
1 

 

Safe Low-Level Code Without Overhead is Practical 

Solal Pirelli and George Candea 

EPFL

Abstract—Developers write low-level systems code in unsafe 

programming languages due to performance concerns. The lack of 

safety causes bugs and vulnerabilities that safe languages avoid. 

We argue that safety without run-time overhead is possible 

through type invariants that prove the safety of potentially unsafe 

operations. We empirically show that Rust and C# can be extended 

with such features to implement safe network device drivers with-

out run-time overhead, and that Ada has these features already. 
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I. INTRODUCTION 

Programming languages that provide type and memory safety 

eliminate entire classes of bugs and security vulnerabilities, yet 

unsafe languages remain in use even for new projects due to 

performance concerns. Safe language compilers try to avoid 

run-time checks if they can prove safety at compile-time but 

rely on heuristics. Compilers often do not have the information 

necessary to formally prove the safety of operations at compile-

time. We study the necessity of “unsafety”. Is there a practical 

way for languages to provide safety without run-time overhead? 

We write network device drivers in three safe languages and 

a baseline unsafe language to empirically assess performance. 

Network drivers have nanosecond-level latency requirements, 

which makes even small inefficiencies matter. We use Ada, 

Rust, and C# as our safe languages. We choose Ada because of 

its focus on safety and its sheer number of features. We choose 

Rust and C# because they are mainstream and represent two 

major tradeoffs for memory safety. In addition, they both have 

“unsafe” dialects that we can use to prototype new language 

features. We implement two sets of drivers, both of which can 

be used by network software yet are small enough to be ported 

and audited with reasonable effort. 

We advocate for the systematic use of type invariants for 

safety. Type invariants can give compilers enough information 

to prove safety while keeping reasoning local and thus scalable. 

Languages with such invariants enable compilers to trivially 

prove at compile-time that possibly unsafe operations are safe. 

For instance, array indexing is safe if the index is guaranteed to 

be within the array bounds. Some modern languages provide 

types with safety-related invariants, such as Rust’s non-null ref-

erences, but they do not do so in a systematic fashion for each 

potentially unsafe operation. Plus, their goal is to help develop-

ers reason about correctness, not to prove safety automatically.  

Previous work suggests garbage collection in a language is 

a roadblock to fast network drivers [16], but we argue that this 

is not the case. Garbage collection is acceptable if the language 

also provides non-garbage-collected references whose safety is 

checked at compile-time as an alternative. 

Since Rust and C# do not have types with all of the invariants 

necessary to implement our example drivers, we extend these 

languages with the features we need. These extensions enable 

their respective compilers to trivially prove the safety of our 

network drivers. Surprisingly, Rust’s focus on correctness 

through its ownership semantics comes at the cost of forbidding 

patterns necessary to safely implement the data structures we 

need without run-time overhead. As a result, we extend Rust 

with a new kind of reference that enforces lifetime, which is 

necessary for safety, but not ownership, which only helps with 

correctness. We extend C# to add arrays with bounds known at 

compile-time and enhance its non-garbage-collected reference 

type. We do not need to extend Ada, as it already has all the type 

invariants we need.  

We empirically evaluate our safe drivers and show that their 

performance matches that of the same driver written in C, as we 

preview in Figure 1. Thanks to type invariants, the compilers 

have enough information to avoid run-time checks and thus our 

safe drivers reach performance parity with the C baseline. We 

also observe that the choice of compiler for C has more impact 

on performance than the choice of compile-time or run-time 

checks for C#, evidence that the impact of run-time checks on 

performance is not as strong as one would expect compared to 

other factors in compilation. 

In summary, this paper provides evidence that safe low-

level code without overhead is practical using type invariants, 

though tedious with current languages and compilers because 

they were not designed for this. 

 

Figure 1. Throughput vs. latency of one of our sets of drivers 

until the drivers start dropping packets. All drivers are safe and 

contain no compiler-inserted checks. 
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II. PROBLEM STATEMENT 

In this paper, “safety” means memory safety and crash freedom: 

safe code never accesses memory it does not own and never 

performs invalid operations such as divisions by zero. Such 

safety prevents vulnerabilities such as Heartbleed [14]. 

Safe languages such as Java and C# provide safety using 

both compile-time and run-time checks. For instance, the Java 

compiler inserts null checks before each dereference. Some 

checks can be combined or elided, as in the following single-

threaded Java example: 

for (int n = 0; n < array.length; n++) { 
    array[n] = 0; 
} 

The compiler is allowed to only check that array is not null 

once before the loop, and to elide the bounds check on the array 

access entirely since the index is provably in bounds. The 

HotSpot compiler for Java indeed elides bounds checks [34]. 

However, these optimizations require heuristics to recognize 

specific code shapes and do not provide guarantees. The C# 

compiler currently has open issues regarding elision heuristic 

failures [9–11], and so does the Rust compiler [37]. Hardware 

also has heuristics such as branch prediction to alleviate the cost 

of safety checks, but again without guarantees. We will not dis-

cuss hardware heuristics further in this paper. 

Developers of performance-sensitive code such as device 

drivers often use unsafe languages such as C and C++. These 

languages enable developers to write code without the run-time 

overhead of safety checks, but in doing so push the burden of 

ensuring safety onto developers. For data that is internal to the 

program, such as data structures used to track hardware state, 

no checks are necessary as long as developers write correct 

code. For instance, an index into a ring buffer can be used to 

index into that buffer without checks as long as it starts at a 

valid value and is reset to 0 once it reaches the end of the ring 

buffer. This is not feasible in a language such as Java, in which 

the compiler inserts a safety check for each ring buffer access 

because it lacks information to prove at compile-time that the 

index is always updated properly. 

Because developers make mistakes, and these have security 

consequences, there is a large body of work on making C safer. 

Instead of eliding checks from a safe language, such work adds 

checks to C. Cyclone [23], Deputy [8], and Checked C [15] all 

require developers to write annotations such as array sizes to 

give information to the compiler, which inserts run-time checks 

if it cannot statically prove safety. Control-C [39] instead limits 

the expressivity of the language, such as requiring array indexes 

to occur in specific patterns, and uses a solver to prove safety. 

