrete) mode;
this policy is encoded in a selector. S2E provides a default set of selectors for the most
common types of selection, which fall into three categories:

Data-based selection provides a way to expand a regular execution into a multipath
one by introducing symbolic values into the system; then, any time S2E encounters
a branch predicate that depends on symbolic values, execution will fork accordingly.
Symbolic data can enter the system from various sources, and S2E provides a selector
for each, ranging from command-line arguments using the CommandLine plugin to
hardware input with the SymbolicHardware plugin.

Often it is useful to introduce a symbolic value at an interface that is internal to
the system. For example, say a server program calls a library function libFn(x) almost
always with x = 10, but may call it with x < 10 in strange corner cases that are hard
to induce via external workloads. The developer might therefore be interested in ex-
ploring the behavior of libFn for all values 0 ≤ x ≤ 10. For such analyses, S2E provides
an Annotations plugin, which allows direct injection of custom-constrained symbolic
values anywhere they are needed.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:27

Code-based selection enables/disables multipath execution depending on whether
the program counter is or not within a target code area; for instance, one might focus
cache profiling on a Web browser’s SSL code, to see if it is vulnerable to side channel
attacks. The CodeSelector plugin takes the name of the target program (or library,
driver, etc.) and a list of program counter ranges. Code within these ranges should
be explored in multipath mode, while code that is outside should be run in single-path
mode. CodeSelector is typically used together with data-based selectors to constrain
the data-selected multipath execution to within only code of interest.

Priority-based selection is used to define the order in which paths are explored
within the family of paths defined with data-based and code-based selectors. S2E in-
cludes basic policies, such as Random, DepthFirst, and BreadthFirst, as well as others.
The MaxCoverage selector works in conjunction with coverage analyzers to heuristi-
cally select paths that maximize coverage. The PathKiller selector monitors the ex-
ecuted program and deletes paths that are determined to no longer be of interest to
the analysis. For example, paths can be killed if a fixed sequence of program counters
repeats more than n times; this avoids getting stuck in polling loops.

5.1.2. Path Analysis. Once the family of paths to be analyzed is defined via the choice
of selector(s), the user needs to choose the analyzer(s) to which S2E will expose the
chosen paths.

An analyzer is a piece of logic that checks for properties along execution paths. For
example, a bug finder is an analyzer that may check for various types of crashes or
assertion violations along the executed paths. A performance profiler is also a type of
analyzer that checks for properties such as the number of cache misses along a path or
the TLB hit count. S2E has several multipath analysis plugins, such as a performance
profiler, memory checkers, crash detectors, or execution tracers.

S2E also lets users take advantage of existing unmodified off-the-shelf single-path
analysis tools, such as Valgrind, Oprofile [Levon and Elie 1998], or Microsoft Driver
Verifier [Microsoft 2011a], which can be wrapped into a plugin that adapts the output
of these tools to the S2E API (e.g., such a plugin could terminate every path reported
as faulty by Microsoft’s Driver Verifier).

Reusing Existing Single-Path Analysis Tools. We illustrate how S2E can reuse existing
tools with the example of Valgrind and Oprofile. Valgrind instruments programs in
order to analyze their cache behavior, memory safety, execution times, and call graphs.
Oprofile is a sampling-based profiler that can analyze an entire software stack, includ-
ing the OS kernel.

Both of these tools are single-path and rely on testers to guess the concrete inputs
that would drive a program down a path of interest. In other words, testers have to
design test cases that exhibit the behaviors to be studied, such as bugs or slowdowns.
In contrast, S2E automatically enumerates various execution paths and exposes these
tools to them. Off-the-shelf tools are not aware of the multipath exploration: they
just operate as usual, without any modification in their logic, but ultimately yield
multipath results.

However, S2E does not remove the limitations of the existing tools. For example,
Valgrind is still limited to profiling user-mode processes and cannot analyze the kernel,
while Oprofile is still subject to imprecise results because it is based on sampling.
Moreover, these tools remain single-path in nature: they cannot reason about multiple
paths at a time. For instance, Valgrind cannot tell whether the path it has just run
has the lowest instruction count. For this, a Valgrind-based plugin would need to be
modified to look at all the paths that were explored so far.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:28 V. Chipounov et al.

Multipath Analyzers. When off-the-shelf tools are not enough, users can employ S2E
analysis plugins. Plugins run outside of the guest OS and can observe the entire sys-
tem state, without interfering with the software under analysis.

One class of analyzers are bug finders, such as the WinBugCheck and Memo-
ryChecker plugins, which look for Windows “blue screens of death” and memory er-
rors, and output the execution paths leading to the encountered bugs. Another class of
analyzers are execution tracers, such as InstructionTracer, which selectively records
the instructions executed along a path, or MemoryTracer, which logs memory accesses
and hardware I/O. Tracing can be used for many purposes, like offline coverage mea-
surement or profiling. Finally, the PerformanceProfiler analyzer counts cache misses,
TLB misses, and page faults incurred along each path; this can be used to obtain the
performance envelope of an application. We describe it in more detail in the evaluation
section (Section 6).

While most plugins are OS-agnostic, S2E also includes a set of analyzers that in-
tercept Windows-specific events using undocumented interfaces or other hacks. For
example, WindowsMonitor parses and monitors Windows kernel data structures and
notifies other plugins when the kernel loads a driver, a library, or an application. An-
other example is the CrashDumpGenerator plugin, which generates a memory dump
compatible with Microsoft WinDbg.

Offline Multipath Analyzers. S2E provides plugins for collecting execution traces and
saving them to a file for offline analysis. This is useful for complex analyses that are
hard to do online, such as reverse engineering of device drivers (Section 6.1.2). The
core tracing plugin Logger provides an interface to other plugins that they can use to
log arbitrary data. Logger wraps the written data into a trace item object containing a
path identifier, timestamp, size, and the plugin that wrote the item. This allows offline
analysis tools to focus only on trace items of interest.

The collected traces can be parsed by offline analysis tools to reconstruct the execu-
tion tree, walk through all trace items on a given path, and perform analyses on them.
For example, a tool that measures code coverage would look for trace items written by
the InstructionTracer plugin to determine which instructions were executed. That tool
would also rely on the module information provided in the trace by the ModuleLoadUn-
loadTracer plugin in order to associate each program counter with the corresponding
module and display relevant debug information (e.g., function names).

5.1.3. Configuration Interface. Users can combine plugins using the S2E configuration
interface, which accepts scripts written in the Lua language [Lua 2010]. For each
selector and analyzer used, there is a section in the script that lets the user control
the plugin’s behavior. For instance, the user can configure a data selector plugin to
write symbolic values to some memory location after the system executes a particular
function (e.g., users may want to fill a freshly malloc-ed buffer with symbolic values in
order to track uses of uninitialized data).

5.2. Developer Interface

We now describe the interface that can be used to write new plugins or to extend the
default plugins described above. Both selectors and analyzers use the same inter-
face; the only distinction between selectors and analyzers is that selectors influence
the execution of the program, whereas analyzers are passive observers of the selected
execution paths.

Plugin Interface. S2E has a modular architecture, in which plugins communicate via
events in a publish/subscribe fashion. S2E events are generated either by the S2E

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:29

Table II. Core Events Exported by the S2E Platform

Event Description
onInstrTranslation The DBT is about to translate a machine instruction. A plugin can use this

event to mark instructions of interests (e.g., calls or returns).
onInstrExecution The VM is about to execute a marked instruction. This event invokes the

callbacks registered via onInstrTranslation.
onExecutionFork S2E is about to split (fork) the current execution path in two. Mainly used

by tracing plugins to embed the execution tree in trace files.
onInstanceFork S2E is about to spawn a new process instance of itself in order to explore

the forked path on a different CPU core (more details in Section 4.4).
onException The VM interrupt pin has been asserted. Provides a convenient means of

intercepting interrupts and exceptions (e.g., fatal double faults).
onMemoryAccess The VM is about to execute a memory access. This event can be used to

simulate a cache hierarchy, record a memory trace for offline analysis, etc.
onPortAccess The VM is about to execute a port I/O operation.
onCustomInstruction The VM is about to execute a custom opcode. Listening plugins parse the

custom instruction’s operands to decode the action to perform.
onPageFault A page fault occurred in the guest code.
onTlbMiss A TLB missed occurred in the memory management unit. Using this event

is faster than checking for misses every time onMemoryAccess fires.
onTimer Timer event to let plugins implement periodic tasks, such as flushing trace

files, periodically terminating uninteresting paths, etc.

platform or by other plugins. To register for a class of events, a plugin invokes
regEventX(callbackPtr); the event callback is then invoked every time EventX occurs,
and it is passed parameters specific to the event.

