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Abstract 
This paper presents Vassal, a system that enables 

applications to dynamically load and unload CPU 
scheduling policies into the operating system kernel, 
allowing multiple policies to be in effect simultaneously. 
With Vassal, applications can utilize scheduling 
algorithms tailored to their specific needs and general-
purpose operating systems can support a wide variety of 
special-purpose scheduling policies without implementing 
each of them as a permanent feature of the operating 
system. We implemented Vassal in the Windows NT 4.0 
kernel. 

Loaded schedulers coexist with the standard Windows 
NT scheduler, allowing most applications to continue 
being scheduled as before, even while specialized 
scheduling is employed for applications that request it. A 
loaded scheduler can dynamically choose to schedule 
threads in its class, or can delegate their scheduling to the 
native scheduler, exercising as much or as little control as 
needed.  Thus, loaded schedulers can provide scheduling 
facilities and behaviors not otherwise available.  Our 
initial prototype implementation of Vassal supports two 
concurrent scheduling policies:  a single loaded scheduler 
and the native scheduler.  The changes we made to 
Windows NT were minimal and they have essentially no 
impact on system behavior when loadable schedulers are 
not in use.  Furthermore, loaded schedulers operate with 
essentially the same efficiency as the default scheduler.  
An added benefit of loadable schedulers is that they enable 
rapid prototyping of new scheduling algorithms by often 
removing the time-consuming reboot step from the 
traditional edit/compile/reboot/debug cycle. 

In addition to the Vassal infrastructure, we also 
describe a “proof of concept”  loadable real-time scheduler 
and performance results. 

1. Introduction 
A primary function of operating systems is to 

multiplex physical resources such as CPU, memory, and 
I/O devices among application programs. The CPU is one 
of the primary resources, and hence, it is important to 
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schedule it effectively. This raises the question: what is 
the best algorithm to schedule tasks on the available 
CPUs? 

The answer, of course, strongly depends upon the mix 
of tasks to be run, the demands that they place on the 
different resources in the system, and the relative values of 
the various outcomes that will result from different 
scheduling decisions. In the limit, for an operating system 
to perform optimal scheduling of its CPUs, it would need 
perfect knowledge of the future behavior and requirements 
of all its applications. 

Most “general purpose”  systems have used algorithms 
which know either nothing or next-to-nothing about the 
actual CPU resource needs of the tasks being scheduled. 
Examples include “First-Come, First Served”  used in early 
batch systems and Round-Robin in multi-tasking systems. 
Later algorithms such as Priority Queues ([Corbató & 
Daggett 62], [Lampson 68]), Fair Share Scheduling ([Kay 
& Lauder 88]), and typical dynamic priority boost/decay 
algorithms still had the property that they were essentially 
ignorant of the actual CPU needs of their applications. 

Imperfect, but nonetheless adequate, future 
knowledge is possible for some fixed task sets with well-
characterized computation patterns. Whole families of 
scheduling disciplines have arisen in the computer systems 
research community to provide appropriate scheduling for 
some such classes. Examples are: Earliest Deadline First 
([Liu & Layland 73]), Weighted Fair Queuing ([Clark et 
al. 92]), Pinwheel Scheduling ([Hsue & Lin 96]), and 
Proportional Share CPU allocation mechanisms 
([Waldspurger 95], [Goyal et al. 96]), plus techniques such 
as Rate Monotonic Analysis ([Liu & Layland 73]) and 
Priority Inheritance ([Sha et al. 90]). Similarly, Gang 
Scheduling ([Ousterhout 82]) and Implicit Coscheduling 
([Dusseau et al. 96]) were developed for parallel 
workloads where the forward progress of members of a 
task set is closely dependent upon the progress of other 
tasks in the set. 

But today’s general purpose operating systems do not 
provide such specialized scheduling algorithms. Some of 
the more popular operating systems provide a primitive 
differentiation between the different scheduling classes by 
mapping them onto different priorities (e.g., System V 
Release 4 [Goodheart & Cox 94], Windows NT [Solomon 
98]) and then scheduling higher priority tasks more often 
or for longer periods of time. However, it is extremely 
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hard to properly map requirements such as predictability, 
throughput, fairness, turnaround time, waiting time, or 
response time onto a fixed set of priorities. Moreover, 
different applications may use different mappings, 
defeating their purpose. For instance, when co-existing 
applications do not share coordinated priority mappings or 
goals, it is common for applications wanting “real-time 
performance”  to raise their priority to the highest one 
available under the assumption that they are “ the most 
important”  task in the system  — a phenomenon known as 
“priority inflation” . Priorities are, at best, a rather 
primitive way of describing the relative performance 
requirements of the threads and processes that belong to 
the different classes. 

Other systems ([Northcutt 88], [Jones et al. 97], [Nieh 
& Lam 97], etc.) have tried to strike a compromise, 
providing some application timing and resource advice to 
the system, giving it imperfect, but useful information 
upon which to base scheduling decisions. 

Such large numbers of different scheduling 
algorithms are an indication that scheduling is, and will 
likely remain, an active area of research.  No one 
algorithm will work best in all cases (despite many valiant 
attempts by system builders to demonstrate otherwise). In 
fact, [Kleinrock 74] shows that any scheduling algorithm 
that favors a certain class of tasks will necessarily hurt 
another class.  A single scheduling policy will always 
represent a compromise and the service offered by the 
system will unavoidably reflect this compromise. 

Our Proposed Solution 
As discussed above, we believe that any particular 

choice of scheduling algorithm will fail to address the 
needs of some classes of applications, particularly when 
independent applications with different scheduling 
requirements are concurrently executed. Rather than 
attempting to devise yet one more “good compromise”  we 
explored a different approach. 

We decided to find out whether we could dynamically 
extend systems with scheduling algorithms. While nearly 
all modern established operating systems can be partially 
extended via loadable modules (e.g., Linux, Solaris, 
Windows NT) and extensible systems are a very active 
area of research ([Bershad et al. 95], [Engler et al. 95], 
[Seltzer & Small 97]), none of these systems allowed 
arbitrary scheduling policies to be implemented as 
extensions — motivating our work on Vassal. 