Control-C code that cannot convince the solver is disallowed. 

Previous work has found a performance penalty from run-

time safety checks. Emmerich et al. [16] found slowdowns in 

the tens of percent for network drivers in safe languages, which 

they partly attribute to garbage collection. Narayanan et al. [28] 

wrote a driver in Rust, which does not need garbage collection, 

but still found overhead compared to C due to run-time checks 

inserted by the compiler. ASAP [42] reduces the bulk of this 

overhead by removing the most expensive checks, thus trading 

safety for performance. 

In theory, a sufficiently advanced type system combined with a 

solver can guarantee safety and even correctness at compile-

time. Dependent types, for instance, enable developers to write 

arbitrarily complex type invariants such as a binary tree being 

balanced. Using dependent types to avoid safety checks in array 

indexing was proposed by Xi and Pfenning [44], but requires 

the use of SMT solving, which is an intractable problem. The 

Ada 2012 language has dependent types, but checks invariants 

at run-time [35], thus it supports any invariant developers may 

write at the cost of run-time checks. 

Another theoretical possibility is to manually prove that 

one’s use of unsafe operations is safe. In particular, one can use 

“unsafe” dialects offered by some languages. In these dialects, 

operations such as array indexing do not guarantee safety and 

are thus done without checks, effectively dropping down to the 

safety level of C for parts of the program. Kiselyov and Shan 

proposed [25] the use of unsafe code to write “trusted kernels” 

that wrap general-purpose types into richer types such as “non-

empty list” and provide safe operations on these types without 

run-time checks. Yanovski et al. [45] adapted this idea to Rust 

using an idea from Beingessner [4], though Rust’s type system 

limits the use of such kernels to specific code patterns. How-

ever, these kernels are one-off features that each require manual 

proofs to ensure they only use unsafe operations in safe ways, 

which requires expertise and time. 

Some programming languages offer practical automated 

features to avoid safety bugs at compile-time, such as nullable 

reference types in C# [29]. C# developers can annotate which 

variables may or may not be null and receive warnings when a 

possibly null value is assigned to a variable of a non-null type. 

However, this analysis depends on trusted annotations and is 

thus unsound [6], because of compatibility concerns with code 

written before the introduction of this feature. 

In this paper, we study whether there is a practical way for 

programming languages to systematically provide safe low-

level operations without run-time overhead. Unlike prior work, 

we focus on avoiding overhead entirely rather than minimizing 

it, and we use mainstream programming languages that do not 

require manual proof effort nor solver-based heuristics. 

Another way to view the problem is whether it is possible 

in practice to give enough information to a compiler so that it 

can trivially prove at compile-time that each possibly unsafe 

operation in the code is, in fact, safe. Since we focus on safety 

rather than correctness, this is a simpler problem than the ones 

solved by heavyweight techniques such as manual proofs with 

dependent types. We leave the question of correctness to devel-

opers, and only require the language to provide safety without 

run-time overhead. 

If mainstream programing languages can provide safety 

without run-time overhead, both safety and correctness will 

benefit. Reasoning about unsafe languages, whether manually 

or automatically, is considerably harder than reasoning about 

safe languages. For instance, modeling memory in a way that 

allows memory-unsafe operations adds complexity. If low-level 

systems were written in safe languages, not only would entire 

classes of bugs be eliminated, but verification and bug-finding 

tools would be easier to develop.  



3 

 

III. CHOICE OF STUDIED LANGUAGES 

To study how languages can enable safety without run-time 

overhead, we start with C as a baseline for performance, and we 

use three safe languages for comparison. 

We choose Ada as the first safe language due to its focus on 

safety and the sheer number of features it has [19]. Ada is older 

than most languages still in use and was developed specifically 

for safety using strong typing such as non-null references, 

ranged integer types, and arrays with custom bounds. This 

makes it more likely that Ada may have the features necessary 

for safety without run-time overhead. Ada does contain unsafe 

features that can be mixed with safe code without limits, but 

these are well-known and typically start with the “Unchecked” 

prefix. For instance, Unchecked_Deallocation frees any value 

without preventing the developer from using the value in source 

code after it was freed, which is unsafe. Despite its age, there is 

a modern Ada compiler named GNAT based on GCC, ensuring 

performance comparisons with modern languages are fair. 

To select the remaining safe languages, we use popularity, 

extensibility, and support for low-level programming as our 

main criteria. We want languages that are mainstream, can be 

extended with reasonable effort, and already support most of 

the operations we need. We want to avoid having to alter the 

design of languages to the point where they are no longer the 

same language. 

We start from three well-known programming language 

rankings to estimate popularity: the StackOverflow Developer 

Survey [38], the RedMonk rankings [40], and the TIOBE in-

dex [41]. StackOverflow directly asks developers the languages 

they use. RedMonk uses GitHub repositories and questions on 

StackOverflow as proxy metrics for popularity. TIOBE uses 

search engine results for language names. The methodologies 

are subject to discussion, but we do not know of a standard way 

to estimate popularity. We include all languages that reach the 

top 20 in any of the three rankings, then group them by category 

as we show in Table 1. 

Only two categories from the table are relevant for this 

study. First, compiled languages with garbage collection, in 

which we include those that use reference counting such as 

Swift. Second, “other”, which only contains Rust. 

Rust enforces memory safety at compile-time through its 

concepts of ownership, borrowing, and lifetimes. This avoids 

the need for run-time garbage collection and thus reduces the 

overhead of memory management, but makes the language 

harder to use [7]. Rust also enforces “aliasing XOR mutability”: 

a value is, at any given time, accessible by either any number 

of read-only references or by a single writeable reference, but 

not both. This prevents correctness bugs such as data races in 

concurrent code or accidental modification of a data structure 

while iterating it in single-threaded code. Some data structures 

such as doubly linked lists are incompatible with Rust’s model, 

thus Rust provides an “unsafe” dialect with raw pointers whose 

ownership and lifetime are not checked. Rust’s unsafe dialect 

also provides unsafe operations without run-time checks such 

as unchecked array indexing. 