Table II shows the core events exported by S2E that arise from regular code transla-
tion and execution. We chose these core events because they correspond to execution
at the lowest possible level of abstraction: instruction translation, execution, memory
accesses, and state forking.

Execution Path Abstraction. For each path being explored, there exists a distinct Execu-
tionState object instance; when an execution path splits (or forks), each child execution
receives its own private copy of the parent ExecutionState. The ExecutionState object
captures the current state of the entire virtual machine along a specific individual
path. It is the first parameter of every event callback. ExecutionState enables plugins
to toggle multipath execution on/off and gives them read/write access to the entire
VM state, including the virtual CPU, VM physical memory, and virtual devices (see
Table III for some of the ExecutionState object methods). A plugin can obtain the
PID of the running process from the page directory base register, can read/write page
tables and physical memory, can change the control flow by modifying the program
counter, and so on.

Plugins partition their own state into per-path state (e.g., number of cache misses
along a path) and global state (e.g., total number of basic blocks touched). The per-
path state is stored in a PluginState object, which hangs off of the ExecutionState
object. PluginState must implement a clone method, so that it can be cloned by S2E
together with ExecutionState whenever execution forks. Global plugin state can live
in the plugin’s own heap.

The dynamic binary translator (DBT) turns blocks of guest code into corresponding
host code; for each block of code this is typically done only once. During the translation
process, a plugin may be interested in marking certain instructions (e.g., function calls)
for subsequent notification. It registers for onInstrTranslation and, when notified, it

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:30 V. Chipounov et al.

Table III. A Subset of the ExecutionState Object’s Interface

void setForking(bool enable) Turn on/off multipath execution
void read/writeMemory(uint64 t addr,
Expr *buffer, size t length)

Read or write contents of memory (symbolic or
concrete) at address addr

Expr readReg(int reg) Read val (symbolic or concrete) from reg

void writeReg(int reg, Expr val) Write val (symbolic or concrete) to reg

TranslationBlock *getTb() Get currently executing code block from DBT
PluginState *getPluginState(Plugin
*plugin)

Get per-path state object for the specified plugin
instance

Fig. 8. Embedding S2E custom instructions in C programs.

inspects the ExecutionState object to see which instruction is about to be translated; if
it is an instruction of interest (say, for example, a CALL), the plugin marks it. Whenever
the VM executes a marked instruction, it raises the onInstrExecution event, which
notifies the corresponding registered plugin. For example, the CodeSelector plugin is
implemented as a subscriber to onInstrTranslation events; upon receiving an event, it
marks the instruction depending on whether it is or not an entry/exit point for a code
range of interest. When such an instruction gets subsequently executed, having the
onInstrTranslation and onInstrExecution events separate leverages the fact that each
instruction gets translated once, but may get executed millions of times (e.g., as in the
body of a loop). For most analyses, onInstrExecution ends up being raised so rarely
that using it introduces no runtime overhead (e.g., catching the kernel panic handler
requires marking only the first instruction of that handler).

Custom Instructions. S2E opcodes are custom guest machine instructions that are di-
rectly interpreted by S2E. These form an extensible set of opcodes for creating symbolic
values (S2SYM), enabling/disabling multipath execution (S2ENA and S2DIS) and logging
debug information (S2OUT). They give developers the finest grain control possible over
multipath execution and analysis; they can be injected into the target code manually
or with the help of binary instrumentation tools like PIN [Luk et al. 2005]. In practice,
opcodes are the easiest way to mark data symbolic and get started with S2E, without
involving any plugins.

The code fragment in Figure 8 shows a C function that writes unconstrained sym-
bolic values to the buf buffer. Symbolic values can be given a name, for instance, to
improve readability when printing an expression that involves symbolic values. Note
that S2E opcodes do not require specialized compiler or assembler support, since most
compilers and assemblers can already emit arbitrary byte sequences within the gener-
ated code.

The interface presented here was sufficient for all the multipath analyses we at-
tempted with S2E. Selectors can enable or disable multipath execution based on ar-
bitrary criteria and can manipulate machine state. Analyzers can collect information

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:31

about low-level hardware events all the way up to program-level events, they can probe
memory to extract any information they need, and so on. We now provide two examples
to illustrate the use of S2E plugins.

5.3. Example 1: Using the S2E API to Build the Annotations Plugin

An S2E annotation is a piece of code written by an S2E user in order to observe and
manipulate the execution state. Therefore, annotations may be used for what might be
called system-wide aspect-oriented programming, in which any instruction sequence
can be preceded/followed/replaced by any other sequence of instructions.

Annotations can be used to implement different execution consistency models.
Therefore, the Annotations plugin is a central piece in tools like DDT+ and REV+ (Sec-
tion 6.1). For example, annotations can implement the RC-LC consistency by carefully
replacing some function parameters and return values with symbolic data.

Appendix A details the steps that an S2E plugin developer would take to develop the
Annotations plugin as well as how an S2E user would use such a plugin to perform the
analysis of a Windows network device driver. In particular, we show how to implement
Annotations in a platform-independent manner, making it suitable to analyze any kind
of code on arbitrary guest operating systems. For this, we explain how an S2E plugin
developer could break down its functionality into smaller plugins that can be used
independently or in combination by an S2E user.

5.4. Example 2: Combining S2E Plugins and In-VM Tools

In this second example, we show an alternate way of implementing annotations with
in-VM tools, using SystemTAP [Prasad et al. 2005]. SystemTAP is a tracing framework
for Linux that can intercept any function call or instruction in the kernel and invoke
custom scripts. The scripts have full access to the system state. They can also leverage
debug information to access variables by name.

S2E users can leverage SystemTAP to obtain a flexible way of controlling path ex-
ploration. Users write SystemTAP scripts with embedded calls to S2E custom instruc-
tions. This allows the injection of symbolic values in any place, terminate states based
on complex conditions, interact with S2E plugins, and more generally develop arbitrary
selection schemes directly inside the guest OS.

Suppose we want to analyze the behavior of the Linux network stack when a net-
work packet is received (e.g., check whether there is a packet that could crash the
kernel). One approach is to replace the content of the incoming packets with symbolic
values, in order to explore all the paths that depend on the packet’s content.

Injecting symbolic packets in the Linux kernel can be done in a few lines of code
with SystemTAP, as shown in Figure 9. We define a SystemTAP probe that intercepts
calls to netif receive skb. Network drivers call this function when they are ready to
pass incoming packets to the kernel. Besides the probe, the SystemTAP script also
contains a call to the s2e make symbolic function. This function is the same as the one
in Figure 8, except that it uses the SystemTAP syntax.

Note that it is also possible to use the Annotations plugin to perform this analysis,
because the concept of annotation is similar to the SystemTAP probes. S2E gives users
the freedom to choose any method that is the most convenient for them to carry out
a given analysis. For example, users may choose to adapt their existing SystemTAP
scripts instead of rewriting them using the Annotations plugin’s configuration syntax.
Likewise, users may employ the Annotations plugin if the guest OS does not have an
equivalent of SystemTAP or if the use of such a tool interferes with some aspect of the
analysis (e.g., performance profiling).

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:32 V. Chipounov et al.

Fig. 9. Example of a SystemTAP probe that injects symbolic data into network packets.

5.5. Summary

In this section, we showed how S2E users can combine various S2E plugins to carry out
the desired analysis tasks and how S2E developers can write custom plugins using the
S2E developer API. An S2E user can combine path selection plugins to limit the mul-
tipath exploration to the modules of interest with different analysis plugins, such as
bug finders, performance profilers, and execution tracers. We explained how S2E turns
existing single-path analysis tools, such as Valgrind and Microsoft Driver Verifier, into
multipath analyzers without any modification. Finally, we showed how developers can
write modular plugins by taking the example of the Annotations plugin, which is a
central piece of tools like REV+ and DDT+.

6. EVALUATION

S2E’s main goal is to enable rapid prototyping of useful, deep system analysis tools.
In this vein, our evaluation of S2E aims to answer three key questions: Is S2E truly
a general platform for building diverse analysis tools (Section 6.1)? Does S2E perform
these analyses with reasonable performance (Section 6.2)? What are the measured
trade-offs involved in choosing different execution consistency models on both kernel-
mode and user-mode binaries (Section 6.3)? All reported results were obtained on a
48-core, 2.0 GHz AMD Opteron machine with 512 GB of RAM, unless otherwise noted.