The results were quite positive: it was straightforward 
to modify a modern commercial operating system, in this 
case Windows NT 4.0, in order to allow independently 
developed and compiled schedulers to be dynamically 
loaded into (and unloaded from) the operating system at 
run-time. 

The loaded schedulers can take control of as many or 
as few of the system’s scheduling decisions as desired. For 
instance, in our implementation, the existing Windows NT 
scheduler was retained, so a loaded scheduler can always 
fall back upon the default system scheduler if it chooses 

not to make a particular scheduling decision. And in the 
case when no loadable scheduler is present, the system 
works exactly as it would have were the loadable 
scheduler support not there. 

The modifications resulted in no measurable 
performance penalty when loadable schedulers are not in 
use.  Furthermore, loadable schedulers can operate with 
nearly the same efficiency as the native system scheduler. 
Finally, having a loadable scheduler infrastructure makes 
it easy to experiment with different schedulers, providing 
special-purpose scheduling on a general-purpose system. 

The present Vassal implementation is clearly a 
prototype, with some limitations.  For instance, at present 
we only support the simultaneous coexistence of two 
schedulers: the Windows NT scheduler and a single 
loaded scheduler.  Nonetheless, we believe that the 
techniques and results obtained with the prototype will 
remain valid once these limitations are removed.   For 
more on this topic, see Section 8. 

In the following sections we provide some 
background on the system we started with, describe the 
particular system we built in more detail, and then show 
what transformations we made to the vanilla system. We 
present a “proof-of-concept”  real-time scheduler that we 
wrote, followed by performance measurements. We then 
discuss the experiences we had while building and 
experimenting with the loadable multi-policy scheduler 
support and conclude. 

2. Background 
This section provides background information on 

some of the features of Windows NT 4.0 relevant to our 
loadable scheduler work. We describe the native scheduler 
and its implementation, and also present briefly the NT 
driver model. 

Windows NT Scheduling M odel 
Windows NT uses threads as its basic schedulable 

unit.  Threads can exist in a number of states, the most 
important ones being: Running (executing on a processor), 
Standby (has been selected for execution on a processor 
and is waiting for a context switch to occur), Ready (ready 
to execute but not running or standing by), Waiting (either 
waiting on a synchronization object, such as a semaphore, 
waiting for I/O to complete, or has been suspended), and 
Terminated (the thread is not executing anymore and may 
be freed or recycled). 

The thread dispatcher is responsible for scheduling 
the threads and it does this based on two thread 
characteristics: 

• priority (higher priority threads are scheduled before 
lower-priority ones); 

• processor affinity (threads may have preferences for a 
certain processor in multi-processor systems and this 
is accounted for when scheduling it). 

Windows NT provides a set of 32 priorities, which are 
partitioned into three groups: 
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1. The Real-Time scheduling class, which includes the 
highest priorities in the system (16-31). Threads 
belonging to this class can gain exclusive use of all 
scheduled time on a processor if there is no runnable 
thread with a higher priority in the system. 

2. The Variable priority scheduling class, which 
includes priorities 1-15. Threads belonging to this 
class are subject to priority drops (e.g., when the 
thread’s time quantum runs out) or priority boosts 
(e.g., when awaited I/O completes). As can be seen, 
the priority of a CPU-bound thread in this class 
decays over time, unlike threads in the Real-Time 
class. 

3. Priority 0 is the lowest priority and is reserved for the 
so-called idle thread. This thread runs whenever there 
is no ready thread available in the system. 

It is important to note that under Windows NT, not all 
CPU time is controlled by the scheduler.  Of course, time 
spent in interrupt handling is unscheduled, although the 
system is designed to minimize hardware interrupt 
latencies by doing as little work as possible at interrupt 
level and quickly returning from the interrupt. The 
mechanism that ensures this is Deferred Procedure Calls 
(DPCs). DPCs are routines executed within the Windows 
NT kernel in the context of no particular thread in 
response to queued requests for their execution.  For 
example, DPCs check the timer queues for expired timers 
and process the completion of I/O requests. The way 
hardware interrupt latency is reduced is by having 
interrupt handlers queue DPCs to finish the processing 
associated with the interrupt and then return. Due to their 
importance, DPCs are executed whenever a scheduling 
event is triggered, prior to starting the scheduled thread, 
and they do not count against any thread’s time slice. 

Windows NT Scheduler Implementation 
A scheduling request can be generated by a number of 

events. Some of these are: 
• The time quantum of a running thread expires. 
• Thread state changes, such as when a thread enters the 

Ready state or when the currently running thread 
enters the Waiting or Terminated state. 

• When the priority or affinity of a thread in the system 
is changed from outside the scheduler (e.g., by the 
SetThreadPriority() call). 

Whenever the hardware clock generates an interrupt, 
the Hardware Abstraction Layer (HAL), which exports a 
virtual machine to the NT kernel, processes the interrupt 
and performs platform-specific functions. After that, 
control is given to the kernel. At this point the kernel 
updates a number of counters, such as the system time, 
and inspects the queue that contains timers. For every 
expired timer it queues an associated DPC. After that it 
decrements the running thread’s time quantum and checks 
whether it has run out. If yes, it issues a DISPATCH 
software interrupt on the corresponding processor. All 

events that trigger scheduling raise DISPATCH software 
interrupts. 

The DISPATCH software interrupt then invokes a 
kernel handler which first runs all the queued DPCs. After 
this, the thread dispatcher is ready to make a scheduling 
decision. 

