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Memory

int *q = buf + input; 
*q = input2; 
…
(*func_ptr)();

func_ptr

Control-Flow Hijack Attack

shell 
code

buf
q X

①
①
②

②③

① Attacker corrupts a data pointer 
② Attacker uses it to overwrite a code pointer 
③ Control-flow is transferred to shell code
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Control-flow hijacks are still abundant today!



MEMORY

Swift …

Sample Python program 
(Dropbox SDK example):

Python program 3 KLOC of Python

Python runtime 500 KLOC of C

libc 2500 KLOC of C

Memory safety prevents control-flow hijacks

… but memory safe programs still rely on C/C++ …



MEMORY

C/C++ Overhead

SoftBound+CETS 116%

CCured 
(language modifications) 56%

Watchdog 
(hardware modifications) 29%

AddressSanitizer 
(approximate) 73%

Memory safety can be retrofitted to C/C++



State of the art: 

Control-Flow Integrity

Finest-grained CFI
has 10-21% overhead [5-6]

Coarse-grained CFI
can be bypassed [1-4] and

[1] Göktaş et al., IEEE S&P 2014 
[2] Göktaş et al., USENIX Security 2014 
[3] Davi et al., USENIX Security 2014 
[4] Carlini et al., USENIX Security 2014

Static property: 
limit the set of functions that 

can be called at each call site

[5] Akritidis et al., IEEE S&P 2008 
[6] Abadi et al., CCS 2005



Flexibility
Performance

Safety
Security vs

Programmers have to choose



Code-Pointer Integrity 
provides both

and

Control-flow
hijack protection Unmodified C/C++

Practical protection 0.5 - 1.9% overhead
Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety for code pointers only

hardened PostgreSQL

OpenSSL

Apache

Tested on:



Overview

Does it solve a real problem?
How does it work?

How secure is it?
How practical is it?

Practical protection: CPS
Guaranteed protection: CPI

Threat model & background



Threat Model

• Attacker can read/write data, read code 

• Attacker cannot: 

• Modify program code 

• Influence program loading



buf_lower = p; buf_upper = p+10; 

q_lower = buf_lower; q_upper = buf_upper; 
if (q < q_lower || q >= q_upper-size) 
  abort(); 

char *buf = malloc(10);

… 
char *q = buf + input;

*q = input2;

Memory Safety 
program instrumentation

116% average performance overhead

… 
(*func_ptr)();

All-or-nothing protection

1. Assign metadata

2. Propagate metadata

3. Check metadata

(Nagarakatte et al., PLDI’09 and ISMM’10)

Memory

func_ptr

buf
q



116% average performance overhead

Control-flow hijack protection 
1.9% or 8.4% average performance overhead

?

Memory Safety

Can memory safety be enforced 
for code pointers only ?



int *q = buf + input; 
*q = input2; 
… 
(*func_ptr)();

Regular 
Memory

Safe 
Memory

func_ptr

All 
non-code-

pointer data

Code 
pointers 

only
buf

Separation is enforced using hardware-
enforced instruction-level isolation

Practical Protection (CPS): Heap

Instructions that access code pointers are 
identified using type-based static analysis

2.5% 
memory accesses 

(on SPEC2006 CPU)

97.5% 
memory accesses 

(on SPEC2006 CPU)

Program
memory

is separated
▶◀

Memory 
layout 

unchanged



int foo() { 
  char buf[16]; 
  int r; 
  r = scanf(“%s”, buf); 
  return r; 
}

Safe stack adds <0.1% performance overhead!

Regular 
Stack

Safe 
Stack

ret address

buf Not needed in 
most small 
functions

r

Practical Protection (CPS): Stack

All accesses 
are safe

Only locals 
accessed 
through 
pointers

Stacks are
separated ▶◀

All locals that 
are only 

accessed 
safely



Practical Protection (CPS): 
Memory Layout

Safe Heap

Safe memory 
(code pointers)

Regular memory 
(non-code-pointer data)

Regular Heap

Code (Read-Only)

Safe 
Stack 
(thread1)

Safe 
Stack 
(thread2) …

Regular 
Stack 
(thread1)

Regular 
Stack 
(thread2) …

Hardware-based 
instruction-level isolation

Only instructions that operate on code 
pointers can access the safe memory



The CPS Promise

Under CPS, an attacker 
cannot forge a code pointer



Memory

int *q = p + input; 
*q = input2;
… 

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

Is this enough? 
In practice, yes!

Under CPS, an attacker 
cannot forge a code pointer

func1_ptr

With CPS: 
a ptr to another 

function or 
NULL

Contrived example of an attack 
on a CPS-protected program
①
②

②
③

① Attacker corrupts a data pointer 
② Attacker uses it to corrupt a struct pointer 
③ Program loads a function pointer from wrong  

location in the safe memory 
④ Control-flow is transferred to different function whose  

address was previously stored in the safe memory

X

④ ③

① q

valid 
function



int *q = p + input; 
*q = input2;
… 

(*func_ptr)();
func_ptr = struct_ptr->f;

Sensitive pointers = code pointers …Sensitive pointers = code pointers and 
pointers used to access sensitive pointers

Is this enough? 
In practice, yes!

