
Toward Self-Healing Multitier Services

Brian Cook Shivnath Babu∗ George Candea Songyun Duan
Duke University and IBM Duke University École Polytechnique Fédérale de Lausanne Duke University

bcook@cs.duke.edu shivnath@cs.duke.edu George.Candea@epfl.ch syduan@cs.duke.edu

Abstract

Are self-healing database-centric multitier services
utopia or just a hard puzzle? We argue for the latter and
aim to identify the missing pieces of this puzzle. We ad-
vocate robust and scalable learning-based approaches to
self-healing that we expect to work well for a large class
of multitier services. We identify performance-availability
problems (PAPs) as the most relevant target for self-healing,
and argue that PAPs are best addressed macroscopically,
outside the realm of individual tiers. Finally, we lay out
a research agenda for learning-based approaches to self-
healing, to enable wider deployment of self-healing multi-
tier services.

1 Introduction

For a long time in the history of computing there were
databases with custom-written clients. The 90s brought
about the web and “thin clients,” and databases started hid-
ing behind web servers. As the scale of such services in-
creased, stored procedures made their way out of databases
into a new tier—the application server—running so-called
“business logic.” The recent emergence of compute utili-
ties (e.g., Amazon Elastic Cloud, Sun Grid) are adding yet
another dimension to the architecture of services we have
come to expect at our fingertips. While more architectural
churn can be expected in future, it has become clear that
database-centric computing infrastructures will be multi-
tiered, requiring what once was one database administra-
tor (DBA) to become a growing organization of specialized
professionals.

This multitier computing infrastructure consists of ser-
vices our society can no longer do without (e.g., Amazon,
eBay, Google). Users now expect the same ubiquity and
reliability from these services as that offered by the phone
system and electricity grid. These services are required to
meetservice-level objectives, or SLOs, that specify what an

∗The author was supported in part by a grant from IBM.

acceptable level of service is [16]. For example, an SLO
for an online brokerage may stipulate that all transactions
complete within 1 second, regardless of how much middle-
ware, databases, or networks are involved. Dependable and
predictable databases are not enough to meet all SLOs.

Today’s services have difficulty meeting their SLOs. A
recent study [21] found that 72% of the top-40 web sites
suffer user-visible failures, such as items not being addedto
shopping carts or various error messages. Walmart.com ex-
perienced a 10-hour outage during the 2006 Thanksgiving
traffic surge [27]. Such deviations from correct and desired
behavior, orfailures, can cause user dissatisfaction and sub-
stantial financial loss; for instance, a 22-hour outage at eBay
in 1999 cost the company more than $3 Million in customer
credits and $4 Billion in market capitalization [13].

Failures occur both due to system faults (such as process
crashes) as well as performance bottlenecks (such as execut-
ing a suboptimal database query plan due to stale statistics),
in all tiers of the service. Almost always, the root cause is
the fallibility of humans, e.g., they introduce software bugs,
misconfigure systems, fail to update statistics in a timely
fashion, or replace the wrong hardware. It is therefore com-
pelling to build systems that self-healacross all tiersand
reduce the day-to-day involvement of humans in the opera-
tion of the service.

Furthermore, recovery from service failure ought to be
quick when it occurs, because every minute counts (e.g.,
brokerages and banking firms can lose up to $75,000/minute
of downtime [16]). While there are manymechanismsread-
ily available for fast recovery (e.g., microrebooting misbe-
having components [6], killing runaway queries), there is a
dearth of suitablepoliciesto invoke these mechanisms auto-
matically, efficiently, and correctly on failure. Without poli-
cies and automated ways to derive policies, humans remain
in the failure-recovery loop; limiting recovery to slower hu-
man timescales rather than machine timescales.

This paper describes a research agenda to identify ro-
bust policies that work in practice and that can be learned
automatically. In support of this agenda, we develop a cat-
egorization of solutions for self-healing. While most pre-
vious work on self-healing focused on either recovery from

Failure Candidate fix

Deadlocked threads Microreboot EJB [6], kill hung query
Java exceptions not handled correctlyMicroreboot EJB [6]
Aging [26] Reboot at appropriate level to reclaim leaked resources [26]
Suboptimal query plan Update statistics for tables in query [1], re-optimize physical design (e.g., [12])
Read/write contention on table block Repartition table to balance accesses across partitions [12]
Buffer contention Repartition memory across various buffers [24]
Bottlenecked tier Provision more resources to tier [25]
Source code bug Reboot tier/service, notify administrator

Table 1. Sample failures and fixes in a multitier J2EE service

Figure 1. Causes of failures in three large
multitier services (based on [18])

faults (e.g., [7]) or repair of dynamic performance bottle-
necks (e.g., [25]), we treat performance-availability prob-
lems (PAPs) as a unit. Finally, we provide a roadmap of
problems we believe need to be solved to complete the puz-
zle of self-healing database-centric multitier services.

