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The Tests-versus-Proofs 
Conundrum
George Candea | EPFL

I n recent years, advances in formal-
proof systems and constraint solv-

ers have enabled us to dream of a day 
when all the software we write can 
be proven correct. Software practi-
tioners now must decide whether 
to persist in using testing to improve 
confidence in their code or to invest 
effort in learning and adopting more 
formal approaches. How are they to 
choose? Well, ... it depends.

Proofs or Tests?
Proofs are powerful. They’re math-
ematical constructs that guarantee 
that all possible executions of a pro-
gram satisfy (under certain assump-
tions) a particular desired property, 
such as freedom from crashes or 
undivertible control flow. Math-
ematics never lies. In an era when 
attackers can use a mere SMS to 
hack mobile phones, and malware 
can bring down critical infrastruc-
ture systems, we yearn for the cer-
tainty that proofs offer.

Yet proofs are as weak as their 
assumptions, and the easiest way to 
attack a “proven” system is by violat-
ing these assumptions. For example, 
the simplest way to attack a Java-
based system might be to exploit 
Java runtime vulnerabilities; once 
the attacker owns the runtime, any 

proofs that assume the runtime’s 
integrity are moot. Even compil-
ers can be tricky. For example, we 
might prove on the basis of source 
code that a C program that checks 
for pointer wrap-around using 
if (buf+len<buf) is mem-
ory safe. However, gcc -O2 will 
optimize away this check because 
pointer overflow is undefined 
behavior in the C specification and 
thus produces an unsafe execut-
able.1 Can we assume device firm-
ware running on our network card 
is trustworthy? Can we assume our 
CPU is correct and secure?

System tests and penetra-
tion tests are the time-honored 
approach to increasing confidence 
in a computer system. Tests exercise 
actual binaries running in the actual 
environment on the actual hard-
ware, thus reducing the number of 
assumptions. We can then measure 
code coverage: the higher the num-
ber, the better our managers sleep at 
night. Testing is also a good match 
for agile development practices, 
which dominate today. In contrast, 
formal approaches are prone to the 
ossifying waterfall model.

Yet tests are surprisingly incom-
plete, which is particularly prob-
lematic in the security domain. 

It’s impractical to use classic test-
ing to exercise a nontrivial frac-
tion of the program paths in any 
realistic software. A beefy test suite 
might exercise as much as 90 per-
cent of the statements in a piece 
of code but cover not even 1 per-
cent of the (exponentially many) 
possible paths. Serious bugs often 
hide like needles in a haystack, and 
incomplete testing lets them persist 
through many code revisions.

Neither a formal approach nor 
testing is a clear winner in the war 
on bugs. So what are we to do? One 
answer to this conundrum is tools 
and techniques that let developers 
combine tests and proofs.

Bridging Tests and Proofs 
with Symbolic Execution
We can view a program as the encod-
ing of a decision tree. For example, 
in Figure 1, each if instruction on 
the left corresponds to a decision 
in the tree on the right. To test this 
program, we give it some concrete 
input value—say, 1,200 RPMs—
which makes the program follow a 
specific path (in green in Figure 1) 
through the tree. We then check the 
outcome. If we wanted to prove this 
program’s correctness, we’d have to 
test it for all possible inputs, which 
implies 232 tests (assuming 32-bit 
integers)—a tall order.

Symbolic execution (SE) can 
make this process considerably 
more efficient. Introduced in the 
1970s, SE posits that, instead of 
using concrete inputs to execute 
a program, we can use symbolic 
inputs that subsume a range of pos-
sible concrete values. That is, we use 
as input , which initially represents 
all possible integers.
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SE entails simulating a program’s 
behavior using the symbolic input 
and collecting the constraints (in red 
in Figure 1) that the branch condi-
tions impose. SE therefore automati-
cally unfurls the program into the 
decision tree that it encodes, without 
missing any paths (that is, with no 
false negatives), unlike classic testing.