The set of data structures used by the NT dispatcher 
are collectively known as the dispatcher database. This set 
contains information about which threads are running on 
which processors, which threads are ready to run, etc. The 
most important data structure is the set of thread queues 
that keep track of threads in Ready state; there is one such 
queue for each priority (except 0). Whenever scheduling is 
triggered, the scheduler/dispatcher walks the Ready thread 
queues in decreasing order of priority. It then schedules 
the first thread it finds, provided the thread’s processor 
affinity allows it to be scheduled on the free processor. 
The thread is prepared for execution (if not currently 
running), a context switch is performed, and then the 
DISPATCH service routine returns from the interrupt. 

The NT kernel provides a system call, 
NtSetTimerResolution(), which allows the frequency of 
clock interrupts to be adjusted. Specifically, when an 
application needs high resolution timers, it may choose to 
lower the time between clock interrupts from the default 
(typically 10ms) to the minimum supported (typically 
1ms). 

Of particular importance to scheduling is the fact that 
the HAL does not export a programmable timer to the 
kernel, which denies the kernel the ability to reschedule at 
a precise point in time. For instance the programmable 
timer available on x86 PCs is used by the HAL as a 
countdown timer that is repeatedly set to the current 
interval between interrupts (so it is essentially used as a 
periodic timer).  Most other non-real-time operating 
systems running on the x86 do the same. 

Windows NT Driver M odel 
Drivers in Windows NT do much more than 

traditional device drivers, which just enable the kernel to 
interface to hardware devices. NT drivers are more of a 
general mechanism by which NT can be extended.  For 
example, under NT, filesystems, network protocol 
implementations, and hardware device management code 
are all separately compiled, dynamically loadable device 
drivers.  Drivers reside in kernel space, can be layered on 
top of each other, and communicate among themselves 
using I/O Request Packets (IRPs) in a manner reminiscent 
of UNIX System V Streams modules [Ritchie 84]. 
Applications typically send and receive data to and from 
the drivers via the same path. 

3. Loadable Scheduler  Design 
This section describes the design of the infrastructure 

that allows scheduling policies to be loaded and unloaded 
at run-time.  It is intended to provide a guide to 
implementing such a system, while omitting OS-specific 
details, which are discussed in the following section. 
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The basic idea is to modify the thread dispatcher 
inside the kernel so that it handles multiple scheduling 
policies. It is the decision making component of a 
scheduler that contains all the policy, so we chose to 
externalize the decision-making by encapsulating it in 
loadable drivers, while leaving all the dispatching 
mechanism in the kernel. We wish to replace the statement 
“ the dispatcher decides which thread to run”  with “ the 
dispatcher queries the schedulers for which thread to run.”   
The maintenance of the thread queues, being a chore 
specific to the decision making process, is done by the 
external schedulers themselves. The in-kernel dispatcher 
simply expects a reference to the appropriate thread data 
structure from the scheduler it queries.  Figure 1 shows the 
conceptual architecture of Vassal with an example in 
which there are four tasks running on the system (T1, T2, 
T3, T4) and there are currently two schedulers available (A 
and B). 

The Vassal dispatcher manages the schedulers and 
dispatches/multiplexes messages between the kernel and 
the schedulers.  It is responsible for: 

• Receiving scheduling requests from the kernel and 
deciding which scheduler to query. 

• Relaying the scheduler’s response to the application. 
• Deciding whether a scheduler that is attempting to 

load would conflict with already existing schedulers. 
The scheduler is loaded only if there are no conflicts. 

• Enabling communication between threads and 
schedulers. 

Scheduling 
When a DISPATCH software interrupt is generated, 

an interrupt service routine is invoked and eventually 
hands control over to the dispatcher. The dispatcher then 
decides which scheduler to query.  In our current model, 
we simply use a hierarchy of schedulers (with the external 
scheduler being at the top), so that if a higher level 
scheduler does not have a ready thread, then the next one 
(in descending order) is queried.  Section 8 describes other 
possible ways of managing relationships between 
schedulers. Once a scheduler responds with a runnable 
thread, the dispatcher can perform a context switch (if 
necessary), schedule the thread, and return. 

It may seem that, by using a hierarchy of schedulers, 
we are essentially making the decisions based on a set of 

priorities. However, there is a significant difference 
between scheduler hierarchy and thread hierarchy: the 
scheduler priorities have nothing to do with what the 
threads think is more important (which would motivate 
their choices for priorities) rather it has to do with implicit 
relationships between the schedulers that result from their 
CPU resource requirements. 

Thread Creation 
Newly created threads initially execute using the 

system’s default scheduler.  It can then make explicit 
requests to be scheduled by other schedulers.  Other 
approaches could have equally well been taken.  For 
instance, a thread could inherit its parent’s scheduling 
class, or an explicit scheduler parameter could have been 
provided to an extended thread creation call. 

Here is an example scenario.  A task (e.g., T2) is 
created and associated with the default scheduler (e.g., A). 
After running for a while, T2 makes a system call to 
inform the system that it now wants to switch to another 
scheduler. The kernel relays this information to the desired 
scheduler, which in turn removes the task from the 
previous scheduler’s jurisdiction. From this point on, the 
new scheduler has sole ownership over T2’ s schedule 
(until the task decides to switch again). 

Communication between Threads and 
Schedulers 

For optimal scheduling decisions, every scheduler 
needs semantic information about the intentions and 
requirements of the threads under its jurisdiction. Once 
provided with this information, schedulers can make the 
appropriate scheduling decisions. For this reason, the 
operating system interface needs a system call that allows 
threads to communicate with a scheduler of their choice. 
The dispatcher receives this stream of messages from the 
kernel and demultiplexes it. By this means, a thread could 
inform its scheduler that it wants to communicate with a 
thread on another processor and, thus, the scheduler 
should attempt to schedule that thread concurrently with 
the requesting thread. 

