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Abstract Conventional data warehouses employ the query-
at-a-time model, which maps each query to a distinct phys-
ical plan. When several queries execute concurrently, this
model introduces contention and thrashing, because the phys-
ical plans—unaware of each other—compete for access to
the underlying I/O and computation resources. As a result,
while modern systems can efficiently optimize and evalu-
ate a single complex data analysis query, their performance
suffers significantly and can be highly erratic when multi-
ple complex queries run at the same time. We present in
this paper Cjoin , a new design that substantially improves
throughput in large-scale data analytics systems processing
many concurrent join queries. In contrast to the conventional
query-at-a-time model, our approach employs a single physi-
cal plan that shares I/O, computation, and tuple storage across
all in-flight join queries. We use an “always on” pipeline of
non-blocking operators, managed by a controller that con-
tinuously examines the current query mix and optimizes the
pipeline on the fly. Our design enables data analytics engines
to scale gracefully to large data sets, provide predictable
execution times, and reduce contention. We implemented
Cjoin as an extension to the PostgreSQL DBMS. This pro-
totype outperforms conventional commercial systems by an
order of magnitude for tens to hundreds of concurrent queries.
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1 Introduction

Businesses and governments rely heavily on data warehouses
to store and analyze vast amounts of data; the informa-
tion within is key to making sound strategic decisions.
Data analytics has recently penetrated the domains of Inter-
net services, social networks, advertising, and product rec-
ommendation, where complex queries are used to identify
behavioral patterns in users’ online activities. Data analytics
systems query ever increasing volumes of data—hundreds of
terabytes to petabytes—and the owners of the data scramble
to distill the data into social or financial profit.

Unlike in the past, today’s data analytics deployments
require support for many concurrent users. Commercial cus-
tomers require support for tens of concurrent queries, with
some even wishing to concurrently process hundreds of
reports for the same time period [5]. Moreover, customers
wish that the processing of several queries concurrently not
increase drastically the per-query latency, relative to the sin-
gle-query case. For example, one large client specifically
asked that increasing concurrency from one query to 40
should not increase latency of any given query by more than
a factor of six [5]. Large organizations employing data ana-
lytics indicate that their data warehouses will have to rou-
tinely support many hundreds of concurrent queries in the
near future.

We know of no general-purpose data warehouse (DW)
system that can meet these real-world requirements today.
Adding a new query can have unpredictable effects or, at best,
predictably negative ones. For instance, when going from 1 to
256 concurrent queries, the query response time in a widely
used commercial DBMS increases by an order of magnitude;
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in the open-source PostgreSQL DBMS, it increases by two
orders of magnitude. Yet, when queries start taking hours or
days to complete, they are no longer able to provide real-
time analysis, since, depending on isolation level, they may
be operating on hours-old or days-old data. This situation
leads to justified “workload fear,” and users of the DW are
prohibited from submitting ad hoc queries, with only DBA-
sanctioned reports being allowed to execute.

In order to achieve better scalability, organizations break
their data warehouse into smaller data marts, perform aggres-
sive summarization, and batch query tasks. Alas, these mea-
sures delay the availability of answers, restrict severely the
types of queries that can be run (and consequently the rich-
ness of the information that can be extracted), and increase
maintenance costs. In effect, the available data and compu-
tation resources end up being used inefficiently, preventing
the organization from taking full advantage of their invest-
ment. Workload fear also acts as a barrier to deploying novel
applications that use the data in imaginative ways.

This phenomenon is not necessarily due to faulty designs,
but merely indicates that most existing DBMSes were
designed for a common case that is no longer common—
workloads and data volumes, as well as hardware architec-
tures, have changed rapidly in the past decade. Conventional
DBMSes employ the query-at-a-time model that maps each
query to a distinct physical plan. As a result, this model
introduces contention when queries execute concurrently,
because the physical plans compete in mutually unaware
fashion for access to the underlying I/O and computation
resources. Concurrent queries therefore give rise to random
I/O; given the sizes of today’s DWs, the performance penalty
of non-sequential access is crippling—e.g., for a 1-petabyte
DW, a query that touches even only 0.1% of the database
retrieves 1 TB of data using mostly random disk accesses.

This paper introduces a query processing architecture that
enables DW systems to scale to hundreds of concurrent users,
enabling these users to issue ad hoc queries and receive real-
time answers. Our goal is to enable a new way of using data
warehouses, in which users shed their workload fear and
experiment freely with ad hoc data analysis, drill arbitrarily
deep, and broaden their queries as needed.

We introduce Cjoin , a new physical join operator that
evaluates concurrent join queries efficiently. Cjoin achieves
deep sharing of both computation and resources, and it is
well suited to the characteristics of modern DW platforms:
star schema design, many-core systems, fast sequential scans,
and large main memories. Using Cjoin as the basis, we build
a query processing engine that scales gracefully to highly
concurrent, dynamic workloads. The query engine employs
a single physical plan that is “always on” and is continuously
optimized based on run-time statistics. A new query can latch
onto the single plan at any point in time, and it immediately
starts sharing work with concurrent queries in the same plan.

This deep, aggressive sharing is key to Cjoin ’s efficiency
and sets it apart from prior work.

Measurements indicate that Cjoin achieves substantial
improvement over state-of-the-art commercial and research
systems. For 256 concurrent queries on a star schema,
Cjoin outperforms commercial and open-source systems by
a factor of 10 to 100 on the Star Schema Benchmark [23]. For
32 concurrent queries, Cjoin outperforms them by up to 5×.
More importantly, Cjoin is significantly more predictable:
when processing anywhere from 1 to 256 concurrent que-
ries, Cjoin query response time varies by no more than 30%,
compared to over 500% for a leading commercial system.

The rest of the paper is structured as follows: Sect. 2
describes in more detail the problem we address; Sect. 3-
Sect. 5 describe the design of the Cjoin operator and the new
query processing engine we built around it; Sect. 6 describes
a prototype implementation of Cjoin on top of PostgreSQL;
Sect. 7 evaluates various aspects of performance and scala-
bility using this prototype; Sect. 8 discusses Cjoin ’s path
from prototype to product; Sect. 9 describes related work;
and Sect. 10 concludes.

2 Assumptions and problem statement

In this section, we provide background on the central prob-
lem addressed in our paper: improving support for concur-
rent queries in large data warehouses. We describe the DW
model we have in mind, a concrete statement of our goals,
and assumptions regarding the physical data storage layer.

2.1 Data warehousing model

The model targeted by our work is described below; in Sect. 8,
we show how specific assumptions behind this model can be
lifted without affecting the techniques we propose.

We consider a data warehouse that organizes information
using a star schema, a de facto standard in the DW industry:
a fact table F is linked through foreign keys to n dimension
tables D1, . . . , Dn . Following common practice, we assume
that F is too large to fit in main memory, and it is considerably
larger than the dimension tables.

The DW supports a workload consisting of SQL queries,
including periodic updates. Following common industrial
practice, we assume that the concurrency control protocol
provides snapshot isolation, so each transaction is “tagged”
with a snapshot identifier that is inherited by each query and
update statement in the transaction. Snapshot isolation is
employed by several commercial systems, including Aster
Data deployments, Microsoft SQL Server, Oracle, and SQL
Anywhere.

We distinguish the class of SQL star queries, common
in DW workloads and particularly in ad hoc data analytics.
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As will be seen later, this specific query structure enables
us to develop efficient techniques for answering concurrent
queries. Formally, a star query has the following template:

SELECT A, Aggr1, . . . , Aggrk
FROM F, D1,…, Dn

WHERE
∧

1≤ j≤n
F �� D j AND

∧

1≤ j≤n
σc j (D j ) AND σc0(F)

GROUP BY B

Symbols A and B denote attribute sets from the referenced
tables, and Aggr1, . . . , Aggrk are standard SQL aggregate
functions, e.g., MIN, MAX, AVG. The WHERE clause is a
conjunction of fact-to-dimension joins and selection predi-
cates. A join predicate F �� D j has the standard form of
a key/foreign-key equi-join. A selection predicate c j can be
arbitrarily complex (e.g., contain disjunctions or sub-que-
ries), but can reference solely the tuple variable of D j from
the star query. We allow for the case where A = ∅ or B = ∅,
i.e., there is no GROUP BY clause, so either k = 0 or A = ∅.
In the remainder of the paper, we assume the most general
case, where A �= ∅,B �= ∅, and k > 0.

The template references all dimension tables in the
database schema, but this is done solely to simplify nota-
tion. Given an arbitrary star query, we transform it to this
template by adding the predicates σT RU E (D j ) and F �� D j

for any non-referenced dimension table D j . The semantics
of the key/ foreign-key joins guarantee that the transformed
query has exactly the same result. We stress that this trans-
formation is conceptual and is done solely to facilitate our
presentation.

2.2 Problem statement

We consider the problem of efficiently evaluating a large
number of concurrent star queries in a single data warehouse.
These queries can either be submitted directly by users or
constitute sub-plans of more complex queries that involve
more than just joins.

What are the characteristics of an ideal solution? In the-
ory, query throughput should scale linearly with the num-
ber of concurrently executing queries, or equivalently query
response time should be independent of the number of con-
currently executing queries. A more realistic goal, however,
is to achieve near-linear scale-up for query throughput, with
graceful degradation as the number of queries increases, i.e.,
avoid thrashing. This goal clearly implies a notion of pre-
dictability: Query response time should be determined pri-
marily by the characteristics of the query not by the presence
or absence of other queries executing concurrently in the
system. Existing general purpose DWs do not fare well in
this respect, hence our motivation to find a solution suitable
for highly concurrent data warehouses.

We emphasize that the overall workload need not be
restricted solely to star queries. On the contrary, we envi-
sion a system architecture where concurrent star queries are
diverted to a specialized query processor (such as the one
presented in this paper) and any other SQL queries, and
update statements are handled using conventional infrastruc-
ture. While it is clearly desirable to support high concurrency
across all types of queries, even doing so just for star queries is
a significant challenge. Moreover, this focus does not restrict
the practicality of our solution, since star queries are common
in DW workloads. Finally, our query evaluation techniques
can be employed as sub-plans, to evaluate the star “portion”
of more complex queries.

2.3 Physical data storage

We develop our techniques assuming that the DW employs a
conventional row-store for data storage. This assumption is
driven by the design of existing commercial DW solutions,
such as Oracle, IBM DB2, Microsoft SQL Server, Terada-
ta, and Aster Data’s nCluster system—the product in whose
context we developed Cjoin . However, our approach can be
applied equally well to different architectures. For instance,
it is possible to implement Cjoin within a column store or
a system employing compressed tables. We examine these
cases in Sect. 8.

We do not make any specific assumptions about the phys-
ical design of the DW, such as partitioning, existence of indi-
ces, or materialized views. However, as we show in Sect. 8,
Cjoin can take advantage of existing physical structures,
such as fact table partitioning.

3 Design overview

We now provide an overview of Cjoin ’s design, along with
the motivation behind the high-level design decisions. For
clarity, we assume a query-only workload that references the
same snapshot of the data; in Sect. 4, we expand our discus-
sion to mixed workloads containing both queries and updates.

