
Code-Pointer Integrity
Volodymyr Kuznetsov, László Szekeres, Mathias Payer,

George Candea, R. Sekar, Dawn Song

Memory

int *q = buf + input;
*q = input2;
…
(*func_ptr)();

func_ptr

Control-Flow Hijack Attack

shell
code

buf
q X

①
①
②

②③

① Attacker corrupts a data pointer
② Attacker uses it to overwrite a code pointer
③ Control-flow is transferred to shell code

C
on

tro
l-F

lo
w

 H
ija

ck
 C

VE
s

0

30

60

90

120

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Acrobat Firefox IE OS X Linux Average

Control-flow hijacks are still abundant today!

MEMORY

Swift …

Sample Python program
(Dropbox SDK example):

Python program 3 KLOC of Python

Python runtime 500 KLOC of C

libc 2500 KLOC of C

Memory safety prevents control-flow hijacks

… but memory safe programs still rely on C/C++ …

MEMORY

C/C++ Overhead

SoftBound+CETS 116%

CCured
(language modifications) 56%

Watchdog
(hardware modifications) 29%

AddressSanitizer
(approximate) 73%

Memory safety can be retrofitted to C/C++

State of the art:

Control-Flow Integrity

Finest-grained CFI
has 10-21% overhead [5-6]

Coarse-grained CFI
can be bypassed [1-4] and

[1] Göktaş et al., IEEE S&P 2014
[2] Göktaş et al., USENIX Security 2014
[3] Davi et al., USENIX Security 2014
[4] Carlini et al., USENIX Security 2014

Static property:
limit the set of functions that

can be called at each call site

[5] Akritidis et al., IEEE S&P 2008
[6] Abadi et al., CCS 2005

Flexibility
Performance

Safety
Security vs

Programmers have to choose

Code-Pointer Integrity
provides both

and

Control-flow
hijack protection Unmodified C/C++

Practical protection 0.5 - 1.9% overhead
Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety for code pointers only

hardened PostgreSQL

OpenSSL

Apache

Tested on:

Overview

Does it solve a real problem?
How does it work?

How secure is it?
How practical is it?

Practical protection: CPS
Guaranteed protection: CPI

Threat model & background

Threat Model

• Attacker can read/write data, read code

• Attacker cannot:

• Modify program code

• Influence program loading

buf_lower = p; buf_upper = p+10;

q_lower = buf_lower; q_upper = buf_upper;
if (q < q_lower || q >= q_upper-size)
 abort();

char *buf = malloc(10);

…
char *q = buf + input;

*q = input2;

Memory Safety
program instrumentation

116% average performance overhead

…
(*func_ptr)();

All-or-nothing protection

1. Assign metadata

2. Propagate metadata

3. Check metadata

(Nagarakatte et al., PLDI’09 and ISMM’10)

Memory

func_ptr

buf
q

116% average performance overhead

Control-flow hijack protection
1.9% or 8.4% average performance overhead

?

Memory Safety

Can memory safety be enforced
for code pointers only ?

int *q = buf + input;
*q = input2;
…
(*func_ptr)();

Regular
Memory

Safe
Memory

func_ptr

All
non-code-

pointer data

Code
pointers

only
buf

Separation is enforced using hardware-
enforced instruction-level isolation

Practical Protection (CPS): Heap

Instructions that access code pointers are
identified using type-based static analysis

2.5%
memory accesses

(on SPEC2006 CPU)

97.5%
memory accesses

(on SPEC2006 CPU)

Program
memory

is separated
▶◀

Memory
layout

unchanged

int foo() {
 char buf[16];
 int r;
 r = scanf(“%s”, buf);
 return r;
}

Safe stack adds <0.1% performance overhead!

Regular
Stack

Safe
Stack

ret address

buf Not needed in
most small
functions

r

Practical Protection (CPS): Stack

All accesses
are safe

Only locals
accessed
through
pointers

Stacks are
separated ▶◀

All locals that
are only

accessed
safely

Practical Protection (CPS):
Memory Layout

Safe Heap

Safe memory
(code pointers)

Regular memory
(non-code-pointer data)

Regular Heap

Code (Read-Only)

Safe
Stack
(thread1)

Safe
Stack
(thread2) …

Regular
Stack
(thread1)

Regular
Stack
(thread2) …

Hardware-based
instruction-level isolation

Only instructions that operate on code
pointers can access the safe memory

The CPS Promise

Under CPS, an attacker
cannot forge a code pointer

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

Is this enough?
In practice, yes!

Under CPS, an attacker
cannot forge a code pointer

func1_ptr

With CPS:
a ptr to another

function or
NULL

Contrived example of an attack
on a CPS-protected program
①
②

②
③

① Attacker corrupts a data pointer
② Attacker uses it to corrupt a struct pointer
③ Program loads a function pointer from wrong  

location in the safe memory
④ Control-flow is transferred to different function whose  

address was previously stored in the safe memory

X

④ ③

① q

valid
function

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

Sensitive pointers = code pointers …Sensitive pointers = code pointers and
pointers used to access sensitive pointers

Is this enough?
In practice, yes!