The beauty of SE is that we can 
use it for automated test generation. 
If the SE engine detects a violation 
of a desired property on a path, it 
can hand the conjunction of that 
path’s constraints to a constraint 
solver to obtain a concrete value 
that takes the program down that 
path. For example, say that, before 
returning, the program accesses 
sensors[rpm], where sensors 
is a zero-based array of 1,000 ele-
ments. Along the left-most path in 
the tree, sensors[rpm] could 
be out of bounds. Passing  ∈ ℤ ∧ 
 ≤ 1,000 ∧  ≥ 700 ∧  > 999 to 
a constraint solver yields the con-
crete value  = 1,000, which, when 
used as the input, causes the out-of-
bounds access.

SE automatically produces test 
cases that demonstrate unequivo-
cally the bugs it finds, and is thus 
free of false positives.

To verify our example program’s 
correctness, SE needs four sym-
bolic values, one for each path: l1 = 

[MIN_INT, 700), l2 = [700, 1,000],  
l3 = (1,000, 1,400), and 4 = 
[1,400, MAX_INT]. This covers the 
entire input space much faster than 
232 tests.

So, SE bridges tests to proofs by 
verifying an entire path at a time for 
all possible inputs that lead down 
that path. When the input isn’t a 
single integer but entire files or mul-
tiple network packets, SE’s benefit 
over classic testing is even greater.

SE is powerful; Microsoft uses a 
variant of it to save millions of dol-
lars in potential security vulnerabili-
ties.2 At EPFL, we’ve been working 
on making SE practical while build-
ing on valuable prior research, such 
as the KLEE SE tool.3 Other teams 
worldwide have been making signifi-
cant contributions in this area, and I 
can’t even attempt to do them justice 
in this short article. I’ll just briefly 
describe our efforts at chipping away 
at three key challenges that arise 
when SE meets the real world.

Three Real-World 
Scalability Challenges
When trying to use SE for real 
software problems, a practitioner 
is likely to hit three main barriers: 
real software has tons of code, it’s 
tightly connected to its execution 
environment, and deploying SE 
faces social challenges.

Real Programs ⇒ 
Path Explosion
The number of possible paths 
through a body of code is roughly 
exponential in code size, because 
each if might split execution 
into two paths. Loops exacerbate 
this problem, commonly called 
path explosion. In our Cloud9 sys-
tem (http://cloud9.epfl.ch), we 
attack this problem in both depth 
(through algorithmic changes) and 
breadth (through parallelization on 
large compute clusters).

By merging nodes (symbolic 
program states) in the decision tree, 
we can turn it into a directed acy-
clic graph and reduce the number 
of paths exponentially. However, 
to preserve SE’s precision, we must 
also merge the corresponding con-
straints. For instance, merging the 
two left-most leaves in our example 
tree would generate a single path 
with the disjunctive constraint 
(rpm < 700 ∧  < 700 ∨ rpm ≮ 700 
∧  ≥ 700) ∧  ≤ 1,000 ∧  ∈ ℤ). 
Unfortunately, such constraints can 
be much harder to solve than the 
two simpler constituent constraints. 
So, although this approach explores 
fewer paths, exploring some paths 
could take longer, with the net 
effect that SE takes longer than if we 
hadn’t merged the states.

The key is to recognize when 
such a merge would be benefi-
cial, and merge only then. Cloud9 
employs static analysis to estimate 
each symbolic variable’s impact 
on solver queries that follow a 
potential merge point. It merges 
only when doing so will likely 
be advantageous. Furthermore, 
Cloud9 merges states dynamically, 
during SE, in a way that interacts 
favorably with automated test gen-
eration. Using these techniques, 
Cloud9 explored up to 11 orders 
of magnitude more paths in the 
same time budget when compared 
to previously published results 
on the same software.4 The best 
part is that the benefit of this state 

Figure 1. A program is a decision tree. Each instruction on the left corresponds to a decision in the 
tree on the right. Green indicates a program path; red indicates path constraints.

rpm = 1,200

shiftGear (int rpm)
     if (rpm > 1,000)
          gear = gear + 1
          rpm = rpm/2
     if (rpm < 700)
          gear = 0 
     return
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merging grows exponentially with 
the input size.

