
Editors: Mohamed Kaâniche, mohamed.kaaniche@laas.fr | Aad van Moorsel, aad.vanmoorsel@ncl.ac.uk

IT ALL DEPENDS

1540-7993/14/$31.00 © 2014 IEEE	 Copublished by the IEEE Computer and Reliability Societies	 January/February 2014� 65

The Tests-versus-Proofs
Conundrum
George Candea | EPFL

I n recent years, advances in formal-
proof systems and constraint solv-

ers have enabled us to dream of a day
when all the software we write can
be proven correct. Software practi-
tioners now must decide whether
to persist in using testing to improve
confidence in their code or to invest
effort in learning and adopting more
formal approaches. How are they to
choose? Well, ... it depends.

Proofs or Tests?
Proofs are powerful. They’re math-
ematical constructs that guarantee
that all possible executions of a pro-
gram satisfy (under certain assump-
tions) a particular desired property,
such as freedom from crashes or
undivertible control flow. Math-
ematics never lies. In an era when
attackers can use a mere SMS to
hack mobile phones, and malware
can bring down critical infrastruc-
ture systems, we yearn for the cer-
tainty that proofs offer.

Yet proofs are as weak as their
assumptions, and the easiest way to
attack a “proven” system is by violat-
ing these assumptions. For example,
the simplest way to attack a Java-
based system might be to exploit
Java runtime vulnerabilities; once
the attacker owns the runtime, any

proofs that assume the runtime’s
integrity are moot. Even compil-
ers can be tricky. For example, we
might prove on the basis of source
code that a C program that checks
for pointer wrap-around using
if (buf+len<buf) is mem-
ory safe. However, gcc -O2 will
optimize away this check because
pointer overflow is undefined
behavior in the C specification and
thus produces an unsafe execut-
able.1 Can we assume device firm-
ware running on our network card
is trustworthy? Can we assume our
CPU is correct and secure?

System tests and penetra-
tion tests are the time-honored
approach to increasing confidence
in a computer system. Tests exercise
actual binaries running in the actual
environment on the actual hard-
ware, thus reducing the number of
assumptions. We can then measure
code coverage: the higher the num-
ber, the better our managers sleep at
night. Testing is also a good match
for agile development practices,
which dominate today. In contrast,
formal approaches are prone to the
ossifying waterfall model.

Yet tests are surprisingly incom-
plete, which is particularly prob-
lematic in the security domain.

It’s impractical to use classic test-
ing to exercise a nontrivial frac-
tion of the program paths in any
realistic software. A beefy test suite
might exercise as much as 90 per-
cent of the statements in a piece
of code but cover not even 1 per-
cent of the (exponentially many)
possible paths. Serious bugs often
hide like needles in a haystack, and
incomplete testing lets them persist
through many code revisions.

Neither a formal approach nor
testing is a clear winner in the war
on bugs. So what are we to do? One
answer to this conundrum is tools
and techniques that let developers
combine tests and proofs.

Bridging Tests and Proofs
with Symbolic Execution
We can view a program as the encod-
ing of a decision tree. For example,
in Figure 1, each if instruction on
the left corresponds to a decision
in the tree on the right. To test this
program, we give it some concrete
input value—say, 1,200 RPMs—
which makes the program follow a
specific path (in green in Figure 1)
through the tree. We then check the
outcome. If we wanted to prove this
program’s correctness, we’d have to
test it for all possible inputs, which
implies 232 tests (assuming 32-bit
integers)—a tall order.

Symbolic execution (SE) can
make this process considerably
more efficient. Introduced in the
1970s, SE posits that, instead of
using concrete inputs to execute
a program, we can use symbolic
inputs that subsume a range of pos-
sible concrete values. That is, we use
as input , which initially represents
all possible integers.

j1iad.indd 65 1/14/14 5:26 PM

SE entails simulating a program’s
behavior using the symbolic input
and collecting the constraints (in red
in Figure 1) that the branch condi-
tions impose. SE therefore automati-
cally unfurls the program into the
decision tree that it encodes, without
missing any paths (that is, with no
false negatives), unlike classic testing.

The beauty of SE is that we can
use it for automated test generation.
If the SE engine detects a violation
of a desired property on a path, it
can hand the conjunction of that
path’s constraints to a constraint
solver to obtain a concrete value
that takes the program down that
path. For example, say that, before
returning, the program accesses
sensors[rpm], where sensors
is a zero-based array of 1,000 ele-
ments. Along the left-most path in
the tree, sensors[rpm] could
be out of bounds. Passing  ∈ ℤ ∧
 ≤ 1,000 ∧  ≥ 700 ∧  > 999 to
a constraint solver yields the con-
crete value  = 1,000, which, when
used as the input, causes the out-of-
bounds access.