 

Rust is a natural candidate for this study as it is different from 

other languages yet relatively mainstream, and its unsafe dialect 

can be used to write custom types that internally avoid safety 

checks. In fact, some parts of Rust’s standard library contain 

unsafe code as they cannot be written in safe Rust. 

Among the garbage-collected languages we choose C# due 

to its support for low-level programming and its extensibility 

thanks to its unsafe dialect. C# provides safety and developer 

convenience thanks to garbage collection, but also low-level 

features that remain safe but require more effort to use such as 

“value types” that do not have object headers and can be passed 

by reference without garbage collection. The latest C# versions 

have added more low-level features such as making references 

to stack-allocated data more flexible [43]. Furthermore, C# has 

an unsafe dialect that allows the use of pointers, intended for 

interoperability with unsafe languages. We can use this dialect 

to prototype language extensions without having to change the 

compiler or runtime. This also makes C# a good choice given 

our choice of Rust, since both languages can be extended in a 

similar fashion. 

We explicitly did not choose any interpreted languages, 

even those that can be compiled to native code such as Python 

using PyPy. These languages have features with overhead by 

default, such as Python’s unbounded “big integers”. Such over-

head is not a key issue for languages that are designed to be 

interpreted, since interpretation already sacrifices speed. 

There are plenty of interesting research languages we could 

have used, but they are typically not designed to be as usable as 

mainstream languages, and they are not always maintained. For 

instance, we could have chosen a solver-aided language such as 

Dafny [26], but it requires manual effort to write proofs in ad-

dition to writing code. We could have chosen a research lan-

guage such as Sing#, a C# extension used for Singularity [20], 

but it is not maintained thus its compiler may be hard to extend 

and not include modern optimizations. While Rust is also the 

subject of formal methods research [24] to avoid bugs in unsafe 

Rust, developers do not need to know this to write safe Rust. 

Category  Languages 

Compiled, with 

garbage collection 

 C#, Dart, Go, Java, Kotlin, 

Objective-C, Scala, Swift, Visual 

Basic, VB.NET 

Interpreted  JavaScript, Lua, MATLAB, Perl, 

PHP, PowerShell, Python, R, Ruby, 

Shell, TypeScript 

Markup  CSS 

Other  Rust 

Query  SQL 

Unsafe  Assembly, C, C++, Delphi 

Table 1. Programming languages in the top 20 of rankings from 

the StackOverflow, RedMonk, and TIOBE rankings, sorted by 

category. 
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IV. DOMAIN: NETWORK DEVICE DRIVERS 

We choose the domain of network device drivers, specifically 

user-space ones that bypass the kernel, to empirically evaluate 

language features in terms of performance. We base our drivers 

on TinyNF [31], a minimal device driver for the Intel 82599 

network card in C. We reuse the TinyNF driver and write an-

other driver using the driver model of DPDK [13], a user-space 

networking library. DPDK’s driver model is more flexible but 

more complex due to the use of buffer pools. Our choice is 

based on four reasons. 

First, user-space network drivers have real-world use, they 

are not toy examples. Networking code can use libraries such 

as DPDK to avoid the overhead of system calls at the cost of 

exclusive access to a network card. In practice, that network 

card can be virtualized [30], multiplexing it into virtual cards 

that applications can have exclusive access to. 

Second, network drivers have strict performance require-

ments. The smallest Ethernet packet, including framing, is 84 

bytes, thus handling 10 Gb/s of such packets means each packet 

must be handled in 67ns. Handling packets in two directions, 

which is common for network software such as firewalls, halves 

the time budget. Spreading load across multiple cores can help, 

but Ethernet speeds are growing as well, currently up to 400 

Gb/s [21]. 

Third, we believe that network drivers are complex enough 

to be representative of low-level systems code that uses unsafe 

code for performance but would benefit from safety. The use of 

buffer pools in the DPDK model means the driver uses a data 

structure. Data structures are too complex for current automated 

network software verification techniques, which must therefore 

assume their correctness [32, 46]. In the case of a buffer pool, 

the code typically accesses a single element of a buffer array at 

a time, preventing the use of check elision heuristics that apply 

to loops over entire arrays. 

Fourth, the TinyNF codebase is small enough that we can 

translate it to safe languages with reasonable human effort. It 

consists of around a thousand lines of C code, compared to 

larger codebases such as DPDK which have tens of thousands 

of lines of code. This small size also means our translations can 

be audited with reasonable effort. 

When we refer to “safe” drivers in this paper, we mean the 

safety of everything that is not inherently unsafe. The drivers 

require unsafe operations during initialization. They must query 

the PCI metadata of the network card to know where the card’s 

registers are mapped in memory, then convert the integer read 

from this metadata into a pointer to the block of registers. This 

is done by reading and writing to PCI metadata using port-

mapped I/O then asking the OS to map the space of the network 

card’s registers into virtual memory. This is unavoidable given 

the hardware interface, though this unsafe code can be handled 

in the OS instead, as in Singularity [20]. The driver must also 

request “pinned” memory from the OS, i.e., memory whose 

physical address will not change, then ask the OS for said phys-

ical address. This enables such memory to be used by the net-

work card, which uses physical addressing. No OS interactions 

are needed after initialization, and performance concerns any-

way discourage such interactions during packet processing. 

V. MEMORY MANAGEMENT 

Network drivers use memory pools rather than explicit memory 

allocation and deallocation for performance reasons, which also 

helps with safety. Using a memory pool gives developers full 

control over memory management, including the choice of 

when to refill the pool if desired, unlike the implicit pools often 

used by malloc/free implementations. Using a pool also turns 

“use after free” bugs into correctness issues. For instance, if a 

buffer is simultaneously used by the network card to receive 

data and by the application using the driver to process a packet, 

this is a correctness bug, but the code is safe. We use “safety” 

here to mean that programs cannot interfere with each other or 

with the OS. A safe program may still have security issues 

among its own tenants, such as a firewall accidentally sharing 

state between connections. 

Our safe driver implementations need to avoid performance 

overheads in the implementation and use of a memory pool. 

Overheads in the default memory allocation and deallocation 

operations, such as in garbage collection, only matter if they 

prevent the implementation of an overhead-free memory pool. 