Under CPS, an attacker
cannot forge a code pointer

Precise solution: protect all sensitive¹ pointers
¹

Memory

func_ptr

struct_ptr

func1_ptr

valid
function

Contrived example of an attack
on a CPS-protected program

With CPI:
struct_ptr is

sensitive and
cannot be
corrupted

Sensitive pointers = code pointers and
pointers used to access sensitive pointers

On SPEC2006 ≤6.5% memory accesses are sensitive

Guaranteed Protection (CPI)

• CPI identifies all sensitive pointers using
over-approximate type-based static analysis:
is_sensitive(v) = is_sensitive_type(type of v)

• Over-approximation doesn’t hurt security,
it only affects performance:

Guaranteed Protection (CPI):
Memory Layout

Safe memory
(sensitive pointers and metadata)

Regular memory
(non-sensitive data)

Accesses
are fast

Accesses
are checked for
memory safety

Safe Heap Regular Heap

Code (Read-Only)

Safe
Stack
(thread1)

Safe
Stack
(thread2) …

Regular
Stack
(thread1)

Regular
Stack
(thread2) …

Hardware-based
instruction-level isolation

Only instructions that operate on sensitive
pointers can access the safe memory

Guaranteed Protection (CPI)

Guaranteed memory safety for
all sensitive¹ pointers

¹Sensitive pointers = code pointers and pointers used to access sensitive pointers

⇒
Guaranteed protection against

control-flow hijack attacks
enabled by memory bugs

movl input2, q

call *%gs:func_ptr

Regular
Memory

ds.base

ds.limit

Safe
Memory

gs.base

gs.limit

Instruction-Level Isolation

int *q = ptr + input;
*q = input2;
…
(*func_ptr)();

Regular
Memory

Safe
Memory

fs.base
(randomized)

x86-32 x86-64 Perfect hiding:
regular memory

contains no pointers
to safe memory

Alternative:
Software Fault Isolation

Dedicated
segment register,

used only to
access the safe

memory

CPS CPI

• Separate sensitive pointers and regular data
Sensitive pointers = 
 code pointers

Sensitive pointers = 
 code pointers + 
 indirect pointers to sensitive pointers

• Accessing sensitive pointers is safe
Separation Separation +

 runtime checks

• Accessing regular data is fast
Instruction-level safe region isolation

Overview

Does it solve a real problem?
How does it work?

How secure is it?
How practical is it?

Practical protection: CPS
Guaranteed protection: CPI

Threat model & background

Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?

How secure is it?

• RIPE¹ runtime intrusion prevention evaluator:

• Both CPS and CPI prevent all attacks from RIPE

• Future attacks:

• CPI correctness proof in the paper

¹Wilander at al., ACSAC 2011

Protects
Against Technique Security Guarantees Average

Overhead

Memory
corruption

vulnerabilities
Memory Safety Precise 116%

Control-flow
hijack

vulnerabilities

CPI
(Guaranteed protection) Precise 8.4-10.5%

CPS
(Practical protection) Strong 0.5-1.9%

Finest-grained
CFI

Medium (attacks may exist)
Göktaş el., IEEE S&P 2014 10-21%

Coarse-grained
CFI

Weak (known attacks)
Göktaş el., IEEE S&P 2014 and USENIX Security 2014,

Davi et al, USENIX Security 2014
Carlini et al., USENIX Security 2014

4.2-16%

ASLR
DEP

Stack cookies

Weakest
(bypassable + widespread attacks) ~0%

Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?

Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?

Implementation
Is it practical?
Is it fast enough?

Implementation
cc -fcpi foo.c

• LLVM-based prototype at http://levee.epfl.ch

• Plan to integrate upstream into LLVM

http://levee.epfl.ch

Implementation

• Front-end (clang):  
Collect type information

• Back-end (LLVM):  
CPI/CPS and SafeStack instrumentation passes

• Runtime support (compiler-rt or libc):  
Safe heap and stacks management

• LLVM-based prototype at http://levee.epfl.ch

http://levee.epfl.ch

• Recompiled the entire FreeBSD userspace…

• … and more than 100 packages

Full OS Distribution
with CPS/CPI protection

PostgreSQL

OpenSSL

hardened

Performance overhead on Phoronix
pgbench
openssl

encode-mp3
graphics-magick 1
graphics-magick 2
graphics-magick 3
graphics-magick 4
graphics-magick 5

hmmer
postmark

sqlite
pybench

dcraw
crafty

compress-lzma
compress-pbzip2

c-ray

Average
Median

-5% 5% 15% 25% 35% 45% 55% 65% 75% 85%

Safe stack only
CPS (practical protection)
CPI (guaranteed protection)

Safe stack: 0.01%
CPS: 0.5%
CPI: 10.5%

400_perlbench
401_bzip2

403_gcc
429_mcf

445_gobmk
456_hmmer

458_sjeng
462_libquantum

464_h264ref
471_omnetpp

473_astar
483_xalanbmk

433_milc
444_namd
447_dealII

450_soplex
453_povray

470_lbm
482_sphinx3

Average
Median

-5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Safe stack only
CPS (practical protection)
CPI (guaranteed protection)

Safe stack: 0.03%
CPS: 1.9%
CPI: 8.4%

Performance overhead on SPEC2006 CPU

Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?

Implementation
Is it fast enough?
Is it practical?

Code-Pointer Integrity

and

Control-flow
hijack protection Unmodified C/C++

Practical protection 0.5 - 1.9% overhead
Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety for code pointers only

hardened PostgreSQL

OpenSSL

Apache

http://levee.epfl.ch

http://levee.epfl.ch