Example 1 Examples during presentation are drawn from
a multitier web service namedRUBiS [20]—an auction
site written as a J2EE application [17] and modeled after
eBay—running on the JBoss application server. JBoss in-
cludes an embedded web server. A MySQL server comprises
the database tier. A J2EE application consists of reusable
Java modules called Enterprise Java Beans (EJBs). Users
interact with a J2EE application through servlets and Java
Server Pages hosted on the web server, which invoke meth-
ods on the EJBs. In turn, these methods may call methods
on other EJBs, submit queries or updates to the database
tier, and so on.

2 Failures in a Multitier Service

When a failure is detected in a multitier service, an ef-
fectivefix needs to be identified and applied quickly. Table
1 lists sample failures related to hardware/software and the
corresponding fixes for a multitier J2EE-based web service.

Figure 2. Time to recover from failures in
three large multitier services (based on [18])

Microrebootsare fine-grained reboots of application com-
ponents, usually done orders of magnitude faster than full
service restarts; details are in [6]. Note from Table 1 that
some failure types are specific to each tier, but others can
arise in more than one tier. Furthermore, some failures (e.g.,
bottlenecks) can shift dynamically across tiers [25].

Hardware and software are not the only perpetrators of
failures: the humans who configure, manage, and operate
the service can make mistakes. [18] reports a study of
service dependability, where they analyze error logs and
failure-tracking databases from three large-scale multitier
web services. The results are summarized in Figure 1: hu-
man operator error is clearly the most prominent source of
failures.

Operator-induced failures tend to take longer to recover,
as it is the human component of the system that needs to
recover from the failure it has caused. Fortunately, humans
can adapt and learn on their own. [18] reports how long it
took to recover from the various categories of failures in the
three services they studied, as shown in Figure 2.

3 Manual Vs. Automated Healing

A common approach used to identify fixes for failures to-
day, which we term themanual rule-based approach, works

as follows. Domain experts create rules that map symp-
toms of different types of failure to specific fixes that should
be applied when these symptoms are observed. Typical
rules have anif-thenformat and involve thresholds, e.g., “if
the miss rate in the database buffer-cache over the last 1
hour exceeds 35%, then increase the cache size.” Typically,
these rules are established prior to production and cannot be
changed thereafter without human intervention.

Static predefined rules work well for simple services
where all possible failures are known in advance or where a
universal quick fix can solve most problems. However:

1. As services expand in features, size, and complexity, it
becomes hard to foresee all possible failures. In such
scenarios, the rules may be incomplete and could be-
come incorrect over time since they do not evolve as
the workloads or the underlying system configuration
change.

2. Such rules are usually well understood on a per-tier
basis only (e.g., [12]); these per-tier rules may have
complex, unpredictable, and unwanted interactions in
a dynamic multitier service.

3. To guarantee correct behavior in dynamic settings,
rules are often made coarse-grained at the expense of
quick recovery, e.g., “do a full database restart if any
failure is observed.”

The problems with a manual rule-based approach to fix
identification motivate anautomated learning-basedap-
proach that works as follows:

• Collect data about configuration, activity, and failures
from preproduction and production runs of the service.

• Use the collected data to learn (i.e., generate or pa-
rameterize)synopsesrepresenting the service’s behav-
ior. Such synopses include statistical (e.g., Bayesian
network, clustering) and performance (e.g., queuing
network, failure-propagation paths [5]) models learned
from data, as well as operators for data transformation
(e.g., aggregation, feature selection) [28].

• Query the current synopses for the best fixF when a
failure is observed, and applyF to the service. Check
whetherF recovers the service to a working state, and
update the synopses with the newly-gathered data. IfF

fails to recover the service, then query the updated syn-
opses for a new fix. Repeat this process until a correct
fix is found or a threshold is reached when a general
costly fix (e.g., full service restart or manual interven-
tion) can be applied to recover the service.

