
Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

Vassal: Loadable Scheduler Support for Multi-Policy Scheduling

George M . Candea*

M.I.T. Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

candea@mit.edu
http://pdos.lcs.mit.edu/~candea/

M ichael B. Jones

Microsoft Research, Microsoft Corporation
One Microsoft Way, Building 9s/1

Redmond, WA 98052

mbj@microsoft.com
http://research.microsoft.com/~mbj/

Abstract
This paper presents Vassal, a system that enables

applications to dynamically load and unload CPU
scheduling policies into the operating system kernel,
allowing multiple policies to be in effect simultaneously.
With Vassal, applications can utilize scheduling
algorithms tailored to their specific needs and general-
purpose operating systems can support a wide variety of
special-purpose scheduling policies without implementing
each of them as a permanent feature of the operating
system. We implemented Vassal in the Windows NT 4.0
kernel.

Loaded schedulers coexist with the standard Windows
NT scheduler, allowing most applications to continue
being scheduled as before, even while specialized
scheduling is employed for applications that request it. A
loaded scheduler can dynamically choose to schedule
threads in its class, or can delegate their scheduling to the
native scheduler, exercising as much or as little control as
needed. Thus, loaded schedulers can provide scheduling
facilities and behaviors not otherwise available. Our
initial prototype implementation of Vassal supports two
concurrent scheduling policies: a single loaded scheduler
and the native scheduler. The changes we made to
Windows NT were minimal and they have essentially no
impact on system behavior when loadable schedulers are
not in use. Furthermore, loaded schedulers operate with
essentially the same efficiency as the default scheduler.
An added benefit of loadable schedulers is that they enable
rapid prototyping of new scheduling algorithms by often
removing the time-consuming reboot step from the
traditional edit/compile/reboot/debug cycle.

In addition to the Vassal infrastructure, we also
describe a “proof of concept” loadable real-time scheduler
and performance results.

1. Introduction
A primary function of operating systems is to

multiplex physical resources such as CPU, memory, and
I/O devices among application programs. The CPU is one
of the primary resources, and hence, it is important to

* The research described in this paper was done while
George Candea was a summer intern at Microsoft
Research.

schedule it effectively. This raises the question: what is
the best algorithm to schedule tasks on the available
CPUs?

The answer, of course, strongly depends upon the mix
of tasks to be run, the demands that they place on the
different resources in the system, and the relative values of
the various outcomes that will result from different
scheduling decisions. In the limit, for an operating system
to perform optimal scheduling of its CPUs, it would need
perfect knowledge of the future behavior and requirements
of all its applications.

Most “general purpose” systems have used algorithms
which know either nothing or next-to-nothing about the
actual CPU resource needs of the tasks being scheduled.
Examples include “First-Come, First Served” used in early
batch systems and Round-Robin in multi-tasking systems.
Later algorithms such as Priority Queues ([Corbató &
Daggett 62], [Lampson 68]), Fair Share Scheduling ([Kay
& Lauder 88]), and typical dynamic priority boost/decay
algorithms still had the property that they were essentially
ignorant of the actual CPU needs of their applications.

Imperfect, but nonetheless adequate, future
knowledge is possible for some fixed task sets with well-
characterized computation patterns. Whole families of
scheduling disciplines have arisen in the computer systems
research community to provide appropriate scheduling for
some such classes. Examples are: Earliest Deadline First
([Liu & Layland 73]), Weighted Fair Queuing ([Clark et
al. 92]), Pinwheel Scheduling ([Hsue & Lin 96]), and
Proportional Share CPU allocation mechanisms
([Waldspurger 95], [Goyal et al. 96]), plus techniques such
as Rate Monotonic Analysis ([Liu & Layland 73]) and
Priority Inheritance ([Sha et al. 90]). Similarly, Gang
Scheduling ([Ousterhout 82]) and Implicit Coscheduling
([Dusseau et al. 96]) were developed for parallel
workloads where the forward progress of members of a
task set is closely dependent upon the progress of other
tasks in the set.

But today’s general purpose operating systems do not
provide such specialized scheduling algorithms. Some of
the more popular operating systems provide a primitive
differentiation between the different scheduling classes by
mapping them onto different priorities (e.g., System V
Release 4 [Goodheart & Cox 94], Windows NT [Solomon
98]) and then scheduling higher priority tasks more often
or for longer periods of time. However, it is extremely

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 2

hard to properly map requirements such as predictability,
throughput, fairness, turnaround time, waiting time, or
response time onto a fixed set of priorities. Moreover,
different applications may use different mappings,
defeating their purpose. For instance, when co-existing
applications do not share coordinated priority mappings or
goals, it is common for applications wanting “real-time
performance” to raise their priority to the highest one
available under the assumption that they are “ the most
important” task in the system — a phenomenon known as
“priority inflation” . Priorities are, at best, a rather
primitive way of describing the relative performance
requirements of the threads and processes that belong to
the different classes.

Other systems ([Northcutt 88], [Jones et al. 97], [Nieh
& Lam 97], etc.) have tried to strike a compromise,
providing some application timing and resource advice to
the system, giving it imperfect, but useful information
upon which to base scheduling decisions.

Such large numbers of different scheduling
algorithms are an indication that scheduling is, and will
likely remain, an active area of research. No one
algorithm will work best in all cases (despite many valiant
attempts by system builders to demonstrate otherwise). In
fact, [Kleinrock 74] shows that any scheduling algorithm
that favors a certain class of tasks will necessarily hurt
another class. A single scheduling policy will always
represent a compromise and the service offered by the
system will unavoidably reflect this compromise.