3.1 Design principles

The goal of Cjoin is two-fold: to reduce the response time of
concurrently executing joins in large-scale data warehouses
and to improve the predictability of this response time, in
order to eliminate workload fear.

To achieve these goals, we adopt two key design prin-
ciples. First, we aim to minimize the amount of redundant
work, which manifests in traditional DWs as unnecessary
disk I/O, computation, memory copies, and synchroniza-
tion. We leverage awareness of the workload (i.e., knowl-
edge of which queries are running concurrently) to construct
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a cooperative environment in which queries help each other,
instead of stepping on each others’ toes. This translates into
a unique physical plan for all running queries, which reduces
the amount of total work across all queries—Sect. 4 describes
this in detail. Second, we aim for an adaptive query process-
ing pipeline, which can be adjusted at low cost, in response
to changes in workload and data. This is in contrast to the
classical fixed physical plan approach. Adaptivity also allows
for future improvements to be easily assimilated in a Cjoin
implementation, without having to alter the design—Sect. 5
describes Cjoin ’s adaptivity in detail.

3.2 The Cjoin pipeline

In what follows, we use Q to denote the set of concurrent
star queries being evaluated. We assume that each query is
assigned a unique non-negative integer identifier, and we use
Qi to denote the query with id i . These identifiers are spe-
cific to Cjoin and are assigned when queries are registered
with the Cjoin operator. Qi ’s identifier can be reused after
Qi completes. The maximum query id in Q is denoted as
maxId(Q). Note that maxId(Q) ≥ |Q| in the general case,
since query identifiers need not be consecutive. We assume
maxId(Q) < maxConc, where the latter is a system param-
eter that limits the total number of concurrent queries.

We use ci j to denote the selection predicate placed by Qi

on a dimension table D j that it references. We also define ci0

similarly with respect to the fact table F . Finally, we use b
to denote a bit vector of length at most maxConc and b[l] to
denote its l-th bit. The symbol 0 denotes the bit vector with
all bits set to 0.
Cjoin

leverages the observation that star queries have a common
structure: they “filter” the fact table through dimension pred-
icates. This enables us to amortize the cost of processing a
fact tuple across all queries that are currently executing, thus
reducing the amount of I/O and computation cost “charged”
to each query. Corresponding to this observation, Cjoin ’s
architecture consists of a pipeline of components, as shown
in Fig. 1.

The Cjoin pipeline receives its input from a continuous
scan of the fact table and feeds its output to aggregation oper-
ators (either sort-based or hash-based) that compute the query
results. In between, the fact tuples are processed through a
sequence of Filters, one for each dimension table, where each

Fact 
Table

Preprocessor Filter Distributor

Continuous Scan

Pipeline 
Manager

Filter...
...

Aggr.
Operator

Aggr.
Operator

Aggr.
Operator

Fig. 1 High-level architecture of the CJOIN pipeline

Filter encodes the corresponding dimension predicates of all
queries in Q. This is how Cjoin shares among all queries
in Q both the I/O and the computation. The continuous scan
keeps Cjoin “always on,” i.e., a new query Q can be regis-
tered with the operator at any point in time. The Preprocessor
marks the point in the scan where Q entered the operator,
and when the scan wraps around at that same point, it signals
the completion of Q. This design turns the fact table into
a “stream” that is filtered continuously by a dynamic set of
dimension predicates. As will be seen later, the streaming of
tuples offers the opportunity to make advantageous trade-offs
between memory-copy costs and synchronization.

We illustrate the operation of the pipeline and the basic
ideas behind Cjoin using the following simple workload: two
star queries that join fact table F with dimension tables D1

and D2. The queries compute different aggregates and apply
different selection predicates on D1 and D2.

Q0

Select Aggr1
From Fτ, D1δ, D2δ

′
Where τ �� δ �� δ′ And σc11(δ) AND σc12(δ

′)

Q1

Select Aggr2
From Fτ, D1δ, D2δ

′
Where τ �� δ �� δ′ And σc21(δ) And σc22(δ

′)

Figure 2 shows a possible Cjoin pipeline for this work-
load. The following paragraphs describe the functionality of
each component for this specific example.

The Preprocessor receives tuples from the continuous
scan and forwards them to the remainder of the pipeline. Each
fact tuple τ is augmented with a bit-vector bτ that contains
one bit for each query in the workload. In this example, the bit
vector consists of two bits such that bτ [0] = bτ [1] = 1, indi-
cating that, upon exiting the Preprocessor, every fact tuple is
considered relevant to both Q0 and Q1, respectively.

The Distributor receives fact tuples that, after having
crossed the pipeline, are still relevant to at least one query
in the current workload. Given a received fact tuple τ , the
Distributor examines its bit-vector bτ and routes it to the
aggregation operators of query Qi if and only if bτ [i] = 1.

Filter Distributor

Dimension 
Hash Table

Aggr1

11

fact 
tuple

bitmap

Aggr2

'
2 11

'
1 01

dim tuple bitmap

Dimension 
Hash Table

Pipeline 
Manager

Fact 
Table

Continuous Scan

Preprocessor Filter

103

2 11
1 01

dim tuple bitmap

Fig. 2 One possible instantiation of the CJOIN pipeline for the two
example queries shown above
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A Dimension Hash Table stores a union of the tuples of
a specific dimension table that satisfy the predicates of the
current queries. In our example, say the predicates of Q0

select exactly two tuples δ2 and δ3 from table D1 and one
tuple δ′2 from D2, while the predicates of Q1 select tuples δ1

and δ2 from D1 and tuples δ′1 and δ′2 from D2. Each stored
dimension tuple δ is augmented with a bit-vector bδ , whose
length is equal to the bit-vector bτ attached to fact tuples, and
has the following interpretation: bδ[i] = 1 iff the dimension
tuple satisfies the predicates of query Qi . For instance, the
bit vector for tuple δ1 has bits bδ1 [0] = 0 and bδ1 [1] = 1.
Figure 2 shows the bit vectors for all tuples in our example.

Each Filter retrieves fact tuples from its input queue and
probes the corresponding dimension hash table to identify the
joining dimension tuples. Given a fact tuple τ , the semantics
of the foreign key join ensure that there is exactly one dimen-
sion tuple δ that corresponds to the foreign key value. If δ is
present in the dimension hash table, then its bit-vector bδ is
bitwise AND-ed with τ ’s bit-vector bτ .Otherwise, bτ is set
to 0. The Filter forwards τ to its output only if bτ �= 0 after
AND-ing (i.e., only if the tuple is still relevant to at least one
query), otherwise the tuple is discarded. In this example, the
first Filter outputs a tuple τ only if it joins with one of δ1, δ2,
or δ3. The second Filter forwards a fact tuple to the Distribu-
tor only if it joins with one of δ′1 or δ′2. Since the two Filters
work in sequence, τ appears in the output of the second Filter
only if its dimension values satisfy the predicates of Q0 or
Q1.

The Pipeline Manager regulates the operation of the
pipeline. This component is responsible for registering new
queries with Cjoin and for cleaning up after registered que-
ries finish executing. It is also in charge of monitoring the
performance of the pipeline and optimizing the pipeline on-
the-fly to maximize query throughput. For this reason and
others that we mention below, it is desirable for the Pipeline
Manager to operate in parallel with (and decoupled from) the
main pipeline. Therefore, this component has ideally its own
execution context (e.g., a separate thread or process).

Overall, the basic idea behind Cjoin is that fact tuples flow
from the continuous scan to the aggregation operators, being
filtered in between based on the predicates of the dimension
tables. At a high level, this is similar to a conventional plan
that would employ a pipeline of hash-join operators to join the
fact table with the dimension tables. However, Cjoin shares
the fact table scan among all queries, filters a fact tuple against
all queries with a single dimension table probe, and stores the
union of dimension tuples selected by queries. Therefore,
the fundamental difference from conventional plans is that
Cjoin evaluates all queries concurrently in a single plan that
shares I/O, computation, and data. The proposed design dif-
fers from previous operator-centric designs (e.g., QPipe [15])
in that it takes advantage of the semantics of star queries to
provide a much tighter degree of integration and sharing. For

instance, QPipe would simulate two hash-join operators with
different state for each query, since Q0 and Q1 have differ-
ent selection predicates. In contrast, our design employs only
one operator for both queries.

In this example, we illustrated only one possible Cjoin
pipeline for the sample workload, but the Cjoin pipeline can
morph into multiple shapes. As we discuss later in Sect. 5,
there are other possibilities with potentially vast differences
in performance. For instance, it is possible to change the
order in which the Filters are applied. Another possibility is
to have the Filter operators run in parallel using a variable
degree of parallelism, e.g., the first Filter can employ two
parallel threads, while the second Filter can have just one
thread. The adaptivity of the Cjoin pipeline enables easy
tuning of these aspects, without requiring re-design.

3.3 Properties of the query processing pipeline

The Cjoin design has specific implications on the cost of
query processing, which we discuss below.

We consider first the end-to-end processing for a single
fact tuple through the Cjoin operator. Once a tuple is initial-
ized in the Preprocessor, if K is the total number of Filters in
the pipeline, then processing the fact tuple involves K probes
and K bit-vector AND operations in the worst case. Since the
probe and the AND operation have limited complexity, and
assuming that the Preprocessor can initialize efficiently the
bit vector of the tuple, Cjoin can provide high tuple through-
put from the continuous scan to the aggregation operators.
The reliance on sequential scans as the sole access method
allows Cjoin to scale gracefully to large data sets, without
incurring the costs of creating and maintaining materialized
views or indices on the fact table, or maintaining statistics.

We discuss now the cost of a single query. The response
time of a query evaluated with Cjoin is dominated by the time
required to loop around the continuous scan. This cost is rel-
atively stable with respect to the total number of queries in
the workload, because the I/O is shared across all queries and
the cost of probing in each Filter (cost of a hash table lookup
and cost of a bitwise AND) grows at a low rate with the num-
ber of queries. Thus, as long as the rate of query submission
does not surpass the rate of query completion, Cjoin yields
response times with low variance across different degrees of
concurrency. This property is crucial to providing predictable
performance under high concurrency.

An added bonus is that the current point in the continu-
ous scan can serve as a reliable progress indicator for the
registered queries, and it is also possible to derive an esti-
mated time of completion based on the current processing
rate of the pipeline. These two metrics can provide valuable
feedback to users during the execution of ad hoc analytic
queries in large data warehouses.
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Query response time is bounded below by the cost of a
full sequential scan of the fact table. Conventional physical
plans for star queries are likely to have the same property;
for instance, a common plan in commercial systems is a left-
deep pipeline of hash joins with the fact table as the outer
relation.In principle, the large table scan can be avoided by
the use of indices or materialized views, but these structures
are generally considered too expensive in the DW setting,
because using fact table indices results in random I/O, and
ad hoc data analytics workloads tend to not be stable enough
to identify useful views to materialize. A common method
used in practice is to limit queries to specific partitions of
the fact table; as will be discussed in Sect. 7, this method
can also be integrated in Cjoin with similar benefits. In any
case, Cjoin is just another choice for the query optimizer:
it is always possible to execute queries with conventional
execution plans if this is estimated to be more efficient.