Cloud9 also parallelizes SE on 
public-cloud infrastructures, letting 
us “throw hardware at the prob-
lem.” By employing a complete 
model of the Posix environment 
and full support for multithreaded 
software, Cloud9 found bugs that 
classic testing missed when used 
for systems such as Memcached, 
the Apache HTTP Server, and the 
Python interpreter.5

Nevertheless, for most real-
sized software, exploring every 
path is still infeasible. So, instead 
of using SE for proofs, modern SE 
engines use it for better testing. 
Instead of exploring all possible 
paths, these engines employ heu-
ristics to explore the paths likely to 
contain bugs. This trades complete-
ness for reasonable runtime.

Real Execution Environments 
⇒ Polyglot Tools Needed
Accurate analysis of program behav-
ior typically requires understanding 
how that program interacts with its 
environment. Even small programs 
allocate memory, read and write 
files, send and receive network 
packets, and so on. Unfortunately, a 
real execution environment consists 
of many libraries, an OS kernel, and 
device drivers, written by many par-
ties in many languages, often with 
no source code available.

One way to deal with this Babe-
lesque situation is to abstract the 
environment and use a model to 
encapsulate all the assumptions that 
SE makes about the environment’s 
behavior. Most SE engines, includ-
ing Cloud9, take this approach. 
By employing models, the engine 
trusts the environment to behave 
according to its assumptions. Unfor-
tunately, models are almost never 
fully accurate, they tend to further 
lose accuracy as the modeled envi-
ronment evolves, and writing them 
is labor intensive (up to multiple 
person-years6). Real environments, 

such as the Java virtual machine or 
Windows OS, have bugs that make 
them vulnerable to attackers, so 
trusting them blindly can be risky.

Another approach is to symboli-
cally execute the lowest common 
denominator: machine code. The 
S2E engine (http://s2e.epfl.ch) 
does this and can therefore sym-
bolically execute programs together 
with arbitrary execution environ-
ments. S2E presents the developer 
with a virtual machine (currently 
x86 or ARM) in which a developer 
can install an entire software stack, 
in its executable binary form (for 
example, a full Windows system). 
S2E executes the software symboli-
cally “in vivo,” as the software oper-
ates in its live, real environment.

In order to scale, S2E employs 
selective SE, in which execution 
seamlessly weaves between sym-
bolic and concrete mode. This auto-
matically avoids exploring paths 
that aren’t relevant to the currently 
explored path. For example, if a pro-
gram calls malloc(), which is part 
of the environment, S2E will return 
 ∈ {valid pointer, NULL} instead of 
symbolically executing malloc(). 
This symbolic return value is suffi-
cient to capture the memory alloca-
tor’s behavior.

A real environment, though, 
includes hardware devices. So 
that software doesn’t have to make 
assumptions about such devices, 
S2E provides symbolic hardware. A 
nice side effect is that testing can 
occur even when the devices aren’t 
present—this is how we automati-
cally tested dozens of Windows 
device drivers and found many 
bugs. We also developed on S2E 
a multipath performance profiler 
that found performance bugs in 
widely used software, a reverse-
engineering tool for proprietary 
software, and a testing tool for 
distributed systems. Other groups 
worldwide are using S2E for a 
range of other analyses, including 
security-oriented ones.