Our Proposed Solution
As discussed above, we believe that any particular

choice of scheduling algorithm will fail to address the
needs of some classes of applications, particularly when
independent applications with different scheduling
requirements are concurrently executed. Rather than
attempting to devise yet one more “good compromise” we
explored a different approach.

We decided to find out whether we could dynamically
extend systems with scheduling algorithms. While nearly
all modern established operating systems can be partially
extended via loadable modules (e.g., Linux, Solaris,
Windows NT) and extensible systems are a very active
area of research ([Bershad et al. 95], [Engler et al. 95],
[Seltzer & Small 97]), none of these systems allowed
arbitrary scheduling policies to be implemented as
extensions — motivating our work on Vassal.

The results were quite positive: it was straightforward
to modify a modern commercial operating system, in this
case Windows NT 4.0, in order to allow independently
developed and compiled schedulers to be dynamically
loaded into (and unloaded from) the operating system at
run-time.

The loaded schedulers can take control of as many or
as few of the system’s scheduling decisions as desired. For
instance, in our implementation, the existing Windows NT
scheduler was retained, so a loaded scheduler can always
fall back upon the default system scheduler if it chooses

not to make a particular scheduling decision. And in the
case when no loadable scheduler is present, the system
works exactly as it would have were the loadable
scheduler support not there.

The modifications resulted in no measurable
performance penalty when loadable schedulers are not in
use. Furthermore, loadable schedulers can operate with
nearly the same efficiency as the native system scheduler.
Finally, having a loadable scheduler infrastructure makes
it easy to experiment with different schedulers, providing
special-purpose scheduling on a general-purpose system.

The present Vassal implementation is clearly a
prototype, with some limitations. For instance, at present
we only support the simultaneous coexistence of two
schedulers: the Windows NT scheduler and a single
loaded scheduler. Nonetheless, we believe that the
techniques and results obtained with the prototype will
remain valid once these limitations are removed. For
more on this topic, see Section 8.

In the following sections we provide some
background on the system we started with, describe the
particular system we built in more detail, and then show
what transformations we made to the vanilla system. We
present a “proof-of-concept” real-time scheduler that we
wrote, followed by performance measurements. We then
discuss the experiences we had while building and
experimenting with the loadable multi-policy scheduler
support and conclude.

2. Background
This section provides background information on

some of the features of Windows NT 4.0 relevant to our
loadable scheduler work. We describe the native scheduler
and its implementation, and also present briefly the NT
driver model.

Windows NT Scheduling M odel
Windows NT uses threads as its basic schedulable

unit. Threads can exist in a number of states, the most
important ones being: Running (executing on a processor),
Standby (has been selected for execution on a processor
and is waiting for a context switch to occur), Ready (ready
to execute but not running or standing by), Waiting (either
waiting on a synchronization object, such as a semaphore,
waiting for I/O to complete, or has been suspended), and
Terminated (the thread is not executing anymore and may
be freed or recycled).

The thread dispatcher is responsible for scheduling
the threads and it does this based on two thread
characteristics:

• priority (higher priority threads are scheduled before
lower-priority ones);

• processor affinity (threads may have preferences for a
certain processor in multi-processor systems and this
is accounted for when scheduling it).

Windows NT provides a set of 32 priorities, which are
partitioned into three groups:

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 3

1. The Real-Time scheduling class, which includes the
highest priorities in the system (16-31). Threads
belonging to this class can gain exclusive use of all
scheduled time on a processor if there is no runnable
thread with a higher priority in the system.

2. The Variable priority scheduling class, which
includes priorities 1-15. Threads belonging to this
class are subject to priority drops (e.g., when the
thread’s time quantum runs out) or priority boosts
(e.g., when awaited I/O completes). As can be seen,
the priority of a CPU-bound thread in this class
decays over time, unlike threads in the Real-Time
class.

3. Priority 0 is the lowest priority and is reserved for the
so-called idle thread. This thread runs whenever there
is no ready thread available in the system.

It is important to note that under Windows NT, not all
CPU time is controlled by the scheduler. Of course, time
spent in interrupt handling is unscheduled, although the
system is designed to minimize hardware interrupt
latencies by doing as little work as possible at interrupt
level and quickly returning from the interrupt. The
mechanism that ensures this is Deferred Procedure Calls
(DPCs). DPCs are routines executed within the Windows
NT kernel in the context of no particular thread in
response to queued requests for their execution. For
example, DPCs check the timer queues for expired timers
and process the completion of I/O requests. The way
hardware interrupt latency is reduced is by having
interrupt handlers queue DPCs to finish the processing
associated with the interrupt and then return. Due to their
importance, DPCs are executed whenever a scheduling
event is triggered, prior to starting the scheduled thread,
and they do not count against any thread’s time slice.

Windows NT Scheduler Implementation
A scheduling request can be generated by a number of

events. Some of these are:
• The time quantum of a running thread expires.
• Thread state changes, such as when a thread enters the

Ready state or when the currently running thread
enters the Waiting or Terminated state.

• When the priority or affinity of a thread in the system
is changed from outside the scheduler (e.g., by the
SetThreadPriority() call).

Whenever the hardware clock generates an interrupt,
the Hardware Abstraction Layer (HAL), which exports a
virtual machine to the NT kernel, processes the interrupt
and performs platform-specific functions. After that,
control is given to the kernel. At this point the kernel
updates a number of counters, such as the system time,
and inspects the queue that contains timers. For every
expired timer it queues an associated DPC. After that it
decrements the running thread’s time quantum and checks
whether it has run out. If yes, it issues a DISPATCH
software interrupt on the corresponding processor. All

events that trigger scheduling raise DISPATCH software
interrupts.