4 Maximizing work sharing in Cjoin

We now describe the details of each component of the Cjoin
pipeline. We emphasize in this section the design elements
aimed at maximizing the amount of work sharing, assuming
a fixed ordering of Filters and ignoring for the time being
the assignment of execution contexts to the different compo-
nents. We discuss these latter two points in Sect. 5, where we
review our design choices in order to enable adaptivity.

4.1 Query processing

We begin with Cjoin ’s query processing logic. In this sec-
tion, we assume that the workload Q remains fixed; admis-
sion and finalization of queries are discussed in Sect. 4.2.

4.1.1 Setting up the pipeline

Each dimension table D j referenced by at least one query is
mapped to a hash table HD j , which stores those tuples of D j

that are selected by at least one query in the workload. More
formally, a tuple δ ∈ D j is stored in HD j if and only if there
exists a query Qi that references D j and δ satisfies selection
predicate ci j . Tuple δ is also associated with a bit-vector bδ

of length maxId(Q) that determines the queries that select δ.
This bit vector is defined as follows:

bδ[i] =

⎧
⎪⎪⎨

⎪⎪⎩

0 if there is no query Qi in Q
1 if Qi references D j ∧ δ satisfies ci j

0 if Qi references D j ∧ δdoes not satisfy ci j

1 if Qi does not reference D j

The last case inserts an implicit TRUE predicate for a
query Qi that does not reference the dimension table. The
reason is that Qi does not filter fact tuples based on D j , so

implicitly it selects all the fact tuples in D j . This implies that
the hash table has a bit-vector bD j for which bD j [i] = 1 if
Qi does not reference D j and bD j [i] = 0 otherwise. This
bit-vector bD j is implicitly assigned to any tuple δ in the
dimension table that does not satisfy any of the predicates in
Q and hence is not stored in HD j .

The memory footprint of dimension hash tables is moder-
ate; for example, the TPC-DS benchmark [29] employs 2.5
GB of dimension data for a 1 TB warehouse, and today even
a workstation-class machine can be economically equipped
with 16 GB of main memory or more. When concurrently
processing a hundred queries or more, this footprint amounts
to less than 25 MB of dimension table data per query, which
is advantageous relative to today’s systems, even if the entire
dimension tables were stored in memory (note that HD j

stores only a subset of D j , which is an optimization over
storing the entire dimension tables). Since dimension tables
typically grow at a much slower rate than the fact table (typi-
cally logarithmic [23,29]), it is reasonable to expect that this
advantage will persist.

4.1.2 The preprocessor

We now describe the steps involved in processing a fact tuple
τ through the Cjoin pipeline. First, the Preprocessor attaches
to τ a bit-vector bτ of length maxId(Q) that traces the rel-
evance of the tuple to different queries. This bit vector is
modified as τ is processed by Filters, and it is used in the
Distributor to route τ to aggregation operators.

The bit vector is initialized based on the predicates placed
on the fact table: bτ [i] = 1 if Qi ∈ Q ∧ τ satisfies ci0 (i.e.,
Qi ’s selection predicate on the fact table) and bτ [i] = 0
otherwise. After bτ is initialized, the Preprocessor forwards
it to its output queue if bτ �= 0. In the opposite case, τ can be
safely dropped from further processing, as it is guaranteed
to not belong to the output of any query in Q. Computing bτ

involves evaluating a set of predicates on τ , and thus it is nec-
essary to employ an efficient evaluation mechanism to ensure
that the Preprocessor does not become the bottleneck. This
issue, however, is less crucial in practice, since most queries
place predicates solely on dimension tables.

4.1.3 The filters

Tuple τ passes next through the sequence of Filters. Con-
sider one such Filter corresponding to dimension table D j .
Let δ be the joining dimension tuple for τ . The Filter probes
HD j using the foreign key of τ and eventually computes
(as explained in the next paragraph) a “filtering bit vector”
denoted by bτ �� bHD j , which reflects the subset of queries
that select δ through their dimension predicates. The Filter
thus joins τ with D j with respect to all queries in the work-
load by performing a single lookup in HD j . Subsequently, bτ
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is bitwise AND-ed with bτ �� bHD j . If this updated bτ vector
is 0, then the fact tuple can safely be dropped from further
processing, since it will not belong to the output of any query
in Q; otherwise, it is passed to the output of the Filter. As an
optimization, it is possible to sometimes avoid probing HD j

by first checking whether bτ AND ¬bD j is 0, i.e., if D j does
not appear in any query Qi to which τ is relevant. In this
case, τ is not relevant to any queries that reference HD j and
can be simply forwarded to the next Filter.

The filtering bit vector is computed as follows: if the hash-
table probe finds δ in HD j , then bτ �� bHD j = bδ , as in
the example of Fig. 2; otherwise, bτ �� bHD j is set to bD j ,
the bit vector of tuples that are not stored in HD j . Given
the definitions of bδ and bD j , we can assert the following
key property for the filtering bit vector: bτ �� bHD j [i] = 1
if and only if either Qi references D j and δ is selected
by Qi , or Qi does not reference table D j . This property
ensures that bτ AND bτ �� bHD j yields a bit vector that
reflects accurately the relevance of τ to workload queries up
to this point. This can be stated formally with the following
invariant:

Filtering invariant: Let D1, . . . , Dm be the dimension
tables corresponding to the first m Filters in the Cjoin pipe-
line, m ≥ 1. If a tuple τ appears in the output of the Filter
corresponding to Dm, then bτ [i] = 1 if and only if Qi ∈ Q
and τ satisfies the predicates of Qi on the fact table and τ

joins with those dimension tuples in {D1, . . . , Dm} that also
satisfy the predicates of Qi .

Tuple τ eventually reaches the Distributor if its bit vector
is non-zero after passing through all the Filters. Given that
the Filters cover all the dimension tables referenced in the
current workload, the invariant guarantees that bτ [i] = 1 if
and only if τ satisfies all selection and join predicates of Qi .

4.1.4 The distributor

The Distributor routes τ to the aggregation operator of each
query Qi for which bτ [i] = 1 after having passed through all
the dimension Filters. The aggregation operator can directly
extract any needed fact table attributes from τ . If the oper-
ator needs to access the attributes of some dimension D j ,
then it can use the foreign key in τ to probe for the join-
ing dimension tuple. A more efficient alternative is to attach
to τ memory pointers to the joining dimension tuples as it
is processed by the Filters. Specifically, let δ be a tuple of
D j that joins to τ and assume that Qi references D j . Based
on our definition of HD j , it is possible to show that δ is in
HD j when τ is processed through the corresponding Filter
and remains in memory until τ reaches the Distributor. This
makes it possible to attach to τ a pointer to δ after the HD j

lookup, so that the aggregation operator can directly access
all the needed information.

The current Cjoin design forwards the resulting tuples to
aggregation operators that compute the final query results.
There may be opportunities to optimize this final stage, e.g.,
by sharing work among aggregation operators, depending
on the current query mix. This optimization is orthogonal to
Cjoin and can employ existing techniques [10,24].

4.2 Query admission and finalization

So far, we examined the processing of fact tuples assuming
that the Cjoin pipeline is suitably initialized with respect to
the current workload. In this section, we discuss how the
Cjoin pipeline is updated when a new query is admitted or
when an existing query completes its processing.

We use q to denote the id of the query in question. For a
new query, q is assigned as the first unused query id in the
interval [1, maxConc], where maxConc is the system-wide
limit on the maximum number of concurrent queries. To sim-
plify our presentation, we assume without loss of generality
that q ≤ maxId(Q).

4.2.1 Admitting new queries

Query Qq is registered through the Pipeline Manager, which
orchestrates the update of information in the remaining
components. This approach takes advantage of the fact
that the Pipeline Manager executes in parallel with the
Cjoin pipeline, so the disruption to fact tuple processing is
minimal.

Registration is performed in the Pipeline Manager thread
using Algorithm 1. The first step is to update bit q of bD j

for each dimension table that either is referenced by Qq or
appears in the pipeline (lines 3–10). Subsequently, the algo-
rithm updates the hash tables for the dimensions referenced
in the query (lines 11–16). For each such dimension table D j ,
the Pipeline Manager issues the query σcq j (D j ) and updates
HD j with the retrieved dimension tuples. If a retrieved tuple
δ is not already in HD j , then δ is inserted in HD j and its bit
vector initialized to bD j . We then set bδ[q] ← 1 to indicate
that δ is of interest to Qq . At the end of these updates, all
the dimension hash tables are up to date with respect to the
workload Q ∪ {Qq}.

Having updated the dimension tables, the algorithm com-
pletes the registration by installing Qq in the Preprocessor
and the Distributor. This involves several steps. First, the
Pipeline Manager suspends the processing of input tuples
in the Preprocessor (line 17), which stalls the pipeline. This
enables the addition of new Filters in the pipeline to cover
the dimension tables referenced by the query. (Even though
new Filters are appended to the current pipeline, their place-
ment may change as part of the run-time optimization—see
Sect. 5.) Q is also updated to include Qq (line 19), which
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Algorithm 1: Admitting a new query to the Cjoin
pipeline.

Input: Query Qq
Data: A list L of dimension hash tables, initially empty
Let D be the set of dimension tables referenced by Qq1
Let D′ be the set of dimension tables in the pipeline2
foreach D j ∈ D ∪D′ do3

if D j is not in the pipeline then4
Initialize HD j and bD j based on Q ∪ {Qq }5

Append HD j to L6

else if D j is referenced by Qq then7
bD j [q] = 08

else9
bD j [q] = 110

foreach D j ∈ D do11
foreach δ ∈ σcq j (D j ) do12

if δ is not in HD j then13
Insert δ in HD j14
bδ ← bD j15

bδ[q] ← 1;16

Stall Preprocessor;17
foreach HD j in L do insert a Filter for HD j18
Q← Q ∪ {Qq };19
Set start of Qq to next tuple in Preprocessor’s input20
Append a control tuple τQq in Preprocessor’s output21

Resume Preprocessor22

allows bit q of the fact tuple bit-vector bτ to be initialized
correctly. Next, the first unprocessed input fact tuple, say τ̂ ,
is marked as the first tuple of Qq (line 20), so that it is possi-
ble to identify the end of processing Qq (when the fact table
scan wraps around τ̂ ). Finally, a special “query start” control
tuple τQq is appended to the output queue of the Preproces-
sor (line 21), and the Preprocessor is resumed. The control
tuple precedes the starting tuple τ̂ in the output stream of
the Preprocessor and is forwarded without filtering through
the Filters and on to the Distributor. In turn, the latter uses
the information in τQq to set up the aggregation operators
for Qq . Since τQq precedes any potential results for Qq (the
pipeline preserves the order of control tuples relative to data
tuples), we guarantee that the aggregation operators do not
miss any relevant fact tuples.

It is important to note that query registration occurs in the
Pipeline Manager thread and thus it can proceed, up to line 17,
in parallel with the processing of fact tuples through the pipe-
line. This ensures that other queries are minimally disrupted
during the registration of Qq . The concurrent update of the
bit vectors in dimension hash tables does not compromise
the correctness of results, since the Preprocessor continues
to mark each fact tuple as irrelevant to query Qq (bτ [q] = 0).
Thus, even if bδ[q] is switched on for some tuple δ (line 16),
it does not lead to the generation of results for Qq until after
it becomes part of the workload in line 19.