6.1. Three Use Cases

We used S2E to build three vastly different tools: an automated tester for propri-
etary device drivers (Section 6.1.1), a reverse engineering tool for binary drivers (Sec-
tion 6.1.2), and a multipath in-vivo performance profiler (Section 6.1.3).

Table IV summarizes the productivity advantage we experienced by using S2E com-
pared to writing these tools from scratch. For these use cases, S2E engendered two or-
ders of magnitude improvement in both development time and resulting code volume.
This justifies our efforts to create general abstractions for multipath in-vivo analyses,
and to centralize them into one platform.

6.1.1. Automated Testing of Proprietary Device Drivers. We used S2E to build DDT+, a
tool for testing closed-source Windows device drivers. This is a reimplementation of
DDT [Kuznetsov et al. 2010], an ad-hoc combination of changes to QEMU and KLEE,
along with hand-written interface annotations: 35 KLOC added to QEMU and 7 KLOC
modified, 3 KLOC added to KLEE and 2 KLOC modified. By contrast, DDT+ has 720

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:33

Table IV.

Comparative productivity when building analysis tools from scratch (i.e., without S2E) vs.
using S2E. Reported LOC include only new code written or modified; any code that was
reused from QEMU, KLEE, or other sources is not included. For reverse engineering, 10
KLOC of offline analysis code is reused in the new version. For performance profiling, we
do not know of any equivalent non-S2E tool, hence the lack of comparison.

Use Case
Development Time Tool Complexity

[ person-hours ] [ lines of code ]
from scratch with S2E from scratch with S2E

Testing of proprietary
2,400 38 47,000 720device drivers

Reverse engineering of
3,000 40 57,000 580closed-source drivers

Multipath in-vivo
n/a 20 n/a 767performance profiling

LOC of C++ code, which combine several exploration and analysis plugins, and provides
the necessary kernel API annotations to implement RC-LC.

DDT+ combines several plugins: the CodeSelector plugin restricts multipath explo-
ration to the target driver, while the MemoryChecker, DataRaceDetector, and Win-
BugCheck analyzers look for bugs. To collect additional information about the quality
of testing (e.g., coverage), we use the InstructionTracer analyzer plugin. Additional
checkers can be easily added. DDT+ implements local consistency (RC-LC) via inter-
face annotations that specify where to inject symbolic values while respecting local
consistency; examples of annotations appear in Kuznetsov et al. [2010]. None of the
bugs reported by DDT+ are false positives, indicating the appropriateness of local con-
sistency for bug finding. In the absence of annotations, DDT+ reverts to strict consis-
tency (SC-SE), where the only symbolic input comes from hardware.

We ran DDT+ on two Windows network drivers, RTL8029 and AMD PCnet; DDT+

finds the same 7 bugs reported in Kuznetsov et al. [2010], including memory leaks,
segmentation faults, race conditions, and memory corruption. Of these bugs, 2 can be
found when operating under SC-SE consistency; relaxation to local consistency (via
annotations) helps find 5 additional bugs. DDT+ achieves 42% basic-block coverage of
the PCnet driver in 30 minutes, exploring more than 164,000 paths. For the RTL8029
driver, DDT covers 76% and 380,000 paths in less than 15 minutes.

For each bug found, DDT+ outputs a crash dump, an instruction trace, a memory
trace, a set of concrete inputs (e.g., registry values and input from hardware devices)
and values that were injected according to the RC-LC model that trigger the buggy
execution path.

While it is always possible to produce concrete inputs that would lead the system
to the desired local state of the unit (i.e., the state in which the bug is reproduced)
along a globally feasible path, the exploration engine does not actually do that while
operating under RC-LC. Consequently, replaying execution traces provided by DDT+

usually requires replaying the symbolic values injected into the system during testing.
Such replaying can be done in S2E itself. Despite being only locally consistent, the
replay is still effective for debugging: the execution of the driver during replay is valid
and appears consistent, and injected values correspond to the values that the kernel
could have passed to the driver under real, feasible (but not exercised) conditions.

S2E generates crash dumps readable by Microsoft WinDbg [Microsoft 2011b]. De-
velopers can thus inspect the crashes using their existing tools, scripts, and extensions
for WinDbg. They can also compare crash dumps from different execution paths to bet-
ter understand the bugs.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:34 V. Chipounov et al.

Table V.

Basic-block coverage obtained by RevNIC, REV+, and REV+ using 48-core S2E. We also
show the coverage increase over RevNIC.

RevNIC
REV+ REV+

(S2E) (Multi-Core S2E)
Coverage Coverage Increase Coverage Increase

PCnet 59% 66% +7% 74% +15%
91C111 84% 87% +3% 89% +5%
RTL8139 84% 86% +2% 89% +5%

Fig. 10. Basic-block coverage over time for REV+ and REV+ on multicore S2E. The graph for REV+ on
multi-core S2E shows data for 91C111, RTL8139, and PCnet on 48 cores.

6.1.2. Reverse Engineering of Closed-Source Drivers. REV+ is a tool for reverse engineer-
ing binary Windows device drivers; it is a reimplementation of RevNIC [Chipounov
and Candea 2010]. REV+ takes a closed-source binary driver, traces its execution, and
feeds the traces to an offline component that reverse engineers the driver’s logic to
produce new driver code that implements the same hardware protocol as the original
driver. In principle, REV+ can synthesize drivers for any OS, making it easy to port
device drivers without any vendor documentation or source code.

Adopting the S2E perspective, we cast reverse engineering as a type of behavior
analysis. As in DDT+, the CodeSelector plugin restricts the symbolic domain to the
driver’s code segment. The InstructionTracer plugin is configured to log to a file the
driver’s executed instructions and register accesses, while MemoryTracer is set up to
record memory accesses and hardware I/O. The already existing offline analysis tool
from RevNIC then processes these traces to synthesize a new driver.

REV+ uses overapproximate consistency (RC-OC). The goal of the tracer is to see
each basic block execute, in order to extract its logic—full path consistency is not nec-
essary. The offline trace analyzer only needs fragments of paths in order to reconstruct
the original CFG; details appear in Chipounov and Candea [2010]. By using RC-OC,
REV+ sacrifices strict consistency in exchange for obtaining coverage fast.

We ran REV+ on the same drivers reported in Chipounov and Candea [2010], and
REV+ reverse engineers them with better coverage than RevNIC in the same amount
of time (see Table V). Manual inspection of the reverse engineered code blocks reveals
that the resulting drivers are equivalent to those generated by RevNIC, and thus to
the originals too [Chipounov and Candea 2010]. Figure 10 shows how coverage evolves
over time during reverse engineering both for single-core S2E [Chipounov et al. 2011]
and multi-core S2E. The single-core prototype completes the exploration of each driver
in 30-90 minutes, whereas multi-core S2E completes in a few minutes.

Table VI shows that more cores allow REV+ to explore many more paths and
achieve higher basic block coverage. The exploration time increases with the number
of cores because REV+ invokes each driver entry point sequentially, and when it does

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:35

Table VI.

Impact of additional cores on exploration time, basic-block coverage, and number of explored
paths for REV+ on multicore S2E using the overapproximate consistency model.

PCnet RTL8139 91C111

# of cores Time Cov
# Paths

Time Cov
# Paths

Time Cov
# Paths

used by S2E (min) (%) (min) (%) (min) (%)
1 9 64 4,551 5 76 4,274 6 85 2,185
2 10 66 8,466 7 86 13,841 7 84 2,287
4 14 67 18,631 17 83 27,266 6 85 5,853
8 17 69 38,919 32 84 61,743 7 87 15,322

16 19 71 126,590 17 88 164,426 10 89 31,625
32 21 74 257,813 27 87 398,895 12 89 100,977
48 26 70 539,037 22 89 554,458 21 89 145,498

not discover any new basic block within some time interval, it kills all paths except one
and invokes the next entry point (see Chipounov and Candea [2010] for more details).
Since multiple cores can explore more paths in parallel and have thus a higher
likelihood of discovering more basic blocks, REV+ resets the timeout more frequently,
thus increasing the average exploration time. We used a timeout of 5 to 10 seconds for
multicore S2E and up to 1200 seconds for the single-core S2E prototype combined with
a random-path search heuristic [Cadar et al. 2008]. Given these settings, 32 cores are
enough to get 74% to 89% basic-block coverage in less than 25 minutes.