SE automatically produces test
cases that demonstrate unequivo-
cally the bugs it finds, and is thus
free of false positives.

To verify our example program’s
correctness, SE needs four sym-
bolic values, one for each path: l1 =

[MIN_INT, 700), l2 = [700, 1,000],
l3 = (1,000, 1,400), and 4 =
[1,400, MAX_INT]. This covers the
entire input space much faster than
232 tests.

So, SE bridges tests to proofs by
verifying an entire path at a time for
all possible inputs that lead down
that path. When the input isn’t a
single integer but entire files or mul-
tiple network packets, SE’s benefit
over classic testing is even greater.

SE is powerful; Microsoft uses a
variant of it to save millions of dol-
lars in potential security vulnerabili-
ties.2 At EPFL, we’ve been working
on making SE practical while build-
ing on valuable prior research, such
as the KLEE SE tool.3 Other teams
worldwide have been making signifi-
cant contributions in this area, and I
can’t even attempt to do them justice
in this short article. I’ll just briefly
describe our efforts at chipping away
at three key challenges that arise
when SE meets the real world.

Three Real-World
Scalability Challenges
When trying to use SE for real
software problems, a practitioner
is likely to hit three main barriers:
real software has tons of code, it’s
tightly connected to its execution
environment, and deploying SE
faces social challenges.

Real Programs ⇒
Path Explosion
The number of possible paths
through a body of code is roughly
exponential in code size, because
each if might split execution
into two paths. Loops exacerbate
this problem, commonly called
path explosion. In our Cloud9 sys-
tem (http://cloud9.epfl.ch), we
attack this problem in both depth
(through algorithmic changes) and
breadth (through parallelization on
large compute clusters).

By merging nodes (symbolic
program states) in the decision tree,
we can turn it into a directed acy-
clic graph and reduce the number
of paths exponentially. However,
to preserve SE’s precision, we must
also merge the corresponding con-
straints. For instance, merging the
two left-most leaves in our example
tree would generate a single path
with the disjunctive constraint
(rpm < 700 ∧  < 700 ∨ rpm ≮ 700
∧  ≥ 700) ∧  ≤ 1,000 ∧  ∈ ℤ).
Unfortunately, such constraints can
be much harder to solve than the
two simpler constituent constraints.
So, although this approach explores
fewer paths, exploring some paths
could take longer, with the net
effect that SE takes longer than if we
hadn’t merged the states.

The key is to recognize when
such a merge would be benefi-
cial, and merge only then. Cloud9
employs static analysis to estimate
each symbolic variable’s impact
on solver queries that follow a
potential merge point. It merges
only when doing so will likely
be advantageous. Furthermore,
Cloud9 merges states dynamically,
during SE, in a way that interacts
favorably with automated test gen-
eration. Using these techniques,
Cloud9 explored up to 11 orders
of magnitude more paths in the
same time budget when compared
to previously published results
on the same software.4 The best
part is that the benefit of this state

Figure 1. A program is a decision tree. Each instruction on the left corresponds to a decision in the
tree on the right. Green indicates a program path; red indicates path constraints.

rpm = 1,200

shiftGear (int rpm)
 if (rpm > 1,000)
 gear = gear + 1
 rpm = rpm/2
 if (rpm < 700)
 gear = 0
 return

rpm > 1,000

rpm < 700 rpm < 700

return gear = 0
return

return gear = 0
return

gear = gear+1
rpm = rpm/2

False True

False True False True

λ ≤ 1,000

λ ≥ 700 λ < 700 λ/2 ≥ 700 λ/2 < 700

λ > 1,000

λ � Z

66	 IEEE Security & Privacy� January/February 2014

IT ALL DEPENDS

j1iad.indd 66 1/14/14 5:26 PM

merging grows exponentially with
the input size.

Cloud9 also parallelizes SE on
public-cloud infrastructures, letting
us “throw hardware at the prob-
lem.” By employing a complete
model of the Posix environment
and full support for multithreaded
software, Cloud9 found bugs that
classic testing missed when used
for systems such as Memcached,
the Apache HTTP Server, and the
Python interpreter.5

Nevertheless, for most real-
sized software, exploring every
path is still infeasible. So, instead
of using SE for proofs, modern SE
engines use it for better testing.
Instead of exploring all possible
paths, these engines employ heu-
ristics to explore the paths likely to
contain bugs. This trades complete-
ness for reasonable runtime.

Real Execution Environments
⇒ Polyglot Tools Needed
Accurate analysis of program behav-
ior typically requires understanding
how that program interacts with its
environment. Even small programs
allocate memory, read and write
files, send and receive network
packets, and so on. Unfortunately, a
real execution environment consists
of many libraries, an OS kernel, and
device drivers, written by many par-
ties in many languages, often with
no source code available.