The rest of this paper discusses different techniques to im-
plement an automated learning-based approach.

4 Automated Identification of Fixes

4.1 Prerequisites and Caveat

Detecting failures: A self-healing service requires robust
ways to detect failures as soon as they happen [4]. (TellMe
Networks, a service operator, estimates that over 75% of the
time they spend in recovering from an application-level fail-
ure is spent detecting the failure [7].) Some services have
user-activity monitors and SLO-compliance monitors that
detect potential failures by monitoring changes in service-
level metrics, e.g., the number of searches done per minute.
If such external metrics are not available readily, then met-
rics internal to the system can be monitored [7].

Universal set of fixes: One of the prerequisites for a self-
healing service is a complete set of fixes for all possible fail-
ures. This requirement may seem unreasonable, but in the
extreme case, a fix can be as general as alerting an admin-
istrator that manual intervention is needed, or performinga
full service restart.

Detecting success/failure of fixes: After applying a fix, a
self-healing system needs robust ways to determine whether
the fix worked. Failure detection techniques can be used
here, but care should be taken to let the service recover fully.

Automation irony : As described by psychologist J. Rea-
son [19], human tasks are processed at one of three cog-
nitive levels: skill-based (common repetitive tasks), rule-
based (symptoms are pattern-matched to previous instances
and the corresponding solution is invoked), and knowledge-
based (reasoning from basic principles). Most administra-
tion and healing of systems occurs at the first two levels.
Automating these tasks leaves human operators less pre-
pared to handle tasks at the knowledge-based level, because
they lose practice; as a result, the exceptional situationscan
be handled neither by human nor machine. The balance
between intra-system visibility and automation needs to be
considered carefully in a self-healing service.

4.2 Data Collection

A learning-based approach to fix identification benefits
from the collection of different classes of data about service
performance and failures:

• Multidimensional time-series data containing values of
status variables, performance counters, and configura-
tion parameters over time. Example attributes include
CPU utilization, number of EJB calls, number of index
accesses, and number of requests that violated SLOs.

• The path (control and data flow), resource utilization,
and timing of requests through the multitier service.

• Data on the success and failure of attempted fixes.

Invasive Vs. noninvasive data collection: It is important
to balance the benefits of collecting more data for analy-
sis with the overhead of data collection. Furthermore, only
“noninvasive” instrumentation data collected with common
profiling tools—with no changes to application or system
software—may be available from proprietary or legacy sys-
tems. It is typical that large multitier services contain soft-
ware from many different vendors, e.g., an Apache web
server, a BEA WebLogic application server, and an Ora-
cle database server [10]. It is unlikely that such services
will support a uniform invasive instrumentation framework
that can collect, e.g., flow and timing data about requests
flowing through all tiers of the service. As we will see in
Section 4.3, techniques for fix identification differ in their
data requirements.

Passive Vs. active data collection: To guarantee that the
synopses learned are fairly representative of actual service
behavior, it may be inadequate to rely solely on data col-
lected through passive observations of the service in pro-
duction use, e.g., by monitoring logs. Instead, the sys-
tem may need to bestimulatedactively for comprehensive
data collection [22, 23]. For example, during preproduction
(e.g., testing and deployment), the service can be subjected
to different types and rates of workloads, and injected with
various failures; while recording data about observed be-
havior. Active stimulation techniques have been developed
to learn intercomponent dependencies and failure propaga-
tion paths (e.g., [5]). Workloads and failures for multitier
services have been studied extensively—as evident from the
number of surveys, benchmarks, and tools available (e.g.,
[2, 18, 20])—lowering the barrier to develop effective ac-
tive stimulation techniques.

For clarity of presentation, we will assume that the
data collected from the service is a multidimensional row-
and-column time-series with schemaX1, X2, . . . , Xn. At-
tributesX1, . . . , Xn are metrics of performance or failure,
either measured directly from different tiers of the service
or derived from measured metrics.

4.3 Building and Querying Synopses

Broadly, automated learning-based techniques for fix
identification use one of two approaches:

• Diagnosis-basedapproaches first diagnose the cause
of the failure, then suggest a fix based on the cause
found. We discuss three diagnosis-based approaches
based, respectively, on: (i) anomaly detection, (ii)
correlation analysis, and (iii) performance-bottleneck
analysis.