Although more cores allow the exploration of more paths, this does not necessarily
yield higher basic-block coverage. First, S2E does not ensure that different cores do
not perform redundant work. It may happen that all the cores explore one particular
part of a driver (e.g., one function) instead of covering different parts. In future work,
we plan to focus on achieving disjunction of explored paths, as in Cloud9 [Bucur et al.
2011], in order to minimize the amount of redundant work. Second, we believe that
more cores influence the path selection heuristics that S2E uses; we plan to investigate
this phenomenon in future work.

6.1.3. Multipath In-Vivo Performance Profiling. To further illustrate S2E’s generality, we
used it to develop PROFS, a multipath in-vivo performance profiler and debugger. To
our knowledge, such a tool did not exist previously, and we believe this use case is
the first in the literature to employ symbolic execution for performance analysis. In
this section, we show through several examples how PROFS can be used to predict
performance for certain classes of inputs. To obtain realistic profiles, performance
analysis can be done under local consistency or any stricter consistency model.

PROFS allows users to measure instruction count, cache misses, TLB misses, and
page faults for arbitrary memory hierarchies, with flexibility to combine any number of
cache levels, size, associativity, line sizes, etc. This is a superset of the cache profiling
functionality found in Valgrind [Valgrind 2011], which can simulate only L1 and L2
caches, and can measure only cache misses.

For PROFS, we developed the PerformanceProfiler plugin. It counts the number of
instructions along each path and, for memory reads/writes, it simulates the behavior
of a desired cache hierarchy and counts hits and misses. For our measurements, we
configured PROFS with 64KB I1 and D1 caches with 64-byte cache lines and associa-
tivity 2, plus a 1MB L2 cache that has 64-byte cache lines and associativity 4. The path
exploration in PROFS is tunable, allowing the user to choose any execution consistency
model.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:36 V. Chipounov et al.

The first PROFS experiment analyzes the distribution of instruction counts and
cache misses for Apache’s URL parser. In particular, we were interested to see whether
there are opportunities for a denial-of-service attack on the Apache Web server via a
carefully constructed URL. The analysis ran on PROFS using 48 cores under local con-
sistency for 1 hour and explored 51,530 different execution paths. The analysis spent
44% of the running time in the constraint solver.

We found each path involved in parsing a URL to take on the order of 4.3 × 106

instructions, with one interesting feature: for every additional “/” character present in
the URL, there are 10 extra instructions being executed. We found no upper bound on
the execution of URL parsing: a URL containing n + k “/” characters will take 10 × k
more instructions to parse than a URL with n “/” characters. The total number of cache
misses on each path was predictable at 13, 315 ± 65. These are examples of behavioral
insights one can obtain with a multipath performance profiler. Such insights can help
developers fine-tune their code or make it more secure (e.g., by ensuring that pass-
word processing time does not depend on the password content, to avoid side channel
attacks).

We also set out to measure the page fault rate experienced by the Microsoft IIS Web
server inside its SSL modules while serving a static page workload over HTTPS. Our
goal was to check the distribution of page faults in the cryptographic algorithms, to
see if there are opportunities for side channel attacks. We found no page faults in the
SSL code along any of the paths, and only a constant number of them in gzip.dll. This
suggests that counting page faults should not be the attack of first choice if trying to
break IIS’s SSL encryption.

Next, we aimed to establish a performance envelope in terms of instructions ex-
ecuted, cache misses, and page faults for the ubiquitous ping program (1.3 KLOC).
The performance analysis ran under local consistency, focusing exploration on the IP
packet options parser. S2E explored 907 different paths in 1 hour using 48 cores.
Around 30% of the time was spent in the constraint solver. Note that, in Chipounov
et al. [2011], we focused the analysis on the entire packet-parsing code but with addi-
tional constraints on the packet content to prevent path explosion; we now analyze the
part of the parser that focuses on packet options but include all possible paths through
it. This makes the results easier to interpret because, now, all the obtained paths go
through the packet options parser.

The analysis does not find a bound on execution time, and it points to a path that
could enter an infinite loop. This happens when the reply packet to ping’s initial packet
has the record route (RR) flag set and the option length is 3 bytes, leaving no room to
store the IP address list. While parsing the header, ping finds that the list of addresses
is empty and, instead of break-ing out of the loop, it does continue without updating the
loop counter. This is an example where performance analysis can identify a dual perfor-
mance and security bug: malicious hosts could hang ping clients. Once ping is patched,
the performance envelope becomes 2,581 to 2,728 executed instructions. With the bug,
the maximum during analysis had reached 1.1 × 106 instructions and kept growing.

PROFS can find “best case performance” inputs without having to enumerate the in-
put space. For this, we modify slightly the PerformanceProfiler plugin to track, for all
paths being explored, the common lower bound on instructions, page faults, etc. Any
time a path exceeds this minimum, the plugin automatically abandons exploration of
that path, using the PathKiller selector described in Section 5. This type of function-
ality can be used to efficiently and automatically determine workloads that make a
system perform at its best. This use case is another example of performance profiling
that can only be done using multipath analysis.

To conclude, we used S2E to build a thorough multipath in-vivo performance pro-
filer that improves upon classic profilers. Valgrind [Valgrind 2011] is thorough, but

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:37

Fig. 11. The path coverage of classic profilers vs. the coverage level enabled by S2E: PROFS is a thor-
ough multipath in-vivo analyzer; Oprofile is in-vivo, but only single-path and sampling-based; Valgrind is
thorough, but only single-path and not in-vivo.

only single-path and not in-vivo. Unlike Valgrind-type tools, PROFS performs its anal-
yses along multiple paths at a time, not just one, and can measure the effects of the
OS kernel on the program’s cache behavior and vice versa, not just the program in
isolation. Although tools like Oprofile [Levon and Elie 1998] perform in-vivo measure-
ments, but not multipath, they are based on sampling, so they lack the accuracy of
PROFS; it is not feasible, for instance, to count the exact number of cache misses in an
execution. Figure 11 summarizes the capabilities of Valgrind, Oprofile, and PROFS.
Such improvements over state-of-the-art tools come relatively easily when using S2E
to build new tools.

6.1.4. Other Uses of S 2E. We believe S2E can be used for pretty much any type of
system-wide analysis. We give here four additional examples.

First, S2E could be used to profile energy use of embedded applications: given a
power consumption model, S2E could find energy-hogging paths and help the devel-
oper optimize them. Second, S2E could serve as a hardware model validator: S2E can
symbolically execute a SystemC-based model [IEEE 2005] together with the real driver
and OS; when there is enough confidence in the correctness of the hardware model, the
modeled chip can be produced for real. Third, S2E could perform end-to-end certifica-
tion of binaries, for instance, verify that memory safety holds along all critical paths.
Finally, S2E could be used to analyze binaries for privacy leaks: by monitoring the flow
of symbolic input values (e.g., credit card numbers) through the software stack, S2E
could tell whether any of the data can leak outside the system. S2E alleviates the need
to trust a compiler, since it performs all analysis on the final binary.

6.2. Implementation-Specific Performance Overhead

S2E introduces approximately 3× runtime overhead over vanilla QEMU when running
in concrete mode, and 78× in symbolic mode. Concrete-mode overhead is mainly due
to checks for accesses to symbolic memory, while symbolic-mode overhead is due to
LLVM interpretation and constraint solving. S2E incurs these overheads along each
execution path both in single and multicore mode.

The overhead of symbolic execution is mitigated in practice by the fact that the
symbolic domain is much smaller than the concrete domain. For instance, in the ping

experiments (Section 6.1.3), S2E executed 30,000× more x86 instructions concretely
than it did symbolically. All the OS code (e.g., page fault handler, timer interrupt, sys-
tem calls) that is called frequently, as well as all the software that is running on top
(e.g., services and daemons) run in concrete mode. Moreover, S2E distinguishes inside
the symbolic domain instructions that can execute concretely (e.g., that do not touch
symbolic data) and runs them natively. ping’s four orders of magnitude difference be-
tween the number of concretely vs. symbolically running instructions is a lower bound
on the amount of savings that selective symbolic execution brings over classic symbolic

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:38 V. Chipounov et al.

execution: by executing concretely those paths that would otherwise run symbolically,
S2E also saves the overhead of further forking paths that are ultimately not of interest
(e.g., on branches in the concrete domain).

Another source of overhead is symbolic pointers. We compared the performance of
symbolically executing the unlink UNIX utility’s x86 binary in S2E on a single core vs.
symbolically executing its LLVM version in KLEE. Since KLEE recognizes all mem-
ory allocations performed by the program, it can pass to the constraint solver memory
arrays of exactly the right size; in contrast, S2E must pass entire memory pages. In
1 hour, using one core, with a 256-byte page size, S2E explored 7,082 paths, com-
pared to 7,886 paths in KLEE. Average constraint solving time was 0.06 sec for both.
With 4 KB pages, though, S2E explored only 2,000 states and averaged 0.15 sec per
constraint.