One question that arises naturally is whether the use 
of the external schedulers would negatively impact 
performance, given that on every timer interrupt there 
would be a query going out to these schedulers.  However, 
the critical path followed by these queries turns out to be 
very short, because the only added time is that of 
performing a small number of memory reads from non-
pageable memory.  Remember that schedulers (being 
drivers) reside in the kernel address space.  As our results 
suggest, this added overhead is negligible and is clearly 
offset by the gains in scheduling performance. Also, in a 
multi-threaded kernel such as NT’s, it is possible for the 
schedulers to avoid making decisions on the critical path 
by having their decisions ready before they are queried. 

Another issue we considered was whether a thread 
that was not selected for execution by its current scheduler 
could be selected by another scheduler.  For instance, one 

Kernel Dispatcher

Net Disk CPU Video

Task
1

Task
2

Task
3

Task
4

Policy A: T1, T3, T4

Policy B: T2

Figure 1: The Loadable Scheduler Infrastructure 
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could view this as happening in [Jones et al. 97] when a 
thread’s CPU reservations and/or time constraints do not 
cause it to be selected, but it is nonetheless selected by the 
default round-robin policy.   As this is more general, we 
opted to allow this (while also making it possible for a 
scheduler to prevent it).  One example of our use of multi-
policy scheduling is that a thread not selected by the 
sample scheduler described in Section 5 can typically still 
be selected by the default scheduler. 

4. Vassal Implementation 
This section describes the Vassal implementation, 

including the modifications and additions we made to the 
Windows NT kernel in order to support multiple 
schedulers.  An overview of the structure of the Vassal 
implementation within Windows NT is shown in Figure 2. 

First of all, we needed to add a way for the 
scheduler/driver to notify the system that it is being 
loaded. For this we added a kernel function for scheduler 
drivers: 
 

Regi st er Schedul er ( schedul er ,  
deci s i on_maker ,  message_di spat cher )  

 

The decision_maker parameter to RegisterScheduler() 
is the address of a function to be called when a scheduling 
decision needs to be made.  This function must either 
return a runnable thread to be scheduled or NULL, which 
indicates that the loaded scheduler has no opinion as to 
which thread should be scheduled.  In this case, Vassal 
calls the next scheduler in the hierarchy, allowing it to 
make the scheduling decision.  (In the present prototype 
this means the decision is always delegated to the built-in 
scheduler.) 

The message_dispatcher parameter to 
RegisterScheduler() is the address of a function to be 
called to handle messages from threads to the scheduler.  
This routine handles requests sent via the 

MessageToScheduler() system call, which is described 
below. 

In response to the RegisterScheduler() call, Vassal 
saves these parameters of the loaded scheduler and 
activates the new scheduler.  We also provide a matching 
UnregisterScheduler() function, which allows a scheduler 
to be unloaded cleanly (using the customary procedure for 
unloading drivers). 

For applications to be able to communicate with the 
schedulers, we added a new system call: 
 

MessageToSchedul er ( schedul er ,  buf f er ,  
buf l en)  

 

by which an application can send a message (in 
buffer) to a loaded scheduler. Upon receiving this call, the 
scheduler’s message_dispatcher routine will be invoked, 
passing the buffer contents as a parameter.  The scheduler 
then performs the action specified by the buffer contents.  
When the routine completes, its return value is returned to 
the application.  Note that MessageToScheduler() need not 
return immediately; it is free to block or take any action 
that a regular driver could take. 

Of course, given that loaded schedulers are full-
fledged Windows NT device drivers, one might ask why 
we added the MessageToScheduler() system call at all — 
why not just use standard device Read() and Write() 
operations to communicate with the scheduler? As 
described in Section 2, these user-space operations 
generate I/O Request Packets (IRPs) that would travel 
through the I/O subsystem and eventually reach the 
scheduler/driver. In fact, we initially did use IRPs to 
communicate with loaded schedulers. 

We added the MessageToScheduler() system call 
because we found that, in practice, the amount of time it 
would take requests to reach the scheduler via the standard 
I/O path was too unpredictable for the time-critical 
services that the external scheduler is intended to provide, 
especially for the kinds of real-time schedulers we were 

Kernel Clock IRQ

Drivers

Vassal
Dispatcher

Native
Scheduler

Loaded
Scheduler

Request Decision Request Decision

SetSchedulerEvent

RegisterScheduler

Other dynamically loaded
drivers (file systems,

network protocols, device
drivers, redirectors, etc.)

Other kernel
components

Protected subsystems
(servers)

Application
Thread

SetThreadPriority

MessageToScheduler

Specific APIs

I/O Request Packets

Specific APIs

Hardware Abstraction Layer (HAL)

Figure 2: Integration of Vassal into Windows NT 4.0 



Proceedings of the Second USENIX Windows NT Symposium, Seattle, Washington, pp. 157-166, August 1998 
 

 6

attempting to construct.  The system call gave Vassal both 
lower and more predictable latency. 

One capability that is essential for many kinds of 
schedulers (in particular, real-time) is the ability for the 
scheduler to cause an action at a designated time. As a 
basis for providing this capability, we added an internal 
kernel function available to schedulers: 
 

Set Schedul er Event ( schedul er ,  
per f or mance_count er _r eadi ng)  

 

This call instructs the kernel to call the scheduler’s 
decision_maker function whenever the system 
performance counter’s value (a monotonically increasing 
system-provided low-latency 64-bit real-time timer 
provided by the HAL) is greater than or equal to 
performance_counter_reading.  This facility allows 
schedulers to set deadlines.  There is a matching 
CancelSchedulerEvent() function that cancels the call. 

To support the functionality described above, we 
made modifications to the routine that services the 
DISPATCH software interrupts. Its function is to process 
the Deferred Procedure Call (DPC) list, query the 
scheduler if necessary and then perform a context switch if 
a new thread has been selected for execution on the 
processor.  We needed to add a hook that would substitute 
calling the loaded scheduler’s decision function, when one 
is available, in place of querying the built-in scheduler. 
Additionally, for the servicing of scheduler events, we 
needed to further modify this routine so that it would 
check on every clock interrupt whether the performance 
counter reading had reached the desired value and, if so, 
trigger a scheduling decision. 