The DISPATCH software interrupt then invokes a
kernel handler which first runs all the queued DPCs. After
this, the thread dispatcher is ready to make a scheduling
decision.

The set of data structures used by the NT dispatcher
are collectively known as the dispatcher database. This set
contains information about which threads are running on
which processors, which threads are ready to run, etc. The
most important data structure is the set of thread queues
that keep track of threads in Ready state; there is one such
queue for each priority (except 0). Whenever scheduling is
triggered, the scheduler/dispatcher walks the Ready thread
queues in decreasing order of priority. It then schedules
the first thread it finds, provided the thread’s processor
affinity allows it to be scheduled on the free processor.
The thread is prepared for execution (if not currently
running), a context switch is performed, and then the
DISPATCH service routine returns from the interrupt.

The NT kernel provides a system call,
NtSetTimerResolution(), which allows the frequency of
clock interrupts to be adjusted. Specifically, when an
application needs high resolution timers, it may choose to
lower the time between clock interrupts from the default
(typically 10ms) to the minimum supported (typically
1ms).

Of particular importance to scheduling is the fact that
the HAL does not export a programmable timer to the
kernel, which denies the kernel the ability to reschedule at
a precise point in time. For instance the programmable
timer available on x86 PCs is used by the HAL as a
countdown timer that is repeatedly set to the current
interval between interrupts (so it is essentially used as a
periodic timer). Most other non-real-time operating
systems running on the x86 do the same.

Windows NT Driver M odel
Drivers in Windows NT do much more than

traditional device drivers, which just enable the kernel to
interface to hardware devices. NT drivers are more of a
general mechanism by which NT can be extended. For
example, under NT, filesystems, network protocol
implementations, and hardware device management code
are all separately compiled, dynamically loadable device
drivers. Drivers reside in kernel space, can be layered on
top of each other, and communicate among themselves
using I/O Request Packets (IRPs) in a manner reminiscent
of UNIX System V Streams modules [Ritchie 84].
Applications typically send and receive data to and from
the drivers via the same path.

3. Loadable Scheduler Design
This section describes the design of the infrastructure

that allows scheduling policies to be loaded and unloaded
at run-time. It is intended to provide a guide to
implementing such a system, while omitting OS-specific
details, which are discussed in the following section.

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 4

The basic idea is to modify the thread dispatcher
inside the kernel so that it handles multiple scheduling
policies. It is the decision making component of a
scheduler that contains all the policy, so we chose to
externalize the decision-making by encapsulating it in
loadable drivers, while leaving all the dispatching
mechanism in the kernel. We wish to replace the statement
“ the dispatcher decides which thread to run” with “ the
dispatcher queries the schedulers for which thread to run.”
The maintenance of the thread queues, being a chore
specific to the decision making process, is done by the
external schedulers themselves. The in-kernel dispatcher
simply expects a reference to the appropriate thread data
structure from the scheduler it queries. Figure 1 shows the
conceptual architecture of Vassal with an example in
which there are four tasks running on the system (T1, T2,
T3, T4) and there are currently two schedulers available (A
and B).

The Vassal dispatcher manages the schedulers and
dispatches/multiplexes messages between the kernel and
the schedulers. It is responsible for:

• Receiving scheduling requests from the kernel and
deciding which scheduler to query.

• Relaying the scheduler’s response to the application.
• Deciding whether a scheduler that is attempting to

load would conflict with already existing schedulers.
The scheduler is loaded only if there are no conflicts.

• Enabling communication between threads and
schedulers.

Scheduling
When a DISPATCH software interrupt is generated,

an interrupt service routine is invoked and eventually
hands control over to the dispatcher. The dispatcher then
decides which scheduler to query. In our current model,
we simply use a hierarchy of schedulers (with the external
scheduler being at the top), so that if a higher level
scheduler does not have a ready thread, then the next one
(in descending order) is queried. Section 8 describes other
possible ways of managing relationships between
schedulers. Once a scheduler responds with a runnable
thread, the dispatcher can perform a context switch (if
necessary), schedule the thread, and return.

It may seem that, by using a hierarchy of schedulers,
we are essentially making the decisions based on a set of

priorities. However, there is a significant difference
between scheduler hierarchy and thread hierarchy: the
scheduler priorities have nothing to do with what the
threads think is more important (which would motivate
their choices for priorities) rather it has to do with implicit
relationships between the schedulers that result from their
CPU resource requirements.

Thread Creation
Newly created threads initially execute using the

system’s default scheduler. It can then make explicit
requests to be scheduled by other schedulers. Other
approaches could have equally well been taken. For
instance, a thread could inherit its parent’s scheduling
class, or an explicit scheduler parameter could have been
provided to an extended thread creation call.

Here is an example scenario. A task (e.g., T2) is
created and associated with the default scheduler (e.g., A).
After running for a while, T2 makes a system call to
inform the system that it now wants to switch to another
scheduler. The kernel relays this information to the desired
scheduler, which in turn removes the task from the
previous scheduler’s jurisdiction. From this point on, the
new scheduler has sole ownership over T2’ s schedule
(until the task decides to switch again).

Communication between Threads and
Schedulers

For optimal scheduling decisions, every scheduler
needs semantic information about the intentions and
requirements of the threads under its jurisdiction. Once
provided with this information, schedulers can make the
appropriate scheduling decisions. For this reason, the
operating system interface needs a system call that allows
threads to communicate with a scheduler of their choice.
The dispatcher receives this stream of messages from the
kernel and demultiplexes it. By this means, a thread could
inform its scheduler that it wants to communicate with a
thread on another processor and, thus, the scheduler
should attempt to schedule that thread concurrently with
the requesting thread.