We plan to reduce the overhead in concrete and symbolic modes in three ways: First,
by instrumenting the LLVM code generated by S2E with calls to the symbolic execution
engine, before JITing it into native machine code, we can avoid the overhead of inter-
preting each instruction in KLEE. This is similar in spirit to the difference between
QEMU and the Bochs emulator [Bochs 2011]: the latter interprets instructions in one
giant switch statement, whereas the former JITs them to native code and obtains a
major speedup. Second, we plan to implement LLVM optimization passes to bring the
generated LLVM code close to generated-from-source quality. Currently, the translator
generates LLVM code that can be up to two orders of magnitude longer than what a
native compiler would produce. Finally, we expect that by introducing hardware vir-
tualization, we would obtain a ∼30× speedup in concrete mode, which is close to the
speed of native execution.

6.3. Trade-Offs in Using Execution Consistency Models

Having seen the ability of S2E to serve as a platform for building powerful analy-
sis tools, we now experimentally evaluate the trade-offs involved in the use of differ-
ent execution consistency models. In particular, we measure how total running time,
memory usage, and path coverage efficiency are influenced by the choice of models. We
illustrate the trade-offs using both kernel-mode binaries (the SMSC 91C111 and AMD
PCnet network drivers) and a user-mode binary (the interpreter for the Lua embedded
scripting language [Lua 2010]). The 91C111 closed-source driver binary has 19 KB,
PCnet has 35 KB; the symbolic domain consists of the driver, and the concrete domain
is everything else. Lua has 12.7 KLOC; the concrete domain consists of the lexer and
parser (2 KLOC) and the environment, while the symbolic domain is the remaining
code of the interpreter. Parsers are the bane of symbolic execution engines, because
they have many possible execution paths, of which only a small fraction are paths
that pass the parsing/lexing stage [Godefroid et al. 2008]. The ease of separating the
Lua interpreter from its parser and lexer in S2E without touching the Lua source code
illustrates the benefit of selective symbolic execution.

We use a script in the guest OS to call the entry points of the drivers. Execution
proceeds until all paths have reached the driver’s unload method. We configure a selec-
tor plugin to exercise the entry points one by one. If S2E has not discovered any new
basic block for some time, this plugin kills all paths but one. The plugin chooses the
remaining path such that execution can proceed to the driver’s next entry point. We
use the same settings as in Section 6.1.2 and vary the consistency model.

Without path killing, drivers could get stuck in the early initialization phase, be-
cause of path explosion (e.g., the tree rooted at the initialization entry point may have
several thousand paths when its exploration completes). The selector plugin also kills
redundant subtrees when entry points return, because calling the next entry point in

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:39

Table VII.

Time to complete exploration of two device drivers and the Lua
interpreter under different consistency models.
Consistency 91C111 Driver PCnet Driver Lua
RC-OC 6 min 9 min 32 min
RC-LC 10 min 13 min 31 min
SC-SE 5 min 9 min 33 min
SC-UE <1 min <1 min <1 min

the context of each of these execution states (subtree leaves) would mostly exercise the
same paths over again.

For Lua, we provide a symbolic string as the program input, under SC-SE consis-
tency. In SC-UE mode, the input is symbolic like in SC-SE, but all symbolic data is
concretized when accessed by code outside of the symbolic domain (i.e., outside of the
Lua execution engine). Under local consistency, the input is concrete, and we insert
suitably constrained symbolic Lua opcodes after the parser stage. Finally, in RC-OC
mode, we make the Lua opcodes completely unconstrained.

In this section, we run S2E in single-core mode and average results over 10 runs for
each consistency model. Running S2E in multicore mode would introduce additional
randomness to the results, making it difficult to compare different data points; since
the state selection is local to each S2E process, some of the processes may end up ex-
ecuting states that would never be selected if the state selection was global. Whether
this happens or not depends on the initial distribution of the states between S2E pro-
cesses, which is difficult to predict.

Generally speaking, weaker (more relaxed) consistency models help achieve higher
basic-block coverage in a given amount of time; Figure 12(a) shows results for the
running times from Table VII. For PCnet, coverage varies between 14% and 65%,
while 91C111 ranges from 10% to 84%. The stricter the model, the fewer sources of
symbolic values, hence the fewer explorable paths and discoverable basic blocks in a
given amount of time. For the Windows drivers, system-level strict consistency (SC-
SE) keeps all registry inputs concrete, which prevents several configuration-dependent
blocks from being explored. In SC-UE, concretizing symbolic inputs to arbitrary val-
ues prevents the driver from loading and prevents Lua from executing a meaningful
command, thus yielding poor coverage and short running time.

In the case of Lua, the local consistency model allows bypassing the lexer compo-
nent, which is especially difficult to symbolically execute due to its loops and com-
plex string manipulations. RC-OC exceptionally yielded less coverage because execu-
tion got stuck in complex crash paths reached due to incorrect Lua opcodes and their
operands (such opcodes could never reach the parser during normal execution, hence
the parser does not check for them but instead continues erroneous execution for some
time, leading to multiple forks before it finally crashes).

Path selection together with adequate consistency models reduce memory usage
(Figure 12(b)). Stricter models generate fewer execution paths to explore, which in
principle should reduce memory consumption. However, in practice memory usage
is more strongly correlated with running time. For example, in RC-OC and SC, it
takes roughly 6 minutes to complete the execution of the 91C111 driver, taking 1.5 GB
of memory for 1,950 and 620 paths respectively. RC-LC takes longer, using 2 GB of
memory for 955 paths. The reason is that, the longer the paths run, the bigger the cor-
responding program states grow, due to copy-on-write effects: various OS components
have more time to write into more memory pages, yielding higher per-state memory
consumption.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:40 V. Chipounov et al.

Fig. 12. Effects of memory consistency models on coverage and memory usage.

Fig. 13. Impact of consistency models on constraint solving.

Finally, consistency models affect constraint solving time (Figure 13). The rela-
tionship between consistency model and constraint solving time often depends on the
structure of the system being analyzed; at a first level of approximation, the deeper
a path, the more complex the corresponding path constraints. The fraction of execu-
tion time spent in the constraint solver decreases with stricter execution consistency
models, because stricter models restrict the amount of symbolic data, generating fewer
queries. Note that analyzing Lua under RC-OC exceptionally yielded a low fraction of
time spent in the constraint solver for the same reason it got poor coverage: execution
could not reach the more complex parts of the interpreter.

We observe that, except for SC-UE, the average time spent to solve a query re-
mains roughly constant across consistency models. This is in contrast to our earlier
results [Chipounov et al. 2011], where S2E used an older version of STP (revision #943
vs. #1432 in this article). That older version took more time to solve queries gen-
erated by weaker consistency models. We plan to investigate this behavior in future
work. SC-UE concretizes symbolic values early, which strongly reduces the number
and complexity of solver queries and makes them quicker to solve on average.

We attempted to run Lua in KLEE in order to compare the results for different
execution consistency models with those obtained in S2E. We expected that the Lua
interpreter, being completely in user-mode and not having any complex interactions
with the environment, could be handled by KLEE. However, KLEE does not model
some of its operations. For example, the Lua interpreter makes use of setjmp and
longjmp instructions, which turn into libc calls that manipulate the program counter
and other registers in a way that confuses KLEE. Unlike S2E, other analysis engines
do not have a unified representation of the hardware, so all these details must be
explicitly coded for (in KLEE’s case, detect that setjmp / longjmp is used and ensure the
execution state is appropriately adjusted). In S2E, this comes “for free” because the

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:41

CPU registers, memory, and I/O devices are shared between the concrete and symbolic
domain.

Our evaluation shows that S2E is a general platform that can be used to write di-
verse and interesting system analyses; we illustrated this by building, with little effort,
tools for bug finding, reverse engineering, and comprehensive performance profiling.
Consistency models offer flexible trade-offs between the performance, completeness,
and soundness of analysis. By employing selective symbolic execution and relaxed ex-
ecution consistency models, S2E is able to scale these analyses to large systems, such
as an entire Windows stack. Analyzing real-world programs like Apache httpd, Mi-
crosoft IIS, and ping takes a few minutes up to a few hours, in which S2E explores
hundreds of thousands of paths through the binaries.