Overheads due to run-time checks in operations such as array 

indexing in pool implementations are the same fundamental 

problem as checks in driver implementations. We can avoid 

such overheads in the same way as we do in the drivers, as we 

explain below. 

Ada and Rust both support memory management without 

run-time overhead through language features, allowing for a 

memory pool that performs the same as in C. Ada does have 

run-time checks for memory operations that touch different 

pools, as support for storage pools is built into the language, but 

these checks can be avoided by using the same pool in the entire 

codebase. Rust, by design, uses only compile-time checks for 

memory safety. 

This leaves C#, whose garbage collection adds run-time 

overhead to memory operations even when a garbage collection 

is not in progress. This is a tradeoff for overall performance: in 

theory, the collector could go through the entire heap every 

time, but this is too slow on large heaps. Instead, the collector 

tracks changes to references with help from the compiler. When 

a reference to an object is modified, the compiler adds code that 

sets a specific bit in a table used by the collector, ensuring that 

the collector knows exactly where to look. In theory, one could 

disable garbage collection entirely, but this is not practical as it 

would prevent memory deallocation to preserve memory safety. 

This leaves one option for garbage-collected languages: 

provide some kind of reference that is not garbage-collected 

and instead follows rules more akin to Ada and Rust. This is a 

form of arena-based memory management, in which allocations 

within an “arena” are handled specially and objects outside of 

the arena cannot refer to memory inside the arena. C# has a 

basic form of arena-based memory management: developers 

can declare types that can only live on the stack, and a special 

kind of reference that can only point to these types and that can 

itself not be stored on the heap. This is an intermediate design 

point that is as safe and fast as Rust but not as expressive, in 

exchange for being simpler to use.  
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VI. SAFETY WITH TYPE INVARIANTS 

As we defined in §II, the problem is whether developers can 

give enough information to a compiler to prove at compile-time 

that all possibly unsafe operations are safe. 

We propose the use of type invariants as a solution to this 

problem, i.e., predicates that hold on all instances of a type. 

Type invariants are already used in practice, but we propose that 

languages should systematically provide them for each possibly 

unsafe operation. Consider the following C code: 

int* value; 
bool set_value(int* v) { 
  if (v == NULL) { return false; } 
  value = v; 
  return true; 
} 

The set_value function guarantees that value is non-null. 

Thus, a developer can use value once set_value has been 

called without having to write a safety check. Consider the fol-

lowing C# code, which looks equivalent: 

class Example { 
  int[] value; 
  Example(int[] v) { 
    if (v == null) { throw new ...; } 
    value = v; 
  } 
} 

The same invariant holds: value is not null once the object is 

initialized. However, this information is not available to the 

compiler outside of the Example constructor, as it is not a type 

invariant of int[]. The compiler can only analyze signatures 

rather than implementations, since there are too many paths 

within implementations [5]. Thus, it must insert a null check 

when value is used, as the signature lacks information to prove 

value is not null. C# developers can optionally annotate their 

code with nullability information, but the compiler cannot trust 

that the annotations are correct because they can describe arbi-

trarily complex conditions and thus must insert checks anyway. 

Rust, however, does have an invariant for “non-null”, which 

is in fact the default: 

// Lifetime annotations omitted for brevity 
struct Example { 
  pub value: &[u32] 
} 

The member value in this struct is never null, thus the compiler 

does not have to insert null checks when it is used. Instead, the 

compiler enforces that any instance of Example is created with 

a non-null value. If a developer wants a possibly absent array, 

they can use Rust’s Option type to wrap the array type, at which 

point the compiler requires a check before every use to ensure 

the Option indeed contains an array. 

Rust enables safe code without null checks, but null checks 

are not the only kind of checks that are typically necessary in 

safe languages. Going back to the Rust struct above, indexing 

the array forces the compiler to insert a bounds check, unless 

the compiler can prove that the index is in bounds, for instance 

in a loop. 

Type invariants can help avoid bounds checks just as they do 

with null checks. Consider the following Ada declarations: 

-- Ranges are inclusive in Ada, 
-- i.e., 0 <= n <= 9 
type Small is range 0 .. 9; 
type SmallArray is array(Small) of Integer; 

The first declaration is for a ranged integer, and the second is 

for an array indexed by that range. Because this information is 

contained within the type’s invariant, an Ada compiler can omit 

bounds checks when a SmallArray is indexed by a Small, as 

any value of type Small must be in bounds. The developer or 

the compiler must instead insert checks when converting from 

an integer with a different range, since the integer may not be 

in the target range’s bounds. 

Safety checks when converting a value of a general-purpose 

type to a type with an invariant are not overhead compared to 

C, because when writing C, developers must write these checks 

manually. For instance, checking that some user input is smaller 

than the size of an array is necessary if the input is used to index 

that array later. But in languages without type invariants, this 

check is only recorded in the implementation of some function 

and in the developer’s memory. With type invariants, compilers 

can use signatures to know that a check was performed and 

avoid generating pointless run-time checks. 

Programming languages can thus enable safe code without 

overhead as long as they only permit unsafe operations on types 

with invariants that trivially prove safety. Converting a piece of 

untrusted data to a type with the right invariant is only needed 

once, and it is not overhead since unsafe code must also convert 

and potentially reject the input. Once a value is converted to a 

type with an invariant, some operations on that value return a 

value with that same invariant, while others need a conversion. 

For instance, dividing a value of type “integer modulo N” by 2 

returns a value of the same type, since the resulting value must 

mathematically be below N. However, incrementing that inte-

ger returns a value with a less strict type invariant, since the 

value can exceed N. Converting the result back to its original 

type code can be implicit given hardware instructions that 

match. For instance, incrementing an “integer modulo 256” can 

be done with a “byte increment” instruction. 

Type invariants also enable compilers of safe languages to 

avoid memory overheads in the same way a programmer would 

in an unsafe language. Consider again Rust’s Option type, 

which represents “a value, or nothing”. Since Rust references 

cannot be null, per their type invariant, the compiler can use the 

memory representation of “null”, e.g., all-zeroes, to represent 

an empty Option of a reference type, instead of using a separate 

Boolean value to track whether the option contains a value. 

Rust similarly has “non-zero” integer types with an invariant 

enabling the compiler to optimize the representation of Option. 