One question that arises naturally is whether the use
of the external schedulers would negatively impact
performance, given that on every timer interrupt there
would be a query going out to these schedulers. However,
the critical path followed by these queries turns out to be
very short, because the only added time is that of
performing a small number of memory reads from non-
pageable memory. Remember that schedulers (being
drivers) reside in the kernel address space. As our results
suggest, this added overhead is negligible and is clearly
offset by the gains in scheduling performance. Also, in a
multi-threaded kernel such as NT’s, it is possible for the
schedulers to avoid making decisions on the critical path
by having their decisions ready before they are queried.

Another issue we considered was whether a thread
that was not selected for execution by its current scheduler
could be selected by another scheduler. For instance, one

Kernel Dispatcher

Net Disk CPU Video

Task
1

Task
2

Task
3

Task
4

Policy A: T1, T3, T4

Policy B: T2

Figure 1: The Loadable Scheduler Infrastructure

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 5

could view this as happening in [Jones et al. 97] when a
thread’s CPU reservations and/or time constraints do not
cause it to be selected, but it is nonetheless selected by the
default round-robin policy. As this is more general, we
opted to allow this (while also making it possible for a
scheduler to prevent it). One example of our use of multi-
policy scheduling is that a thread not selected by the
sample scheduler described in Section 5 can typically still
be selected by the default scheduler.

4. Vassal Implementation
This section describes the Vassal implementation,

including the modifications and additions we made to the
Windows NT kernel in order to support multiple
schedulers. An overview of the structure of the Vassal
implementation within Windows NT is shown in Figure 2.

First of all, we needed to add a way for the
scheduler/driver to notify the system that it is being
loaded. For this we added a kernel function for scheduler
drivers:

Regi st er Schedul er (schedul er ,
deci s i on_maker , message_di spat cher)

The decision_maker parameter to RegisterScheduler()
is the address of a function to be called when a scheduling
decision needs to be made. This function must either
return a runnable thread to be scheduled or NULL, which
indicates that the loaded scheduler has no opinion as to
which thread should be scheduled. In this case, Vassal
calls the next scheduler in the hierarchy, allowing it to
make the scheduling decision. (In the present prototype
this means the decision is always delegated to the built-in
scheduler.)

The message_dispatcher parameter to
RegisterScheduler() is the address of a function to be
called to handle messages from threads to the scheduler.
This routine handles requests sent via the

MessageToScheduler() system call, which is described
below.

In response to the RegisterScheduler() call, Vassal
saves these parameters of the loaded scheduler and
activates the new scheduler. We also provide a matching
UnregisterScheduler() function, which allows a scheduler
to be unloaded cleanly (using the customary procedure for
unloading drivers).

For applications to be able to communicate with the
schedulers, we added a new system call:

MessageToSchedul er (schedul er , buf f er ,
buf l en)

by which an application can send a message (in
buffer) to a loaded scheduler. Upon receiving this call, the
scheduler’s message_dispatcher routine will be invoked,
passing the buffer contents as a parameter. The scheduler
then performs the action specified by the buffer contents.
When the routine completes, its return value is returned to
the application. Note that MessageToScheduler() need not
return immediately; it is free to block or take any action
that a regular driver could take.

Of course, given that loaded schedulers are full-
fledged Windows NT device drivers, one might ask why
we added the MessageToScheduler() system call at all —
why not just use standard device Read() and Write()
operations to communicate with the scheduler? As
described in Section 2, these user-space operations
generate I/O Request Packets (IRPs) that would travel
through the I/O subsystem and eventually reach the
scheduler/driver. In fact, we initially did use IRPs to
communicate with loaded schedulers.

We added the MessageToScheduler() system call
because we found that, in practice, the amount of time it
would take requests to reach the scheduler via the standard
I/O path was too unpredictable for the time-critical
services that the external scheduler is intended to provide,
especially for the kinds of real-time schedulers we were

Kernel Clock IRQ

Drivers

Vassal
Dispatcher

Native
Scheduler

Loaded
Scheduler

Request Decision Request Decision

SetSchedulerEvent

RegisterScheduler

Other dynamically loaded
drivers (file systems,

network protocols, device
drivers, redirectors, etc.)

Other kernel
components

Protected subsystems
(servers)

Application
Thread

SetThreadPriority

MessageToScheduler

Specific APIs

I/O Request Packets

Specific APIs

Hardware Abstraction Layer (HAL)

Figure 2: Integration of Vassal into Windows NT 4.0

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 6

attempting to construct. The system call gave Vassal both
lower and more predictable latency.

One capability that is essential for many kinds of
schedulers (in particular, real-time) is the ability for the
scheduler to cause an action at a designated time. As a
basis for providing this capability, we added an internal
kernel function available to schedulers:

Set Schedul er Event (schedul er ,
per f or mance_count er _r eadi ng)

This call instructs the kernel to call the scheduler’s
decision_maker function whenever the system
performance counter’s value (a monotonically increasing
system-provided low-latency 64-bit real-time timer
provided by the HAL) is greater than or equal to
performance_counter_reading. This facility allows
schedulers to set deadlines. There is a matching
CancelSchedulerEvent() function that cancels the call.