Given that drivers do not have full access to kernel 
data structures, we also needed to add a number of simple 
methods that allow schedulers to manipulate and gain 
access to parts of those data structures. This new 
functionality includes finding which CPU is currently 
being scheduled, what the status of a thread is, 
removing/adding threads from/to the pool of natively 
scheduled threads, and preempting a thread. 

5. A Sample Scheduler  
We wrote a simple real-time scheduler as a proof of 

concept.  It was rather straightforward (116 lines of C 
code).  This scheduler allows threads to request that they 
be scheduled at a particular time, which exercises the key 
operation needed to implement more interesting time-
based scheduling primitives, such as time constraints 
[Jones et al. 97].  Using this scheduler, we can easily write 
timers that have a much higher accuracy and resolution 
than the multimedia timers offered by Windows NT 
(multimedia developers choose to use buffering and a 
number of other tricks to circumvent the limitations of NT 
timers; with our scheduler, this would be unnecessary).  
Section 6 shows the measured latencies for these timers. 

In order for the sample real-time scheduler to achieve 
its goal, we made two important decisions: 

• We added the concept of a settable event and added a 
call to the kernel interface (as described in the 
previous section) that would allow a driver to set such 
an event.  In essence, we enable a driver to request 
that it be given control of the CPU at a specific point 
in time based on the value of the performance 
counter.  This counter is typically both a precise and 
accurate way of measuring time.  On x86 CPUs using 
standard HALs, for instance, its resolution is 0.838µs.  
It might seem that we essentially modified the kernel 
to provide support for a specific scheduler.  However, 
we made this modification because we saw it as a 
useful feature for many types of schedulers (for 
instance if they need to perform certain actions at 
regular intervals or they need to synchronize with 
other processes based on time). 

• If the requested time constraint cannot be met because 
it is very short (e.g., a time constraint of 200µs), we 
choose to spin in a loop until the time comes to 
schedule the thread.  We cannot presently count on a 
higher accuracy than 1ms from the HAL (see Section 
8), so we used this admitted hack in the sample 
scheduler (not the kernel code) to achieve higher 
resolution for one thread. 

Note that we have not implemented on-demand 
loading of schedulers but it would be very simple to do. 
Currently, in order to load the real-time scheduler and 
have it coexist with the native scheduler the system 
administrator uses the Control Panel and select the 
appropriate driver.  It can be unloaded in the same way. 

The following code snippet shows a simple thread 
using the real-time scheduler. 
 

/*  Tell system to use the real-time scheduler * / 
status = MessageToScheduler (rt_sched, { JOIN} ); 
if (status != SUCCESS) {  
 error (“Could not join R/T scheduling class.” ); 
}  
/*  Calculate how long our loop iterations take * / 
estimate = Calibrate(); 
/*  Start the loop 1 ms from now * /  
status = MessageToScheduler (rt_sched, { SET, 1000} ); 
if (status != SUCCESS) {  
 error (“Could not set deadline.” ); 
}  
/*  We want one iteration every 300 µs * /  
while (1) {  
 status = MessageToScheduler (rt_sched, { SET, 300 – 

estimate} ); 
 … 
}  
 

The function Calibrate() computes an estimate of 
how long it will take to perform each loop iteration.  
Notice the use of a single system call to communicate with 
the scheduler.  Figure 3 details the actions that are 
triggered by the various steps in the program. 
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The first two system calls translate into messages 
delivered directly to the loaded scheduler; if the thread’s 
request can be satisfied, it returns a status of SUCCESS.  
The scheduler then updates its data structures to reflect the 
thread’s requirements and sets the event mentioned above 
to the appropriate performance counter reading (the 
constraint interval of 1ms is large enough to do this). 
Then, when the event occurs, the scheduler is notified and 
asked for a runnable thread.  As a result, the scheduler 
sees that the deadline has arrived for the requesting thread 
and instructs the kernel to schedule it.  Note that the 
setting of the event takes into account the fixed time 
Tpredicted, which is the platform-dependent time it takes for 
a message to make it through the critical path (as 
described in Section 3). 

An important property of the scheduler is that if it is 
unable to satisfy the thread’s request, it informs it right 
away (via the return code of MessageToScheduler).  This 
is in contrast to what happens on most general purpose 
operating systems, where the thread expecting to meet a 
certain deadline finds out it cannot make it barely after it 
has already missed the deadline. Using the information 
given by our real-time scheduler, the application could 
adjust and decide to take some action that can compensate 
for the missed deadline. 

The current method of keeping a thread spinning if 
the time constraint is very small is not a very clean 
solution.  However, other means of obtaining the desired 
accuracy would require more substantial changes to the 
underlying kernel and, more importantly, to the HALs.  
Such solutions would be more difficult to adopt. 

6. Results 
Code Size Results 

The Vassal changes made to the Windows NT kernel 
to support multi-policy scheduling added 188 lines of C 
code, added 61 assembly instructions, and replaced 6 
assembly instructions. 

The proof-of-concept external scheduler described 
earlier required only 116 lines of C code and no assembly 
language.  We believe these are extremely low code size 
numbers for the increased functionality that we achieved. 

Performance Results 
One of the primary criteria against which any 

loadable scheduler support would be judged when added 
to a production operating system would be whether it 
makes things any worse for applications not using it.  We 
are happy to report that, when a loadable scheduler is not 
in use, our changes have no performance impact on 
system performance. 

One value that the use of loaded schedulers might be 
expected to change is the context switch time.  To measure 
the performance impact of our changes, we ran a program 
that recorded actual context switch times as observed from 
user space by 10 threads, over a period of 10 seconds.  
Times were collected using the Pentium cycle counter on a 
133MHz Pentium PC.  Table 1 shows the results. 
 

System Version Median Avg. Std. 
Dev. 