We present below a systematic overview of type invariants 

that modern languages need to provide safety without run-time 

overhead. This list matches the potentially unsafe operations 

exposed by modern programming languages for low-level 

code: using references, dividing integers, and indexing arrays. 

It may not be exhaustive for future languages that could add 

more potentially unsafe operations. 
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Valid references. To avoid overhead, memory safety must be a 

type invariant, i.e., references that always point to valid 

memory without the need for run-time bookkeeping. This 

means references cannot be null and cannot require extra work 

such as garbage collection to ensure memory is properly freed. 

One way to implement this is through memory arenas: by 

allocating a group of objects together, each object can refer to 

any other object in the same arena without overhead, and the 

arena is freed as a whole, at which point accessing any of its 

contents is a compile-time error. 

C# implements a limited form of memory arenas: it supports 

special references that can only point to types on the stack and 

cannot be stored on the heap, thus there is one arena for the 

stack, with compile-time checks and no run-time overhead, and 

one arena for the heap, without compile-time checks but with 

the run-time overhead of garbage collection. 

Rust implements valid references through its more complex 

ownership model, which enables more scenarios than C#’s 

stack-only references but requires more developer effort. The 

lifetime of Rust references must often be specified explicitly. 

Ranged integers. To avoid overhead, safe languages must 

provide integer bounds as type invariants, including bounds not 

known at compile-time such as the number of network cards. 

This enables compilers to prove the absence of division by zero. 

Most languages already provide a few specific bounds that 

correspond to machine types, such as C’s uint16_t for integers 

between 0 inclusive and 216 exclusive. This enables compilers 

to translate operations in these types to the equivalent machine 

operations, such as addition of 16-bit integers. However, some 

high-level languages have no ranged integers at all. In Python, 

for instance, all integers are mathematical integers of infinite 

range, thus all integer operations incur the overhead of general-

purpose mathematical integer arithmetic. Even with a fast path 

for “sufficiently small” integers, the code has the overhead of 

checking if the fast path applies. 

Ranged arrays. To avoid overhead, safe languages must 

provide arrays that encode their length, i.e., the range of valid 

indices, in their type. In combination with ranged integers, this 

enables a compiler to prove that an array access is valid at com-

pile-time instead of requiring run-time checks. 

Array ranges must be allowed to have bounds not known at 

compile-time, as with integer ranges. For instance, a variable 

must be allowed to contain the index of the network card that 

was last queried for new packets and be used to index an array 

of network cards, even though the number of network cards is 

machine-dependent and unknown at compile-time. Rust in par-

ticular does not meet this criterion: its array types can include 

their length, but only if the length is a compile-time constant. 

All three of our proposed invariants enable developers to 

give information to the compiler explicitly and formally instead 

of keeping it in their head. Developers in C must keep track of 

which references are guaranteed to be valid and which are not, 

of what range each integer variable has, and of what range each 

block of allocated memory can be indexed with. For ranges that 

are not compile-time constants, this is typically done by making 

the lower bound 0 and storing the upper bound in a variable, as 

a compiler would for a ranged array or integer type. 

VII. PROTOTYPE 

We write safe drivers, as defined in §IV, in Ada, Rust, and C#, 

and a baseline unsafe driver in C. To do so, we extend Rust and 

C# to add limited forms of the type invariants we described. 

In Ada, the only issue we have is that ranged array types by 

default carry both upper and lower bounds, even if the latter is 

0, requiring extra memory. We use a workaround suggested by 

the AdaCore developers [1] to store only the upper bound. 

In Rust, we implement a limited form of ranged arrays by 

using existing compiler support for eliding checks if an access 

is performed with an integer of a small enough type, such as 

indexing an array with 256 elements using an 8-bit unsigned 

integer. This causes small memory overheads for arrays that do 

not need 256 elements but must have them to benefit from 

bounds check elision, which we find acceptable for a prototype. 

Interestingly, Rust’s “aliasing XOR mutability” model is too 

restrictive for device drivers. Some driver instances must share 

state, such as a buffer pool used by both receive and transmit 

queues. Both queues must be able to mutate the pool: receive 

queues take buffers and transmit queues give buffers back. 

However, in safe Rust, the queues cannot simultaneously have 

a mutable reference to the pool. Furthermore, drivers need to 

use volatile reads and writes for memory-mapped I/O, since the 

network card can change its data at any time. The card logically 

has a mutable reference to its own data. But in Rust’s model, if 

the card can mutate itself, then nobody else should be allowed 

to even access it. The solution used by the Rust version of the 

Ixy [16] network driver is to use unsafe Rust code, forgoing 

safety guarantees. Instead, we write our own type of reference 

that internally uses unsafe code but exposes a safe interface, 

which we show in Figure 2. Our custom LPtr type enforces 

lifetime, and thus memory safety, but not ownership, leaving 

correctness to developers. It has a field of type PhantomData, a 

special Rust type that evaporates during compilation and only 

serves as a marker for data lifetime in niche scenarios such as 

implementing a reference. In addition, we implement an array 

type with lifetime but not ownership, matching our LPtr type. 

In C#, we use the same bounds check elision trick as in Rust, 

with the same overhead, but we first extend the language with 

ranged arrays. The C# maintainers have prototyped such arrays 

already [12], but they are not yet part of the language. We also 

add support for arrays of stack-only references.  

pub struct LPtr<'a, T> { 
  ptr: NonNull<T>, 
  _lifetime: PhantomData<&'a mut T>, 
} 
impl<'a, T> LPtr<'a, T> { 
  pub fn new(src: &'a mut T) -> LPtr<'a, T>; 
  pub fn read_volatile(&self) -> T; 
  pub fn write_volatile(&self, value: T); 
  pub fn map<U, F>(&self, f: F) -> U 
    where F: FnOnce(&mut T) -> U; 
} 

Figure 2. Extract from our custom reference type that enforces 

lifetime but not ownership. Some methods and annotations 

omitted for readability. 
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VIII. EVALUATION 

In this evaluation, we show that (1) our drivers are safe, (2) they 

have no run-time performance overhead compared to the unsafe 

baseline, and (3) our approach leads to safe code that is easy to 

read but not easy to write, as current compilers are not designed 

for this and thus make the task harder than it needs to be. 