4.2.2 Finalizing queries

Query Qq is finalized when the continuous scan wraps
around the starting fact tuple τ . Upon encountering τ in
its input, the Preprocessor first removes Qq from Q, which
ensures that the bit vector of τ (and of any subsequent tuple)
will have bit q switched off. This ensures that Qq becomes
irrelevant for the filtering of fact tuples. Subsequently, the
Preprocessor emits an “end of query” control tuple that pre-
cedes τ in the output stream. The control tuple is handled
in a fashion similar to the query-start tuple and is forwarded
through the pipeline to the Distributor, which finalizes the
aggregation operators of Qq and outputs their results. Since
the control tuple precedes τ , we ensure that the aggregation
operators of Qq will not consume any fact tuple more than
once.

The final step is to clear the dimension hash tables of any
information pertinent to Qq . This is handled in the Pipeline
Manager thread according to Algorithm 2, which essentially
reverses the updates performed when the query was admit-
ted. This clean-up may render certain information in the hash
tables useless. For instance, if for some tuple δ in HD j we
have bδ = 0, then δ can be removed. In turn, if HD j becomes
empty, then it can be removed from the pipeline along with
the corresponding Filter. Of course, the latter requires a stall
of the pipeline, in order to reconfigure the Filter sequence.
Note that this “garbage collection” can be done asynchro-
nously (as long as the query identifiers are correctly han-
dled); one could also maintain usage bits and evict the least
recently used tuples according to memory needs.

4.2.3 A note on correctness

The correctness of Cjoin with respect to query finalization
hinges on two properties: First, the continuous scan must

Algorithm 2: Removing a finished query from the pipe-
line.

Input: Query Qq .
Data: A list L of dimension hash tables, initially empty.
Let D be the set of dimension tables referenced by Qq ;1
Let D′ be the set of dimension tables in the pipeline ;2
foreach D j ∈ D′ do3

bD j [q] = 1;4

foreach D j ∈ D do5
foreach δ ∈ HD j do6

bδ[q] ← 0;7
if bδ = 0 then remove δ from HD j8

if HD j = ∅ then Append HD j to L9

if L �= ∅ then10
Stall pipeline;11
foreach HD j ∈ L do remove corresponding Filter;12
Resume pipeline;13
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return fact tuples in a consistent well-defined order, so that
the Preprocessor can reliably identify when the fact table has
been scanned exactly once for each query. It is reasonable to
expect that this property holds for real-world systems. The
second property is that if a control tuple τ ′ is placed in the
output queue of the Preprocessor before (respectively after)
a fact tuple τ , then τ ′ is not processed in the Distributor
after (respectively before) τ . This property guarantees that
the aggregation operators of a query neither miss relevant
tuples nor process them more than once. This property needs
to be enforced by the implementation of the Cjoin pipeline.

4.3 Handling updates

So far, we considered the case of read-only transactions that
reference the same data snapshot. This enables grouping all
queries of these transactions in the same Cjoin operator that
performs a single continuous scan of the specific snapshot.
In the remainder of this section, we examine adaptations of
Cjoin that allow us to relax this assumption for the case when
queries correspond to transactions with different snapshot
ids. (As explained in Sect. 2, we justifiably assume snap-
shot-based isolation.) This scenario arises when read-only
transactions are interleaved with updates or when the same
transaction contains both queries and updates. In all exam-
ined cases, we focus on updates that reference only the fact
table (see below for dimension tables).

We consider two possibilities for adapting Cjoin to this
scenario, depending on the functionality of the continuous
scan operator. The first possibility is that the continuous scan
operator can return all fact tuples corresponding to the snap-
shots in the current query mix. This essentially requires the
scan to expose the multi-version concurrency control infor-
mation for the retrieved fact tuples. Then, the association of
a query Qi to a specific snapshot can be viewed as a virtual
fact table predicate, and it can be evaluated by the Prepro-
cessor over the concurrency control information of each fact
tuple. The remaining Cjoin mechanism remains unchanged.
Of course, the benefits of the Cjoin operator are decreased as
the snapshots referenced by the transactions become disjoint,
but we believe this case to be infrequent in practice.

The second possibility corresponds to a scan operator that
only returns tuples of a specific snapshot. In this case, we
create several Cjoin operators, one for each snapshot that is
referenced, and register queries with the corresponding oper-
ator. This approach could degenerate into a single plan per
query, if each transaction in our workload mix referenced dif-
ferent snapshot ids. This, however, is an exceptionally rare
event in practice. Note that, even though each Cjoin operator
requires a scan of the fact table, the dimension hash tables
can be shared across all active operators.

Updates to the dimension tables are rare in practice, so the
simplest solution is to serialize the admission of new queries

in Cjoin with the dimension updates. If such updates are fre-
quent, we can employ multi-version concurrency control in
order to retrieve the right version of dimension tuples for a
running Cjoin pipeline, thus avoiding the disruption due to
the dimension updates.

5 Run-time adaptivity

So far, our description of Cjoin ’s design focused on work
sharing, assuming a fixed ordering for the Filters and a static
mapping between Filters and execution contexts (i.e., pro-
cesses or threads). The mapping essentially determines the
degree of parallelization within the pipeline. For instance,
one could assign several threads per Filter, in order to max-
imize utilization of available CPU cores, although this may
not necessarily be the best option, as we discuss later.

Conceptually, the problem can be formulated as follows:
determine the ordering of Filters and a mapping of execu-
tion contexts to Filters that maximize performance for the
current workload and the current data. In this section, we
extend our design to allow for run-time adjustment of these
two knobs, ordering and mapping. It is important to empha-
size the run-time aspect of the optimization problem—we are
interested in optimizing the service rate with respect to the
current workload and data, since new queries can attach at
any point in time to Cjoin and there are no a-priori assump-
tions on the distribution of the workload or the distribution
of updates. Our design choice is to execute the strategy for
run-time adaptivity periodically inside the Pipeline Manager
thread. The Pipeline Manager also becomes responsible for
gathering any run-time statistics needed by the strategy.

Our performance metric is the service rate of the Filter
pipeline, since it directly determines the speed of fact tuple
processing and hence Cjoin ’s performance (further details
later). The service rate is linked to the total work performed
by the Filters, which is determined in turn by the respective
Filter selectivities. The selectivity of a specific Filter can be
defined as the probability that it forwards an input tuple to
its output, and it directly affects the amount of work per-
formed by the subsequent Filters in the pipeline. Intuitively,
selective Filters should appear early in the pipeline in order
to reduce the volume of fact tuples that are processed by the
remaining Filters; Cjoin ’s run-time adaptivity is driven by
this long established rule of thumb [13]. However, note that a
Filter encodes the predicates of all concurrent queries, hence
its selectivity is actually the average of the query-specific
predicate selectivities, and hence the selectivity can change
unpredictably as the workload or the data are modified. This
implies that Filter selectivity has to be monitored and esti-
mated at run time, and Cjoin must adapt its configuration to
the current selectivities.
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The following sections present the details of our design.
We begin with basic definitions and notation and then discuss
strategies for run-time adaptivity.

5.1 Definitions and notation

To simplify notation, we consider a Cjoin pipeline with a
fixed set of n Filters. Let O denote a specific ordering of the
Filters, such that Oi is the Filter in position i, 1 ≤ i ≤ n.
We use O j to denote the prefix sequence O1, . . . , O j . By
convention, O∅ is the empty sequence.

Let τ denote a random fact tuple. We say that some Fil-
ter accepts τ if it forwards τ to its output after probing the
corresponding hash table. For 1 ≤ j < i ≤ n, we define
P(Oi | O j ) as the probability that Filter Oi will accept τ ,
given that τ is accepted by every filter in the ordering O j .
Clearly, this probability term depends on the dimension pred-
icates encoded in Oi and O j and on the correlation between
these predicates. If Filters encode independent predicates,
then P(Oi | O j ) = P(Oi | O∅), but in general, we do not
expect this to be true for real-world workloads. Moreover,
the probability can only be defined with respect to the cur-
rent mix of queries and can change significantly when new
queries arrive or existing queries are finalized.

We define a Stage as a non-empty sequence of Filters. Any
ordering O can thus be described as a sequence of Stages
S1, . . . , Sm , for m ∈ [1, n]. There are no restrictions on the
subsequence corresponding to each Stage, e.g., for m = 1,
there exists a single Stage that is exactly the ordering O , for
m = n, each Stage has exactly one Filter, and any config-
uration in between is allowed. As we will see later, a Stage
is the unit of assignment for execution contexts (threads of
processes). Thus, a Stage with x contexts can process x fact
tuples in parallel through the corresponding Filter sequence.
This also means that the Filter pipeline becomes a linear
queuing system with m servers, where each server corre-
sponds to a Stage and communication is realized using tuple
queues. Figure 3 captures this view of the pipeline.

Assume that Stage Si corresponds to a sequence of mi Fil-
ters, with Si [ j] denoting the Filter at position j, 1 ≤ j ≤ mi .
Accordingly, we define S j as the Filter sequence correspond-
ing to the concatenation of S1, . . . , S j . We define t (Si ) as the
expected time to process a random fact tuple τ through Si ’s
sequence of Filters. Formally, let α(Si [ j]) denote the time
to probe the dimension hash table corresponding to Si [ j].
Then, t (Si ) is computed as follows.

t (Si )=
∑

1≤ j≤mi

(1− P(Si [ j]|Si−1Si [1] . . . Si [ j − 1])α(Si [ j])

Here, Si−1Si [1] . . . Si [ j − 1] denotes the concatenation of
the Filter sequence Si−1 with the sequence Si [1], . . . , Si [ j−
1]. Stage Si ’s service rate (fact tuples/unit of time) is given

(a)

(b)

Fig. 3 An example Cjoin operator with two stages. Part (a) depicts
the logical view of the pipeline, which consists of three Filters. Part
(b) shows the realization of the pipeline with two stages S1 and S2.
Each Stage is assigned disjoint execution contexts. The thick arrows
denote the tuple queues that enable communication between different
contexts. In this particular example, we assume that the Preprocessor
and the Distributor are assigned their own distinct execution contexts

by 1/t (Si ). We use t (Si , x) to denote the tuple-processing
time if Si is assigned x execution contexts. An ideal scale-
up corresponds to t (Si , x) ≤ t (Si )/x , although this is dif-
ficult to achieve because of non-linear overheads, such as
cache misses or cache synchronization. A practical approach
to compute t (Si , x) is to equate it to t (Si )φ(Si , x) and then to
estimate the scale-up factor φ(Si , x) through run-time pro-
filing of Si .

We can now define formally the service rate of a Cjoin
pipeline, which is the objective function for our optimi-
zation problem. We are given a sequence S of m Stages
and an assignment X = x1, . . . , xm of execution contexts
to Stages. X is a stable assignment if t (Si+1, xi+1) ≤
t (Si , xi )/Prob(Si | Si−1), i.e., the service rate of Si+1

exceeds the maximum output rate of Si , for all 1 ≤ i < m.
This property is derived from the basic stability condition of
queuing systems. For a stable assignment X , the service rate
of the pipeline is defined as 1/t (S1, x1), i.e., the speed of the
first Stage.