To support the functionality described above, we
made modifications to the routine that services the
DISPATCH software interrupts. Its function is to process
the Deferred Procedure Call (DPC) list, query the
scheduler if necessary and then perform a context switch if
a new thread has been selected for execution on the
processor. We needed to add a hook that would substitute
calling the loaded scheduler’s decision function, when one
is available, in place of querying the built-in scheduler.
Additionally, for the servicing of scheduler events, we
needed to further modify this routine so that it would
check on every clock interrupt whether the performance
counter reading had reached the desired value and, if so,
trigger a scheduling decision.

Given that drivers do not have full access to kernel
data structures, we also needed to add a number of simple
methods that allow schedulers to manipulate and gain
access to parts of those data structures. This new
functionality includes finding which CPU is currently
being scheduled, what the status of a thread is,
removing/adding threads from/to the pool of natively
scheduled threads, and preempting a thread.

5. A Sample Scheduler
We wrote a simple real-time scheduler as a proof of

concept. It was rather straightforward (116 lines of C
code). This scheduler allows threads to request that they
be scheduled at a particular time, which exercises the key
operation needed to implement more interesting time-
based scheduling primitives, such as time constraints
[Jones et al. 97]. Using this scheduler, we can easily write
timers that have a much higher accuracy and resolution
than the multimedia timers offered by Windows NT
(multimedia developers choose to use buffering and a
number of other tricks to circumvent the limitations of NT
timers; with our scheduler, this would be unnecessary).
Section 6 shows the measured latencies for these timers.

In order for the sample real-time scheduler to achieve
its goal, we made two important decisions:

• We added the concept of a settable event and added a
call to the kernel interface (as described in the
previous section) that would allow a driver to set such
an event. In essence, we enable a driver to request
that it be given control of the CPU at a specific point
in time based on the value of the performance
counter. This counter is typically both a precise and
accurate way of measuring time. On x86 CPUs using
standard HALs, for instance, its resolution is 0.838µs.
It might seem that we essentially modified the kernel
to provide support for a specific scheduler. However,
we made this modification because we saw it as a
useful feature for many types of schedulers (for
instance if they need to perform certain actions at
regular intervals or they need to synchronize with
other processes based on time).

• If the requested time constraint cannot be met because
it is very short (e.g., a time constraint of 200µs), we
choose to spin in a loop until the time comes to
schedule the thread. We cannot presently count on a
higher accuracy than 1ms from the HAL (see Section
8), so we used this admitted hack in the sample
scheduler (not the kernel code) to achieve higher
resolution for one thread.

Note that we have not implemented on-demand
loading of schedulers but it would be very simple to do.
Currently, in order to load the real-time scheduler and
have it coexist with the native scheduler the system
administrator uses the Control Panel and select the
appropriate driver. It can be unloaded in the same way.

The following code snippet shows a simple thread
using the real-time scheduler.

/* Tell system to use the real-time scheduler * /
status = MessageToScheduler (rt_sched, { JOIN});
if (status != SUCCESS) {
 error (“Could not join R/T scheduling class.”);
}
/* Calculate how long our loop iterations take * /
estimate = Calibrate();
/* Start the loop 1 ms from now * /
status = MessageToScheduler (rt_sched, { SET, 1000});
if (status != SUCCESS) {
 error (“Could not set deadline.”);
}
/* We want one iteration every 300 µs * /
while (1) {
 status = MessageToScheduler (rt_sched, { SET, 300 –

estimate});
 …
}

The function Calibrate() computes an estimate of
how long it will take to perform each loop iteration.
Notice the use of a single system call to communicate with
the scheduler. Figure 3 details the actions that are
triggered by the various steps in the program.

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 7

The first two system calls translate into messages
delivered directly to the loaded scheduler; if the thread’s
request can be satisfied, it returns a status of SUCCESS.
The scheduler then updates its data structures to reflect the
thread’s requirements and sets the event mentioned above
to the appropriate performance counter reading (the
constraint interval of 1ms is large enough to do this).
Then, when the event occurs, the scheduler is notified and
asked for a runnable thread. As a result, the scheduler
sees that the deadline has arrived for the requesting thread
and instructs the kernel to schedule it. Note that the
setting of the event takes into account the fixed time
Tpredicted, which is the platform-dependent time it takes for
a message to make it through the critical path (as
described in Section 3).

An important property of the scheduler is that if it is
unable to satisfy the thread’s request, it informs it right
away (via the return code of MessageToScheduler). This
is in contrast to what happens on most general purpose
operating systems, where the thread expecting to meet a
certain deadline finds out it cannot make it barely after it
has already missed the deadline. Using the information
given by our real-time scheduler, the application could
adjust and decide to take some action that can compensate
for the missed deadline.

The current method of keeping a thread spinning if
the time constraint is very small is not a very clean
solution. However, other means of obtaining the desired
accuracy would require more substantial changes to the
underlying kernel and, more importantly, to the HALs.
Such solutions would be more difficult to adopt.

6. Results
Code Size Results

The Vassal changes made to the Windows NT kernel
to support multi-policy scheduling added 188 lines of C
code, added 61 assembly instructions, and replaced 6
assembly instructions.

The proof-of-concept external scheduler described
earlier required only 116 lines of C code and no assembly
language. We believe these are extremely low code size
numbers for the increased functionality that we achieved.

Performance Results
One of the primary criteria against which any

loadable scheduler support would be judged when added
to a production operating system would be whether it
makes things any worse for applications not using it. We
are happy to report that, when a loadable scheduler is not
in use, our changes have no performance impact on
system performance.

One value that the use of loaded schedulers might be
expected to change is the context switch time. To measure
the performance impact of our changes, we ran a program
that recorded actual context switch times as observed from
user space by 10 threads, over a period of 10 seconds.
Times were collected using the Pentium cycle counter on a
133MHz Pentium PC. Table 1 shows the results.