Real Users ⇒  
Social Challenges
Even if all the technical chal-
lenges of SE were resolved, get-
ting developers to use such tools 
is difficult—this is the “social scal-
ability” challenge. Understand-
ing SE results is difficult because 
we can’t just attach a debugger to 
the running program and visual-
ize thousands of simultaneously 
executing paths. State merging, as 
I described earlier, makes this even 
more difficult. There’s still much 
left to do to integrate SE into a 
developer’s toolbox.

At EPFL, we’re working on mak-
ing SE-based automated testing 
accessible to everyone everywhere 
through the CodeTickler Web ser-
vice (www.codetickler.org). We aim 
to let users upload an executable to 
the service, click on Test, and check 
it for undesired behaviors (memory 
errors, data races, resource leaks, and 
so on). Currently, the service can test 
Windows device drivers. It produces 
detailed, executable traces for every 
path that leads to a failure. These 
traces can reproduce the bugs in a 
debugger, one path at a time, enabling 
users to understand the bugs and fix 
them quickly. It is also possible for 
end users to check untrusted drivers 
before installing them.

To address other related social 
challenges, we developed tech-
niques for employing users’ exe-
cutions to verify software (as in 
RaceMob7), preserving user privacy 
in such crowdsourced systems,8 and 
automating debugging with tech-
niques such as execution synthesis.9

W hen faced with the tests-
versus-proofs conundrum, 

the most promising path for the 
modern developer is to combine 
formal methods and traditional 
testing practice. By devising tools 
that creatively combine tests with 
proofs, we can improve today’s 
software, despite its increasing 
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complexity. If at the same time we 
make these tools fully automatic, 
we can also improve developers’ 
productivity, thus surmounting the 
inherent social challenge of chang-
ing how software is written. 

References
1.	 X. Wang et al., “Towards Optimi-

zation-Safe Systems: Analyzing the 
Impact of Undefined Behavior,” 
Proc. 24th ACM Symp. Operating 
Systems Principles (SOSP 13), 2013, 
pp. 260–275.

2.	 E. Bounimova, P. Godefroid, and 
D. Molnar, “Billions and Billions 
of Constraints: Whitebox Fuzz 
Testing in Production,” Proc. 2013 
Int’l Conf. Software Eng. (ICSE 13), 
2013, pp. 122–131.

3.	 C. Cadar, D. Dunbar, and D.R. 
Engler, “KLEE: Unassisted and 
Automatic Generation of High-
Coverage Tests for Complex Sys-
tems Programs,” Proc. 8th Usenix 

Conf. Operating System Design and 
Implementation (OSDI 08), 2008, 
pp. 209–224.

4.	 V. Kuznetsov et al., “Efficient State 
Merging in Symbolic Execution,” 
Proc. 33rd ACM SIGPLAN Conf. 
Programming Language Design and 
Implementation (PLDI 12), 2012, 
pp. 193–204.

5.	 S. Bucur et al., “Parallel Symbolic 
Execution for Automated Real-
World Software Testing,” Proc. 6th 
Conf. Computer Systems (EuroSys 
11), 2011, pp. 183–198.

6.	 T. Ball et al., “Thorough Static Anal-
ysis of Device Drivers,” Proc. 1st 
ACM/SIGOPS EuroSys European 
Conf. Computer Systems (EuroSys 
06), 2006, pp. 73–85.

7.	 B. Kasikci, C. Zamfir, and G. Can-
dea, “RaceMob: Crowdsourced 
Data Race Detection,” Proc. 24th 
ACM Symp. Operating Systems 
Principles (SOSP 13), 2013, pp. 
406–422.

8.	 S. Andrica and G. Candea, “Miti-
gating Anonymity Concerns in 
Self-Testing and Self-Debug-
ging Programs,” Proc. Int’l Conf. 
Autonomic Computing, 2013, pp. 
259–264.

9.	 C. Zamfir and G. Candea, “Execu-
tion Synthesis: A Technique for 
Automated Software Debugging,” 
Proc. 5th European Conf. Computer 
Systems (EuroSys 10), 2010, pp. 
321–334.