As we stated in §IV, we wrote safe drivers in Rust, C#, Ada, 

and unsafe baselines in C, using two models: a “restricted” and 

a “flexible” one. Our C baselines perform no run-time safety 

checks. We use Clang 13 for C, Rust 1.58, .NET 6, and GNAT 

11 for Ada. We intended to use GCC for C, but it produces a 

slower binary than Clang, as we describe later. For C# we use 

ahead-of-time compilation, which produces the same code as 

the default just-in-time compilation, so that we can inspect the 

assembly code that we run. 

Are our drivers safe? Our safe drivers only use unsafe code 

during initialization for the steps that are inherently unsafe as 

we describe in §IV, and for the implementation of our Rust and 

C# extensions. Our extensions are about 200 lines each of Rust 

and C# that we believe but do not formally prove are safe. Thus, 

our drivers are safe assuming the correctness of the languages 

themselves as well as our extensions. 

Do our safe drivers impose run-time overhead? We 

benchmark our safe drivers to ensure their performance 

matches our baseline in practice, since checking the exact 

equivalence of assembly code is not practically feasible. We use 

two machines in a setup based on RFC 2544 [36]: a “device 

under test” runs the driver under test and a “tester” runs the 

MoonGen packet generator [17]. Both machines run Ubuntu 

18.04 on two Intel Xeon E5-2667 v2 CPUs with power-saving 

features disabled and have two Intel 82599ES NICs. We use 

only one Ethernet port per card to ensure PCIe bandwidth is not 

a bottleneck. We measure throughput using minimally sized 

packets: 64 bytes of content plus 20 bytes of Ethernet framing. 

We transmit such packets for 30 seconds at a configurable rate. 

Our drivers are single-threaded. We set the CPU frequency to 

1.5 GHz instead of the default 3.6 GHz of this CPU model, be-

cause otherwise our drivers saturate the links and exhibit iden-

tical performance. We write “forwarder” programs on top of the 

drivers that modify the source and destination MAC addresses 

of each packet and forward it to the opposite card. We measure 

the highest throughput at which the drivers do not drop packets, 

then we measure the latency of packets in increments of 1 Gb/s 

from 0 to the maximal loss-free throughput. This is the same 

benchmark used to evaluate the original TinyNF driver [31]. 

We first benchmark the drivers for the “restricted” model, 

in which a single driver instance combines reception and trans-

mission to share data structures and thus minimize overhead. 

This model can only be used by network software that handles 

packets one by one without reordering them. We show the re-

sults in Figure 3, which we already previewed at the beginning 

of this paper. The results are nearly identical for the different 

drivers, except that the Rust version sustains more throughput. 

These results are consistent across different benchmark runs. 

The latency bump around 11 Gb/s is odd, but the TinyNF paper 

already reported it [31] even when using DPDK and Ixy, which 

use entirely different codebases. It is likely a hardware issue. 

We then benchmark the drivers for the “flexible” model, in 

which reception and transmission use a shared buffer pool. This 

model supports all network software, including those that must 

reorder packets. We show the results in Figure 4. C# is still close 

to C, with slightly higher latency at the highest load. Rust keeps 

its advantage compared to C, though it has higher latencies at 

lower loads. Surprisingly, the Ada version can sustain higher 

throughput not only compared to the other drivers of the same 

model but even to the drivers of the restricted model, albeit with 

higher latency than the restricted model. We double-checked 

the Ada code to ensure it performs the same tasks in the same 

order including volatile reads and writes. The only explanation 

we can find is that, to remove bounds checks from the Ada code, 

we use more specific types than in other languages. In particu-

lar, we use integers bounded to the batch size for reception and 

to the number of received packets for transmission. The Ada 

compiler may produce better code when using Ada’s bounded 

integers, since they provide additional information. 

 
Figure 3. Throughput vs. latency until the drivers start drop-

ping packets for our drivers using the “restricted” model, with 

a shaded 5-95% ranges for latencies. 

 
Figure 4. Throughput vs. latency until the drivers start drop-

ping packets for our drivers using the “flexible” model, with a 

shaded 5-95% ranges for latencies. 
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We investigate further by writing drivers using the “restricted” 

model but with a static output count. That is, instead of deter-

mining the number of network cards at run-time, this number is 

known at compile-time using the pre-processor in C, constant 

generic parameters in Rust, and generic values in Ada. C# has 

no such feature. This requires re-compiling the source code for 

each deployment, but it could be practical for network software 

that intrinsically has a fixed output count. For instance, a fire-

wall could have “internal” and “external” virtual devices and be 

chained with a router whose number of outputs depends on the 

actual number of physical devices. In theory, using static output 

counts gives compilers more room for optimizations, such as 

unrolling loops. We show the results in Figure 5. Ada reaches 

the same maximum throughput as the version with the flexible 

model but with a lower latency, which is expected given this 

restricted model. Rust performs almost identically to Ada, 

within the noise of small variations across experiments. The C 

version barely improves with a static output count. Since we 

used language features in Rust and Ada for this experiment but 

had to use the more general pre-processor in C, this provides 

more evidence that code using specific language features may 

enable compilers to optimize better. 

To measure the impact of run-time checks on performance, 

we write a C# driver without our C# extensions. The compiled 

assembly code of this driver thus includes run-time checks, un-

like other drivers we wrote. We compare it to our C driver using 

different compilers, to use the performance difference between 

compilers of the same language as a baseline. This leads to un-

expected results, which we show in Figure 6. First, using GCC 

to compile our C driver leads to a larger performance penalty 

than we expected. We confirm by inspecting the assembly code 

that GCC spills many more values to the stack than Clang does. 

Second, the impact of run-time checks in the C# version is 

lower than the impact of using a different C compiler. In fact, 

the C# version with run-time checks has similar performance to 

the C version, though the former’s latency spikes near its break-

ing point in terms of throughput. These results suggest that run-

time safety checks may have less impact on performance than 

the specific optimization choices made by compilers. 

In addition to benchmarks, we compare the size of our driv-

ers in terms of lines of code and resulting assembly instructions. 