• Signature-basedapproaches do not attempt to diag-
nose the cause of each failure. Instead, aclassifier
is learned to associatesignatures[11] representing

unique symptoms of each failure with an effective fix
for that failure. We discuss a technique that we are de-
veloping, calledFixSym, that implements a signature-
based approach.

4.3.1 Diagnosis via Anomaly Detection

Anomaly detection (e.g., [8]) seeks to identify irregularities
in a service based on a characterization of its regular, or
baseline, behavior. Three phases are involved:

• Collect data about the service.

• Establish the baseline behavior of the service and its
components.

• Detect and classify anomalies, which are deviations of
the current behavior from the baseline.

We give a simplified example, based on [8], to show how
anomaly detection can be used for fix identification.

Example 2 Suppose the data from the application-server
tier contains attributes representing the number of times an
EJB of one type calls an EJB of another type. LetNb be
a baseline window sizeandNc be acurrent window size,
with Nc ≪ Nb. We can analyze data about EJB method
invocations from the lastNb minutes to build a baseline that
captures how calls from each EJB type are split across the
other EJB types. Then, the EJB method invocations from
the lastNc minutes can be monitored to determine when the
behavior of one or more EJBs deviates significantly from the
baseline behavior. (Deviation can be detected, e.g., using
theχ2 statistical test; see [4].) Such a deviation indicates
potential EJB failure, so a likely fix is to microreboot the
EJB [7].

The biggest strength of anomaly detection is its ability to
find fixes for new failures experienced by a service (i.e.,
failures encountered for the first time), as well as failures
that occur rarely. Potential disadvantages include:

• Since monitoring data available from the service may
be limited (see Section 4.2), anomalies can escape de-
tection. In Example 2, invasive data collection at the
level of EJB method invocations was required to detect
and fix failures in the application-server tier.

• Capturing the baseline behavior of a complex multitier
service is a nontrivial task. It is hard to determine a
good value for the baseline window sizeNb. To avoid
contamination, the baseline behavior may need to be
captured when the service is not experiencing signif-
icant failures. Furthermore, the baseline may need to
be updated as workloads or the system configuration
change.

• There is a delicate balancing act for the current win-
dow sizeNc. ShortNc can lead to many false positives
(spurious anomalies detected), while largeNc can lead
to false negatives (undetected anomalies).

4.3.2 Diagnosis via Correlation Analysis

The correlation-based approach is similar to the anomaly-
detection-based approach except in how the cause of a fail-
ure is diagnosed. Correlation analysis proceeds by identify-
ing attributes in the data that are correlated strongly with(or
predictive of) a failure-indicator attribute; illustrated next.

Example 3 Suppose the data collected from the service
contains attributesX1, . . . , Xn representing performance
metrics from various tiers, and afailure-indicator at-
tribute Y (e.g., representing SLO violations). Correlation
analysis—e.g., by building a Bayesian network as in [10] or
by clustering the data as in [8]—recommends fixes by iden-
tifying Xi that are correlated strongly withY . For example,
if an attribute representing method invocations of an EJB
is correlated with failure, then a likely fix is to microreboot
the EJB. Similarly, if the number of accesses to an index is
correlated with failure, then the index can be rebuilt.

Advantages of correlation analysis include simplicity, ease
of implementation, and efficiency. The biggest disadvan-
tage is that correlation between two attributesX and Y

can be inferred from data only if a reasonable number of
training data records indicate this relationship. Therefore,
correlation-analysis may fail to find fixes for failures not
seen previously and for failures that occur rarely.

4.3.3 Diagnosis via Bottleneck Analysis

Bottleneck analysis (e.g., [12]) can diagnose failures caused
by bottlenecked resources that arise frequently in multitier
services [25]. Anomaly detection and correlation analysis
may fail to pinpoint the root cause of such failures. How-
ever, bottleneck analysis can be done on multidimensional
time-series data only if extra information is provided about
the structure of the service as represented by the attributes,
e.g., a relationship specifying that an attribute representing
request response time is derived from other attributes repre-
senting the time requests occupy each resource.

Example 4 The techniques proposed in [12] can determine
bottlenecks in the database tier, e.g., read and write con-
tention on a table block. A possible fix for such contention is
to repartition the table and balance accesses across differ-
ent partitions. The techniques in [1] can detect when trans-
actions are bottlenecked by suboptimal query plans due to
stale statistics, and recover by scheduling statistics updates.