Vanilla NT 4.0 (released) 17.03 18.71 4.17 
Vanilla NT 4.0 (rebuilt) 19.95 19.88 1.64 
Vassal (no loaded scheduler) 19.71 19.71 1.56 
Vassal (sample scheduler 
loaded) 

21.32 21.17 1.28 

Table 1: Measured context switch times on a Pentium-133 
running the original and the modified systems (in µs). 

We first explain the difference in the first two sets of 
data.   The “Vanilla NT 4.0 (released)”  figures are from 
the product version of NT 4.0 Workstation.  The “Vanilla 
NT 4.0 (rebuilt)”  figures are for a kernel built from the 
identical NT 4.0 sources with no modifications.  However, 
the rebuilt version does not contain all of the binary 
optimizations contained in the product version.  This 
explains why it is roughly 6-7 percent slower than the 
product version.  All Vassal versions are built with the 

Event occurred
Request thread

Tpredicted

Scheduler

Kernel

Thread
RUN WAIT RUN

Update data
structures

Join real-time
scheduling class

Update data
structures

Set time
constraint

Set adjusted
event

Make scheduling
decision

Dispatch thread

 

Figure 3: The actions taken for the execution of the first part of the sample code 
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same optimizations as the rebuilt version.  Thus, the 
rebuilt version provides the correct basis for comparison. 

The good news is that the Vassal version of NT 4.0 
(with loadable scheduler support) with no scheduler 
loaded has essentially the same context switch time as the 
rebuilt version.  More precisely, their times differ by less 
than the variations seen while measuring the times, and 
thus exhibit no statistically significant difference. 

Finally, while loading the sample scheduler does 
increase the observed context switch time by about 8 
percent, we believe that this is within acceptable bounds, 
given the increased functionality and the fact that this cost 
is only incurred when the added functionality is actually 
used.  Furthermore, we believe it is likely that some of this 
8 percent overhead can be eliminated, given that the 
current prototype is essentially untuned. 

Sample Scheduler Results 
The proof-of-concept sample real-time scheduler 

implements one primitive thread scheduling operation not 
otherwise found in standard Windows NT:  a precisely 
timed thread wakeup.  In a loop, this can be used to 
perform periodic processing, such as doing a short 
operation once every millisecond. 

Standard Windows NT contains periodic multimedia 
timers that are designed for this kind of periodic 
processing.  This section compares the effectiveness of 
doing periodic wakeups once per millisecond with the 
loaded sample scheduler and NT’s multimedia timers.  
Table 2 shows the results. 
 

Method Min. Max. Avg. Std. 
Dev. 

NT Multimedia Timers 75 1566 996 82 
Sample Scheduler Events 996 1485 1002 21 

Table 2: Periodic wakeup times on a Pentium-133 using 
multimedia timers on the original system and the sample 
scheduler’s events on the modified system (in µs).  The 

desired value is 1ms. 

Two differences are evident in the results.  First, 
while using multimedia timers some wakeups occurred 
extremely early, as much as 925µs too soon.  With the 
sample scheduler wakeups occurred at most 4µs early. 

Second, predictability of the wakeups with the sample 
scheduler is significantly better than with the multimedia 
timers.  The standard deviation of the sample scheduler 
data is only a quarter of that for the multimedia timers. 

With both methods, some samples occurred up to 
~0.5ms late.  Initial studies indicate that these samples are 
due to interrupts, DPCs, and other non-scheduled system 
activities, although this bears further investigation. 

While extremely simple, we believe that this example 
begins to show the potential of extending the scheduling 
policies available to applications through the use of 
loadable schedulers. 

7. Related Work 
Windows NT was certainly not the first operating 

system to use priority classes.  For instance, UNIX System 
V Release 4 has a similar notion and supports three basic 
types (time-sharing, system, and real-time). The design 
allows for the incorporation of new priority classes, which 
can be described by a special class structure and compiled 
into the kernel ([Goodheart & Cox 94]). However, these 
priority classes always map their scheduling requirements 
onto global priority values and the scheduler runs the 
process with the highest global priority. Unlike Windows 
NT, these priorities are controlled to some extent by the 
in-kernel class-specific functions, which could have some 
global knowledge of the tasks running in the system. In 
spite of this, such a system is limited, primarily because: 

• New scheduling policies need to be hard-coded into 
the kernel; this implies the need for source code, 
which may not always be available. In addition, a 
programmer writing a new scheduling policy may not 
want to have to dive into kernel internals in order to 
implement the policy.  If the programmer writing 
extensions for a system needs to know as much about 
the system as the person who wrote it, then such 
extensions will likely never be written. 

• The first disadvantage implies the second:  scheduling 
policies cannot be dynamically added or removed at 
runtime, which makes the system less flexible and 
makes the debug cycle longer. 

Solaris does allow scheduling classes to be 
dynamically loaded into the kernel, although these classes 
are still subject to the restriction that they map their 
scheduling decisions onto a global thread priority space.  

A number of recent efforts are aimed at making 
operating systems extensible [Bershad et al. 95], 
[Kaashoek et al. 97], [Seltzer & Small 97]. However these 
do not have the same goals as Vassal and do not provide 
the same facilities. 

The one that offers scheduling features closest to 
Vassal is SPIN [Bershad et al. 95]. It offers applications 
the ability to provide their own thread package and 
scheduler, which can then execute in kernel space. This 
way applications can define their own thread semantics. A 
global scheduler implements the primary scheduling 
policy, which is a priority scheduler, with round-robin 
execution within each priority.  The global scheduler is 
not extensible.  Application-defined schedulers are layered 
on top of the global scheduler. However, this global 
scheduler may reclaim the CPU from any given strand, 
therefore no application-defined scheduler has any 
guarantee of when it will receive time to schedule.  Note 
that SPIN is addressing a different problem domain than 
we are.  It loads Modula-3 extensions into the kernel, 
which are limited by the type-safe characteristics of the 
language.  The purpose of this is to achieve protection.  In 
our model, the “extensions”  (i.e., the drivers) are trusted 
and therefore we do not need to protect against them. 
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Another body of work related to ours pertains to 
support for hierarchical scheduling.  In such systems, time 
allocated to one scheduler is sub-allocated to other 
dependent schedulers.  [Ford & Susarla 96] describes one 
such system. 