System Version Median Avg. Std.
Dev.

Vanilla NT 4.0 (released) 17.03 18.71 4.17
Vanilla NT 4.0 (rebuilt) 19.95 19.88 1.64
Vassal (no loaded scheduler) 19.71 19.71 1.56
Vassal (sample scheduler
loaded)

21.32 21.17 1.28

Table 1: Measured context switch times on a Pentium-133
running the original and the modified systems (in µs).

We first explain the difference in the first two sets of
data. The “Vanilla NT 4.0 (released)” figures are from
the product version of NT 4.0 Workstation. The “Vanilla
NT 4.0 (rebuilt)” figures are for a kernel built from the
identical NT 4.0 sources with no modifications. However,
the rebuilt version does not contain all of the binary
optimizations contained in the product version. This
explains why it is roughly 6-7 percent slower than the
product version. All Vassal versions are built with the

Event occurred
Request thread

Tpredicted

Scheduler

Kernel

Thread
RUN WAIT RUN

Update data
structures

Join real-time
scheduling class

Update data
structures

Set time
constraint

Set adjusted
event

Make scheduling
decision

Dispatch thread

Figure 3: The actions taken for the execution of the first part of the sample code

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 8

same optimizations as the rebuilt version. Thus, the
rebuilt version provides the correct basis for comparison.

The good news is that the Vassal version of NT 4.0
(with loadable scheduler support) with no scheduler
loaded has essentially the same context switch time as the
rebuilt version. More precisely, their times differ by less
than the variations seen while measuring the times, and
thus exhibit no statistically significant difference.

Finally, while loading the sample scheduler does
increase the observed context switch time by about 8
percent, we believe that this is within acceptable bounds,
given the increased functionality and the fact that this cost
is only incurred when the added functionality is actually
used. Furthermore, we believe it is likely that some of this
8 percent overhead can be eliminated, given that the
current prototype is essentially untuned.

Sample Scheduler Results
The proof-of-concept sample real-time scheduler

implements one primitive thread scheduling operation not
otherwise found in standard Windows NT: a precisely
timed thread wakeup. In a loop, this can be used to
perform periodic processing, such as doing a short
operation once every millisecond.

Standard Windows NT contains periodic multimedia
timers that are designed for this kind of periodic
processing. This section compares the effectiveness of
doing periodic wakeups once per millisecond with the
loaded sample scheduler and NT’s multimedia timers.
Table 2 shows the results.

Method Min. Max. Avg. Std.
Dev.

NT Multimedia Timers 75 1566 996 82
Sample Scheduler Events 996 1485 1002 21

Table 2: Periodic wakeup times on a Pentium-133 using
multimedia timers on the original system and the sample
scheduler’s events on the modified system (in µs). The

desired value is 1ms.

Two differences are evident in the results. First,
while using multimedia timers some wakeups occurred
extremely early, as much as 925µs too soon. With the
sample scheduler wakeups occurred at most 4µs early.

Second, predictability of the wakeups with the sample
scheduler is significantly better than with the multimedia
timers. The standard deviation of the sample scheduler
data is only a quarter of that for the multimedia timers.

With both methods, some samples occurred up to
~0.5ms late. Initial studies indicate that these samples are
due to interrupts, DPCs, and other non-scheduled system
activities, although this bears further investigation.

While extremely simple, we believe that this example
begins to show the potential of extending the scheduling
policies available to applications through the use of
loadable schedulers.

7. Related Work
Windows NT was certainly not the first operating

system to use priority classes. For instance, UNIX System
V Release 4 has a similar notion and supports three basic
types (time-sharing, system, and real-time). The design
allows for the incorporation of new priority classes, which
can be described by a special class structure and compiled
into the kernel ([Goodheart & Cox 94]). However, these
priority classes always map their scheduling requirements
onto global priority values and the scheduler runs the
process with the highest global priority. Unlike Windows
NT, these priorities are controlled to some extent by the
in-kernel class-specific functions, which could have some
global knowledge of the tasks running in the system. In
spite of this, such a system is limited, primarily because:

• New scheduling policies need to be hard-coded into
the kernel; this implies the need for source code,
which may not always be available. In addition, a
programmer writing a new scheduling policy may not
want to have to dive into kernel internals in order to
implement the policy. If the programmer writing
extensions for a system needs to know as much about
the system as the person who wrote it, then such
extensions will likely never be written.

• The first disadvantage implies the second: scheduling
policies cannot be dynamically added or removed at
runtime, which makes the system less flexible and
makes the debug cycle longer.

Solaris does allow scheduling classes to be
dynamically loaded into the kernel, although these classes
are still subject to the restriction that they map their
scheduling decisions onto a global thread priority space.

A number of recent efforts are aimed at making
operating systems extensible [Bershad et al. 95],
[Kaashoek et al. 97], [Seltzer & Small 97]. However these
do not have the same goals as Vassal and do not provide
the same facilities.

The one that offers scheduling features closest to
Vassal is SPIN [Bershad et al. 95]. It offers applications
the ability to provide their own thread package and
scheduler, which can then execute in kernel space. This
way applications can define their own thread semantics. A
global scheduler implements the primary scheduling
policy, which is a priority scheduler, with round-robin
execution within each priority. The global scheduler is
not extensible. Application-defined schedulers are layered
on top of the global scheduler. However, this global
scheduler may reclaim the CPU from any given strand,
therefore no application-defined scheduler has any
guarantee of when it will receive time to schedule. Note
that SPIN is addressing a different problem domain than
we are. It loads Modula-3 extensions into the kernel,
which are limited by the type-safe characteristics of the
language. The purpose of this is to achieve protection. In
our model, the “extensions” (i.e., the drivers) are trusted
and therefore we do not need to protect against them.