ProcedureFixSym
Input: Set of candidate fixesF = 〈F1, . . . , Fk〉; X1, . . . , Xn are
attributes representing the performance and failure metrics
collected from different tiers of the service;
1. /* initialize the synopsis; domain knowledge may be used */
2. init synopsis(S);
3. while (true)
4. Wait for next failure data pointf = 〈X1=x1,. . . , Xk=xk〉;
5. fixed= false;count= 0;
6. /* loop until a correct fix is found or threshold is reached */
7. while (!fixedandcount< THRESHOLD)
8. /* use current synopsis to determine probable fix */
9. probFix= suggest fix(S, f, F);
10. /* apply the chosen fix to the service */
11. apply fix(probFix);
12. /* check if the applied fix fixed the failure */
13. fixed= checkfix(probFix);
14. /* update the synopsis with the new data point */
15. updatesynopsis(S, f, probFix, fixed);
16. count= count+ 1;
17. end while
18. if (!fixed) /* threshold exceeded, no fix found yet */
19. Restart the service and notify the administrator;
20. Update synopsisS with fix found by the administrator;
21. end if
22. end while

Figure 3. FixSym (signature-based approach)

4.3.4 FixSym: A Signature-based Approach

FixSymis a new signature-based approach we are devel-
oping that makes two important changes to the diagnosis-
based approach:

• FixSym uses all data used by the diagnosis-based ap-
proaches to learn synopses, and additionally incorpo-
rates data on the success and failure of attempted fixes.

• FixSym focuses on finding a correct and efficient fix
for a failure based on information about fixes that
worked previously and ones that did not work; without
attempting to diagnose the root cause of the failure.

FixSym works with multidimensional time-series data that
contains attributesF1, . . . , Fk representing the result of at-
tempted fixes, in addition to regular performance and failure
metricsX1, . . . , Xn from different tiers. FixSym uses this
data to learn a synopsisS that best captures the relationship
amongX1, . . . , Xn andF1, . . . , Fk so thatS can predict
an effective fix given observed values ofX1, . . . , Xn. Intu-
itively, S identifies a subsetΩ of attributes inX1, . . . , Xn

that classify the symptoms of working and failed states of
the service in the best manner. The values of attributes inΩ

Comparison Manual Diagnosis-based approach Signature-based
metric Anomaly-detect. Correlation anal. Bottleneck anal. (FixSym)

Ability to find Depends on Depends on accuracy of diagnosis Depends on historical
correct fixes expert’s knowledge evidence & synopsis

Run-time data Almost nil Performance & failure metrics need Fine-granularity Need symptom data,
requirements coverage to pinpoint cause of failure data needed results of fix attempts
Time to find Very fast Fast Accurate synopses Medium Accurate synopses

fix can be slow [3] can be slow (Sec. 5.2)
Scalability Poor Easier to scale as systems expand in size, number of interconnections, and dependencies

Adaptivity as Hard to maintain Online base- Online synopsis- Very adaptive Online synopsis-
system evolves lining needed learning needed (e.g., [25]) learning needed

Ease-of-use Poor for complex, Hard to tune Very good Needs domain- Good
dynamic services i/p parameters knowledge i/p’s

Handling new/ Only if failures fore- Good Bad (needs enough Good Bad (learns from
rare failures seen & rules added representative samples) attempted fixes only)

Table 2. Comparison of different approaches to automated fix identification

denote the signature of these states.S associates a success-
ful fix with each failure signature (symptoms).

Figure 3 gives an illustration of FixSym. Each observed
failure data point is input to the current synopsis to deter-
mine a fix. This fix is applied to the service and a check
is made later to determine whether the fix worked or not.
(These checks are discussed in Section 4.1.) The resulting
data point—failure data point and result of attempted fix—
is used to update the current synopsis. If the attempted fix
failed, then the updated synopsis is used to determine a new
fix, and FixSym proceeds as before. This process continues
until a correct fix is found or a threshold is reached when a
general and expensive fix (e.g., a full restart and/or notify-
ing the administrator) is applied to get the service back to a
working state.