One way to deal with this Babe-
lesque situation is to abstract the
environment and use a model to
encapsulate all the assumptions that
SE makes about the environment’s
behavior. Most SE engines, includ-
ing Cloud9, take this approach.
By employing models, the engine
trusts the environment to behave
according to its assumptions. Unfor-
tunately, models are almost never
fully accurate, they tend to further
lose accuracy as the modeled envi-
ronment evolves, and writing them
is labor intensive (up to multiple
person-years6). Real environments,

such as the Java virtual machine or
Windows OS, have bugs that make
them vulnerable to attackers, so
trusting them blindly can be risky.

Another approach is to symboli-
cally execute the lowest common
denominator: machine code. The
S2E engine (http://s2e.epfl.ch)
does this and can therefore sym-
bolically execute programs together
with arbitrary execution environ-
ments. S2E presents the developer
with a virtual machine (currently
x86 or ARM) in which a developer
can install an entire software stack,
in its executable binary form (for
example, a full Windows system).
S2E executes the software symboli-
cally “in vivo,” as the software oper-
ates in its live, real environment.

In order to scale, S2E employs
selective SE, in which execution
seamlessly weaves between sym-
bolic and concrete mode. This auto-
matically avoids exploring paths
that aren’t relevant to the currently
explored path. For example, if a pro-
gram calls malloc(), which is part
of the environment, S2E will return
 ∈ {valid pointer, NULL} instead of
symbolically executing malloc().
This symbolic return value is suffi-
cient to capture the memory alloca-
tor’s behavior.

A real environment, though,
includes hardware devices. So
that software doesn’t have to make
assumptions about such devices,
S2E provides symbolic hardware. A
nice side effect is that testing can
occur even when the devices aren’t
present—this is how we automati-
cally tested dozens of Windows
device drivers and found many
bugs. We also developed on S2E
a multipath performance profiler
that found performance bugs in
widely used software, a reverse-
engineering tool for proprietary
software, and a testing tool for
distributed systems. Other groups
worldwide are using S2E for a
range of other analyses, including
security-oriented ones.

Real Users ⇒
Social Challenges
Even if all the technical chal-
lenges of SE were resolved, get-
ting developers to use such tools
is difficult—this is the “social scal-
ability” challenge. Understand-
ing SE results is difficult because
we can’t just attach a debugger to
the running program and visual-
ize thousands of simultaneously
executing paths. State merging, as
I described earlier, makes this even
more difficult. There’s still much
left to do to integrate SE into a
developer’s toolbox.

At EPFL, we’re working on mak-
ing SE-based automated testing
accessible to everyone everywhere
through the CodeTickler Web ser-
vice (www.codetickler.org). We aim
to let users upload an executable to
the service, click on Test, and check
it for undesired behaviors (memory
errors, data races, resource leaks, and
so on). Currently, the service can test
Windows device drivers. It produces
detailed, executable traces for every
path that leads to a failure. These
traces can reproduce the bugs in a
debugger, one path at a time, enabling
users to understand the bugs and fix
them quickly. It is also possible for
end users to check untrusted drivers
before installing them.

To address other related social
challenges, we developed tech-
niques for employing users’ exe-
cutions to verify software (as in
RaceMob7), preserving user privacy
in such crowdsourced systems,8 and
automating debugging with tech-
niques such as execution synthesis.9

W hen faced with the tests-
versus-proofs conundrum,

the most promising path for the
modern developer is to combine
formal methods and traditional
testing practice. By devising tools
that creatively combine tests with
proofs, we can improve today’s
software, despite its increasing

www.computer.org/security� 67

j1iad.indd 67 1/14/14 5:26 PM

complexity. If at the same time we
make these tools fully automatic,
we can also improve developers’
productivity, thus surmounting the
inherent social challenge of chang-
ing how software is written.

References
1.	 X. Wang et al., “Towards Optimi-

zation-Safe Systems: Analyzing the
Impact of Undefined Behavior,”
Proc. 24th ACM Symp. Operating
Systems Principles (SOSP 13), 2013,
pp. 260–275.

2.	 E. Bounimova, P. Godefroid, and
D. Molnar, “Billions and Billions
of Constraints: Whitebox Fuzz
Testing in Production,” Proc. 2013
Int’l Conf. Software Eng. (ICSE 13),
2013, pp. 122–131.

3.	 C. Cadar, D. Dunbar, and D.R.
Engler, “KLEE: Unassisted and
Automatic Generation of High-
Coverage Tests for Complex Sys-
tems Programs,” Proc. 8th Usenix

Conf. Operating System Design and
Implementation (OSDI 08), 2008,
pp. 209–224.

4.	 V. Kuznetsov et al., “Efficient State
Merging in Symbolic Execution,”
Proc. 33rd ACM SIGPLAN Conf.
Programming Language Design and
Implementation (PLDI 12), 2012,
pp. 193–204.