While such comparisons are not precise since individual lines 

of code and assembly instructions vary in complexity, it gives 

an idea of how close the sizes of our drivers are. We present the 

results in Table 2. All driver sources have roughly the same size, 

as expected since most lines read and write to the same network 

card registers no matter the language. However, the assembly 

code generated by the Rust compiler is larger than that of the 

other three. We manually inspect the assembly code and find 

that the Rust compiler unrolls more loops. We manually con-

firm that forcing C compilers to do the same does not change 

performance, though Rust’s choice to unroll may be due to the 

specifics of the assembly it produces rather than a general opti-

mization. This may be why the Rust restricted driver performs 

better than the ones in other languages. 

 

We manually inspect the assembly code to see whether the Ada, 

Rust, and C# compilers insert checks. These checks call specific 

functions when they fail, thus we only need to look for calls. 

We confirm that there are none. We also confirm that the source 

code does not contain more checks than the C version. The size 

of the codebases makes such an audit tractable.  

Language 
 Lines of 

code 

 x86 instrs in main loop 

  Restricted Flexible 

C (unsafe)  1256  267 418 

Rust  1114  586 791 

C#  1277  233 439 

Ada  1261  229 375 

Table 2. Code metrics for our drivers. The two driver models 

share initialization code thus we count the combined lines of 

code. The main loop includes only packet processing code. 

 

Figure 5. Version of Figure 3 using a static output count. 

 
Figure 6. Version of Figure 3 using GCC for C and without our 

C# extensions. 
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Does our approach lead to maintainable code? We evaluate 

the maintainability of our drivers qualitatively by inspecting 

their source code. To keep comparisons fair, we do not consider 

our language extensions, as they are only prototypes in unsafe 

code and thus require worse syntax to use than real extensions 

would. Overall, the answer is mixed: the code of our drivers is 

as easy to read as other code in the respective languages but 

writing and evolving it is difficult due to the lack of language 

and compiler support. 

The source code of the final version of our drivers looks like 

normal code in their respective languages. Besides the use of 

our language extensions, there is little that would tip a reader 

that we carefully wrote the code to avoid overhead. It is possible 

to avoid overhead without having to write unusual or contorted 

code, but this does not mean it is easy. 

Writing our drivers was difficult because current compilers 

were not designed to statically prove safety. Small changes in 

the source code cause large changes in the compiled assembly 

code. For instance, the GNAT Ada compiler accepts code that 

looks safe to developers but in fact requires safety checks at 

run-time due to language semantics and inserts checks without 

a warning nor any other means of “debugging” this behavior. 

The process of writing safe code without overhead today, 

even in Ada, which has the necessary features already, is similar 

in theory to writing manual proofs of correctness but worse in 

practice because of the lack of tooling. Proofs typically read 

well once they are finished, yet slight changes in which lemmas 

are used and in which order can break the proof due to the proof 

checker being heuristic-based. Similarly, the code of our drivers 

reads well yet slight tweaks cause run-time checks as compilers 

can no longer prove the checks are unnecessary. However, 

whereas proof checkers enable developers to write intermediary 

assertions and provide information about why the proof process 

failed, compilers provide no way to access their internal logic. 

Without such information, writing safe code without overhead 

is tedious and slow. Developers must guess what source code 

might cause the compiler’s heuristics to output the desired as-

sembly code and check that output after every change until they 

find a way to convince the compiler to not insert checks. 

This situation is made worse by the impact on performance 

of minor differences in assembly code. We found such minor 

differences that caused performance regressions on the order of 

10%. Thus, one must first spend time convincing the compiler 

to not insert run-time checks, then benchmark the code. If the 

code is not fast enough, one must convince the compiler again, 

this time using different code with the same semantics. Editing 

the assembly by hand is possible but unsafe and error-prone. 

The safety of Ada, Rust, and C# did help us when writing 

drivers. For instance, we model network card registers as in-

dexes in a buffer. We made copy-paste errors while translating 

C constants for register indexes, leaving some of them orders-

of-magnitude too large. In C, such code silently does not work, 

as the OS maps more memory than we need. In safe languages, 

this fails with a descriptive error message. The type invariants 

we used also caught programming errors such as forgetting to 

initialize variables, whereas in C the lack of such invariants 

means that these errors cause compiler warnings at best. 

IX. DISCUSSION 

We discuss why unsafety is neither necessary nor sufficient to 

avoid checks, how run-time checks impact performance, how 

our recommendations could be implemented in practice, the 

significance of our work for software engineering, and the lim-

itations of our proposal. 

Performance requires information, not unsafety. Our 

drivers are fast because we give compilers enough information 

to optimize them, using our language extensions when needed. 

Unsafety can be an escape hatch to implement extensions, but 

it is neither necessary nor even sufficient. Unsafe languages can 

also have semantics unfriendly to optimizers, causing overhead 

and noise. For instance, the default aliasing model of C and C++ 

pointers forces compilers to assume that any pointer to char 

could point to any variable. Thus, writing to a vector of 8-bit 

chars in a loop is slower than the same operation to a vector of 

32-bit integers because the compiler must assume the vector 

length might be modified by any write to a char pointer [22]. 

The C99 standard improved this situation with the restrict 

keyword to disable this aliasing model, and we use it in our 

driver. Even with C’s unsafety, there was no way to give the 

compiler aliasing information before the restrict keyword, 

thus imposing a performance penalty even on unsafe code. 

Thankfully, while global information is required to prove 

correctness, only local information is required to prove safety 

in practice. Type invariants are enough to show that individual 

operations are safe, and compilers can use them automatically 

because they only need to prove that a specific type matches a 

specific operation rather than having to combine invariants into 

higher-level proofs as for correctness.  

The importance of local reasoning is also why the presence 

of garbage collection is not an issue on its own. One can write 

safe low-level modules without overhead in a garbage-collected 

language as long as the language also has a form of memory 

management without overhead. which does not need to be as 

convenient as garbage collection. For instance, Frampton et 

al. [18] extended Java for “high-level low-level programming”, 

enabling developers to use Java for a memory manager as long 

as they only use low-level operations. High-level modules can 

use garbage collection if its overhead is negligible compared to 

other operations such as network requests. 