5.2 Cjoin optimization for run-time adaptivity

At a high level, the problem of run-time adaptivity can be
defined as computing a mapping of Filters to Stages, an order-
ing of Stages and of Filters within each Stage and an assign-
ment of execution contexts to Stages that, together, maximize
the service rate of the pipeline.

Definition 1 (General adaptivity problem) Given a set of
n Filters and a total count of y execution contexts, com-
pute a sequence of Stages S1, . . . , Sm and a stable assign-
ment X = x1, . . . , xm of execution contexts that minimizes
t (S1, x1) subject to

∑

1≤i≤m
xi ≤ y.

The objective function implies that we should assign more
execution contexts to the first Stage in order to increase its ser-
vice rate. However, the remaining Stages should be assigned
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sufficient contexts to yield a stable assignment. The objective
function and the stability condition are computed in terms of
the service time t (Si , xi ) of each Stage, which depends in
turn on the ordering of Stages, the ordering of Filters within
each Stage, and on the selectivities of Filters.

The optimization problem is related to the Pipelined Set
Cover problem [22], which is known to be NP-hard. Our con-
jecture is that the problem of general adaptivity has a similar
(or even higher) complexity. Since it is unclear whether we
can solve the problem of general adaptivity efficiently, we
instead consider two variants that significantly restrict the
solution space and hence may admit efficient solutions.

5.3 Single-Stage adaptivity

The first variant employs a single Stage that is assigned all
execution contexts, i.e., we fix m = 1. The only free variable
in this variant is the ordering of Filters within the single Stage
S1. All execution contexts are assigned to the single Stage.
Hence, several copies of the Filter sequence are running in
parallel (one for each context) and access the same hash
tables. This scheme avoids data cache misses when tuples
are passed between Filters, but may incur more misses on
the accesses of the hash tables, since each context needs to
access more data.

The optimization problem becomes equivalent to the
Pipelined Set Cover problem [22] and can thus be solved
using existing techniques [6,18]. These techniques employ
run-time profiling in order to estimate the current Filter selec-
tivities and periodically reorder the Filter sequence in order
to minimize t (S1, y).

5.4 n-Stage adaptivity

The second variant fixes m = n, i.e., each Stage corresponds
to a single Filter. The free variables are the assignment of
execution contexts and the ordering of Filters. Hence, Filters
run in parallel to each other, and each Filter may employ
parallelism to reduce its service time. This design favors the
affinity of Stages to CPU cores, so that instruction and data
locality are maximized. On the other hand, the transfer of
tuples between Filters could incur a large number of data
cache misses.

This variant is more complicated than Single-Stage adap-
tivity, because both the ordering of Filters and the assign-
ment of execution contexts to Filters are free variables. We
can employ a two-step approach that builds on the existing
techniques for Single-Stage adaptivity: First, we determine
an ordering of the Filters assuming that they all belong to a
single Stage [6,18]. Second, we assign execution contexts for
this specific ordering so as to achieve a stable assignment and
maximize the number of contexts for the first Filter. This can
be done with simple dynamic programming, by examining

each suffix of the Filter sequence in order of increasing length
and computing the service rate of the suffix for different val-
ues of the total number of execution contexts.

We revisit these two variants in the next section that
describes our prototype Cjoin implementation. The empiri-
cal results with test workloads indicate that the Single-Stage
variant provides superior performance. Essentially, n-Stage
adaptivity has to pass fact tuples between the execution con-
texts of different Stages, which comes at a significant over-
head cost. The experimental evidence, along with the simpler
implementation of Single-Stage adaptivity, makes the latter
the preferred approach for run-time adaptivity.

5.5 Adaptivity for heterogeneous workloads

Up to this point, our treatment of adaptivity was driven solely
by the conditional selectivity of each Filter, which is essen-
tially the average of selectivities of the dimension predicate
encoded by the Filter. We now turn our attention to the impor-
tant role played by workload heterogeneity.

We illustrate the concept of heterogeneity through a simple
example: assume that each registered query places a single
dimension predicate of low selectivity on a distinct dimen-
sion table. Furthermore, each query “selects” a disjoint set of
fact tuples, i.e., a fact tuple τ can be a witness for at most one
query in the mix. Let q j be the query that places a predicate
on table D j . The hash table of the corresponding Filter will
contain the dimension tuples that are relevant for q j , and a
“dense” default bitmap bD j that has its bits set for the remain-
ing queries. Thus, for any ordering of the Filters, most fact
tuples τ will be processed through the entire pipeline before
getting dropped or forwarded to the Distributor—essentially,
the service rate of the pipeline is fixed and cannot be opti-
mized. The issue is the heterogeneity of the workload: the
queries have different witnesses in the fact table and place
predicates on different dimension tables. This characteristic
causes most hash-table probes to return the default bitmap
bD j , whose density makes the fact tuple be highly likely to
be accepted by the Filter.

We propose to employ multiple Cjoin operators in order
to address the problem of workload heterogeneity. The idea is
to partition the current workload in groups of similar queries,
i.e., queries with similar sets of fact table witnesses, and to
process each group through a separate Cjoin operator. The
general idea is depicted in Fig. 4. The similarity between two
queries Qi and Q j can be quantified as the similarity of the
sets F � σci1(D1) · · · � σcin (Dn) and F � σc j1(D1) · · · �
σc jn (Dn), respectively, for some appropriate set-similarity
metric (e.g., Jaccard similarity). In turn, set similarity can
be efficiently estimated using approximate query answering
techniques.

As shown in Fig. 4, the different Cjoin operators receive
their input from the same continuous scan in order to
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Fig. 4 An example of adaptivity through multiple Cjoin operators.
Each operator has a distinct set of Filters corresponding to a relatively
homogeneous partition of the workload. The operators share the same
continuous scan over the fact table and can optimize their configuration
independently

maximize I/O sharing. In this configuration, the total through-
put is determined by the slowest operator in the group,
and hence, it becomes important to optimize the maximum
service time among the Cjoin operators. Let Q1, . . . ,Qk

denote a partition of the current workload Q, and let t (Qi , yi )

be the optimal service time of the Cjoin operator that pro-
cesses Qi when it is assigned yi execution contexts. This
optimal time is defined according to the General Adaptivity
problem that we introduced earlier. Our goal is to compute
the partitioning and assignment of contexts in order to mini-
mize the maximum t (Qi , yi ) for 1 ≤ i ≤ k.

Definition 2 (Multiple-Cjoin adaptivity) Given the current
workload Q and a total count y of execution contexts,
determine a partition Q1, . . . ,Qk of Q and an assignment
y1, . . . , yk of contexts to minimize max

1≤i≤k
t (Qi , yi ) subject to

∑

1≤i≤k
yi = y.

Multiple-Cjoin adaptivity introduces yet another dimen-
sion to the problem of run-time adaptivity, and we plan to
further investigate it as part of our future work on Cjoin .

6 CJOIN Prototype

We implemented CJOIN on top of PostgreSQL. In this sec-
tion, we discuss some of the interesting details of the proto-
type and the design choices that proved crucial in achieving
good performance.

6.1 Design Goals and Constraints

Figure 5 shows an overview of the prototype. Cjoin is imple-
mented as a multi-threaded process executing in parallel with
the main PostgreSQL query engine. A query router module
is responsible for routing all star queries to Cjoin , while all
other queries execute inside PostgreSQL.

There are several reasons that led us to adopt this design.
We create a system that supports both CJOIN-based pro-
cessing and conventional query evaluation (thus, both star

Fig. 5 Architecture of our Cjoin prototype

and non-star queries), without requiring a full integration of
Cjoin as a physical query operator inside the query optimizer.
At the same time, Cjoin can take advantage of the DBMS in
order to evaluate dimension predicates and access fact tuples
in an efficient manner. Moreover, the DBMS ensures that
Cjoin will retrieve snapshot-consistent data. By implement-
ing Cjoin as an operator external to PostgreSQL, we avoid
the substantial disruption that inevitably accompanies any
change to the internals of a legacy software system.

The need for high performance imposes several require-
ments on the implementation. Due to the pipelined design,
it is crucial to achieve a high tuple transfer rate from the
DBMS to Cjoin , so we need an efficient mechanism for
inter-process tuple transfer. Once the fact tuples have entered
the Cjoin pipeline, we need to ensure a high tuple trans-
fer rate between the pipeline’s components; given that these
components may execute in different threads, we need an
efficient inter-thread transfer mechanism. Finally, we need
to tune carefully the pipeline configuration with respect to
the schemes described in Sect. 5, e.g., determine the group-
ing of Filters in Stages and the assignment of threads to
Stages.

6.2 Design choices and implementation details

We now show how these goals and challenges influenced the
design of our Cjoin prototype.

6.2.1 Transferring dimension tuples from the DBMS

Cjoin uses the libpq library to connect to PostgreSQL and
evaluate dimension predicates for the registration of new que-
ries. Since such dimension table queries are infrequent and
access relatively small relations, we did not seek to optimize
this part further.
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6.2.2 Transferring fact tuples from the DBMS

The continuous scan is implemented by issuing successive
SELECT * FROM F queries to PostgreSQL. Our initial imple-
mentation used the COPY command to output fact tuples to
a UNIX pipe, which operated as a queue between the con-
tinuous scan and the Preprocessor. However, we found that
this design limited severely the scan’s throughput. Essen-
tially, each tuple was parsed twice—once inside PostgreSQL
to write it to the pipe and once in the Preprocessor when
read from the pipe—which resulted in substantial overhead.
Moreover, the overhead of read/write synchronization on the
UNIX pipe proved more significant than expected.

To overcome this limitation, we implemented a variant
of the PostgreSQL COPY command that deposits unparsed
binary tuples into a shared-memory queue. The new com-
mand has exactly the same syntax as COPY, except that the
destination clause encodes the location and size of the queue
in shared memory. Using this command, the raw binary tuples
are inserted in the queue with little overhead, and they are
retrieved and parsed exactly once inside the Preprocessor.
The new design enabled a twofold increase in the throughput
of the sequential scan in our test system.

The extended COPY command, which is accessible through
the conventional SQL interface, is of general interest for the
implementation of other external operators.

6.2.3 Transferring tuples in the Cjoin pipeline

We observed a significant overhead in synchronizing thread
access to the shared tuple queues that link Cjoin ’s compo-
nents. To reduce the overhead of thread scheduling, we wake
up a consumer thread only when its input queue is almost
full. Similarly, we resume the producer thread only when its
output queue is almost empty. We also reduce the overhead
of synchronization by having each thread retrieve or deposit
tuples in batches, whenever possible.

6.2.4 Memory management for fact tuples

Our measurements revealed a high overhead in the alloca-
tion/deallocation of fact tuples. The initial implementation
allocated new memory for each fact tuple that entered the
Preprocessor and deallocated this memory when the tuple
was processed by the Distributor or dropped by a Filter.
Whereas memory allocation can be performed efficiently in a
multi-threaded process, memory deallocation acquires a cen-
tral lock inside the memory allocator and thus has a higher
overhead. Combined with the large number of processed fact
tuples, this resulted in a significant performance penalty.