Finally, [Deng & Liu 97] propose a new hierarchical 
scheduler for Windows NT that provides timing 
guarantees for multiple independent hard real-time 
applications, while continuing to run normal applications. 

8. L imitations and Future Work 
The present Vassal implementation is definitely a 

prototype, and is subject to certain restrictions and 
limitations.  This section describes some of the present 
implementation limitations and possible future work. 

Some of the most severe limitations that Vassal 
loadable schedulers are presently subjected to are actually 
limitations of the underlying Windows NT system upon 
which they were built.  In particular, loadable schedulers 
(as well as the built-in scheduler) cannot exercise 
complete control over what code is run when. 

As described in Section 2, all system timer services 
are actually provided to the kernel through the Hardware 
Abstraction Layer (HAL), which does not provide an 
interface to cause an interrupt at a precise time.  Timer 
interrupts are only generated at the clock tick frequency, 
which while settable, is not settable to resolutions finer 
than 1ms for the standard x86 ISA PC HAL.  Thus, sub-
millisecond preemptive scheduling is effectively not 
implementable under NT in a clean way.  The PC 
hardware does support this capability; removing this 
restriction would involve adding precise non-periodic 
interrupt capabilities to the HAL interface and HAL 
implementations. 

Other sources of unscheduled time include DPCs and 
interrupts.  The system could be modified to schedule 
DPCs, although this would result in both additional 
overhead and greater code complexity.  We suspect that 
very little can be done to improve interrupt latencies 
beyond what the production system has already achieved. 

Another limitation present in the current Vassal 
implementation is that only one external scheduler may be 
loaded at once.  This is partly due to the slightly higher 
implementation complexity involved in managing the state 
of multiple loaded schedulers but actually mostly due to 
more fundamental policy issues that would need to be 
resolved to support arbitrary numbers of coexisting 
schedulers in a general way. 

The key policy issue is this: schedulers might have 
conflicting goals, or equivalently, might be running 
applications with conflicting goals.  For instance, if two 
schedulers want to run different code at precisely the same 
time on the same processor, the schedulers are in conflict.  
The question is what to do when schedulers’  goals collide. 

Our present implementation solves this by simple fiat 
— the loaded scheduler always takes precedence over the 
built-in scheduler.  Provided the built-in scheduler is 
occasionally given an opportunity to run, this does not 

violate its invariants, since it does not depend upon being 
run at any particular time, unlike real-time schedulers. 

Indeed, a similar strict decision hierarchy could be 
used among more than two coexisting schedulers, 
although this admits the possibility of loading two 
schedulers (or applications using them) with mutually 
incompatible requirements. 

One way to achieve conflict resolution would be by 
allowing loadable schedulers to describe the ways they 
will use the CPU.  For example, one scheduler may need 
“hard time”  (i.e. it needs the CPU at definite moments in 
time) while another one may only require a “share”  of the 
CPU (no matter when it occurs).  A simple way to 
describe such requirements would be by using predefined 
usage patterns (i.e. “hard time,”  “proportional share,”  
etc.).  A more sophisticated solution would involve the use 
of a formal language by which schedulers could express 
their requested usage pattern. 

Based on these usage descriptions, the dispatcher 
could determine whether a scheduler that is attempting to 
load would conflict with an already existing scheduler.  
For instance, multiple schedulers with “hard time”  
requirements will typically not coexist. This way, conflicts 
could be usefully detected and avoided or prevented, given 
sufficiently accurate CPU requirements specifications for 
each scheduler and/or { scheduler, application}  pair. 

9. Conclusion 
This paper has described an infrastructure that allows 

multiple scheduling policies to coexist simultaneously in 
an operating system.  It has shown that scheduling policy 
modules may be developed separately from the base 
operating system, and that these policy modules can be 
dynamically loaded and unloaded from a running system 
as needed.  It has demonstrated that both this 
infrastructure and loadable schedulers can be simple to 
implement, even for commercial operating systems of the 
complexity of Windows NT. 

The addition of these capabilities resulted in no 
measurable performance penalty when loadable schedulers 
are not in use.  Furthermore, loadable schedulers can 
operate with nearly the same efficiency as the native 
system scheduler. 

We found that having a loadable scheduler 
infrastructure makes it easy to experiment with and utilize 
different schedulers, providing special-purpose scheduling 
within a general-purpose system. One unanticipated 
benefit of loadable schedulers is that they enable rapid 
prototyping of new scheduling algorithms by often 
removing the time-consuming reboot step from the 
traditional edit/compile/reboot/debug cycle. 

Furthermore, and possibly most importantly, 
providing this form of operating system extensibility frees 
the operating system designer from having to anticipate all 
possible scheduling behaviors required by applications.  
Instead, it allows new scheduling policies to be developed 
and used without requiring changes to the base operating 
system. 
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While this work was conducted within the Windows 
NT 4.0 kernel, we believe that many of the ideas and 
implementation techniques presented in this paper should 
be applicable to other operating systems, providing them 
the same scheduling flexibility that is present in Vassal. 

Acknowledgements 
We want to thank Bill Bolosky, Rich Draves, 

Johannes Helander, and Rick Rashid for their ideas, 
suggestions, and practical advice during this project. 
Andrea Arpaci-Dusseau provided useful information on 
Solaris scheduling classes. Emin Gün Sirer explained fine 
points of SPIN scheduling.  Thanks are also due to Patricia 
Jones for her technical editing and moral support and to 
George Jones for the timely use of his computing 
environment. 

References 
[Bershad et al. 95]  Bershad, S. Savage, P. Pardyak, E.G. Sirer, 

D. Becker, M. Fiuczynski, C. Chambers, and S. Eggers, 
“Extensibility, Safety and Performance in the SPIN 
Operating System,”  Proceedings of the 15th ACM 
Symposium on Operating System Principles, pp. 267-284, 
Dec. 1995. 