Compared to diagnosis-based approaches, FixSym is
less dependent on which performance and failure metrics
are being collected. (Recall from Section 4.2 that there may
be constraints on the data that can be collected from dif-
ferent tiers of the service.) Note that FixSym uses these
metrics to represent symptom signatures. FixSym will work
better with more representative data, but it can use whatever
data is available. In contrast, diagnosis-based approaches
need specific types of data to work. However, FixSym may
fail to find a fix for a previously-unseen failure if the symp-
toms of this failure are very different from those seen so
far.

Example 5 Database servers maintain statistics about
stored data in order to choose good execution plans for
queries [1]. Unless these statistics are updated in a timely
fashion, they can become out of date under heavy transac-
tional workloads; causing failures due to suboptimal query
plans. FixSym can enable self-healing under such scenar-
ios, e.g., using a pattern of the form: “when the values of
variablesXest andXact representing the estimated and ac-

tual number of records, respectively, returned by a queryQ

differ significantly, update statistics on all tables accessed
byQ.”

5 Research Agenda

5.1 Does One Size Fit All?

Table 2 summarizes the pros and cons of different ap-
proaches to automated fix identification that can be applied
to a multitier service. It is clear that no single approach
dominates all others under all scenarios. For example, the
signature-based approach is good at dealing with scenar-
ios where same workloads and failures tend to recur. How-
ever, this approach can be ineffective at finding fixes for
previously-unseen or rarely-seen failures. This disadvan-
tage could be overcome in the following ways:

• Combining the signature-based approach with one or
more of the diagnosis-based approaches that find the
cause of a new failure to recommend a fix.

• Enabling human operators to input their knowledge
about symptoms of failures and fixes for these failures.

• Developing an active-learning approach that attempts
fixes for failures in a feedback-driven loop based on
previous attempts.

Note that incorporating the signature-based approach into
a diagnosis-based approach can improve the overall effi-
ciency of the latter by avoiding time-consuming diagnoses
when previously-diagnosed failures occur. These observa-
tions give some interesting directions for future work:

• Perform an empirical study of the different approaches
for automated fix identification, in order to generate

Figure 4. Synopsis comparison (accuracy)

a knowledge-base that a practitioner can use to pick
the best approach based on the workload, environment,
and requirements of her multitier service.

• Develop effective ways to combine the different ap-
proaches to leverage the strengths and mask the weak-
nesses of individual approaches.

• Develop an adaptive algorithm to pick the right com-
bination of approaches to use automatically in any set-
ting.

5.2 Picking the Right Synopsis

An important subproblem in automated fix identification
is to pick a good synopsis from the large space of pos-
sible synopses from statistics, machine learning, and per-
formance modeling. The main criteria for this choice is
the need to balance an inherent accuracy Vs. running-time
tradeoff in synopsis learning; Figure 4 and Table 3 report
preliminary experimental evidence of this tradeoff.

Figure 4 represents results from an experiment where we
evaluated the performance of FixSym when using three dif-
ferent synopsis techniques from machine-learning [28]:

1. Nearest neighboris a simple machine-learning algo-
rithm that maps a new failure data pointf (recall Fig-
ure 3) to the data pointf ′ that is closest tof among
all failure data points observed so far. The fix recom-
mended forf is the fix that worked forf ′.

2. K-means clusteringworks by partitioning the failure
data points collected so far into clusters based on the
successful fix found for each point. A representative
data point is computed for each cluster, e.g., the mean
of all points in the cluster. Each new failure data point
f is mapped to the cluster whose representative point is
closest tof , and the corresponding fix is recommended
for f . The clustering is redone after each failure is
fixed successfully.

Synopsis Time to generate Accuracy at
50 correct fixes 50 correct fixes

AdaBoost 60 1740 seconds 98.5%
Nearest neighbor 90 seconds 95.5%

K-means 90 seconds 87%

Table 3. Synopsis comparison (running-time)

3. Adaboostis anensemble learningtechnique that can
produce accurate predictions by combining many sim-
ple and moderately inaccurate synopses (orweak
learners). (See [14] for a detailed explanation of Ad-
aboost.) The number 60 for Adaboost in Figure 4 and
Table 3 is the optimal value in our setting for Ad-
aboost’s single configuration parameter, namely, the
number of weak learners combined to generate the fi-
nal synopsis. This number was found based on addi-
tional experiments not shown in this paper.

The experiments were conducted on a simulator for a multi-
tier service that generates time-series data corresponding to
different failed and working service states. On each failure,
FixSym is invoked until a correct fix is found, as described
in Section 4.3.4 and Figure 3.