7. RELATED WORK

Several of the ideas behind S2E appeared in various forms in earlier work, and we
survey them in this section. We are not aware of any platform that can offer the level
of generality in terms of analyses and execution consistency models that S2E offers.

BitBlaze [Song et al. 2008] is the closest dynamic analysis framework to S2E. It com-
bines virtualization and symbolic execution for malware analysis and offers a form of
local consistency to introduce symbolic values into API calls. In contrast, S2E has
several additional consistency models and various generic path selectors that trade
accuracy for exponentially improved performance in more flexible ways. To our knowl-
edge, S2E is the first to handle all aspects of hardware communication, which consists
of I/O, MMIO, DMA, and interrupts. This enables symbolic execution across the entire
software stack, down to hardware, resulting in richer analyses.

One way to tackle the path explosion problem is to use models and/or relax execution
consistency. File system models have allowed, for instance, KLEE to test UNIX utilities
without involving the real filesystem [Cadar et al. 2008]. However, based on our own
experience, writing models is a labor-intensive and error-prone undertaking. Other
researchers report that writing a model for the kernel/driver interface of a modern OS
took several person-years [Ball et al. 2006]. Of course, the advantage of using models
is generally faster analyses.

Other bodies of work can include the environment directly in symbolic analysis by
executing the environment concretely, with various levels of consistency that were ap-
propriate for the specific analysis in question, most commonly bug finding. For in-
stance, CUTE [Sen et al. 2005] can run concrete code consistently without modeling,
but it is limited to strict consistency and code-based selection. SJPF [Păsăreanu et al.
2008] can switch from concrete to symbolic execution, but does not track constraints
when switching back, so it cannot preserve consistency in the general case. Non-VM-
based approaches, in general, cannot control the environment outside the analyzed
program. For instance, both KLEE and EXE allow a symbolically executing program
to call into the concrete domain (e.g., perform a system call), but they cannot fork
the global system state. As a result, different paths clobber each other’s concrete do-
main, with unpredictable consequences. Concolic execution [Godefroid et al. 2005; Sen
2007] runs everything concretely and scales to full systems (and is not affected by state
clobbering), but may result in lost paths when execution crosses program boundaries.
CUTE, KLEE, and other similar tools cannot track the branch conditions following
calls into concrete code (unlike S2E), and thus cannot determine how to redo calls in
order to enable overconstrained but feasible paths.

In-situ model checkers [Godefroid 1997; Musuvathi et al. 2008; Yang et al. 2006,
2009] can directly check programs written in a common programming language
usually with some simplifications, like data-range reduction, without requiring

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:42 V. Chipounov et al.

the creation of a model. Since S2E directly executes the target binary, one could
say it is an in-situ tool. However, S2E goes further and provides a consistent
separation between the environment (whose symbolic execution is not necessary) and
the target code to be tested (which is typically orders of magnitude smaller than
the rest). This is what we call “in vivo” in S2E: analyzing the target code in-situ,
while facilitating its consistent interaction with that code’s unmodified, real environ-
ment. Note that other researchers have used the term “in vivo” in similar contexts
as well, but with a different meaning from S2E’s; e.g., Murphy et al. [2009] propose
a technique for testing where “in vivo” stands for executing tests in production
environments.

Another approach to tackling path explosion is compositional symbolic execu-
tion [Godefroid 2007]. This approach saves the results of exploration of parts of the pro-
gram and reuses them when those parts are called again in a different context. We are
investigating how to implement this approach in S2E, to further improve scalability.

Several static analysis frameworks have been used to build analysis tools. Saturn
[Dillig et al. 2008] and bddbddb [Lam et al. 2005] prove the presence or absence of
bugs using a path-sensitive analysis engine to decrease the number of false positives.
Saturn uses analysis-specific function summaries; for many analyses, such as memory
safety, these summaries can be prohibitively complex in large programs. bddbddb
stores programs in a database as relations that can be searched for buggy patterns
using Datalog. Besides detecting bugs, bddbddb was used for optimizing locking poli-
cies in multithreaded programs. Static analysis tools rely on source code for accurate
type information and cannot easily verify run-time properties or reason about the
entire system. From the practitioner’s point of view, bddbddb requires learning a new
language, which may be harder than using S2E plugins.

Dynamic analysis frameworks alleviate the limitations of static analysis tools. In
particular, they allow the analysis of binary software. Theoretically, one could stat-
ically convert an x86 binary to, say, LLVM and run it in a system like KLEE, but
this faces the classic undecidable problems of disassembly and decompilation [Schwarz
et al. 2002]: disambiguating code from data, determining the targets of indirect jumps,
unpacking code, etc.

S2E can add multipath analysis abilities to any single-path dynamic tools, while not
limiting the types of analysis. PTLsim [Yourst 2007] is a VM-based cycle-accurate x86
simulator that selectively limits profiling to user-specified code ranges to improve scal-
ability. Valgrind [Valgrind 2011] is a framework best known for cache profiling tools,
memory leak detectors, and call graph generators. PinOS [Bungale and Luk 2007]
can instrument operating systems and unify user/kernel-mode tracers. PinOS relies
on Xen and a paravirtualized guest OS, unlike S2E. PTLsim, PinOS, and Valgrind im-
plement cache simulators that model multi-level data and code cache hierarchies. S2E
allowed us to implement an equivalent multipath simulator with little effort.

S2E complements classic single-path, non VM-based profiling and tracing tools. For
instance, DTrace [DTrace 2011] is a framework for troubleshooting kernels and appli-
cations on production systems in real time. DTrace and other techniques for efficient
profiling, such as continuous profiling [Anderson et al. 1997], sampling-based profil-
ing [Burrows et al. 2000], and data type profiling [Pesterev et al. 2010], trade accuracy
for low overhead. They are useful in settings where the overhead of precise instrumen-
tation is prohibitive. Other projects have also leveraged virtualization to achieve goals
that were previously prohibitively expensive. These tools could be improved with S2E
by allowing the analyses to be exposed to multipath executions.

S2E uses mixed-mode execution as an optimization to increase efficiency. This idea
first appeared in DART [Godefroid et al. 2005], CUTE [Sen et al. 2005], and EXE
[Cadar et al. 2006], and later in Bitscope [Brumley et al. 2007]. However, automatic

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:43

bidirectional data conversions across the symbolic-concrete boundary did not exist
previously, and they are key to S2E’s scalability.

To summarize, S2E embodies numerous ideas that were fully or partially explored in
earlier work. What is unique in S2E is its generality for writing various analyses, the
availability of multiple user-selectable (as well as definable) consistency models, auto-
matic bidirectional conversion of data between the symbolic and concrete domains, and
its ability to operate without any modeling or modification of the (concretely running)
environment.

8. CONCLUSIONS

This article described S2E, a new platform for in-vivo multipath analysis of systems,
which scales even to large, proprietary, real-world software stacks, like Microsoft Win-
dows. To the best of our knowledge, it is the first time virtualization, dynamic binary
translation, and symbolic execution are combined for the purpose of generic behav-
ior analysis. S2E simultaneously analyzes entire families of paths, operates directly
on binaries, and operates in vivo, i.e., includes in its analyses the entire software
stack: user programs, libraries, kernel, drivers, and hardware. S2E uses automatic
bidirectional symbolic–concrete data conversions and relaxed execution consistency
models to achieve scalability. We showed that S2E enables rapid prototyping of a va-
riety of system behavior analysis tools with little effort. S2E can be downloaded from
http://s2e.epfl.ch/ and presently has a strong and diverse user community.

APPENDIX

A. USING THE S2E API TO BUILD THE ANNOTATIONS PLUGIN

In Section 5.3, we gave an overview of how to build the Annotations plugin. An S2E
annotation is a piece of code written by an S2E user in order to observe and manipulate
execution states. The Annotations plugin can be used to implement different execution
consistency models and is a central piece in tools like DDT+ and REV+ (Section 6.1).

Given its wide use, the Annotations plugin must be generic and work on any piece
of code, no matter what guest OS is running. Annotations implements only the mech-
anisms that let users specify the desired annotations and relies on other plugins for
unrelated tasks, such as OS monitoring.

We show here in detail how to build a plugin that monitors the guest OS and noti-
fies other plugins when programs, drivers, libraries, or any kind of modules are loaded
(Section A.1), how to use the information about loaded modules to detect the execution
of a specific module (Section A.2), how to track function calls in those modules (Sec-
tion A.3), and finally, how to let users annotate the desired code and make sure the
annotations are executed at the right moment (Section A.4). Figure 14 summarizes
the relationship between these plugins and Figure 17 shows the corresponding S2E
configuration file that we use throughout the remainder of this section as a running
example. This example shows how users can configure the Annotations plugin in or-
der to insert symbolic data in network packets during the analysis of the rtl8029.sys

network device driver, that is part of Windows XP.