George Candea leads the Depend-
able Systems Lab and is an associ-
ate professor of computer science 
in the School of Computer and 
Communication Sciences at the 
École Polytechnique Fédérale de 
Lausanne (EPFL). Contact him 
at george.candea@epfl.ch.

Selected CS articles and columns 
are also available for free at 

http://ComputingNow.computer.org.

PURPOSE: The IEEE Computer Society is the world’s largest association 
of computing professionals and is the leading provider of technical 
information in the field.
MEMBERSHIP: Members receive the monthly magazine Computer, 
discounts, and opportunities to serve (all activities are led by volunteer 
members). Membership is open to all IEEE members, affiliate society 
members, and others interested in the computer field.
COMPUTER SOCIETY WEBSITE: www.computer.org

Next Board Meeting: 4–7 February 2014, Long Beach, Calif., USA

EXECUTIVE COMMITTEE
President: Dejan S. Milojicic
President-Elect: Thomas M. Conte; Past President: David Alan Grier; 
Secretary: David S. Ebert; Treasurer: Charlene (“Chuck”) J. Walrad; VP, 
Educational Activities: Phillip Laplante; VP, Member & Geographic 
Activities: Elizabeth L. Burd; VP, Publications: Jean-Luc Gaudiot; VP, 
Professional Activities: Donald F. Shafer; VP, Standards Activities: James 
W. Moore; VP, Technical & Conference Activities: Cecilia Metra; 2014 
IEEE Director & Delegate Division VIII: Roger U. Fujii; 2014 IEEE Director 
& Delegate Division V: Susan K. (Kathy) Land;  2014 IEEE Director-Elect & 
Delegate Division VIII: John W. Walz

BOARD OF GOVERNORS
Term Expiring 2014: Jose Ignacio Castillo Velazquez, David. S. Ebert, 
Hakan Erdogmus, Gargi Keeni, Fabrizio Lombardi, Hironori Kasahara, 
Arnold N. Pears
Term Expiring 2015: Ann DeMarle, Cecilia Metra, Nita Patel, Diomidis 
Spinellis, Phillip Laplante, Jean-Luc Gaudiot, Stefano Zanero
Term Expriring 2016: David A. Bader, Pierre Bourque, Dennis Frailey, Jill 
I. Gostin, Atsuhiro Goto, Rob Reilly, Christina M. Schober

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate Executive Director & 
Director, Governance: Anne Marie Kelly; Director, Finance & Accounting: 
John Miller; Director, Information Technology & Services: Ray Kahn; 
Director, Membership Development: Eric Berkowitz; Director, Products & 
Services: Evan Butterfield; Director, Sales & Marketing: Chris Jensen

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720
Phone: +1 714 821 8380 • Email: help@computer.org

MEMBERSHIP & PUBLICATION ORDERS
Phone: +1 800 272 6657 • Fax: +1 714 821 4641 • Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo 
107-0062, Japan • Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553 • 
Email: tokyo.ofc@computer.org

IEEE BOARD OF DIRECTORS
President: J. Roberto de Marca; President-Elect: Howard E. Michel; Past 
President: Peter W. Staecker; Secretary: Marko Delimar; Treasurer: 
John T. Barr; Director & President, IEEE-USA: Gary L. Blank; Director 
& President, Standards Association: Karen Bartleson; Director & VP, 
Educational Activities: Saurabh Sinha; Director & VP, Membership and 
Geographic Activities: Ralph M. Ford; Director & VP, Publication Services 
and Products: Gianluca Setti; Director & VP, Technical Activities: Jacek 
M. Zurada; Director & Delegate Division V: Susan K. (Kathy) Land; 
Director & Delegate Division VIII: Roger U. Fujii

revised 17 Dec. 2013

68	 IEEE Security & Privacy� January/February 2014

IT ALL DEPENDS

j1iad.indd   68 1/14/14   5:26 PM