[Clark et al. 92]  D. D. Clark, S. Shenker, and L. Zhang, 
“Supporting Real-Time Applications in an Integrated 
Services Packet Network: Architecture and Mechanism”  
Proceedings of ACM SIGCOMM ‘92, pp. 14-26, Aug. 1992 

[Corbató & Daggett 62]  F.J. Corbató , M. Merwin-Daggett, R.C. 
Daley, “An Experimental Time-Sharing System”, 
Proceedings of AFIPS Spring Joint Computer Conference, 
pp. 335-344, 1962. 

[Deng & Liu 97]  Z. Deng and J. W.-S. Liu.  “Scheduling Real-
Time Applications in an Open Environment” , Proceedings 
of the 18th IEEE Real-Time Systems Symposium, San 
Francisco, pp. 308-319, Dec. 1997. 

[Dusseau et al. 96]  A.C. Dusseau, R.H. Arpaci, D.E. Culler, 
“Effective Distributed Scheduling of Parallel Workloads,”  
Proceedings of Sigmetrics ‘96 Conference on the 
Measurement and Modeling of Computer Systems, pp. 25-
36, May 1996. 

[Engler et al. 95]  D.R. Engler, M.F. Kaashoek, J. O’Toole Jr., 
“Exokernel: an Operating System Architecture for 
Application-Specific Resource Management,”  Proceedings 
of 15th ACM Symposium on Operating System Principles, 
pp. 251-266, Dec. 1995. 

[Ford & Susarla 96]  B. Ford and S. Susarla, “CPU Inheritance 
Scheduling,”  Proceedings of the Second Symposium on 
Operating Systems Design and Implementation, pp. 91-105, 
Oct. 1996. 

[Goodheart & Cox 94]  B. Goodheart and J. Cox, The Magic 
Garden Explained: the Internals of UNIX System V Release 
4, an Open Systems Design, Sydney, Prentice Hall, 1994. 

[Goyal et al. 96]  P. Goyal, X. Guo, H. M. Vin, “A Hierarchical 
CPU Scheduler for Multimedia Operating Systems,”  
Proceedings of the Second Symposium on Operating 
Systems Design and Implementation, pp.  107-121, Oct. 
1996. 

[Hsue & Lin 96]  C. Hsueh and K. Lin, “Optimal Pinwheel 
Schedulers Using the Single-Number Reduction 

Technique,”  Proceedings of the IEEE Real-Time Systems 
Symposium, Dec. 1996. 

[Jones et al. 97]  Michael B. Jones, Daniela Ro� u, Marcel-
C� t � l in Ro� u. “CPU Reservations and Time Constraints: 
Efficient, Predictable Scheduling of Independent 
Activities” , In Proceedings of the 16th ACM Symposium on 
Operating System Principles, St-Malo, France, pp. 198-211, 
Oct. 1997. 

[Kaashoek et al. 97]  D.R. Engler, M.F. Kaashoek, J. O’Toole 
Jr., “Application Performance and Flexibility on Exokernel 
Systems,”  Proceedings of the 16th ACM Symposium on 
Operating System Principles, Oct. 1997. 

[Kay & Lauder 88]  J. Kay and P. Lauder, “A Fair Share 
Scheduler,”  Communications of the ACM, Vol. 31, No. 1, 
pp. 44-55, 1988. 

[Kleinrock 74]  L. Kleinrock, Queueing Systems. Volume 1, New 
York: John Wiley, 1974. 

[Lampson 68]  B.W. Lampson, “A Scheduling Philosophy for 
Multiprogramming Systems,”  Communications of the ACM, 
Vol. 10, pp. 613-615, May 1968. 

[Liu & Layland 73]  C. L. Liu and James W. Layland, 
“Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment,”  Journal of the ACM, Vol. 20, No. 
1, pp. 46-61, Jan. 1973. 

[Nieh & Lam 97]  J. Nieh and M. S. Lam, “The Design, 
Implementation and Evaluation of SMART: A Scheduler 
for Multimedia Applications”  Proceedings of the 16th ACM 
Symposium on Operating Systems Principles, pp. 184-197, 
Oct. 1997. 

[Northcutt 88]  J. D. Northcutt, “The Alpha Operating System: 
Requirements and Rationale”  Archons Project Technical 
Report #88011, Dept. of Computer Science, Carnegie-
Mellon, Jan. 1988. 

[Ousterhout 82]  J.K. Ousterhout, “Scheduling Techniques for 
Concurrent Systems,”  Proceedings of the 3rd International 
Conference on Distributed Computer Systems, pp. 22-30, 
Oct. 1982. 

[Ritchie 84]  Dennis M. Ritchie, “A Stream Input-Output 
System”, AT&T Bell Laboratories Technical Journal, Vol. 
63, No. 8, Oct. 1984. 

[Seltzer & Small 97]  M.I. Seltzer, C. Small, “Self-monitoring 
and Self-adapting Operating Systems,”  Proceedings of the 
6th Workshop on Hot Topics in Operating Systems, pp. 124-
129, May 1997. 

[Sha et al. 90]  L. Sha, R. Rajkumar, and J. P. Lehoczky, 
“Priority Inheritance Protocols: An Approach to Real-Time 
Synchronization,”  IEEE Transactions on Computers, Vol. 
39, No. 9, pp. 1175-1185, Sep. 1990. 

[Solomon 98]  David A. Solomon.  Inside Windows NT, Second 
Edition.  Microsoft Press, 1998. 

[Waldspurger 95]  C.A. Waldspurger, “Lottery and Stride 
Scheduling: Flexible Proportional-Share Resource 
Management,”  Ph.D. dissertation, Massachusetts Institute of 
Technology, Sep. 1995. Also appears as Technical Report 
MIT/LCS/TR-667. 