Thex-axis in Figure 4 shows the number of failures fixed
successfully so far. Therefore, thex-axis corresponds to the
number of training samples—each representing the symp-
toms of a failure and a successful fix—available for learn-
ing the synopsis. They-axis shows the accuracy of the cur-
rent synopsis computed on a fixed test set comprising 1000
failure states (symptoms) and correct fixes generated by the
simulator. Notice that the ensemble synopsis—which is a
state-of-the-art synopsis in machine learning—convergesto
good accuracy with much less training samples than the
other synopses. Adaboost reaches 98% classification accu-
racy with 37 correct fixes. Nearest neighbor takes 85 correct
fixes to reach 98% accuracy. K-means was inferior and only
reached a final classification accuracy of about 87%.

However, Adaboost’s superior accuracy comes at a sig-
nificant cost in terms of running time, as illustrated in Table
3. Figure 4 and Table 3 illustrate an important challenge we
must solve, namely, a self-healing service needs efficient
synopsis-learning algorithms that balance the accuracy of
recommended fixes with the time to generate these fixes. In
[3] we report some promising work on this problem. Other
synopsis-related challenges also arise in self-healing:

• Online learning: Unless the synopses are kept up to
date efficiently as new data becomes available, accu-
racy can drop sharply in dynamic settings. While on-
line learning of synopses is a hard problem, there have
been some promising results recently (e.g., [29]).

• Confidence estimates and ranking: It becomes easy

to combine multiple approaches for fix identification,
as suggested in Section 5.1, if each approach can give
a confidence estimate for the fix it recommends for a
specific failure; we can then rank the fixes and apply
the most promising one. Synopses that give confi-
dence estimates naturally with predicted values (e.g.,
Bayesian networks) are very useful in this setting.

• Inaccurate, ambiguous, and negative data: Recall
that FixSym requires synopses to learn from unsuc-
cessful fixes (negative training samples) in addition to
successful fixes. In general, the self-healing domain
poses some hard requirements on synopses, e.g., the
ability to handle ambiguous and inaccurate data gener-
ated by unsuccessful fixes that were mistakenly classi-
fied as correct, and vice versa.

• Inputing domain/prior knowledge : Synopses will be
more representative of service behavior if we can input
domain knowledge during learning. Some synopses
(e.g., Bayesian networks) provide easy (but narrow)
ways to provide such inputs. Active stimulation dur-
ing preproduction (see Section 4.2) provides many av-
enues to input domain knowledge. For example, a do-
main expert can guide which workloads to use, which
types of failures to inject, and where to inject them; to
generate data that can bootstrap synopsis learning.

5.3 Proactive Application of Fixes

We focused on a reactive approach to self-healing where
fixes are selected and applied after failures strike. Some
failures can force the service into a state where it is not pos-
sible to use or recover the service quickly [9]. In these set-
tings, an approach where failures are predicted in advance
and fixes applied proactively, can be more attractive. Such
strategies need synopses that can forecast failures [3].

5.4 Control-theoretic Foundations

Since a self-healing service makes decisions based on
data it observes about its own activity, the system design
and implementation should consider control-theoretic is-
sues like stability, steady-state error, settling times, and
overshooting [15].

6 Conclusion

In this paper we motivated why failure recovery in
database-centric multitier services is an acute problem and
makes a compelling target for research on automated self-
healing services. We presented a brief, but comprehensive,
discussion of the important techniques—diagnosis-based

and signature-based—and related issues involved in design-
ing and implementing an automated self-healing multitier
service. We showed how existing solutions fall short in
several respects, e.g., being limited to a single tier, ability
to handle specific types of failures only, requiring specific
types of instrumentation data, and others. We presented a
new signature-based technique, FixSym, that when com-
bined with diagnosis-based techniques can outperform ex-
isting solutions for automated self-healing. Finally, we pro-
vided a roadmap of problems we believe need to be solved
in this setting.

References

[1] A. Aboulnaga, P. J. Haas, M. Kandil, S. Lightstone, G. M.
Lohman, V. Markl, I. Popivanov, and V. Raman. Automated
Statistics Collection in DB2 UDB. InProc. of the 2004 Intl.
Conf. on Very Large Data Bases, 2004.

[2] C. Amza, E. Cecchet, A. Chanda, S. Elnikety, A. Cox,
R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel.
Bottleneck Characterization of Dynamic Web Site Bench-
marks, 2002. Technical Report TR02-388, Rice University.