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 9

Another body of work related to ours pertains to
support for hierarchical scheduling. In such systems, time
allocated to one scheduler is sub-allocated to other
dependent schedulers. [Ford & Susarla 96] describes one
such system.

Finally, [Deng & Liu 97] propose a new hierarchical
scheduler for Windows NT that provides timing
guarantees for multiple independent hard real-time
applications, while continuing to run normal applications.

8. L imitations and Future Work
The present Vassal implementation is definitely a

prototype, and is subject to certain restrictions and
limitations. This section describes some of the present
implementation limitations and possible future work.

Some of the most severe limitations that Vassal
loadable schedulers are presently subjected to are actually
limitations of the underlying Windows NT system upon
which they were built. In particular, loadable schedulers
(as well as the built-in scheduler) cannot exercise
complete control over what code is run when.

As described in Section 2, all system timer services
are actually provided to the kernel through the Hardware
Abstraction Layer (HAL), which does not provide an
interface to cause an interrupt at a precise time. Timer
interrupts are only generated at the clock tick frequency,
which while settable, is not settable to resolutions finer
than 1ms for the standard x86 ISA PC HAL. Thus, sub-
millisecond preemptive scheduling is effectively not
implementable under NT in a clean way. The PC
hardware does support this capability; removing this
restriction would involve adding precise non-periodic
interrupt capabilities to the HAL interface and HAL
implementations.

Other sources of unscheduled time include DPCs and
interrupts. The system could be modified to schedule
DPCs, although this would result in both additional
overhead and greater code complexity. We suspect that
very little can be done to improve interrupt latencies
beyond what the production system has already achieved.

Another limitation present in the current Vassal
implementation is that only one external scheduler may be
loaded at once. This is partly due to the slightly higher
implementation complexity involved in managing the state
of multiple loaded schedulers but actually mostly due to
more fundamental policy issues that would need to be
resolved to support arbitrary numbers of coexisting
schedulers in a general way.

The key policy issue is this: schedulers might have
conflicting goals, or equivalently, might be running
applications with conflicting goals. For instance, if two
schedulers want to run different code at precisely the same
time on the same processor, the schedulers are in conflict.
The question is what to do when schedulers’ goals collide.

Our present implementation solves this by simple fiat
— the loaded scheduler always takes precedence over the
built-in scheduler. Provided the built-in scheduler is
occasionally given an opportunity to run, this does not

violate its invariants, since it does not depend upon being
run at any particular time, unlike real-time schedulers.

Indeed, a similar strict decision hierarchy could be
used among more than two coexisting schedulers,
although this admits the possibility of loading two
schedulers (or applications using them) with mutually
incompatible requirements.

One way to achieve conflict resolution would be by
allowing loadable schedulers to describe the ways they
will use the CPU. For example, one scheduler may need
“hard time” (i.e. it needs the CPU at definite moments in
time) while another one may only require a “share” of the
CPU (no matter when it occurs). A simple way to
describe such requirements would be by using predefined
usage patterns (i.e. “hard time,” “proportional share,”
etc.). A more sophisticated solution would involve the use
of a formal language by which schedulers could express
their requested usage pattern.

Based on these usage descriptions, the dispatcher
could determine whether a scheduler that is attempting to
load would conflict with an already existing scheduler.
For instance, multiple schedulers with “hard time”
requirements will typically not coexist. This way, conflicts
could be usefully detected and avoided or prevented, given
sufficiently accurate CPU requirements specifications for
each scheduler and/or { scheduler, application} pair.

9. Conclusion
This paper has described an infrastructure that allows

multiple scheduling policies to coexist simultaneously in
an operating system. It has shown that scheduling policy
modules may be developed separately from the base
operating system, and that these policy modules can be
dynamically loaded and unloaded from a running system
as needed. It has demonstrated that both this
infrastructure and loadable schedulers can be simple to
implement, even for commercial operating systems of the
complexity of Windows NT.

The addition of these capabilities resulted in no
measurable performance penalty when loadable schedulers
are not in use. Furthermore, loadable schedulers can
operate with nearly the same efficiency as the native
system scheduler.

We found that having a loadable scheduler
infrastructure makes it easy to experiment with and utilize
different schedulers, providing special-purpose scheduling
within a general-purpose system. One unanticipated
benefit of loadable schedulers is that they enable rapid
prototyping of new scheduling algorithms by often
removing the time-consuming reboot step from the
traditional edit/compile/reboot/debug cycle.

Furthermore, and possibly most importantly,
providing this form of operating system extensibility frees
the operating system designer from having to anticipate all
possible scheduling behaviors required by applications.
Instead, it allows new scheduling policies to be developed
and used without requiring changes to the base operating
system.

Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998

 10

While this work was conducted within the Windows
NT 4.0 kernel, we believe that many of the ideas and
implementation techniques presented in this paper should
be applicable to other operating systems, providing them
the same scheduling flexibility that is present in Vassal.

Acknowledgements
We want to thank Bill Bolosky, Rich Draves,

Johannes Helander, and Rick Rashid for their ideas,
suggestions, and practical advice during this project.
Andrea Arpaci-Dusseau provided useful information on
Solaris scheduling classes. Emin Gün Sirer explained fine
points of SPIN scheduling. Thanks are also due to Patricia
Jones for her technical editing and moral support and to
George Jones for the timely use of his computing
environment.