5.	 S. Bucur et al., “Parallel Symbolic
Execution for Automated Real-
World Software Testing,” Proc. 6th
Conf. Computer Systems (EuroSys
11), 2011, pp. 183–198.

6.	 T. Ball et al., “Thorough Static Anal-
ysis of Device Drivers,” Proc. 1st
ACM/SIGOPS EuroSys European
Conf. Computer Systems (EuroSys
06), 2006, pp. 73–85.

7.	 B. Kasikci, C. Zamfir, and G. Can-
dea, “RaceMob: Crowdsourced
Data Race Detection,” Proc. 24th
ACM Symp. Operating Systems
Principles (SOSP 13), 2013, pp.
406–422.

8.	 S. Andrica and G. Candea, “Miti-
gating Anonymity Concerns in
Self-Testing and Self-Debug-
ging Programs,” Proc. Int’l Conf.
Autonomic Computing, 2013, pp.
259–264.

9.	 C. Zamfir and G. Candea, “Execu-
tion Synthesis: A Technique for
Automated Software Debugging,”
Proc. 5th European Conf. Computer
Systems (EuroSys 10), 2010, pp.
321–334.

George Candea leads the Depend-
able Systems Lab and is an associ-
ate professor of computer science
in the School of Computer and
Communication Sciences at the
École Polytechnique Fédérale de
Lausanne (EPFL). Contact him
at george.candea@epfl.ch.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

PURPOSE: The IEEE Computer Society is the world’s largest association
of computing professionals and is the leading provider of technical
information in the field.
MEMBERSHIP: Members receive the monthly magazine Computer,
discounts, and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, affiliate society
members, and others interested in the computer field.
COMPUTER SOCIETY WEBSITE: www.computer.org

Next Board Meeting: 4–7 February 2014, Long Beach, Calif., USA

EXECUTIVE COMMITTEE
President: Dejan S. Milojicic
President-Elect: Thomas M. Conte; Past President: David Alan Grier;
Secretary: David S. Ebert; Treasurer: Charlene (“Chuck”) J. Walrad; VP,
Educational Activities: Phillip Laplante; VP, Member & Geographic
Activities: Elizabeth L. Burd; VP, Publications: Jean-Luc Gaudiot; VP,
Professional Activities: Donald F. Shafer; VP, Standards Activities: James
W. Moore; VP, Technical & Conference Activities: Cecilia Metra; 2014
IEEE Director & Delegate Division VIII: Roger U. Fujii; 2014 IEEE Director
& Delegate Division V: Susan K. (Kathy) Land; 2014 IEEE Director-Elect &
Delegate Division VIII: John W. Walz

BOARD OF GOVERNORS
Term Expiring 2014: Jose Ignacio Castillo Velazquez, David. S. Ebert,
Hakan Erdogmus, Gargi Keeni, Fabrizio Lombardi, Hironori Kasahara,
Arnold N. Pears
Term Expiring 2015: Ann DeMarle, Cecilia Metra, Nita Patel, Diomidis
Spinellis, Phillip Laplante, Jean-Luc Gaudiot, Stefano Zanero
Term Expriring 2016: David A. Bader, Pierre Bourque, Dennis Frailey, Jill
I. Gostin, Atsuhiro Goto, Rob Reilly, Christina M. Schober

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate Executive Director &
Director, Governance: Anne Marie Kelly; Director, Finance & Accounting:
John Miller; Director, Information Technology & Services: Ray Kahn;
Director, Membership Development: Eric Berkowitz; Director, Products &
Services: Evan Butterfield; Director, Sales & Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720
Phone: +1 714 821 8380 • Email: help@computer.org

MEMBERSHIP & PUBLICATION ORDERS
Phone: +1 800 272 6657 • Fax: +1 714 821 4641 • Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo
107-0062, Japan • Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553 •
Email: tokyo.ofc@computer.org

IEEE BOARD OF DIRECTORS
President: J. Roberto de Marca; President-Elect: Howard E. Michel; Past
President: Peter W. Staecker; Secretary: Marko Delimar; Treasurer:
John T. Barr; Director & President, IEEE-USA: Gary L. Blank; Director
& President, Standards Association: Karen Bartleson; Director & VP,
Educational Activities: Saurabh Sinha; Director & VP, Membership and
Geographic Activities: Ralph M. Ford; Director & VP, Publication Services
and Products: Gianluca Setti; Director & VP, Technical Activities: Jacek
M. Zurada; Director & Delegate Division V: Susan K. (Kathy) Land;
Director & Delegate Division VIII: Roger U. Fujii

revised 17 Dec. 2013

68	 IEEE Security & Privacy� January/February 2014

IT ALL DEPENDS

j1iad.indd 68 1/14/14 5:26 PM