We addressed this bottleneck by creating a custom mem-
ory allocator for fact tuples. The allocator preallocates a
fixed-size pool of fact tuples when Cjoin is initialized. The

size of the pool is computed based on the maximum number
of in-flight fact tuples, which in turn is determined by the
sizes of the queues in the Cjoin pipeline. The allocator also
preallocates a bitmap that stores information on which slots
are currently in use. To allocate a fact tuple, the Preprocessor
simply traverses the bitmap to find a bit that can be switched
on. Conversely, returning a tuple to the pool entails atomi-
cally zeroing the corresponding bit. Using this design, tuple
allocation and deallocation are implemented without locks,
relying solely on atomic and efficient bitmap operations that
are implemented as single instructions on modern CPUs.

6.2.5 Pipeline configuration

Since the internal states of the Preprocessor and Distribu-
tor are frequently updated, we chose to devote a dedicated
thread to each one of them. Of the remaining threads, some
are assigned to the PostgreSQL server, one is assigned to the
Pipeline Manager and the rest are assigned to Stages.

Our prototype supports both the Single-Stage and n-Stage
adaptivity strategies described in Sect. 5. Recall that the n-
Stage strategy maps each Filter to a distinct Stage, which
implies that Filters work in parallel with each other. The Sin-
gle-Stage strategy groups all Filters into a single Stage that
is assigned several threads. Thus, each thread evaluates in
parallel the sequence of Filters for a subset of the fact tuples.

We performed several experiments to evaluate the effi-
ciency of the two strategies in the prototype implementation.
Specifically, our goal was to gauge the performance of each
strategy as we vary the total number of threads in Cjoin ,
assuming that both strategies use the same ordering for the
Filters. The details of the experimental setup are given in
Sect. 7. Here, we present a summary of the measurements
and a discussion of the pros and cons of the two strategies.

To ensure a fair assessment, we made certain that each
strategy had at least the minimum number of threads needed
for its execution. Our experimental setup created pipelines of
four Filters, which means that the n-Stage strategy required
at least four threads in total, and the Single-Stage strategy
required at least one thread. We also limited the total number
of threads to the number of physical cores in our test system.
In this setup, each core executes a single “active” thread,
which minimizes the impact of thread scheduling on perfor-
mance. More specifically, the test system has eight cores in
total, of which one is always assigned to the PostgreSQL pro-
cess that implemented the sequential scan, one to the Prepro-
cessor and another one to the Distributor. Hence, at most five
threads can be assigned for run-time adaptivity. (The Pipeline
Manager was mostly quiescent for these experiments.)

Figure 6 shows the query throughput of the two strategies
as we vary the number of Stage threads, using the above meth-
odology. The results show clearly that the Single-Stage strat-
egy consistently outperforms the n-Stage strategy, as long
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Fig. 6 Performance of adaptivity strategies

as it has more than one thread assigned to the single Stage.
Upon closer inspection, we found that the overhead of pass-
ing tuples between threads, which includes the cost of L2 data
cache misses and thread synchronization, outweighs the ben-
efits gained by the inter-Stage parallelism of the n-Stage strat-
egy. Based on these results, we decide to focus the subsequent
experiments on the Single-Stage strategy.

7 Evaluation

This section reports the results of an experimental evalua-
tion of our Cjoin prototype. We investigate the performance
characteristics of Cjoin and compare it to real-world data-
base systems using various workloads. In particular, we focus
on the following three high-level questions:

– How does Cjoin throughput scale with increasing num-
bers of concurrent queries? (Sect. 7.2.1)

– How sensitive is the throughput of Cjoin to workload
characteristics? (Sect. 7.2.2)

– How does the size of a data warehouse impact Cjoin ’s
performance? (Sect. 7.2.3)

7.1 Methodology

We describe here the systems, data sets, workloads, and eval-
uation metrics that characterize our experiments.

7.1.1 Systems

We compare Cjoin to both a widely used commercial
database system (henceforth referred to as “System X”) and
PostgreSQL. We tune both systems (e.g., computation of
optimization statistics, allowing a high number of concurrent
connections, scans using large data chunks) to ensure that
the experimental workloads are executed without obvious

performance problems. We verified that both systems employ
the same physical plan structure to evaluate the star queries in
the experimental workloads, namely a pipeline of hash joins
that filter a single scan of the fact table. The small size of the
dimension tables implies that they can be cached efficiently
in main memory and so their processing is expected to be very
fast. As a result, we do not tune the physical design of any
of the database systems with indices or materialized views
on the dimension tables, since this would not improve query
response time (we verified this claim for the experimental
workloads). We avoid indices and views on the fact table,
for the reasons mentioned in previous sections (e.g., to avoid
random I/O). For PostgreSQL, we enable the shared-scans
feature to maximize its own work sharing; System X does
not provide a similar DBA-selectable feature.

We use a server with two quad-core Intel Xeon CPUs, a
unified 6 MB L2 cache on each CPU shared among all 4
cores, 8 GB of shared RAM, and four HP 300GB 15K SAS
disks arranged in a hardware-controlled RAID-5 array.

7.1.2 Data set and workload

We employ the data set and queries defined in the Star Schema
Benchmark (SSB) [23]. We choose this particular benchmark
because it models a realistic DW scenario and targets exactly
the class of queries that we consider in our work.

We generate instances of the SSB data set using the data
generator supplied with the benchmark. The size of each
instance is controlled by a scale factor parameter denoted as
sf . A value sf = X results in a data set of size X GB, with
94% of the data corresponding to the fact table. We limit the
maximum value of the scale factor to 100 (i.e., a 100 GB data
set) to ensure the timely execution of the test workloads on
our single experimental machine.

We generate workloads of star queries from the queries
specified in the benchmark. Specifically, we first convert
each benchmark query to a template, by substituting each
range predicate in the query with an abstract range predi-
cate, e.g., d_year >= 1992 and d_year <= 1997 is con-
verted to d_year >= X and d_year <= Y, where X and Y
are variables. To create a workload query, we substitute in the
query template the abstract ranges with concrete predicates
based on a parameter s that controls the selectivity of the
predicate. Thus, s allows us to control the number of dimen-
sion tuples that are loaded by Cjoin per query, as well as
the size of the hash tables in the physical plans generated by
both PostgreSQL and System X.

Note that the original benchmark specification contains 13
queries of varying complexity. We excluded queries Q1.1,
Q1.2, and Q1.3 from the workload because they contain
selection predicates on fact table attributes, and this func-
tionality is not yet supported by our prototype. This mod-
ification does not affect the usefulness of the generated
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workloads—the omitted queries are the simplest ones in the
SSB benchmark and the only ones that do not have a group-by
clause.

7.1.3 Evaluation metrics

We quantify the performance with respect to a specific work-
load using query throughput (in queries per hour) and the
average and standard deviation of response times for each of
the 10 SSB query templates. We employ the standard devia-
tion to quantify performance stability and predictability.

For each tested system, we start executing the workload
using a single client and a cold cache. The degree of query
concurrency is controlled by an integer parameter n, as fol-
lows: the client initially submits the first n queries of the
workload in a batch and then submits the next query in
the workload whenever an outstanding query finishes. Thus,
there are always n queries executing concurrently. To ensure
that we evaluate the steady state of each system, we measure
the above metrics over queries 256...512 in the workload
(n = 256 is the highest degree of concurrency in our exper-
iments). Measuring a fixed set of queries allows us to make
meaningful comparisons across different values of n.

7.2 Experimental results

We now present a subset of the experiments we used to eval-
uate Cjoin .

7.2.1 Influence of concurrency scale

We first evaluate the performance of the three systems as
we increase n, the degree of query concurrency. Ideally, a
system with infinite resources would exhibit linear scaling:
an increase of n by a factor k would increase throughput by
the same factor. In practice, we expect a sub-linear scale-up,
both due to the limited resources and due to the interference
among concurrent queries.

Figure 7 shows query throughput for the three systems as a
function of n (measurements are gathered with a 100 GB data
set and selectivity s = 0.01). An immediate observation is
that Cjoin delivers a significant improvement in throughput
compared to System X and PostgreSQL. The improvement
can be observed for n ≥ 32 and reaches up to an order of
magnitude for n = 256.

Cjoin achieves the ideal linear scale-up for 1 ≤ n ≤ 128.
Increasing n from 128 to 256 results in a sub-linear query
throughput increase of 133%. We profiled the Cjoin execut-
able and found that bitmap operations took up a large fraction
of running time for this particular n, and so we believe that
the sub-linear scale-up is due mostly to the specific bitmap
implementation we employ. Since the efficiency of bitmap
operations is crucial for Cjoin ’s scalability, switching to a

Fig. 7 Query throughput scale-up with number of queries

more efficient bitmap implementation would likely improve
Cjoin scale-up even past 128 concurrent queries.

Unlike Cjoin , the query throughputs of System X and
PostgreSQL actually decrease when the number of concur-
rent queries increases past 32. As expected, this decrease is
a consequence of increased competition among all concur-
rently executing queries for both I/O bandwidth (for scan)
and main memory (for hash tables).

We examine next the predictability of each system with
respect to query response time. A system with predictable
performance delivers a constant query response time inde-
pendently of the number of queries that execute concur-
rently. To quantify this notion of predictability, we report
the response times of queries generated from the template
corresponding to SSB query Q4.2, which is one of the most
complex queries in the benchmark (it joins with more dimen-
sion tables than most other queries and the cardinality of its
group-by is among the largest). The results are qualitatively
the same for the other templates in the benchmark.

Figure 8 shows the average response time for queries con-
forming to template Q4.2 as a function of n. As the number
of concurrent queries n increases from 1 to 256, System X’s
response time grows by a factor of 19× and PostgreSQL’s
grows by a factor of 66×. These are precisely the undesirable
performance patterns that lead to workload fear in existing

Fig. 8 Predictability of query response time
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Table 1 Influence of
concurrency on query
submission time

# of concurrent queries (n) 32 64 128 256

Submission time (s) 2.4 2.4 2.4 2.3

Response time (s) 724.8 723.1 759.0 861.2

DW platforms: depending on how many other queries are
running at the same time, one’s query completion time could
vary by almost two orders of magnitude. Cjoin ’s response
time, on the other hand, grows by less than 30%—this is
excellent, considering that the number of concurrent queries
ranges over two orders of magnitude.

Our measurements of deviation indicate that all sys-
tems deliver relatively stable query response times in steady
state, although Cjoin does better: the standard deviation of
response time is within 0.5% of the average for Cjoin , 5%
for System X, and 9% for PostgreSQL.

We now quantify the overhead of query submission in
Cjoin as we vary n, focusing again on queries matching tem-
plate Q4.2. We measure the total time from the submission
of the query up until the “start query” control tuple τQ is
inserted into the pipeline. This period represents the interval
during which the submitted query competes for resources
with the remainder of the pipeline, and thus, it is interest-
ing to examine its magnitude for different parameters of the
workload.