[3] S. Babu and S. Duan. Automatic plan selection for forecast-
ing queries, July 2006. (In submission).

[4] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea,
K. Patel, G. Tolle, J. Hui, A. Fox, M. I. Jordan, and D. Pat-
terson. Combining visualization and statistical analysisto
improve operator confidence and efficiency for failure detec-
tion and localization. In2nd IEEE International Conference
on Autonomic Computing (ICAC ’05), 2005.

[5] G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic
Failure-Path Inference: A Generic Introspection Technique
for Internet Applications. InProc. of rd IEEE Workshop on
Internet Applications, June 2003.

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot - a technique for cheap recovery. In
Proc. of the USENIX Symp. on Operating Systems Design
and Implementation, pages 31–44, 2004.

[7] G. Candea, E. Kiciman, S. Kawamoto, and A. Fox. Au-
tonomous Recovery in Componentized Internet Applica-
tions. Cluster Computing Journal, 9(1), Feb. 2006.

[8] M. Y. Chen, A. Accardi, E. Kiciman, D. A. Patterson,
A. Fox, and E. A. Brewer. Path-based failure and evolu-
tion management. InProc. of the 2004 Networked Systems
Design and Implementation, pages 309–322, 2004.

[9] Y. Coady et al. Falling Off the Cliff: When Systems Go
Nonlinear. InProc. of IEEE Workshop on Hot Topics in
Operating Systems (HotOS), May 2005.

[10] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating Instrumentation Data to System
States: A Building Block for Automated Diagnosis and
Control. InProc. of the USENIX Symp. on Operating Sys-
tems Design and Implementation, Dec. 2004.

[11] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, Indexing, Clustering, and Retrieving
System History. InProc. of the ACM Symp. on Operating
Systems Principles, Oct. 2005.

[12] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and
G. Wood. Automatic performance diagnosis and tuning in
Oracle. InCIDR, 2005.

[13] Yahoo! Cashes In On eBay’s Outage.
http://www.ecommercetimes.com/story/545.html.

[14] Y. Freund and R. Schapire. Experiments with a new boosting
algorithm. InICML, Aug. 1996.

[15] J. L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury.Feed-
back Control of Computing Systems. Wiley-Interscience,
2004.

[16] P. Horn. Autonomic computing: IBM’s perspective on the
state of information technology. Technical report, IBM
Corp., 2001. http://www.research.ibm.com/autonomic.

[17] Java EE at a Glance. htpp://java.sun.com/javaee.
[18] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why

do internet services fail, and what can be done about it? In
4th USENIX Symposium on Internet Technologies and Sys-
tems, pages 388–395, Mar. 2003.

[19] J. Reason.Human Error. Cambridge University Press, 1990.
[20] Rice University Bidding System. rubis.objectweb.org.
[21] Business Internet Group. The black Friday report on Web

application integrity. San Francisco, CA, 2003.
[22] P. Shivam, S. Babu, and J. Chase. Active and accelerated

learning of cost models for optimizing scientific applica-
tions. InProc. of the 2006 Intl. Conf. on Very Large Data
Bases, 2006.

[23] P. Shivam, S. Babu, and J. Chase. Active Sampling for Ac-
celerated Learning of Performance Models. InFirst Work-
shop on Tackling Computer Systems Problems with Machine
Learning Techniques (SysML), Jun 2006.

[24] A. J. Storm, C. Garcia-Arellano, S. Lightstone, Y. Diao, and
M. Surendra. Adaptive Self-tuning Memory in DB2. In
Proc. of the 2006 Intl. Conf. on Very Large Data Bases,
2006.

[25] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dy-
namic Provisioning for Multi-tier Internet Applications.In
Proc. of 2nd IEEE International Conference on Autonomic
Computing (ICAC), June 2005.

[26] K. Vaidyanathan and K. S. Trivedi. A comprehensive model
for software rejuvenation.IEEE Transactions on Depend-
able and Secure Computing, 2(2), 2005.

[27] Christmas shopping crush stalls Walmart.com.
news.zdnet.co.uk/internet/0,1000000097,39284866,00.htm.

[28] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, second
edition, June 2005.

[29] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.
Ensembles of models for automated diagnosis of system per-
formance problems. InDSN, 2005.