References
[Bershad et al. 95] Bershad, S. Savage, P. Pardyak, E.G. Sirer,

D. Becker, M. Fiuczynski, C. Chambers, and S. Eggers,
“Extensibility, Safety and Performance in the SPIN
Operating System,” Proceedings of the 15th ACM
Symposium on Operating System Principles, pp. 267-284,
Dec. 1995.

[Clark et al. 92] D. D. Clark, S. Shenker, and L. Zhang,
“Supporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechanism”
Proceedings of ACM SIGCOMM ‘92, pp. 14-26, Aug. 1992

[Corbató & Daggett 62] F.J. Corbató , M. Merwin-Daggett, R.C.
Daley, “An Experimental Time-Sharing System”,
Proceedings of AFIPS Spring Joint Computer Conference,
pp. 335-344, 1962.

[Deng & Liu 97] Z. Deng and J. W.-S. Liu. “Scheduling Real-
Time Applications in an Open Environment” , Proceedings
of the 18th IEEE Real-Time Systems Symposium, San
Francisco, pp. 308-319, Dec. 1997.

[Dusseau et al. 96] A.C. Dusseau, R.H. Arpaci, D.E. Culler,
“Effective Distributed Scheduling of Parallel Workloads,”
Proceedings of Sigmetrics ‘96 Conference on the
Measurement and Modeling of Computer Systems, pp. 25-
36, May 1996.

[Engler et al. 95] D.R. Engler, M.F. Kaashoek, J. O’Toole Jr.,
“Exokernel: an Operating System Architecture for
Application-Specific Resource Management,” Proceedings
of 15th ACM Symposium on Operating System Principles,
pp. 251-266, Dec. 1995.

[Ford & Susarla 96] B. Ford and S. Susarla, “CPU Inheritance
Scheduling,” Proceedings of the Second Symposium on
Operating Systems Design and Implementation, pp. 91-105,
Oct. 1996.

[Goodheart & Cox 94] B. Goodheart and J. Cox, The Magic
Garden Explained: the Internals of UNIX System V Release
4, an Open Systems Design, Sydney, Prentice Hall, 1994.

[Goyal et al. 96] P. Goyal, X. Guo, H. M. Vin, “A Hierarchical
CPU Scheduler for Multimedia Operating Systems,”
Proceedings of the Second Symposium on Operating
Systems Design and Implementation, pp. 107-121, Oct.
1996.

[Hsue & Lin 96] C. Hsueh and K. Lin, “Optimal Pinwheel
Schedulers Using the Single-Number Reduction

Technique,” Proceedings of the IEEE Real-Time Systems
Symposium, Dec. 1996.

[Jones et al. 97] Michael B. Jones, Daniela Ro� u, Marcel-
C� t � l in Ro� u. “CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent
Activities” , In Proceedings of the 16th ACM Symposium on
Operating System Principles, St-Malo, France, pp. 198-211,
Oct. 1997.

[Kaashoek et al. 97] D.R. Engler, M.F. Kaashoek, J. O’Toole
Jr., “Application Performance and Flexibility on Exokernel
Systems,” Proceedings of the 16th ACM Symposium on
Operating System Principles, Oct. 1997.

[Kay & Lauder 88] J. Kay and P. Lauder, “A Fair Share
Scheduler,” Communications of the ACM, Vol. 31, No. 1,
pp. 44-55, 1988.

[Kleinrock 74] L. Kleinrock, Queueing Systems. Volume 1, New
York: John Wiley, 1974.

[Lampson 68] B.W. Lampson, “A Scheduling Philosophy for
Multiprogramming Systems,” Communications of the ACM,
Vol. 10, pp. 613-615, May 1968.

[Liu & Layland 73] C. L. Liu and James W. Layland,
“Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment,” Journal of the ACM, Vol. 20, No.
1, pp. 46-61, Jan. 1973.

[Nieh & Lam 97] J. Nieh and M. S. Lam, “The Design,
Implementation and Evaluation of SMART: A Scheduler
for Multimedia Applications” Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pp. 184-197,
Oct. 1997.

[Northcutt 88] J. D. Northcutt, “The Alpha Operating System:
Requirements and Rationale” Archons Project Technical
Report #88011, Dept. of Computer Science, Carnegie-
Mellon, Jan. 1988.

[Ousterhout 82] J.K. Ousterhout, “Scheduling Techniques for
Concurrent Systems,” Proceedings of the 3rd International
Conference on Distributed Computer Systems, pp. 22-30,
Oct. 1982.

[Ritchie 84] Dennis M. Ritchie, “A Stream Input-Output
System”, AT&T Bell Laboratories Technical Journal, Vol.
63, No. 8, Oct. 1984.

[Seltzer & Small 97] M.I. Seltzer, C. Small, “Self-monitoring
and Self-adapting Operating Systems,” Proceedings of the
6th Workshop on Hot Topics in Operating Systems, pp. 124-
129, May 1997.

[Sha et al. 90] L. Sha, R. Rajkumar, and J. P. Lehoczky,
“Priority Inheritance Protocols: An Approach to Real-Time
Synchronization,” IEEE Transactions on Computers, Vol.
39, No. 9, pp. 1175-1185, Sep. 1990.

[Solomon 98] David A. Solomon. Inside Windows NT, Second
Edition. Microsoft Press, 1998.

[Waldspurger 95] C.A. Waldspurger, “Lottery and Stride
Scheduling: Flexible Proportional-Share Resource
Management,” Ph.D. dissertation, Massachusetts Institute of
Technology, Sep. 1995. Also appears as Technical Report
MIT/LCS/TR-667.