Table 1 shows that the time to submit a query to Cjoin does
not depend on the number of active queries. Moreover, the
“interference” interval is small compared to the total execu-
tion time of each query. These results indicate a negligible
overhead for registering a query.

7.2.2 Influence of predicate selectivity

In the next set of experiments, we evaluate the performance
of the three systems as we increase s, the selectivity of the
query template predicates. Increasing s forces all evaluated
systems to access proportionally more data to answer que-
ries. Therefore, we expect the performance to degrade at least
linearly with s. However, other factors may contribute to a
super-linear degradation, e.g., hash tables may not fit into L2
caches, or System X and PostgreSQL may thrash by spilling
data to temporary disk files.

Figure 9 shows query throughput for all three systems as
a function of s (we again use a 100 GB data set with n = 128
concurrent queries). First, we observe that Cjoin continues
to outperform System X and PostgreSQL for all settings of s.
However, we observe that the gap is reduced when s = 10%,
and we investigate this below. Second, query throughputs of
Cjoin and System X do indeed drop approximately linearly
with s as expected. We cannot draw any conclusions about
PostgreSQL, because we have only two data points: for s =
10%, we terminated the experiment, because PostgreSQL

took excessive amounts of time. Overall, we find Cjoin reacts
predictably to changes in workload selectivity.

Cjoin’s performance decreases significantly for higher
values of s because the dimension hash tables have to hold
an increased number of tuples. This has adverse effects on
cache locality and hence access times. Moreover, the over-
head of submitting new queries grows substantially, which
contributes to the slowdown of the entire pipeline.

Table 2 reports the overhead of new query submission for
different values of s. When s increases, it is more expen-
sive to evaluate the predicates of newly submitted queries.
The dimension hash tables also grow larger, and hence, it is
more expensive to update them when a new query arrives.
On the other hand, there are fixed costs of new query admis-
sion that do not depend on s, including the delay to submit
predicate queries to the underlying PostgreSQL, to discon-
nect and drain the pipeline, and to update the metadata that
tracks active queries in the system. As shown in the table, the
factors independent of s are significant for s ≤ 1%, but the
factors dependent on s become dominant for s = 10%.

7.2.3 Influence of data scale

In the next set of experiments, we evaluate the performance of
the three systems as we increase sf , the scale factor that con-
trols the size of the SSB data set (recall that sf = X implies a
data set of X GB). Ideally, query throughput is inversely pro-
portional to sf , because queries take k times longer to com-
plete on a k times larger data set. Consequently, we expect the
normalized query throughput, defined as a product of query
throughput and sf , to remain approximately constant as sf
increases.

Figure 10 shows normalized query throughput for the three
systems as a function of sf (we use a workload of selectivity

Fig. 9 Influence of query selectivity on throughput
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Table 2 Influence of predicate
selectivity on query submission
time

Predicate selectivity (%) 0.1 1 10

Submission time (s) 1.6 2.4 11.6

Response time (s) 707.2 759.0 3,418.0

Fig. 10 Influence of data scale on throughput

s = 1% and n = 128 concurrently executing queries). We
observe that Cjoin outperforms System X for sf ≥ 1 and
PostgreSQL for all values of sf . Moreover, the performance
gap increases as sf increases: Cjoin delivers only 85% of
query throughput of System X when sf = 1, but outper-
forms System X by a factor of 6× when sf = 100. Simi-
larly, Cjoin outperforms PostgreSQL by a factor of 2×when
sf = 1 and by a factor of 28× when sf = 100.

Comparing the trends of query throughput, we observe
that the normalized query throughput of System X and Post-
greSQL decreases with sf , as expected, yet the normalized
query throughput of Cjoin actually increases with sf . The
explanation lies in the decreasing overhead of new query
submission: as sf increases, the overhead relative to query
response time decreases (Table 3). The reason is twofold: (a)
the fixed overhead of query submission (e.g., pipeline discon-
nection or submission of predicate queries to the underlying
PostgreSQL) becomes less significant as query response time
grows with sf and (b) the overhead that depends on dimen-
sion table size (e.g., evaluating dimension table predicates
and updating dimension hash tables) does not grow linearly
with sf , because some SSB dimension tables are fixed in size
(e.g., date), and some grow logarithmically with sf (e.g., sup-
plier and customer). Consequently, the cost of query submis-
sion becomes less significant as sf increases, and this has a
positive effect on total performance.

The fact that Cjoin ’s normalized throughput increases
with the size of the database is an advantage in the context
of the rapid increase in data volumes experienced in the data
analytics industry today.

7.3 Discussion and outlook

In what follows, we draw conclusions from our empirical
results and discuss their relevance to future trends.

7.3.1 Thriving on concurrency

As Fig. 7 indicates, Cjoin ’s query throughput increases with
the level of query concurrency, in stark contrast to existing
DBMSes. As more queries hitch a ride on the bandwagon
formed by the streaming of fact tuples through a Cjoin pipe-
line, the DW system achieves increasingly better utilization
of resources. As a result, we expect that, in the future, DBAs
will actually encourage more users and workloads to run
concurrently on the DWs they manage, as opposed to dis-
couraging such practices (which is what happens today). The
more queries run at the same time, the more opportunities for
amortizing the fixed costs of the infrastructure. At the same
time, we expect Cjoin to be a good match for the trend of
increasing number of cores per CPU, allowing end-to-end
data warehouse performance to better track the evolution of
hardware.

7.3.2 Capacity planning

Figure 8 shows that Cjoin provides a substantial improve-
ment in the predictability of query performance: the impact
of a DW’s existing workload on the performance of a newly
submitted query is one to two orders of magnitude lower
than in leading DBMSes. This means not only that there is
considerably less workload fear, but also that the infrastruc-
ture needs for a given expected workload are much easier to
estimate and plan. A key property in Cjoin is that the time it
takes to execute a query is decoupled from query complexity:
each query will take roughly as long as it takes to scan the
fact table. This provides a relatively strong form of perfor-

Table 3 Influence of data scale
on query submission overhead Scale factor 1 10 100

Submission time (s) 0.4 0.7 2.4

Response time (s) 18.8 105.1 759.0
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mance isolation between queries, making query performance
mostly a function of data volume. In business environments,
capacity planning is a major challenge for IT departments;
Cjoin reduces this problem down to estimating the rate of
growth in data volume, without requiring complex reasoning
about how long it will take to actually analyze that data. Sys-
tems whose performance behavior is predictable help reduce
the risk of under- or over-provisioning.

7.3.3 Green data analytics

We expect Cjoin to process concurrent joins more energy
efficiently than today’s DWs. The most important source of
energy savings in any DBMS results from reducing the time
it takes to answer queries: the less time spent processing que-
ries, the less time the hardware needs to operate at full load,
and thus the less energy spent. Second-order savings may
also result from the sequential access patterns enabled by
Cjoin —the predictability of disk accesses allows the stor-
age subsystem to prefetch and manage the requests more
efficiently. In data analytics setups with high query concur-
rency, the Cjoin architecture allows substantially more value
to be derived from the same set of energy-consuming hard-
ware. As the energy footprint of data centers becomes a key
bottleneck in IT infrastructure expansion, we expect these
opportunities for energy savings to make Cjoin -based data
analytics increasingly more attractive.

7.3.4 Memory-resident databases

Cjoin’s design was motivated by large-scale data ware-
houses, where the fact table is orders of magnitude larger
that the available main memory. However, it is straightfor-
ward to employ Cjoin for a memory-resident data set as well.
One difference is that the sharing of the continuous scan
may not have as significant an effect as when the fact table
resides on disk. Still, Cjoin will enable work sharing among
the concurrent queries, which is important in achieving high
throughput.

8 From prototype to product

In this section, we present our thoughts on transitioning the
design presented here into a data warehouse product serving
hundreds of concurrent business analysts in a real-world set-
ting. In particular, we revisit some of the assumptions made
in Sect. 2, we discuss ways in which Cjoin can be adapted to
accommodate the lifting of these assumptions, and we argue
that the Cjoin design is a good choice for the long term. Even
though a full treatment of productizing the Cjoin design is
beyond the scope of this paper, we provide here an overview
of some of the issues and possible solutions.

8.1 Column stores

Column stores have been gaining traction as a scalable system
architecture for large data warehouses [1,2,28]. It is possible
to adapt Cjoin in this setting as follows: The continuous fact
table scan can be realized with a continuous scan/merge of
only those fact table columns that are accessed by the current
query mix. Thus, Cjoin can take advantage of the columnar
store in order to reduce the volume of data transferred by the
scan. The case in which we evaluate filter queries over dimen-
sion tables (which occurs as part of a new query registration)
is readily handled by the column store, since Cjoin uses the
existing query processing infrastructure to retrieve the result-
ing dimension tuples.

8.2 Compressed tables

Data warehouses may employ compression to reduce the
amount of I/O and memory bandwidth used for data trans-
fer [1,25]. Cjoin makes no assumptions about the physical
storage of tuples—it only needs to be able to evaluate predi-
cates, extract fields, and retrieve result tuples for dimension
queries. Thus, compression of tables is an orthogonal tech-
nique that can be easily incorporated in Cjoin . For instance,
the continuous scan can fetch compressed tuples and decom-
press on-demand and on-the-fly as needed for probing the
dimension hash tables. Another option is to use the partial
decompression technique proposed in BLINK [25] to evalu-
ate predicates efficiently on the compressed fact table.

8.3 Fact table partitioning

The organization of the fact table in partitions may arise nat-
urally from the operational semantics of the DW, e.g., the
fact table may be range-partitioned by a date attribute corre-
sponding to the loading of new data. The optimizer can take
advantage of this partitioning in order to limit the execution
of a query to a subset of the fact table. Thus, a query that
sets a range predicate on the partitioning date attribute will
need to examine only a subset of the partitions. In principle,
this approach can reduce significantly the response time of
an individual query, but concurrent queries can still lead to
random I/O, which has crippling effects on overall perfor-
mance.

Cjoin can take advantage of partitioning in order to reduce
the volume of data accessed by the continuous scan and also
to reduce query response time. The query registration algo-
rithm can be modified to tag each new query with the set of
partitions that it needs to scan. This set can be determined
by correlating the selection predicates on the fact table with
the specific partitioning scheme. The Preprocessor can then
realize the continuous scan as a sequential scan of the union
of identified partitions. At the end of each partition, an end-
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of-query control tuple can be emitted for the queries that
have covered their respective set of partitions, thus allowing
queries to terminate early. An optimization is to assign a pri-
ority to each partition based on the number of outstanding
queries that require it and to access partitions inside each
scan in order of priority. This heuristic promotes early query
termination and thus increases query throughput.

Note that our Cjoin prototype using non-partitioned
tables still outperforms PostgreSQL with partitioned tables
by 287% on SSB [23] with 128 concurrent queries.

Partitioned fact tables constitute one point along a spec-
trum that offers different performance trade-offs. At one end
of this spectrum is an unpartitioned fact table (which results
in having to push all fact tuples into the Cjoin pipeline),
while at the other end is a fact table with secondary indices
on every attribute (which ensures that only the strictly neces-
sary fact tuples are processed). Another point in this spectrum
is a design in which Cjoin computes a Bloom filter for each
query and has the Preprocessor drop fact tuples that do not
match any of the Bloom filters upfront.