A.1. Monitoring Module Loads

S2E requires a specific monitoring plugin for each OS in order to track OS-level events,
such as module loads and unloads. Tracking these events in a system may be difficult
and platform-specific. For example, getting the process identifier of the currently
executing process requires parsing OS-specific data structures in the guest’s kernel
heap. Moreover, the exact layout of these structures varies for different versions of

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:44 V. Chipounov et al.

Fig. 14. Dependencies of the Annotations plugin. Annotations requires ModuleExecutionDetector, Function-
Monitor, and a plugin that implements the OSMonitor interface (such as WindowsMonitor or LinuxMonitor).
This is a more detailed view of Figure 7.

the same operating system. Such implementation details must be hidden behind a
generic interface.

S2E plugins that monitor OS-level events must implement a generic interface in
order to be used interchangeably by client plugins. For example, a plugin such as An-
notations (Section A.4) does not care about whether the guest is running on Microsoft
Windows or Linux. Such plugin only needs to know when the OS loads a specified
module in order to activate annotations. For this, Annotations relies on the generic
interface exposed by the underlying OS monitoring plugin (e.g., WindowsMonitor or
LinuxMonitor).

S2E provides the OSMonitor interface, which OS monitoring plugins imple-
ment. OSMonitor defines the onModuleLoad, onModuleUnload, and onProcessUnload
events. An OS monitoring plugin triggers onModuleLoad (respectively onModuleUn-
load) when a module is loaded (respectively unloaded) and passes the name, size, load
address, and address space identifier to the callback functions. The plugin triggers
onProcessUnload when the OS frees the address space of a process. There is no corre-
sponding onProcessLoad event, because the first onModuleLoad implicitly defines the
new address space.

Consider WindowsMonitor, a plugin that implements the OSMonitor interface for
Microsoft Windows. Detecting driver loads on Windows XP SP3 involves catching the
execution of the instruction located at address 0x805A399A in kernel space. When ex-
ecution reaches this address,WindowsMonitor parses the driver descriptor located on
the stack, extracts the name, load address, and size of the driver, then triggers the on-
ModuleLoad event. Subscribers are notified of the driver load and can perform actions
accordingly, e.g., detect when execution enters a particular module (see Section A.2).

Say the S2E user wants to analyze the rtl8029.sys driver running on Windows XP
SP3. Since device drivers run in kernel mode, WindowsMonitor must be configured to
instrument kernel module loads and unloads. This requires five lines of configuration,
as shown in Figure 15.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:45

Fig. 15. Configuring WindowsMonitor to track driver load/unload events on Microsoft Windows.

Fig. 16. Configuring ModuleExecutionDetector to track the execution of the rtl8029.sys driver.

A.2. Tracking Module Execution with ModuleExecutionDetector

The ModuleExecutionDetector plugin publishes two main events: onModuleInstr-
Translation and onModuleTransition. onModuleInstrTranslation forwards all the
onInstrTranslation core events that are triggered inside the modules of interest.
onModuleTransition notifies its clients whenever execution enters or leaves modules
of interest.

Subscribers can use these two events in several ways. For example, CodeSelector
subscribes to onModuleTransition to be notified of when execution enters or leaves a
module of interest in order to toggle symbolic execution. onModuleInstrTranslation
is used by InstructionCounter, which relies on this event to register a callback that
S2E will call for each instruction executed by the module. The callback increments an
instruction counter and periodically writes its value to a log file.

ModuleExecutionDetector relies on a plugin that implements the OSMonitor inter-
face. When S2E starts, ModuleExecutionDetector automatically looks for a plugin that
implements the OSMonitor interface. It subscribes to the onModuleLoad, onModule-
Unload, and onProcessUnload to maintain the current memory map of the system.
This map allows to efficiently find the module that owns a particular address and trig-
ger the onModuleInstrTranslation as well as onModuleTransition when appropriate.

To enable ModuleExecutionDetector, the S2E user adds the appropriate section in
the S2E configuration script, as shown in Figure 16. This section can go right below
the one for WindowsMonitor that we have seen previously. ModuleExecutionDetector’s
configuration section accepts one subsection per module to be tracked. Each module to
track is identified by its name and whether it is a kernel module or not. Subsections
can be named (e.g., rtl8029 sys 1) to allow other plugins to refer to them, as we will
illustrate later.

A.3. Monitoring Function Calls with FunctionMonitor

The FunctionMonitor plugin notifies its subscribers of function calls and returns.
When subscribing, a client plugin passes to FunctionMonitor the address of the func-
tion to monitor, the identifier of the address space to which the function belongs, and
an event callback. FunctionMonitor invokes the registered callback whenever a func-
tion call or return occurs. The address space identifier allows distinguishing functions
at the same virtual address but in different processes.

FunctionMonitor tracks pairs of call and return machine instructions. When a call
occurs, besides invoking the registered callback, FunctionMonitor also stores in a map
the association between the current stack pointer, the address space, and the event
callback that corresponds to the called function. When a return instruction is about

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:46 V. Chipounov et al.

Fig. 17. Combining S2E plugins to inject symbolic network packets in the rtl8029.sys driver. This S2E
configuration file is written in the Lua scripting language.

to be executed, FunctionMonitor looks up the current stack pointer and address space
identifier in the map and invokes the associated callback. Such tracking is required
because return instructions do not carry any information about the function to which
they belong.

FunctionMonitor subscribes to the onInstrTranslation core event in order to mark
and intercept all call and return machine instructions. Whenever these marked in-
structions are executed, S2E triggers the onInstrExecution event which invokes the
callbacks previously registered by FunctionMonitor when processing the onInstrTrans-
lation events. These callbacks check whether there are clients of FunctionMonitor that
registered for the specific function call or return that is being executed and, if yes, in-
voke the corresponding client’s event callback.

FunctionMonitor assumes that the processor’s instruction set has explicit call and
return instructions, which is the case, for instance, of x86 or MIPS. MIPS uses the jal

(jump and link) instruction for function calls. This instruction jumps to the specified
address while saving in the $ra register the program counter of the instruction that
follows the jump. Since $ra holds the current return address by convention, it can be
used to detect jumps that use this register to return to the caller.

FunctionMonitor does not have any user-configurable option. Thus, it is enough to
write an empty configuration section as shown in Figure 17.

A.4. Annotating Code with the Annotations plugin

The Annotations plugin combines FunctionMonitor and ModuleExecutionDetector to
let users annotate not only function calls but also arbitrary machine instructions. The
user writes the annotation directly inside the S2E configuration file, using the Lua
language.

The Annotations plugin has four configurable parameters: the module name
(module), the address of the function to intercept (address), the number of its parame-
ters (paramcount), as well as the name of the Lua annotation to invoke (callAnnotation).
It is also possible to use instructionAnnotation to annotate arbitrary instructions.

In our example, we configure the Annotations plugin to annotate the function that
copies a data packet from the network card to a buffer allocated by the driver. This

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:47

Fig. 18. Configuring the Annotations plugin to inject symbolic network packets in the rtl8029.sys driver.

Fig. 19. Example of an annotation written in the Lua language.

function has four parameters and is located at address 0x1233a relative to the start of
the rtl8029.sys driver (Figure 18).

The annotation is contained in the rtl8029 copyup packet Lua function (Figure 19).
All annotations have two parameters: the current execution state and the current plu-
gin state. The execution state object can be manipulated using the ExecutionState
object’s methods. Similarly, the plugin state parameter exposes the API of the Annota-
tions plugin, which allows annotations to change the plugin’s configuration at runtime.

ACKNOWLEDGMENTS

We thank Andrea Arpaci-Dusseau, Herbert Bos, Johannes Kinder, Miguel Castro, Byung-Gon Chun, Jim
Larus, Petros Maniatis, Raimondas Sasnauskas, Willy Zwaenepoel, the S2E user community, and the anony-
mous reviewers for their help in improving our article.

REFERENCES
ANDERSON, J., BERC, L., DEAN, J., GHEMAWAT, S., HENZINGER, M., LEUNG, S.-T., SITES, D.,

VANDEVOORDE, M., WALDSPURGER, C. A., AND WEIHL, W. E. 1997. Continuous profiling: Where
have all the cycles gone? In Proceedings of the Symposium on Operating Systems Principles.

BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V., LICHTENBERG, J., MCGARVEY, C., ONDRUSEK, B.,
RAJAMANI, S. K., AND USTUNER, A. 2006. Thorough static analysis of device drivers. In Proceedings
of the ACM EuroSys European Conference on Computer Systems.

BALL, T., BOUNIMOVA, E., LEVIN, V., KUMAR, R., AND LICHTENBERG, J. 2010. The static driver verifier
research platform. In Proceedings of the International Conference on Computer Aided Verification.

BELLARD, F. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual
Technical Conference.

BESSEY, A., BLOCK, K., CHELF, B., CHOU, A., FULTON, B., HALLEM, S., HENRI-GROS, C., KAMSKY, A.,
MCPEAK, S., AND ENGLER, D. 2010. A few billion lines of code later: Using static analysis to find bugs
in the real world. Comm. ACM 53, 2.

BOCHS. 2011. Bochs IA-32 emulator. http://bochs.sourceforge.net/.
BOONSTOPPEL, P., CADAR, C., AND ENGLER, D. R. 2008. RWset: Attacking path explosion in constraint-

based test generation. In Proceedings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



2:48 V. Chipounov et al.

BRUMLEY, D., HARTWIG, C., KANG, M. G., NEWSOME, Z. L. J., POOSANKAM, P., SONG, D., AND YIN,
H. 2007. BitScope: Automatically dissecting malicious binaries. Tech. rep. CMU-CS-07-133, Carnegie
Mellon University.

BUCUR, S., URECHE, V., ZAMFIR, C., AND CANDEA, G. 2011. Parallel symbolic execution for automated
real-world software testing. In Proceedings of the ACM EuroSys European Conference on Computer
Systems.

BUNGALE, P. P. AND LUK, C.-K. 2007. PinOS: a programmable framework for whole-system dynamic in-
strumentation. In Proceedings of the International Conference on Virtual Execution Environments.

BURROWS, M., ERLINGSON, U., LEUNG, S.-T., VANDEVOORDE, M. T., WALDSPURGER, C. A., WALKER,
K., AND WEIHL, W. E. 2000. Efficient and flexible value sampling. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems.

CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., AND ENGLER, D. R. 2006. EXE: Automatically
generating inputs of death. In Proceedings of the Conference on Computer and Communication Security.

CADAR, C., DUNBAR, D., AND ENGLER, D. R. 2008. KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the Symposium on Operating Systems
Design and Implemenatation.

CHIPOUNOV, V. AND CANDEA, G. 2010. Reverse engineering of binary device drivers with RevNIC. In Pro-
ceedings of the ACM EuroSys European Conference on Computer Systems.

CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. 2011. S2E: A platform for in-vivo multipath analysis of
software systems. In Proceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems.

DILLIG, I., DILLIG, T., AND AIKEN, A. 2008. Sound, complete and scalable path-sensitive analysis. In Pro-
ceedings of the Conference on Programming Language Design and Implementation.

DTRACE. 2011. Dtrace. http://www.sun.com/bigadmin/content/dtrace/index.jsp.
GODEFROID, P. 1997. Model checking for programming languages using VeriSoft. In Proceedings of the

Symposium on Principles of Programming Languages.
GODEFROID, P. 2007. Compositional dynamic test generation. In Proceedings of the Symposium on Princi-

ples of Programming Languages.
GODEFROID, P., KLARLUND, N., AND SEN, K. 2005. DART: Directed automated random testing. In Pro-

ceedings of the Conference on Programming Language Design and Implementation.
GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. 2008. Automated whitebox fuzz testing. In Proceedings of

the Network and Distributed System Security Symposium.
IEEE. 2005. Standard 1666: SystemC language reference manual.

http://standards.ieee.org/getieee/1666/.
INTEL. 2011. Intel 64 and IA-32 Architectures Software Developers Manual. Vol. 2.
JAVA PATHFINDER. 2007. Java PathFinder. http://javapathfinder.sourceforge.net.
KING, J. C. 1975. A new approach to program testing. In Proceedings of the International Conference on

Reliable Software.
KUZNETSOV, V., CHIPOUNOV, V., AND CANDEA, G. 2010. Testing closed-source binary device drivers with

DDT. In Proceedings of the USENIX Annual Technical Conference.
LAM, M. S., WHALEY, J., LIVSHITS, V. B., MARTIN, M. C., AVOTS, D., CARBIN, M., AND UNKEL, C. 2005.

Context-sensitive program analysis as database queries. In Proceedings of the Symposium on Principles
of Database Systems.

LATTNER, C. AND ADVE, V. 2004. LLVM: A compilation framework for lifelong program analysis and trans-
formation. In Proceedings of the International Symposium on Code Generation and Optimization.

LEVON, J. AND ELIE, P. 1998. Oprofile. http://oprofile.sourceforge.net.
LUA 2010. Lua: A lightweight embeddable scripting language. http://www.lua.org/.
LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND

HAZELWOOD, K. 2005. PIN: Building customized program analysis tools with dynamic instrumentation.
In Proceedings of the Conference on Programming Language Design and Implemenation.

MICROSOFT. 2011a. WHDC: Develop hardware for windows. http://www.microsoft.com/whdc.
MICROSOFT. 2011b. Windbg. http://msdn.microsoft.com/en-us/windows/hardware/gg463009.
MILLER, B., FREDRIKSEN, L., AND SO, B. 1990. An empirical study of the reliability of UNIX utilities.

Comm. ACM 33, 12.
MURPHY, C., KAISER, G., VO, I., AND CHU, M. 2009. Quality assurance of software applications using the

in vivo testing approach. In Proceedings of the International Conference on Software Testing Verification
and Validation.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.



The S2E Platform: Design, Implementation, and Applications 2:49

MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G., NAINAR, P. A., AND NEAMTIU, I. 2008. Finding and
reproducing Heisenbugs in concurrent programs. In Proceedings of the Symposium on Operating System
Design and Implementation.

PESTEREV, A., ZELDOVICH, N., AND MORRIS, R. T. 2010. Locating cache performance bottlenecks using
data profiling. In Proceedings of the ACM EuroSys European Conference on Computer Systems.

PRASAD, V., COHEN, W., EIGLER, F. C., HUNT, M., KENISTON, J., AND CHEN, B. 2005. Locating system
problems using dynamic instrumentation. In Proceedings of the Linux Symposium.

PĂSĂREANU, C., MEHLITZ, P., BUSHNELL, D., GUNDY-BURLET, K., LOWRY, M., PERSON, S., AND PAPE,
M. 2008. Combining unit-level symbolic execution and system-level concrete execution for testing NASA
software. In Proceedings of the International Symposium on Software Testing and Analysis.

PULKKINEN, T., NELSON, K., PULKKINEN, E., CUMMING, M., AND SCHULZE, M. 2011. libsigc++ — The
Typesafe Callback Framework for C++. http://libsigc.sourceforge.net/.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. 1997. Eraser: A dynamic
data race detector for multithreaded programs. ACM Trans. Comput. Syst. 15, 4.

SCHWARZ, B., DEBRAY, S., AND ANDREWS, G. 2002. Disassembly of executable code revisited. In Proceed-
ings of the Working Conference on Reverse Engineering.

SEN, K. 2007. Concolic testing. In Proceedings of the International Conference on Automated Software
Engineering.

SEN, K., MARINOV, D., AND AGHA, G. 2005. CUTE: A concolic unit testing engine for C. In Proceedings of
the Symposium on the Foundations of Software Engineering.

SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER, I., KANG, M. G., LIANG, Z., NEWSOME, J.,
POOSANKAM, P., AND SAXENA, P. 2008. Bitblaze: A new approach to computer security via binary
analysis. In Proceedings of the International Conference on Information Systems Security.

VALGRIND. 2011. Valgrind. http://valgrind.org/.
WHEELER, D. 2010. SLOCCount. http://www.dwheeler.com/sloccount/.
YANG, J., SAR, C., AND ENGLER, D. 2006. EXPLODE: A lightweight, general system for finding serious stor-

age system errors. In Proceedings of the Symposium on Operating Systems Design and Implementation.
YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H., YANG, M., LONG, F., ZHANG, L., AND ZHOU, L.

2009. MODIST: Transparent model checking of unmodified distributed systems. In Proceedings of the
Symposium on Networked Systems Design and Implementation.

YOURST, M. T. 2007. PTLsim: A cycle accurate full system x86-64 microarchitectural simulator. In
Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software.

Received August 2011; accepted October 2011

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 2, Publication date: February 2012.