Run-time checks may not be as bad as one expects since 

performance at the nanosecond scale already varies depending 

on minor changes in compiler heuristics. The special C# driver 

without language extensions we used for Figure 6 is only barely 

worse than the C# driver with our language extensions, and 

both are better than our C driver compiled with GCC instead of 

Clang. Inspecting the assembly code does not reveal obvious 

culprits, as the “CPU-friendliness” of assembly code is hard to 

evaluate. This is consistent with results from Popescu et 

al. [33], who insert bounds checks in Rust code that developers 

manually elided with unsafe code. Adding the checks back 

sometimes improves performance, for instance because a func-

tion that is not profitable to inline in practice is inlined by the 

compiler when it has no bounds checks due to being small 

enough. Safety checks also have an effect on code alignment, 

which is important in practice especially for loops [27]. 
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Tooling support is necessary for performance. We need an 

evolution, not a revolution. Programming languages already 

have types with invariants built in, and compilers already try to 

automatically prove that run-time checks are unnecessary. To 

enable safe code without run-time overhead, languages should 

take a more systematic approach to the types they provide given 

the possibly unsafe operations they provide, and compilers 

should surface the reasoning they perform internally. The C# 

language and compiler already have a limited form of this for 

the C# “nullable reference types” feature: the language exposes 

both nullable and non-nullable reference types, and the com-

piler warns when it cannot prove that the target of a dereference 

is non-nullable. The developer then has two options: they can 

attempt to modify their code to prove non-nullability, or they 

can use the “null-forgiving” operator “!” to insert a run-time 

check instead. In practice, even non-nullable dereferences need 

a runtime check as the compiler’s analysis is unsound for com-

patibility purposes, but this does not need to be the case in a 

new language. 

Language support could also make writing code that uses 

precise types easier, such as Scala 3’s path-dependent types [3] 

that let developers define the return type of a function in terms 

of its parameters. Without such support, writing functions such 

as “index of a character in a string” is cumbersome as it requires 

explicitly defining the type and bounds of the string. 

The benefits of safety without run-time overhead go be-

yond pure performance improvements for safe code. The need 

for performance is a key reason unsafe languages are still used 

for new projects, rather than being relegated to legacy code-

bases. Past safe languages such as Pascal or Objective-C have 

all but disappeared in favor of modern safe languages such as 

Java and Swift, but the unsafe C and C++ are still in use. 

Giving software engineers the performance benefits of C 

with the safety benefits of modern high-level languages would 

free resources used to maintain tooling for unsafe languages. In 

particular, the need to provide safety for modern codebases 

written in unsafe languages requires engineering and research 

time. Handling C-style unsafe semantics in a verification tool 

requires considerable effort compared to handling languages 

that provide memory and type safety. Even if an analyzer for C 

code requires memory safety, it must properly detect and report 

code that is not memory safe to have good usability, since a 

programmer might accidentally write unsafe code. 

We do not mean that languages such as Cyclone [23] and 

Checked C [15] are not useful compared to our proposal. When 

the risks of existing legacy code are high enough, annotating 

and adding run-time checks to existing C code is valuable. They 

also enable developers to use their existing C expertise. 

The limitations of our proposal to provide type invariants 

to enable developers to write safe code without overhead are 

related to developer effort. Software engineers can write safe 

code in unsafe languages without explicitly proving why their 

code is safe. With our proposal, this is not possible. Engineers 

must either explicitly use the right types for their code and 

structure their code so the invariants hold or accept a run-time 

check and the corresponding performance penalty. 

X. THREATS TO VALIDITY 

This study is limited by scale. The effort of writing safe drivers 

without run-time overhead scales exponentially with the num-

ber of languages and hardware platforms, particularly due to the 

time it takes to implement a change in a safe language while 

also convincing the compiler to not insert checks. 

Internal validity. We used one kind of network card on one 

kind of server. Our results may not reproduce exactly on other 

kinds of hardware since performance at the nanosecond scale is 

particularly affected by minor variations such as cache size. 

Faster network speeds, such as 400 Gb/s Ethernet, may bring 

new challenges. The specific compiler versions we used may 

also affect results, as we have already noticed a performance 

difference between GCC and Clang for the baseline C driver. 

Construct validity. We inspected the compiled code of our 

drivers to confirm the lack of run-time checks and we measured 

their performance empirically, but these are only proxy metrics 

for equivalence. Ideally, we would prove that the compiled code 

of each safe driver is exactly equivalent to that of the baseline, 

but this is not currently feasible given the complexity of x86 

assembly code, the complexity of automated verification, and 

the lack of a definition for what equivalence even means, given 

that not all side effects are relevant. 

We assumed that the safe languages we use are safe. This 

may not be true, since neither the language specifications nor 

the compilers we use are formally proven to be correct. Ada’s 

specification, in particular, is so complex that the authors of 

GNAT do not believe they fully understand the rules around 

reference safety [2]. 

External validity. We chose network drivers for reasons we 

outlined in §IV, but they may not generalize to all kinds of low-

level systems. In particular, we did not need high-level safety 

features such as Rust’s ownership system that prevents data 

races as we do not use multi-threading. In fact, in this study, 

Rust’s ownership system was more of a hindrance than a help. 

XI. CONCLUSION 

We provide evidence that safety without run-time overhead is 

practical. If languages provide types with invariants that match 

the requirements of potentially unsafe operations, such as 

ranged integers and arrays, compilers can trivially prove safety 

at compile-time. Checking that untrusted data satisfies the in-

variant is necessary, but this is also the case in unsafe code. 

We build network card drivers in Ada, Rust, and C#, as well 

as a baseline in C. To do so, we extend Rust and C# with new 

features that enable the driver code to not need any run-time 

checks. Empirical performance evaluation at the nanosecond 

scale reveals that the performance is indeed on par with C as we 

expect. Interestingly, Ada already has the necessary features for 

safety without run-time overhead. 

We hope these results encourage future work on safe low-

level systems code without overhead. 

XII. DATA AVAILABILITY 

All code and data for this paper are publicly available at 

https://github.com/dslab-epfl/tinynf.  

https://github.com/dslab-epfl/tinynf
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