8.4 Other DW schemata

Our presentation thus far assumed the common case of using
a star schema for data organization, with small dimension
tables that can fit in memory. We now discuss the applica-
tion of Cjoin to three orthogonal extensions of this setting,
namely galaxy schemata, schemata with large dimension
tables, and schemata that use a snowflake organization of
the dimension data.

A galaxy schema involves several fact relations, each of
which is the center of a star schema. Star queries remain com-
mon in this setting and can thus be evaluated using Cjoin ,
but it is also common to observe queries involving the join
of several fact tables (typically two). Cjoin can improve the
evaluation of these queries, even though it was not designed
for this specific case. Concretely, consider a query Q with
a single fact-to-fact join predicate. By using the fact-to-fact
join as a pivot, we can express the evaluation of Q as the
join between the results of two star queries, say Qa and Qb,
over the corresponding fact tables. It now becomes possible
to register each Qi with the Cjoin operator that handles the
concurrent star queries on the corresponding fact table, the
difference being that the Distributor feeds the results of Qi

to a fact-to-fact join operator instead of an aggregation oper-
ator. Notice that each Cjoin operator will be evaluating con-
currently several star queries that participate in concurrent
fact-to-fact join queries. Thus, we can use Cjoin as a physi-
cal operator that efficiently evaluates the “star sub-plans” of
bigger query plans.

Large dimension tables may increase significantly the size
of the in-memory hash tables and hence the memory require-
ments of Cjoin . Spilling a large hash table to disk will impact

severely the performance of the fact-to-dimension join in
the corresponding Filter and hence the processing speed of
the whole pipeline. A more efficient alternative is to treat a
large dimension table similar to another fact table and hence
employ the same mechanism as for galaxy schemata–use
Cjoin to evaluate efficiently the star-part of the query on
the dominant subset of small dimension tables and then join
the results to the large dimension tables in a post-processing
phase.

A snowflake schema extends the basic star topology with
a hierarchy of normalized dimension tables. Accordingly, a
star query may involve additional join predicates between
dimension tables on the same hierarchical path. The basic
Cjoin mechanism applies virtually unmodified in this set-
ting. The only difference is that each dimension hash table
will store tuples that result from the join of several dimension
tables.

8.5 Indexes and materialized views

As suggested earlier, fact table indexes are not likely to be
useful in the DW setting that we consider, due to the random
I/O they induce and potentially high maintenance cost. It is
more common (and affordable) for data warehouses to main-
tain indexes on dimension tables. Cjoin takes advantage of
these structures transparently, since they can optimize the
dimension filter queries that are part of new query registra-
tion (Algorithm 1).

The inherent volatility of ad hoc queries limits the appear-
ance of common patterns and hence the importance of mate-
rialized views that involve the fact table. In any case, the
query optimizer is free to take advantage of existing materi-
alized views (e.g., aggregation cubes) if a star query can be
answered more efficiently this way than with Cjoin .

8.6 Multicore architectures

When turning a prototype into a product, an important ques-
tion to be answered is what will the longevity of the design
be. We believe that Cjoin is a good match for the CPU archi-
tectures we can expect in the coming decade. The number of
cores per chip is increasing, and the number of CPUs inside
a server is increasing as well; the result of this is that serv-
ers start looking a lot more like distributed systems [7]. The
Cjoin design is well suited for a message-passing environ-
ment, because tuples are passed from one stage to the next.
The exact structure of the pipeline can be adjusted on the
fly, so as to optimize the synchronization/memory operations
trade-off. Moreover, Cjoin ’s run-time adaptivity strategies
can easily take advantage of additional cores by assigning
more execution contexts to the Filter pipeline. We therefore
see Cjoin well positioned to take advantage of the expected
evolution in hardware architectures.
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9 Related work

Our work builds upon a rich body of prior research and indus-
trial efforts in tackling the concurrency problem. We review
here primarily techniques that enable work sharing, which is
key in achieving high processing throughput.

9.1 Multi-query optimization

When a batch of queries is optimized as a unit, it becomes
possible to identify common sub-expressions and generate
physical plans that share the common computation [27]. This
approach requires queries to be submitted in batches, which
is incompatible with ad hoc decision support queries. More-
over, common computation can be factored only within the
batch of optimized queries, thus making it impossible to share
work with queries that are already executing. In contrast, our
approach shares work among the currently executing queries
regardless of when they were submitted and without requir-
ing batch submission.

9.2 Work sharing

Staged database systems [15,16] enable work sharing at run
time through an operator-centric approach. Essentially, each
physical operator acts as a mini query engine that services
several concurrent queries, which in turn enables dynamic
work sharing across several queries. A hash-join operator, for
instance, can share the build phase of a relation that partic-
ipates in different hash joins in several queries. This design
was shown to scale well to tens of complex queries. Our
approach adopts a similar work-sharing philosophy, but cus-
tomizes it for the common class of star queries. As a result,
our design can scale to a substantially larger number of con-
current queries.

In the Redbrick DW [11], a shared scan operator was
used to share disk I/O among multiple scan operations exe-
cuting concurrently on multiple processors; however, the
in-memory data and the state of other operators were not
shared. Cooperative scans [31] improve data sharing across
concurrent scans by dynamically scheduling queries and their
data requests, taking into account current system conditions.
Qiao et al. [24] have investigated shared memory scans as
a specific form of work sharing in multi-core systems: by
scheduling concurrent queries carefully, tuple accesses can
be coordinated in the processor’s cache. Another possibility
is to recycle intermediate results and share them with subse-
quent queries [17]. Our approach leverages a form of scan
sharing, but targets large warehouses, where the fact relation
cannot fit in main memory. In addition to I/O, our approach
also shares substantial computation across concurrent que-
ries.

Recent work [10,24] has investigated work-sharing tech-
niques for the computation of aggregates on chip multipro-
cessors. The developed techniques essentially synchronize
the execution of different aggregation operators in order to
reduce contention on the hash tables used for aggregate com-
putation. As discussed later, Cjoin can be combined with
these techniques in an orthogonal fashion.

Finally, work sharing has been investigated extensively
in the context of streaming database systems [3,8,9,19–21].
By sharing work (or state) among continuous query opera-
tors, a streaming DBMS can maintain a low per-tuple pro-
cessing cost and thus handle a large number of continuous
queries over fast streams. These techniques are specific to
streaming database systems and cannot be applied directly
to the environment that we target. Nevertheless, our proposed
architecture incorporates elements from continuous query
processing, which in turn allows us to transfer techniques
from streaming databases to a DW setting. For instance,
Cjoin adopts the Grouped Filter operator of Madden et al.
[20], but extends it to support fact-to-dimension joins and
arbitrary selection predicates; the original operator only sup-
ported range predicates on ordered attributes.

9.3 Push-based query processing

Cjoin employs a push-based design, where the fact table
is continuously streamed through operators that encode the
current workload. A similar principle has been advocated by
several recent projects [4,12,30] as the means to achieve high
throughput and predictability under high query concurrency.

Crescando [30] is a relational-table implementation that
supports a large number of concurrent, single-relation que-
ries. Crescando employs a single continuous scan of the table
and forwards each tuple to the set of queries and updates
that can consume it. By carefully scheduling the updates and
queries on each tuple, Crescando ensures that all operations
get a snapshot-isolated view of the data. Similar to Cjoin ,
all operations have the same predictable performance, since
they require a full scan of the table in order to complete.

The Data Cyclotron [12] system employs a similar princi-
ple but in a distributed setting. The query processor is formed
by several independent peers, linked in a ring topology. Ini-
tially, the data are partitioned horizontally across the peers.
At run time, each peer forwards data to its successor in the
ring and receives data from its predecessor. (The Data Cyclo-
tron uses RDMA to perform network transfers efficiently.)
A new query is assigned randomly to a peer for evaluation,
and the corresponding plan is executed on the peer for every
piece of received data. In a nutshell, data are pushed to the
queries on each peer as it flows around the ring. This architec-
ture ensures a load-balanced system with predictable query
performance, since queries are assigned randomly to peers
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and each query needs to wait for all the data to flow through
the peer.

DataPath [4] is a recent proposal (developed indepen-
dently) that shares several of the principles and ideas behind
Cjoin . DataPath performs continuous scans of all the rela-
tions and pushes the data through a single execution plan that
encodes all concurrent queries. Each plan operator aggre-
gates the computation that is performed by all queries on the
same base table or join of base tables. For example, a single
operator performs all selections on some input relation R,
the same way that the Preprocessor evaluates all predicates
on the fact table F . The main idea is to perform all compu-
tation relevant for the tuple once it is fetched from the disk
to the processor’s cache. Similar to Cjoin , each tuple that
flows through the plan is augmented with a bitmap that tracks
the tuple’s relevance to different queries. New queries attach
to the plan upon their arrival, and the structure of the plan
is optimized on-the-fly based on run-time statistics. Overall,
DataPath represents a new system architecture that employs
several of the principles behind Cjoin in order to achieve
predictable query performance. Cjoin has the same goal but
with a different scope: it is easier to integrate in an existing
database system, and it is highly specialized for the common
class of star queries.

9.4 Materialized views

Materialized views enable explicit work sharing by caching
the results of sub-expressions that appear in concurrently
executing queries. The selection of materialized views is
typically performed off-line, by examining a representative
workload and identifying common sub-expressions [14,26].
Capturing a representative workload is a challenging task in
the context of ad hoc decision support queries, due to the
volatility of the data and the diversity of queries. Moreover,
materialized views add to the maintenance cost of the ware-
house, and hence, they do not offer clear advantages for the
problem considered in this paper.

9.5 Constant time query processing

BLINK [25] is a query processing architecture that achieves
constant response time for the type of queries considered
in our work. The idea is to run each query using the same
plan—a single pass over a fully de-normalized, in-memory
fact table—thus incurring more or less the same execution
cost. Cjoin achieves a similar goal, in that it enables pre-
dictable execution times for star queries. The key differences
compared to BLINK are that we do not require the database
to be memory resident, we do not require the fact table to be
de-normalized, and our design directly supports high query
concurrency, whereas BLINK targets the execution of one
query at a time.

10 Conclusion

We presented the design of Cjoin , a novel operator for the
concurrent evaluation of tens to hundreds of star-schema
queries. Cjoin shares across multiple queries the com-
mon parts of the queries’ execution plans, without requir-
ing the queries to be optimized or even submitted in a
batch. We presented an empirical evaluation of Cjoin using
the Star Schema Benchmark. Our results demonstrate that
Cjoin consistently outperforms both a widely used commer-
cial RDBMS and PostgreSQL on a variety of workloads.
Cjoin delivers one to two orders of magnitude improve-
ment in both query response time and predictability of this
response time when executing 256 concurrent queries. As the
database size increases, the normalized query throughput in
Cjoin increases as well, compared to the other evaluated sys-
tems, in which it decreases. We conclude that Cjoin provides
a promising design for achieving predictable performance
and high query concurrency in data analytics systems.
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