Under CPS, an attacker 
cannot forge a code pointer

Precise solution: protect all sensitive¹ pointers
¹

Memory

func_ptr

struct_ptr

func1_ptr

valid 
function

Contrived example of an attack 
on a CPS-protected program

With CPI: 
struct_ptr is 

sensitive and 
cannot be 
corrupted



Sensitive pointers = code pointers and 
pointers used to access sensitive pointers

On SPEC2006 ≤6.5% memory accesses are sensitive

Guaranteed Protection (CPI)

• CPI identifies all sensitive pointers using 
over-approximate type-based static analysis:
is_sensitive(v) = is_sensitive_type(type of v)

• Over-approximation doesn’t hurt security, 
it only affects performance:



Guaranteed Protection (CPI): 
Memory Layout

Safe memory 
(sensitive pointers and metadata)

Regular memory 
(non-sensitive data)

Accesses 
are fast

Accesses 
are checked for 
memory safety

Safe Heap Regular Heap

Code (Read-Only)

Safe 
Stack 
(thread1)

Safe 
Stack 
(thread2) …

Regular 
Stack 
(thread1)

Regular 
Stack 
(thread2) …

Hardware-based 
instruction-level isolation

Only instructions that operate on sensitive 
pointers can access the safe memory



Guaranteed Protection (CPI)

Guaranteed memory safety for 
all sensitive¹ pointers

¹Sensitive pointers = code pointers and pointers used to access sensitive pointers

⇒
Guaranteed protection against 

control-flow hijack attacks 
enabled by memory bugs



movl input2, q 

call *%gs:func_ptr

Regular 
Memory

ds.base

ds.limit

Safe 
Memory

gs.base

gs.limit

Instruction-Level Isolation

int *q = ptr + input; 
*q = input2; 
… 
(*func_ptr)();

Regular 
Memory

Safe 
Memory

fs.base
(randomized)

x86-32 x86-64 Perfect hiding: 
regular memory 

contains no pointers 
to safe memory

Alternative: 
Software Fault Isolation

Dedicated 
segment register, 

used only to 
access the safe 

memory



CPS CPI

• Separate sensitive pointers and regular data
Sensitive pointers = 
   code pointers

Sensitive pointers = 
   code pointers + 
   indirect pointers to sensitive pointers

• Accessing sensitive pointers is safe
Separation Separation + 

   runtime checks

• Accessing regular data is fast
Instruction-level safe region isolation



Overview

Does it solve a real problem?
How does it work?

How secure is it?
How practical is it?

Practical protection: CPS
Guaranteed protection: CPI

Threat model & background



Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?



How secure is it?

• RIPE¹ runtime intrusion prevention evaluator: 

• Both CPS and CPI prevent all attacks from RIPE

• Future attacks: 

• CPI correctness proof in the paper

¹Wilander at al., ACSAC 2011



Protects 
Against Technique Security Guarantees Average 

Overhead

Memory 
corruption 

vulnerabilities
Memory Safety Precise 116%

Control-flow 
hijack 

vulnerabilities

CPI
(Guaranteed protection) Precise 8.4-10.5%

CPS
(Practical protection) Strong 0.5-1.9%

Finest-grained 
CFI

Medium (attacks may exist) 
Göktaş el., IEEE S&P 2014 10-21%

Coarse-grained 
CFI

Weak (known attacks) 
Göktaş el., IEEE S&P 2014 and USENIX Security 2014, 

Davi et al, USENIX Security 2014 
Carlini et al., USENIX Security 2014 

4.2-16%

ASLR 
DEP 

Stack cookies

Weakest 
(bypassable + widespread attacks) ~0%



Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?



Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?

Implementation
Is it practical?
Is it fast enough?



Implementation
cc -fcpi foo.c

• LLVM-based prototype at http://levee.epfl.ch

• Plan to integrate upstream into LLVM

http://levee.epfl.ch


Implementation

• Front-end (clang):  
Collect type information 

• Back-end (LLVM):  
CPI/CPS and SafeStack instrumentation passes 

• Runtime support (compiler-rt or libc):  
Safe heap and stacks management

• LLVM-based prototype at http://levee.epfl.ch

http://levee.epfl.ch


• Recompiled the entire FreeBSD userspace… 

• … and more than 100 packages

Full OS Distribution 
with CPS/CPI protection

PostgreSQL

OpenSSL

hardened



Performance overhead on Phoronix
pgbench
openssl

encode-mp3
graphics-magick 1
graphics-magick 2
graphics-magick 3
graphics-magick 4
graphics-magick 5

hmmer
postmark

sqlite
pybench

dcraw
crafty

compress-lzma
compress-pbzip2

c-ray

Average
Median

-5% 5% 15% 25% 35% 45% 55% 65% 75% 85%

Safe stack only
CPS (practical protection)
CPI (guaranteed protection)

Safe stack: 0.01% 
CPS:   0.5% 
CPI:   10.5%



400_perlbench
401_bzip2

403_gcc
429_mcf

445_gobmk
456_hmmer

458_sjeng
462_libquantum

464_h264ref
471_omnetpp

473_astar
483_xalanbmk

433_milc
444_namd
447_dealII

450_soplex
453_povray

470_lbm
482_sphinx3

Average
Median

-5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Safe stack only
CPS (practical protection)
CPI (guaranteed protection)

Safe stack: 0.03% 
CPS:   1.9% 
CPI:   8.4%

Performance overhead on SPEC2006 CPU



Overview

Does it solve a real problem?
How does it work?
How secure is it?
How practical is it?

Implementation
Is it fast enough?
Is it practical?



Code-Pointer Integrity

and

Control-flow
hijack protection Unmodified C/C++

Practical protection 0.5 - 1.9% overhead
Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety for code pointers only

hardened PostgreSQL

OpenSSL

Apache

http://levee.epfl.ch

http://levee.epfl.ch

